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Highlights 

 

• Comprehensive analysis of 22 therapeutic monoclonal antibodies, covering the main commercial 

antibodies commonly used in therapeutic applications. 

• Utilization of both linear and non-linear discriminant analyzed models.  

• Validation dataset from real-life production, ensuring the robustness of the findings. 

• Rapid analysis methodology demonstrating excellent accuracy performance. 
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The demand for monoclonal antibodies (mAbs) in hospitals is continually rising due to the advancement of targeted 

therapy or immunotherapy in cancer treatment. Typically, mAbs are produced in centralized chemotherapy 

production units and require rigorous control to ensure the right drug at the right dose before administration to 

patients. Discriminant analysis of mAbs is particularly challenging due to their closely related chemical and 

spectral properties. Various techniques, including flow injection analysis, electrophoresis and spectroscopies such 

as ultraviolet (UV), infrared or Raman have been attempted with limited success, particularly on a small subset of 

mAbs, underscoring the difficulty in discriminating them. 

This study aimed to develop a robust discriminant analysis method using a large dataset comprising 22 mAbs used 

in therapeutic. The discriminant analysis was based on UV spectroscopy coupled with chemometrics. A calibration 

dataset consisting of 404 samples was prepared and analyzed using various preprocessing methods, wavelength 

selection and discriminant analysis algorithms to maximize overall accuracy. Validation of the newly developed 

discriminant analysis was conducted using samples collected from real manufactured preparations for patient (over 

1,380 samples). The study achieved an overall accuracy of 0.996 and 0.998 on the 22 mAbs using partial least 

squares-discriminant analysis (PLS-DA) and k-nearest neighbors (kNN), respectively. The utilization of 

chemometrics for discriminating mAbs based on their UV spectra, following total area normalization, has been 

successfully demonstrated. This method has undergone validation, affirming its capability to swiftly and 

dependably distinguish different mAbs. Moreover, it seamlessly integrates with the workflow involved in the 

preparation of mAbs drugs within a cancer hospital setting. This advancement holds promise for streamlining 

processes and enhancing efficiency in the production and utilization of mAbs, thereby potentially benefiting 

patient care and treatment outcomes. 

 

1. Introduction 
 

 

Monoclonal antibodies (mAbs) play a major role in cancer therapy, they are immune system 

proteins that constitute a main component of cancer therapy [1]. These advancements have 

significantly enhanced overall survival rates across various cancers [1–5] leading to a surge of 

the number of commercial mAbs drugs. The preparation of each mAb involves one or two 

major steps, depending on whether it is in ready-to-used form or in powdered form, and requires 
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reconstitution in a solvent before the dilution (commonly 5% glucose or 0.9% sodium chloride). 

They are produced in specific production unit by pharmacy technicians under controlled 

conditions[6–8]. Various analytical strategies have been explored for analysis of mAbs, 

including electrophoresis [9] and flow injection analysis [10], both coupled with UV-detection. 

Direct analysis using Raman spectroscopy [11,12] have also been conducted but is not currently 

applicable and involves machine learning approach [12]. UV spectroscopy approach, up to now, 

has limited success and has only been effective in discriminating a few mAbs [10]. At Gustave 

Roussy cancer center, over 20 mAbs are produced. To perform analytical quality control (AQC) 

for all anticancer drug production, a system called QCRx (Icone), based on UV and Raman 

spectroscopies is currently employed. This system seamlessly integrates with the drug 

preparation workflow, and the analysis takes no longer than two minutes. However, given that 

discriminant analysis using Raman spectroscopy primarily recognizes the excipient rather than 

the mAbs directly [11], we have opted to use UV spectra for this study. Despite limitations in 

specificity, UV spectroscopy may still be suitable for mAbs discrimination due to inherent 

properties of mAbs which are large proteins rich in aromatic amino acids, which strongly absorb 

UV light in the range of 250 – 300 nm. In contrast, common excipients in mAb formulation, 

such as surfactants (polysorbates, poloxamers), amino acids for buffering capacity (glycine, 

arginine, histidine) and carbohydrates (sucrose, mannitol) typically absorb below 230 nm [13]. 

The aim of this work was to develop an accurate and robust discriminant analysis based on the 

UV spectra of 22 mAbs using chememotric tools.  

 
 

2. Materials and methods 
 

2.1.Materials 

The manufactured mAbs included atezolumab (Tecentriq, Roche), avelumab (Bavencio, Merck 

Serono), bevacizumab (Mvasi, Amgen), rituximab (Ruxience, Pfizer), brentuximab-vedotin 

(Adcetris, Takeda), cemiplimab (Libtayo, Sanofi Winthrop), cetuximab (Erbitux, Merck 

Serono), daratumumab (Darzalex, Janssen Cilag), durvalumab (Imfinzi, Astrazeneca), 

enfortumab-vednotin (Padcev, Astellas Pharma), ipilimumab (Yervoy, Bristol Myers Squibb), 

isatuximab (Sarclisa, Sanofi Winthrop), nivolumab (Opdivo, Bristol Myers Squibb), 

obinutuzumab (Gazyvaro, Roche), panitumumab (Vectibix, Amgen), pembrolizumab 

(Keytruda, MSD), pertuzumab (Perjeta, Roche), sacituzumab-govotecan (Trodelvy, Gilead 

sciences), tafasitamab (Minjuvi, Incyte biosciences), trastuzumab (Trazimera, Pfizer), 

trastuzumab-emtansine (Kadcyla, Roche), trastuzumab-deruxtecan (Enherthu, Daiichi 

Sankyo). These mAbs were prepared according to the manufacturer recommendations 

(summary of product characteristics, SPC) and were mostly diluted in sodium chloride 0.9% 

(NaCl 0.9%, Fresenius Kaby). Adcteris, Padcev, Minjuvi, Kadcyla, Enhertu must be 

reconstituted with water for injection while Trodelvy must be reconstituted with 0.9 % NaCl. 

Adcteris, Padcev, Trodelvy, Kadcyla, Enhertu are conjugated mAbs, so they are linked to 

another molecule which is cytotoxic. These mAbs are expected to be more readily 

distinguishable from others non-conjugated mAbs. 

2.2.Instrumentation 

The UV analyses were performed using an i-QCRx system (B&W Tek Europe GmbH, 

Germany, Icones service, France). This system comprised an autosampler, fluidic control and 

main detection module. The detection module was equipped with a 0.5 mm quartz-cuvette. For 
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UV detection, a deuterium lamp was used with a diode array detector. The acquisition with 

QCRx system was controlled by a computer with QCRx-iC analyses software version 9.0. 

2.3.Data analysis 

An identification library was constructed with QL_Analyst software (version 1.0). 

Chemometric analyses were performed with R software, version 4.3.2 (2023-10-31). 

Preprocessing methods evaluated included normalization, asymmetric least square (ALS) 

baseline correction, Savitzky-Golay (SG) smoothing, first derivative (d1), and second 

derivative (d2) implemented with the baseline package (version 1.3-5). Discriminant analysis, 

including  PLS-DA and kNN, was conducted using the Caret package, version 6.0-94 [14]. 

Partial least square regression for discriminant analysis (PLS-DA) were performed using 

“softmax” algorithm for probability calculation. Additionally, k-Nearest Neighbor (kNN) 

analysis was performed.  

Principal component analysis (PCA) [15] was firstly applied, to quickly visualize all dataset by 

projecting data on principal components (PC) which are linear combinations of original 

variables that maximize the variance. Therefore, it is easier to visualize large dataset onto a 

lower dimensional space and to identify patterns. 

PLS-DA is primarily used to enhance the discrimination between different sample groups by 

maximizing the covariance between the independent variables X (UV spectra) and the 

corresponding dependent variable Y (mAbs classes). This is achieved by identifying a linear 

subspace of the explanatory variables [16]. This new subspace enables the prediction of the Y 

variable based on a reduced number of factors, known as latent variables (LV). In this approach, 

it is important to define the number of LV to prevent overfitting, a process typically carried out 

using the training set to maximize accuracy. PLS-DA primary advantage lies in its ability to 

manage highly collinear and noisy data, characteristics often encountered in spectral 

measurements [17]. 

kNN is a simple supervised modelling technique that utilizes the nearest neighbor to classify 

objects. This algorithm operates by computing the Euclidean distances between the unknown 

spectra and the spectra of the training set. Subsequently, the k spectra with the shortest 

Euclidean distances are selected [18], forming a group of similar spectra. A centroid, calculated 

as a geometric mean, is then calculated from this group. When presented with a new unknown 

sample, its class attribution is determined by the distance from the centroid. In this approach, 

the number of neighbors (k) must be selected at the start of the algorithm. This parameter was 

optimized using the training set to maximize accuracy. 

 

The reference spectral library was developed by measuring the 22 mAbs at various 

concentrations, following the recommendation outlined in international conferences of 

harmonization (ICH) for quantitative validation method [19]. The concentrations of molecules 

used to construct the calibration dataset are summarized in table S1 of the supplementary 

information (SI). Specifically, measurements were taken at a minimum of five concentrations 

with three concentrations in triplicate (i.e. about 15 to 20 samples by mAb, depending on 

analytical range). These spectra formed the basis of the calibration dataset, which was randomly 

divided into 70 % for the training set and 30 % for the testing set. During this step, wavelength 

selection, preprocessing optimization, discriminant analysis and selection of the number of 

latent variables (LV) or the number of neighbors (k) were performed to maximize accuracy. The 

number of LV and k were determined by repeated k-fold cross-validation on the test set of the 

calibration dataset with ten repetitions (r = 10). The validation dataset of independent samples, 

used to access the prediction performance of the model, comprised real preparations of mAbs 

intended for patient administration. 
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Figure 1: analytical strategy for discriminant analysis on monoclonal antibodies spectral data. 

 

3. Result and discussion 

The first step involved constructing a library containing spectra of all mAbs, covering the entire 

concentration range used in therapeutic. Chemometric analysis was then applied to highlight 

spectral differences. First, various preprocessing methods were tested to reduce noise 

background. Then, two widely used supervised discriminant analysis [20] were performed: 

partial least square-discriminant analysis (PLS-DA) [21] and k-nearest neighbor (kNN) [22]. 

PLS-DA is favored in spectral analysis due to its ability to handle collinearity structure, whereas 

kNN is capable to handling non-linear models. The main objective was to maximize accuracy 

representing the proportion of well-classified samples. 

Once the best model selected with calibration dataset, the final discriminant analysis was 

performed on new data obtained from mAbs preparations intended for patient injection. Each 

sample was treated as unknown, and drug determination was carried out blindly.  

A total of 404 spectra were collected to build the calibration dataset, including UV spectra of 

22 mAbs at concentrations ranging from 0.1 mg.mL-1 to 25 mg.mL-1. The concentrations varied 

for each mAbs based on their therapeutic use (table S1). 

The data were initially examined by PCA to access data variability. As shown in Figure 2 (A), 

significant signal saturation was observed in the region below 240 nm. Consequently, 
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wavelengths above 250 nm were selected for further analysis. Upon examination of the first 

two principal components (PCs) as illustrated in Figure 2(B), it was evident that the 

concentration contributed substantially to the observed variability. To mitigate the influence of 

concentration, total area normalization was implemented. Subsequently, various preprocessing 

commonly used in spectral analysis were evaluated (ALS, SG, d1, d2). PC1 and PC2 visibly 

illustrated an initial distinction between mAbs and conjugated mAbs, which denote mAbs 

linked to a cytotoxic drug: tastuzumab deruxtecan and trastuzumab emtansine. 

 

 

Figure 2: raw spectra of 404 measurements (A), two first principal components (Comp 1, Comp 2) of principal component 

analysis on raw spectra, colored by concentrations (B). 

In Figure 3A, the spectra selection is depicted following wavelength selection (250-400 nm), 

total area normalization and removal outliers based only on spectra structure and not on PCA 

calculation. A total of 17 spectra were removed due to errors encountered during the acquisition 

process.. A subsequent PCA was performed post-preprocessing (Figure 3 B) and shown a first 

separation between mAbs and all 5 conjugated mAbs. Applying PCA on preprocess data 

suggested that conjugated mAbs should be easy to discriminate while discriminate non-

conjugated mAbs remind difficult.   

 

Figure 3: preprocess spectra (387) by wavelength selection (250-400 nm) and total area normalization (A), principal component 

analysis on preprocess data showing class separation between mAbs and conjugated mAbs (B). 
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Based on this groundwork, we performed data preprocessing which included the removal of 

outliers based on their spectral characteristics. Subsequently, 387 spectra were selected, and 

wavelength selection was set at the range of 250 nm to 400 nm. The next step involved 

optimizing model parameters, such as the number of LV for PLS-DA and the number of k for 

kNN. An illustration of parameter selection, conducted on the training set of the calibration 

dataset, is presented in figure 4. 

 

Figure 4: parameters selection for the number of latent variables (LV) for PLS-DA model (A), number of neighbors (k) for 

kNN model (B). The blue dot corresponds to the selection, LV = 21 for PLS-DA, k = 5 for kNN. 

The main results for various preprocessing methods applied to PLS-DA or kNN algorithms are 

summarized in table S2. These results were derived from accuracy calculations on the test set 

of the calibration dataset, averaging across ten repetitions. The findings underscore the 

significance of wavelength selection and total area normalization in maximizing accuracy. 

While others preprocessing methods such as ALS, d1, and d2 had minimal impact on accuracy 

with PLS-DA model, they exhibited influence on the performance of the kNN model. 

The results demonstrated superior performance with PLS-DA compared to kNN across all 

preprocessing methods. Upon comparing the performance of PLS-DA and kNN, we concluded 

that linear classification was highly effective in discriminating mAbs and likely better suited to 

handle collinearity issues compared to the kNN approach. Nonetheless, it is noteworthy that 

kNN also achieved high levels of accuracy. 

In conclusion, the highest accuracy obtained with the calibration dataset was achieved using 

Narea, ALS, SG, and d1 preprocessing for PSL-DA, resulting in a mean accuracy of 0.973 CI95 

[0.960 – 0.986].  For kNN, the Narea, ALS, SG, and d2 preprocessing methods yielding the 

best performance, with a mean accuracy of 0.907 CI95 [0.881 – 0.933]. Although there were 

no significant differences between the best result and Narea preprocessing for PLS-DA, it was 

ultimately chosen to retain Narea preprocessing for PLS-DA to conserve the structure of the 

spectra. 

To ensure the proper select of wavelengths, we assessed the importance of each variable (i.e. 

wavelength) in predictive performances (Figure 5). The analysis revealed that the most 

significant area lay between 260 and 310 nm, with wavelengths above 310 nm contributing less 

to algorithm construction. This result is consistent with mAbs composition and focus on 

aromatic amino acids absorbances: phenylalanine (245 – 260 nm), tyrosin (265 – 284 nm) and 

tryptophan (265 – 300 nm) [10]. 
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Figure 5: cumulative importance of variables, for PLSDA model (A), kNN model (B). 

Therefore, the data analysis on the calibration dataset were reprocessed following a new 

wavelength selection, resulting in the best performance achieved with a spectral range from 240 

to 335 nm for both discriminant analysis algorithms (PLS-DA and kNN). Main results with this 

wavelength selection, for several preprocessing methods, are represented in Table 1. 

Table 1: main results obtain with test set from calibration dataset, accuracy CI95[] represents mean accuracy with confidence 

interval of 95 % for ten repetitions (randomization of calibration dataset). Preprocessing methods: wavelength selection (240 

– 335 nm) total area normalization (Narea), asymmetric least square (ALS) for baseline correction, smoothing by Savitzky-

Golay (SG), first derivative (d1) and second derivative (d2). 

Preprocessing 
Accuracy CI95[] 

(PLS-DA) 

Accuracy CI95[] 

(kNN) 

Raw spectra 0.849 [0.830 – 0.868] 0.322 [0.292 – 0.352] 

Narea 0.996 [0.992 – 1.000] 0.833 [0.810 – 0.856] 

Narea + ALS 0.990 [0.984 – 0.996] 0.823 [0.796 – 0.850] 

Narea + ALS + SG 0.993 [0.985 – 1.000] 0.821 [0.803 – 0.839] 

Narea + ALS + SG + d1 0.991 [0.986 – 0.996] 0.904 [0.882 – 0.926] 

Narea + ALS + SG + d2 0.946 [0.931 – 0.961] 0.946 [0.930 – 0.962] 

 

Wavelength selection greatly improve accuracy for both discriminant models whatever 

preprocessing methods. The final models selected with calibration dataset were those with the 

highest prediction performances, i.e. the highest accuracy: for PLS-DA (nLV = 21) after Narea 

preprocessing, and for kNN (k = 5) after Narea, ALS, SG, d2 preprocessing. 

Upon determination of the final models, prediction performances were calculated on a new 

validation dataset comprising of sampling from real mAbs preparations intended for patient 

administration. A total of 1,382 samples were collected and analyzed using UV spectroscopy. 

Predictive performances were exceptional: for PLS-DA, an accuracy of 0.996 (or 99,6 % of 

well classified, equivalent to 5 misclassified out of 1,382), and for kNN, an accuracy of 0.998 
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(or 99,8 % correctly classified, corresponding to 2 misclassified out of 1,382). Detailed 

confusion matrices for the validation dataset for PLS-DA and kNN classification are available 

in supplementary information (SI, table S3 and table S4). Upon analyzing the spectra of 

misclassified samples, no specific reason could be identified, and thus, there were considered 

genuine prediction errors in all cases. 

Finally, both approaches were highly accurate. Based on the stability and superior accuracy 

achieved with PLS-DA across all preprocessing methods, particularly with only Narea 

preprocessing, we believe selecting the PLS-DA algorithm is the optimal choice. PLS-DA not 

only provides consistent results but is also effective in addressing collinearity issues and can fit 

UV spectra, which are assumed to be linear while for kNN its seems that more samples are 

needed than PLS-DA to perform high accurate analysis. In practice, both discriminant analysis 

could be used with equivalent results. 

 

4. Conclusion 

In this study, we analyzed twenty-two mAbs using UV spectroscopy to perform discriminant 

analysis. Employing wavelength selection along with total area normalization significatively 

enhanced accuracy performance. Our predictive models achieved remarkable accuracy, 

correctly classifying 99.6% and 99.8% of a large dataset comprising 1,382 real-life prepared 

mAbs samples using PLS-DA or kNN, respectively. These methods are rapid and can be 

efficiently applied in various applications for mAbs discrimination. 
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