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Abstract

Safeguarding privacy in sensitive training data is paramount, particularly in the context of
generative modeling. This can be achieved through either differentially private stochastic
gradient descent or a differentially private metric for training models or generators. In this
paper, we introduce a novel differentially private generative modeling approach based on a
gradient flow in the space of probability measures. To this end, we define the gradient flow
of the Gaussian-smoothed Sliced Wasserstein Distance, including the associated stochastic
differential equation (SDE). By discretizing and defining a numerical scheme for solving
this SDE, we demonstrate the link between smoothing and differential privacy based on a
Gaussian mechanism, due to a specific form of the SDE’s drift term. We then analyze the
differential privacy guarantee of our gradient flow, which accounts for both the smoothing and
the Wiener process introduced by the SDE itself. Experiments show that our proposed model
can generate higher-fidelity data at a low privacy budget compared to a generator-based
model, offering a promising alternative.

1 Introduction

The widespread use of deep learning in critical applications has heightened concerns about privacy limitations,
with various privacy attacks exposing vulnerabilities in machine learning algorithms (Shokri et al., 2017; Hu
et al., 2022; Lacharité et al., 2018; Mai et al., 2018), including deep-learning-based generative models (Chen
et al., 2020b; Carlini et al., 2023). Differential Privacy (DP) has emerged as a key solution to counter privacy
attacks, providing a robust framework to safeguard training data privacy (Dwork et al., 2006; Dwork, 2011;
Dwork & Roth, 2014). DP ensures that a single data point’s inclusion or exclusion minimally affects analysis
outcomes.
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In machine learning, DP is usually achieved by applying calibrated noise to gradient steps involving sensitive
training data, with Differentially Private Stochastic Gradient Descent (DP-SGD) being a prominent example
(Abadi et al., 2016). While extensively explored in classification, the application of DP in generative models
is an emerging research area, often employing DP-SGD variants for training standard generative models (Xie
et al., 2018; Chen et al., 2020a; Long et al., 2021; Dockhorn et al., 2023; Ghalebikesabi et al., 2023); either in
the context of generator learning (Cao et al., 2021) or diffusion models (Dockhorn et al., 2023).

An under-explored alternative for DP-SGD is to minimize a functional on the space of probability measures:

min
µ∈P(Ω)

PrivateCost(µ, ν) + λReg(µ), (1)

where ν is the probability measure to be modeled, PrivateCost is a cost functional on the space of probability
measures P(Ω) that can be computed in a private manner, and Reg is a regularization functional that prevents
over-fitting to training samples. Some works solve this problem by using this cost as a loss for training a
generator. They employ differentially private versions of metrics such as Maximum Mean Discrepancy or
Sliced Wasserstein Distance (Harder et al., 2021; 2023; Rakotomamonjy & Ralaivola, 2021). Here, we propose
an alternative line of work that has never been explored, which explicitly minimizes the functional in Eq. (1)
using gradient flows.

In a non-DP scenario, gradient flows are commonly employed to address minimization problems like the
one described in Eq. (1) (Liutkus et al., 2019; Arbel et al., 2019) and are a viable alternative to other
generative models (Fan et al., 2022). They possess inherent stability and convergence properties, thereby
reaping significant benefits in the optimization process (Ambrosio et al., 2005a;b; Garg & Panagou, 2021).
This is an interesting direction for DP applications, since the absence of a generator leads to superior results
for a given number of epochs and privacy budget, as demonstrated in our experiments. In addition, gradient
flows have not been previously explored and analyzed within the DP framework. All of the above motivates
the following question:

Can we develop a principled formalism for privacy-preserving generative modeling through gradient flows?

In this paper we provide an affirmative response to this question by presenting the theoretical framework for
a differentially private gradient flow of the sliced Wasserstein distance (SWD).

Our approach involves defining the gradient flow on the smoothed SWD (Rakotomamonjy & Ralaivola, 2021),
which is strongly related to DP as made clear latter. Despite its seeming simplicity, Gaussian smoothing, akin
to related works on smoothed Wasserstein distance (Goldfeld et al., 2020; Goldfeld & Greenewald, 2020; Ding
& Niles-Weed, 2022), introduces theoretical complexities and raises questions about the technical conditions
of our gradient flow, including the existence and regularity of its solution. We overcome these challenges and
formally establish the continuity equation of the gradient flow of the smoothed SWD, resulting in a smoothed
velocity field.

This allows us to choose the discretization of the associated Stochastic Differential Equation (SDE) so that
the proposed flow ensures differential privacy. We highlight that after discretization, the smoothing in the
drift term acts as a Gaussian mechanism. Furthermore, we show that the discretization further amplifies
privacy via the Wiener process in the SDE. This results in a sequential algorithm for which the differential
privacy budget can be carefully tracked. We experimentally confirm the viability of our proposed algorithm
compared to a baseline generator-based model trained with the same private SWD.

Notations. Throughout the paper we use Ω to denote the sample space. We assume that Ω is a compact
subset of Rd. For any subset A ⊆ Rd, we use P(A) to denote the set of probability measures supported on
A equipped with the Borel σ-algebra. For µ, ν ∈ P(Ω), we use Π(µ, ν) ⊆ P(Ω2) to denote the set of joint
distributions or “couplings” between µ and ν. For µ ∈ P(Ω) and a measurable function M : Ω → Ω, the
push-forward operator # defines a probability measure M#µ ∈ P(Ω) such that M#µ(A) = µ(M−1(A)) for
all measurable A ⊆ Ω. For r > 0, we use B(0, r) to denote a closed ball of center 0 and radius r.
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2 Background and Related Work

2.1 Sliced Wasserstein Distance

The p-Wasserstein distance between two probability measures µ, ν ∈ P(Ω) is defined as (Peyré & Cuturi,
2019):

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

ˆ
Ω2
∥x− y∥p

2dπ(x, y)
) 1

p

. (2)

For p = 2, i.e., for the squared Euclidean cost, a celebrated result of Brenier (1991) proves that the optimal
way to transport mass from µ to ν is through a measure-preserving transport map M : Ω→ Ω of the form
M(x) = x−∇ψ(x), where ψ : Ω→ Ω is a convex function termed the Kantorovich potential between µ and
ν, and M pushes µ onto ν, i.e. M#µ = ν. In the one-dimensional case, the optimal transport map has a
closed-form expression given by (Peyré & Cuturi, 2019)

M(x) = F−1
ν ◦ Fµ(x), (3)

where Fµ and Fν are the cumulative distribution functions (CDFs) of µ and ν, respectively. In higher
dimensions no such closed form exists.

The sliced Wasserstein distance (SWD) (Rabin et al., 2012) takes advantage of this simplicity of OT in one
dimension by computing a distance between µ, ν ∈ P(Ω) through their projections P θ

#µ, P
θ
#ν ∈ P(R) onto

the unit sphere Sd−1 = {θ ∈ Rd | ∥θ∥2 = 1}. Here P θ : Ω → R denotes the projection operator defined as
P θ(x) = ⟨x, θ⟩. Formally,

SW2
2(µ, ν) =

ˆ
Sd−1
W2

2 (P θ
#µ, P

θ
#ν)dθ, (4)

where dθ is the uniform probability measure on Sd−1. Like W2, the SW2 also defines a metric on P(Ω)
(Nadjahi et al., 2022).

2.2 Wasserstein Gradient Flows

A Wasserstein gradient flow represents an extension of the concept of gradient descent applied to a functional
within the domain of probability measures. More formally, it constitutes a continuous sequence (µt)t of
probability distributions within a Wasserstein metric space (P(Ω),W2), and it follows a continuity equation
(Santambrogio, 2016) with a general form of:

∂ρt

∂t
= div (ρt∇W2Fλ(ρt)) = div (ρt∇W2F(ρt)) + λ∆ρt, (5)

where Fλ = F + λH, F is the functional to be minimized and λH is an entropic regularization term. H
is the negative differential entropy ensuring that the model can generalize and avoid overfitting: H(µ) =´

Ω ρ(x) log ρ(x)dx. λ ≥ 0 signifies the strength of the entropic regularization. ρt is the density of the
probability flow (µt)t≥0 at time t. Depending on the form of Fλ, this continuity equation can be associated
with a SDE which relates the evolution of (µt)t≥0 and its particles (Xt)t≥0 (Jordan et al., 1998):

dXt = −∇V (Xt)dt+
√

2λdWt, (6)

where V is a potential function that depends on the functional F , (Wt)t is a Wiener process, and Xt ∼ µt.

Wasserstein gradient flows possess a rich theoretical background (Ambrosio, 2008; Santambrogio, 2016).
Notably they have been used for generative modeling, where initial distributions are represented by samples
that evolve according to a partial differential equation (PDE) governing the gradient flow and defined on
several metrics such as the maximum mean discrepancy (Arbel et al., 2019) or Wasserstein-based metrics
(Mokrov et al., 2021). Liutkus et al. (2019) also present a non-parametric generative modeling method relying
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on the gradient flow of the sliced Wasserstein distance, while Bonet et al. (2022) introduce a flow defined
in the sliced Wasserstein space by proposing a numerically approximated Jordan–Kinderlehrer–Otto (JKO)
type scheme.

In this work we define the gradient flow of the smoothed sliced Wasserstein distance. Smoothing each sliced
measure allows us to introduce differential privacy, at the expense of additional theoretical challenges on the
definition of the flow.

2.3 Differential Privacy

Definition 1. A random mechanism M : D → R is (ε, δ)-DP if for any two adjacent inputs d1, d2 ∈ D and
any subset of outputs S ⊆ R,

P[M(d1) ∈ S] ≤ eεP[M(d2) ∈ S] + δ. (7)

Adjacent inputs refer to datasets differing only by a single record. DP ensures that when a single record
in a dataset is swapped, the change in the distribution of model outputs will be controlled by ε and δ. ε
controls the trade-off between the level of privacy and the usefulness of the output, where smaller ε values
offer stronger privacy but potentially lower utility (e.g. in our specific case, low-quality generated samples). δ
is a bound on the external risk (e.g. information is accidentally being leaked) that won’t be restricted by ε; it
is an extra privacy option that enables control of the extent of the privacy being compromised. In practice,
we are interested in the values of δ that are less than the inverse of a polynomial in the size of the database
(Dwork & Roth, 2014).

A classical example of a DP mechanism is the Gaussian mechanism operating on a function f : D → Rd as:

Mf (d) = N (f(d), σ2Id). (8)

We define the ℓ2 sensitivity of f as ∆2(f) := maxd1,d2: adjacent∈D ∥f(d1)− f(d2)∥2. For c2 > 2 ln(1.25/δ) and
σ ≥ c∆2(f)

ε , the Gaussian mechanism is (ε, δ)-DP (Dwork & Roth, 2014).

Several works deal with differentially private generative modeling, with most adopting DP-SGD (Xie et al.,
2018; Chen et al., 2020a; Long et al., 2021; Dockhorn et al., 2023; Ghalebikesabi et al., 2023). This approach
is commonly employed in the context of generator learning (Cao et al., 2021) and diffusion models (Dockhorn
et al., 2023).

An alternative solution for a DP generative model is to consider a DP loss function on which the generator is
trained. However, there is limited research on defining rigorous metrics that can be computed in a private
manner, resulting in a gap for privacy-preserving machine learning algorithms. While Lê Tien et al. (2019) use
random projections to make W1 computation differentially private, they do not provide a theoretical analysis
of the resulting divergence. Instead, Harder et al. (2021; 2023) have considered differentially private Maximum
Mean Discrepancy as a generator loss. Rakotomamonjy & Ralaivola (2021) introduce a Gaussian-smoothed
version of SW2, defined as

GσSW2
2 (µ, ν) =

ˆ
Sd−1
W2

2 (P θ
#µ ∗ ξσ, P

θ
#ν ∗ ξσ)dθ, (9)

where ξσ ∼ N (0, σ2Id). They demonstrate that this distance and some extensions (Rakotomamonjy et al.,
2021) are inherently differentially private, as the smoothing acts as a Gaussian mechanism. This allows for
the seamless integration of this differentially private loss function into machine learning problems involving
distribution comparisons, such as generator-based generative modeling. In this work, we extend this trend by
formalizing the gradient flow of the Gaussian-smoothed Sliced Wasserstein Distance.

3 Differentially Private Gradient Flow

In this section we present the theoretical building blocks of our method, which consists of building a discretized
gradient flow on the smoothed sliced Wasserstein distance. This smoothing and discretization will lead to
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a differentially private drift (vector field) in the gradient flow. In Section 3.1 we introduce the smoothing
and the gradient flow of the Gaussian-smoothed sliced Wasserstein distance of Rakotomamonjy & Ralaivola
(2021) defined in Eq. (9), and prove the existence and regularity of its solution. In Section 3.2 we present a
particle scheme to simulate the discretization of this flow and elaborate the link between the discretization,
smoothing, and differential privacy. In Section 3.3 we present the privacy guarantee.

3.1 Gradient Flow of the Smoothed Sliced Wasserstein Distance

In this subsection we study the following functional over the Wasserstein space (P(Ω),W2):

Fν
λ,σ(µ) = 1

2GσSW2
2 (µ, ν) + λH(µ), (10)

where ν ∈ P(Ω) is the target distribution to be modeled and σ > 0 is the smoothing of the probability
measures in the inner optimal transport problem in GσSW2.

We will show later how λ and σ relate to the privacy parameters (ε, δ) in the discretized flow. The main
result of this subsection is the following: first, we establish the existence and regularity of a Generalized
Minimizing Movement Scheme (GMMS) for Eq. (10), and then we demonstrate that this GMMS satisfies the
corresponding continuity equation.
Theorem 1. Let ν ∈ P(B(0, r)) have a strictly positive smooth density. For λ > 0 and r >

√
d, let the

starting distribution µ0 ∈ P(B(0, r)) have a density ρ0 ∈ L∞(B(0, 1)). There exists a minimizing movement
scheme (µt)t≥0 associated with Eq. (10). Further, (µt)t≥0 admits densities (ρt)t≥0 following a continuity
equation:

∂ρt

∂t
= −div(v(σ)

t ρt) + λ∆ρt, (11)

with:

v
(σ)
t (x) = v(σ)(x, µt) =

ˆ
Sd−1

(ψ(σ)
µt,θ)′(⟨x, θ⟩)θdθ. (12)

Here, ψ(σ)
µt,θ is the Kantorovich potential (see Section 2.1) between P θ

#µt ∗ ξσ and P θ
#ν ∗ ξσ, with ξσ ∼ N (0, σ2),

and its derivative is given by Brenier (1991):

(ψ(σ)
µt,θ)′(z) = z − F−1

P θ
#µt∗ξσ

◦ FP θ
#ν∗ξσ

(z), (13)

where Fρ denotes the CDF of ρ.

Proof sketch. (1) We begin by showing that there exists a GMMS (see Appendix A for the precise definition)
for the functional in Eq. (11). For this we show that the following optimization problem admits a solution for
any h > 0:

µh
k+1 ∈ arg min

µ∈P(Ω)
Fν

λ,σ(µ) + W
2
2 (µ, µh

k)
2h . (14)

Notice that the above problem is simply the implicit Euler scheme for deriving the gradient flow of Fν
λ,σ over

the Wasserstein space (P(Ω),W2). Since P(B(0, 1)) is compact for weak convergence, it is enough to show
that Fν

λ,σ is lower semi-continuous in W2. By Lemma 9.4.3 of Ambrosio (2008), H is lower semi-continuous.
By Rakotomamonjy & Ralaivola (2021), GσSW2(µ, ν) is symmetric and satisfies the triangle inequality.
Moreover, GσSW2(µ, ν) ≤ SW2(µ, ν) for any σ ≥ 0. Hence for any ξ, ξ′ ∈ P(B(0, 1)),

|GσSW2(ξ, ν)− GσSW2(ξ′, ν)| ≤ GσSW2(ξ, ξ′) ≤ SW2(ξ, ξ′) ≤ cdW(ξ, ξ′), (15)

where cd > 0 is a constant only dependent on the dimension d and the last inequality follows from Prop. 5.1.3
in Bonnotte (2013). Hence there exists a minimum µ̂ ∈ P(B(0, r)) of G(µ), admitting a density ρ̂, because
otherwise H(µ̂) =∞. Further, we prove that the solution is “sufficiently regular” in Lemma 3 of Appendix A.
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(2) Next, we show that the GMMS whose existence and regularity were previously established indeed satisfies
the continuity equation in Eq. (11). A crucial ingredient in this step is the analysis of the first variation of
the Gaussian-smoothed SW2 distance which is given in the following proposition (see Appendix A for proof).

Proposition 1. Let µ, ν ∈ P(Ω). For any diffeomorphism ζ of Ω,

lim
ε→0+

GσSW2
2 ([Id + εζ]♯µ, ν)− GσSW2

2 (µ, ν)
2ε =

 
Sd−1

ˆ
Ω

(ψσ
µt,θ)′(⟨θ, x⟩)⟨θ, ζ(x)⟩dµdθ. (16)

Using the above result we then get the desired flow equation by closely following the proofs of Theorem S6 in
Liutkus et al. (2019) and Theorem 5.6.1 in Bonnotte (2013).

Theorem 1 shows that there is a continuous sequence of probability measures (µt)t≥0 that constitutes a
minimizing movement scheme for the functional in Eq. (10). Moreover, it shows that the probability density
ρt of the minimizing movement scheme satisfies the continuity equation given by Eq. (11). Theorem 1 is
a generalization of Theorem 2 of Liutkus et al. (2019) and Theorem 5.6.1 of Bonnotte (2013), which we
retrieve when σ → 0. However, the proof does not trivially follow as a corollary from these results, since we
consider projected and then smoothed measures instead of directly applying previous results on smoothed
measures before projection. Hence, we need two new pieces in the proof that are not present in prior works:
(1) existence and regularity of solutions to the functional minimization problem, and (2) analysis of the first
variation of the squared Gaussian-smoothed SW metric.

One key point of our approach is that the drift term in the continuity equation relies on the Kantorovich
potential ψ(σ)

µt,θ associated with the convolution of the Gaussian-smoothed and projected measures, specifically
P θ

#µt ∗ ξσ and P θ
#ν ∗ ξσ. When transitioning from the continuous PDE to a discrete-time SDE this Gaussian

smoothing becomes crucial, ultimately leading to the Gaussian mechanism and ensuring differential privacy.
We show in the next subsection that the combination of smoothing in projected measures and the discretization
jointly establishes differential privacy.

3.2 Discretized and Private Gradient Flow Algorithms

In this subsection, we show how the gradient flow of Theorem 1 is discretized and how the smoothing acts as
a Gaussian mechanism. We then present two algorithms that implement this gradient flow.

The gradient flow of GσSW2 given in Eq. (11) corresponds to a nonlinear Fokker-Plank type equation, where
the drift term is dependent on the density of the solution. The evolution of (µt)t≥0 in Eq. (11) corresponds
to a stochastic process (Xt)t≥0 that solves the SDE in Eq. (6). The latter can be discretized using the
Euler-Maruyama scheme with the random variable initialization X̂0 ∼ µ0 as follows:

X̂k+1 = hv(σ)(X̂k, µ̂kh) +
√

2λhZk+1, (17)

where h > 0 is the step size, µ̂kh is the distribution of X̂k, and {Zk}k are i.i.d. standard normal random
variables. The discrete-time SDE in Eq. (17) can then be simulated by a stochastic finite particle system
{X̂i

k}, where i ∈ {1, . . . , N} is the index for the ith particle, and the discrete time index k runs from 0 to
Kh = T (Bossy & Talay, 1997). The particles are initialized as X̂i

0 ∼ µ0 i.i.d., where each particle follows the
update equation:

X̂i
k+1 = hv̂(σ)(X̂i

k, µ̂
i
kh) +

√
2λhZi

k+1, (18)

with v̂(σ)(X̂i
k, µ̂

i
kh) being an estimate of v(σ)(X̂k, µ̂kh); cf. Eq. (20) for the details.

Naturally, approximating the continuous time SDE in Eq. (6) by the discrete-time update in Eq. (18) leads
to some error, which we provide bounds for in the following theorem. In the infinite particle regime, i.e., as
N →∞, under some assumptions of regularity and smoothness of the drift terms v(σ) and v̂(σ), we can state
the following.
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Theorem 2. Suppose that the SDE in Eq. (6) has a unique strong solution (Xt)t∈[0,T ] for any starting point
x0 ∈ Ω, such that XT ∼ µT . For T = Kh, let µ̂Kh be the distribution of X̂K in the discrete-time SDE in
Eq. (17). Under suitable assumptions of regularity and Lipschitzness on v(σ) and v̂(σ) stated in the Appendices,
the following bound holds for any λ > TL2/8:

∥µT − µ̂Kh∥2
T V ≤

T

λ− TL2/8
[
L2h(c1h+ dλ) + c2δ

]
, (19)

where C1, c2, L, δ > 0 are constants independent of time (but may depend on σ).

The above theorem follows in a straightforward manner from Theorem 3 of Liutkus et al. (2019) for the SW2
flow. It is worth noting that the error bound in Eq. (19) is possibly tighter than the corresponding error
bound in Theorem 3 of Liutkus et al. (2019) for the special case of σ → 0, because the constant L can be
shown to be a non-increasing function of σ. The error bound depends linearly on the dimension d and will
tend to 0 for δ = 0 and small step size h.

We now delve into the numerical computation of the particle flow in Eq. (18). To evaluate v̂(σ), we need two
approximations. The first one approximates the distribution µ̂kh by the empirical distribution of the particles
at time k, µ̂kh ≈ µ̂(N)

kh := 1
N

∑N
i=1 δX̂i

k

. The second one replaces the integral over θ ∈ Sd−1 in Eq. (12), with
a Monte Carlo estimate, for θj a set of projections drawn from the sphere Sd−1:

v̂
(σ)
k (x) := − 1

Nθ

Nθ∑
j=1

(ψ(σ)
µk,θj

)′(⟨x, θj⟩)θj , (20)

where (ψ(σ)
µk,θj

)′ is the discretized derivative of the Kantorovich potential between P θj

# µ̂
(N)
kh ∗ ξσ and P θj

# ν ∗ ξσ,
with ξσ ∼ N (0, σ2), and (ψ(σ)

µk,θj
)′(z) is defined as (Brenier, 1991):

(ψ(σ)
µk,θj

)′(z) = z − F−1
P

θj
# µ̂

(N)
kh

∗ξσ

◦ F
P

θj
# ν∗ξσ

(z) (21)

This equation is key in the gradient flow since it is the main block of the drift term in Eq. (20) and it
plays an essential role in bridging the smoothing and the privacy. Indeed, since convolution of probability
distributions boils down to the addition of random variables, Eq. (21) can be considered as a Gaussian
mechanism (see Section 2.3) applied to the projected measures. In practice, we compute P θj

# µ̂
(N)
kh ∗ ξσ and

P
θj

# ν ∗ ξσ in the following way. Let Θ = [θT
1 , . . . , θ

T
Nθ

] ∈ Rd×Nθ be the random projection matrix composed of
all the Nθ projection vectors sampled uniformly from Sd−1 and X = [xT

1 , . . . , x
T
n ]T , Y = [yT

1 , . . . , y
T
n ]T ∈ Rn×d,

respectively, the data matrices composed of the n i.i.d. samples from the target distribution ν and the
empirical distribution µ̂(N)

kh . Then, the smoothed and projected distributions P θj

# ν ∗ ξσ and P θj

# µ̂
(N)
kh ∗ ξσ can

be respectively written as XΘ + ZX and YΘ + ZY with ZX , ZY ∈ Rn×Nθ being the i.i.d. Gaussian random
variables with variance σ2, corresponding to the Gaussian mechanism.

From an algorithmic point of view, the random projection matrix Θ ∈ Rd×Nθ can either be sampled at the
start of every discrete time step, or sampled once at the beginning of the algorithm and reused in every
step. These two strategies lead to DPSWflow-r (Algorithm 1) and DPSWflow (Algorithm 2) (the latter is
detailed in Appendix C.3). The main difference between both lies in the sampling of the projections θ of
the sliced Wasserstein. In DPSWflow-r, we resample Nθ projections at each iteration of the flow leading to
a more expensive iteration. In DPSWflow, we sample all the Nθ projections in advance (typically a larger
amount) and use them in all subsequent iterations by subsampling; e.g at each iteration, we subsample a set
of projections among the pre-computed Nθ projections. This enables us to save on the privacy budget as it
implies “free iterations” in term of privacy. The choice between resampling or pre-sampling projections was
not explicit in the prior non-DP work of Liutkus et al. (2019). They adopt pre-sampling in the provided
algorithm of their paper, whereas they resample projections in their code. In contrast, in our paper, we
explicitly highlight the importance of this choice, for both privacy and performance issues.

Before clarifying this difference, we provide details regarding how privacy guarantees are dealt with in the
gradient flow.
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Algorithm 1: DP Sliced Wasserstein Flow with resampling of θ’s: DPSWflow-r.
1: Input: Y = [yT

1 , . . . , y
T
n ]T ∈ Rn×d i.e. N i.i.d. samples from target distribution ν, number of projections

Nθ, regularization parameter λ, variance σ, step size h.
2: Output: X = [xT

1 , . . . , x
T
n ]T ∈ Rn×d

3: // Initialize the particles
4: {xi}N

i=1 ∼ µ0, X = [xT
1 , . . . , x

T
n ]T ∈ Rn×d

5: // Iterations of the flow
6: for k = 0, . . . ,K − 1 do
7: {θj}Nθ

j=1 ∼ Unif(Sd−1), Θ = [θT
1 , . . . , θ

T
Nθ

]
8: Sample ZX , ZY ∈ Rn×Nθ from i.i.d. N (0, σ2)
9: Compute the inverse CDF of YΘ + ZY

10: Compute the CDF of XΘ + ZX

11: Compute v̂(σ)
k (xi) using Eq. (20)

12: xi ← hv̂
(σ)
k (xi) +

√
2λhz, z ∼ N (0, Id)

13: end for

3.3 Privacy Guarantee

In this subsection we analyze the DP guarantee of the particle scheme outlined in the previous subsection. In
our gradient flow algorithm, there exist two independent levels of Gaussian mechanisms: (i) in the drift term,
at the level of random projection of data X through the matrix Θ and (ii) at the addition of the diffusion
term

√
2λhZ in the particle update Eq. (18). Then, we comment on how privacy impacts each of our particle

flows in Algorithms 1 and 2, defined by Eq. (18),

3.3.1 Privacy guarantee arising from the random projection

To track the privacy guarantee arising from the random projection, we define a randomized mechanism
MNθ,σ : Rn×d → Rn×Nθ as:

MNθ,σ(X) = XΘ + Zσ, (22)

where Θ is the random projection matrix and Zσ ∈ Rn×Nθ consists of i.i.d. Gaussian random variables with
variance σ2. Given X composed of {xi}i ∼ ν, the position of these particles can be updated based on the
drift of Eq. (20) which leveragesMNθ,σ(X) for computing Eq. (21). Hence, ifMNθ,σ(X) is (ε, δ)-DP, then by
the post-processing property of DP (Dwork et al., 2006), the computation of the drift term for all n particles
in one time step is also (ε, δ)-DP. To derive the DP guarantee for MNθ,σ(X), we use the following lemma.
Lemma 1 (Rakotomamonjy & Ralaivola (2021)). For data matrices X,X ′ ∈ Rn×d that differ in only the ith

row, satisfying ∥Xi −X ′
i∥2 ≤ 1, and a random projection matrix Θ ∈ Rd×Nθ whose columns are randomly

sampled from Sd−1, and Nθ being large enough (Nθ > 30) , the following bound holds with probability at least
1− δ:

∥XΘ−X ′Θ∥2
F ≤ w(Nθ, δ), with, w(Nθ, δ) = Nθ

d
+ zi−δ

d

√
2Nθ(d− 1)
d+ 2 , (23)

where zi−δ = Φ−1(1− δ) and Φ is the CDF of a zero-mean unit variance Gaussian distribution.

3.3.2 Privacy guarantee arising from the diffusion term

To track the privacy guarantee arising from the diffusion term, we define a Markov operator Kh,λ : Rn×d →
Rn×d as

Kh,λ(X) =
[
hv̂

(σ)
k (Xi) +

√
2λhZ

]n

i=1
, (24)

where v̂(σ)
k (x) is the drift term as defined in Eq. (20) and Z ∼ N (0, Id). The following lemma from Balle et al.

(2019) can then be used to characterize the privacy guarantee resulting from both sources of randomness.
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Lemma 2 (Balle et al. (2019)). Let K : X → Y be a Markov operator satisfying the following condition for
any x, x′ ∈ X:

∥K(x)−K(x′)∥TV ≤ γ. (25)

Then for any (ε, δ)-DP randomized mechanism M, K ◦M is (ε, γδ)-DP.

Leveraging Lemmas 1 and 2, we get the following theorem on the privacy guarantee of Algorithms 1 and 2.

Theorem 3. Under the setup of Lemma 1, the particle update in Eq. (18) is
(

cw(Nθ,δ)
σ ,

√
h

2λδ

)
-DP, where c

is a constant satisfying c2 > 2 ln(1.25/δ).

Proof. For data matrices X,X ′ ∈ Rn×d that differ in only the ith row, satisfying ∥Xi −X ′
i∥2 ≤ 1,

DKL (Kh,λ(X),Kh,λ(X ′)) = DKL

(
N (hv̂(σ)(Xi), 2hλId),N (hv̂(σ)(X ′

i), 2hλId)
)

= 1
2(2hλ)∥hv̂

(σ)(Xi)− hv̂(σ)(X ′
i)∥2 ≤ h

λ
, (26)

where the last inequality follows from the observation that ∥v̂(σ)(Xi))∥ ≤ 1. Hence,

∥Kh,λ(X)−Kh,λ(X ′)∥T V ≤
√

1
2DKL (Kh,λ(X),Kh,λ(X ′)) ≤

√
h

2λ.
(27)

Plugging in the sensitivity bound from Lemma 1 into the Gaussian mechanism presented in Section 2.3,
we see that the mechanism MNθ,σ is (ε, δ)-DP for σ = cw(Nθ,δ)

ε . The desired result then follows from an
application of Lemma 2 to the post-processed mechanism Kh,λ ◦MNθ,σ.

We observe that the privacy parameter ε degrades linearly with the number of projections Nθ, while the δ
parameter decreases with the step size of the discretization. The sensitivity depends linearly on 1√

d
. Thus,

the higher the d, the more private the mechanism is.

3.3.3 On the impact of (re-)sampling on privacy

Algorithms 1 and 2 differ by one element: in the former we choose a small Nθ which is being resampled at
each step of the flow, whilst in the latter we choose a large Nθ among which we sub-sample during the flow.
The idea of reusing the random projections between iterations in Algorithm 1 has an important effect on
the resulting performance at similar privacy guarantees. Our intuition is that the DP bound is tighter for
DPSWflow-r as we are allowed to use the moment accountant (Abadi et al., 2016) to derive the DP bound:
this composition of DP operations is cheaper in privacy than doing them all at once at the beginning of the
gradient flow. Also, resampling enables unbiased gradient estimates across iterations, which, we suppose, is
important for generation performance. Experimental results are reported for both mechanisms in Section 4.5.

4 Experiments

In this section we evaluate our method within a generative modeling context. The primary objective is
to validate our theoretical framework and showcase the behavior of our approach, rather than strive for
state-of-the-art results in generative modeling. The code for the experiments can be found at github.com/
ilanasebag/dpswgf.

4.1 Toy Problem

We use a toy problem to illustrate how our differentially private sliced Wasserstein gradient flow behaves
compared to the vanilla non-DP baseline. Here we set Nθ = 200, h = 1, and λ = 0.001. Examples are
provided in Fig. 1. We see that the particle flow of the sliced Wasserstein can correctly approximate the target
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Figure 1: Examples of particle flows for (top) sliced Wasserstein flow, (middle) our DPSWflow with σ = 0.5,
and (bottom) σ = 1. Each panel shows the level sets (in black) of the target distribution, which is composed
of 5 Gaussians, as well as the particles (in green). The columns depict the particles after the (left) first step,
(middle) 10-th, and (right) the 200-th steps of the flow.

distributions that are composed of 5 Gaussians, as measured by SWD. With the Gaussian smoothing, for
σ = 0.5, the particles are still able to match the target distribution, although the samples are more dispersed
than for the noiseless SWF, leading to a SWD value of 0.81 instead of 0.08. Finally, for σ = 1, our approach
struggles in matching the true distribution, although many particles are still within its level sets.

4.2 Comparisons and Baselines

To demonstrate our claims we test our method on three mechanisms: DPSWflow-r (Algorithm 1), DPSWflow
(Algorithm 2) and DPSWgen. DPSWgen is a generator-based model (different from the flow used for
DPSWflow-r and DPSWflow) adapted from Rakotomamonjy & Ralaivola (2021). It employs the differentially
private sliced Wasserstein distance as the loss for training the generator, while our contribution is to build a
gradient flow that is differentially private because its drift term originates from the DP SWD. Both approaches
are fundamentally distinct.

To maintain a suitably low input space dimension, in order to mitigate the curse of dimensionality and
reduce computational cost, our mechanisms 1 and 2 are preceded by an autoencoder with Zµ as the latent
space. Subsequently, they take the latent space Zµ ⊆ Rd of the autoencoder as the input space, and ensure
differential privacy using the DP gradient flow. To ensure a fair comparison, DPSWgen is also preceded by
the same autoencoder with Zµ as the latent space. Subsequently, it also takes the latent space Zµ ⊆ Rd of
the autoencoder as the input space.

We evaluate the three algorithms using the Fréchet inception distance (FID, Heusel et al., 2018). In our
results, we present each method at three levels of differential privacy: ε =∞ (no privacy), ε = 10, and ε = 5,
along with their corresponding FID scores. In this context the optimal generated images from each model are
expected to yield the best achievable FID score when ε =∞.

4.3 Sensitivity and Privacy Budget Tracking

For both DPSWflow-r and DPSWgen we monitor the privacy budget using the Gaussian moments accountant
method proposed by Abadi et al. (2016), where we choose a range of σ’s satisfying the constraint σ ≥ cw(Nθ,δ)

ε ,
where w is the sensitivity bound from Lemma 1, c > 2 ln(1.25/δ), and we use the moment accountant to obtain
the corresponding ε’s. Also, to prevent privacy leakage, we normalize the latent space of the autoencoder
(which is used as input of the flow and the generator) to norm 1, so we incur an additional factor of 2 in the
sensitivity bound.

10



Table 1: FID results for each baseline, dataset and privacy setting, averaged over 5 generation runs.

MNIST F-MNIST CELEBA

ε ∞ 10 5 ∞ 10 5 ∞ 10 5

DPSWgen 114 128 203 138 172 205 171 209 215
DPSWflow-r 21 71 117 42 88 99 57 134 202

DPSWflow 73 118 171 96 98 129 134 262 292

4.4 Settings and Datasets

In all three DPSWflow, DPSWflow-r, and DPSWgen models, we pre-train an autoencoder and then use a DP
sliced Wasserstein flow component, or DP generator, respectively. In order to uphold the integrity of the
differential privacy framework and mitigate potential privacy breaches, we conducted separate pre-training
procedures for the autoencoder and the flows / generator using distinct datasets: a publicly available dataset
for the autoencoder, and a confidential dataset for the flows / generator. In practice, we partitioned the
training set X into two distinct segments of equal size, denoted as Xpub and Xpriv. Subsequently, we
conducted training of the autoencoder on Xpub. Then, we compute the encoded representation on Xpriv in
the latent space and use it as input to DPSWflow, DPSWflow-r, and DPSWgen. Furthermore, as mentioned in
Section 4.3, to prevent privacy leakage we normalize the latent space before adding Gaussian noise, ensuring
that the encoded representations lie on a hypersphere.

We assessed each method on three datasets: MNIST (LeCun et al., 1998), FashionMNIST (F-MNIST, Xiao
et al., 2017), and CelebA (Liu et al., 2015). The experiments performed on the MNIST and FashionMNIST
datasets use the same autoencoder architecture as the framework proposed by Liutkus et al. (2019). The
experiments conducted on the CelebA dataset use an autoencoder architecture adapted from a DCGAN
(Radford et al., 2016b). More details on these architectures are given in Appendix C.2.

4.5 Experimental Results

This section outlines our experimental findings, including the resulting FID scores (Table 1) and the generated
samples for each of our experiments (Figures Figs. 2 to 4). We compute the FID as the average of the FID
scores obtained from five generation runs. Also, for each experiment, we use δ > 0: δ = 10−5 for MNIST
and FashionMNIST, and δ = 10−6 for CelebA. Fig. 2 presents the results from our model and the baseline
without any differential privacy applied. Figs. 3 and 4 show the results for ε = 10 and ε = 5, respectively.

Fig. 2 presents the results from our model and the baseline without any differential privacy applied. Figs. 3
and 4 show the results for ε = 10 and ε = 5, respectively.

We observe that our methods outperform the DPSWgen baseline for all privacy budgets tested in our
experiments, both in terms of FID scores and the visual quality of the generated samples. Furthermore,
the variant of our approach with resampling (DPSWflow-r) consistently outperforms the variant without
resampling (DPSWflow). These results support our consideration of the efficiency of resampling the projections
as discussed at the end of Section 3.2. These experiments show that our approach is practically viable and
can serve as a promising basis for future work on private generative models.

5 Conclusion

In this paper we have introduced a novel theoretically grounded method for differentially private generative
modeling. Our approach leverages gradient flows within the Wasserstein space, with a drift term computed
using the differentially private sliced Wasserstein distance. To the best of our knowledge, we are the first to
propose such a DP gradient flow approach. Our experiments have shown that our approach is practically
viable, leading to generated samples of higher quality than those from generator-based models trained with
the same DP metric at the same level of privacy. With both a strong theoretical foundation and experimental
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Figure 2: Generated images from DPSWflow-r (upper row) and DPSWgen (lower row) for MNIST, Fashion-
MNIST, and Celeba with no DP: ε =∞.

Figure 3: Generated images from DPSWflow-r (upper row) and DPSWgen (lower row) for MNIST, Fashion-
MNIST, and Celeba with DP: ε = 10.

viability, we believe that our method forms a promising basis for future work in the area of private generative
modeling.

Broader Impact Statement

Some aspects of our contributions in this paper are theoretical in nature, and we do not foresee any adverse
societal impacts resulting from them. Our experiments are run on small datasets, and have negligible carbon
footprint. Our adherence to differential privacy principles ensures that our generative model aligns with
privacy-preserving principles.
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A Proof of Theorem 1

We begin by presenting two propositions that generalize Proposition 5.1.6 and Proposition 5.1.7 of Bonnotte
(2013), respectively. These propositions will play a crucial role in the proof of Theorem 1, and constitute a
key element of novelty in our proof, compared to the proof of Theorem 2 in Liutkus et al. (2019).

Indeed, the GσSW2 metric is not a simple application of the sliced Wasserstein metric to Gaussian convoluted
measures. The convolution with Gaussian measure in the GσSW2

2 metric occurs within the surface integral,
separately for each one-dimensional projection of the original measures. This distinction becomes clear when
comparing equations 4 with 9. Hence, establishing a DP gradient flow presented a unique challenge which
makes a distinct contribution. The distinct nature of GσSW2

2 metric introduces two blockers that need to be
circumvented before applying results from Bonnotte (2013) and Liutkus et al. (2019), namely the existence
and regularity of minimizers to the functional in Equation 10. Both these steps are non-trivial.
Proposition 2. Let µ, ν ∈ P(Ω). For any µ̄ ∈ P(Ω),

lim
ε→0+

GσSW2
2 ((1− ε)µ+ εµ̄, ν)− GσSW2

2 (µ, ν)
2ε =

 
Sd−1

ˆ
Ω
ψ

(σ)
µt,θ(⟨θ, x⟩)d(µ̄− µ)dθ, (28)

where ψ(σ)
µt,θ is a Kantorovich potential between θ♯µ ∗ Nσ and θ♯ν ∗ Nσ.
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Proof. Since θ♯ν ∗ Nσ is absolutely continuous with respect to the Lebesgue measure for any θ ∈ Sd−1, there
indeed exists a Kantorovich potential ψ(σ)

µt,θ between θ♯µ ∗ Nσ and θ♯ν ∗ Nσ. Since ψ(σ)
µt,θ may not be optimal

between (1− ε)µ+ εµ̄ and ν,

lim inf
ε→0+

GσSW2
2 ((1− ε)µ+ εµ̄, ν)− GσSW2

2 (µ, ν)
2ε ≥

 ˆ
ψ

(σ)
µt,θ(⟨θ, x⟩)d(µ̄− µ)dθ. (29)

Conversely, let ψ(σ,ε)
µt,θ be a Kantorovich potential between θ♯[(1−ε)µ+εµ̄]∗Nσ and θ♯ν∗Nσ with

´
ψ

(σ,ε)
µt,θ dθ♯[(1−

ε)µ+ εµ̄] ∗ Nσ. Then,

1
2GσSW2

2 ((1− ε)µ+ εµ̄, ν)− 1
2GσSW2

2 (µ, ν) ≤ ε
 ˆ

ψ
(σ,ε)
µt,θ (⟨θ, x⟩)d(µ̄− µ)dθ. (30)

As in the proof of Proposition 5.1.6 in Bonnotte (2013), ψ(σ,ε)
µt,θ uniformly converges to a Kantorovich potential

for (θ♯µ ∗ Nσ, θ♯ν ∗ Nσ) as ε→ 0+. Hence,

lim sup
ε→0+

GσSW2
2 ((1− ε)µ+ εµ̄, ν)− GσSW2

2 (µ, ν)
2ε ≤

 ˆ
ψ

(σ,ε)
µt,θ (⟨θ, x⟩)d(µ̄− µ)dθ. (31)

Combining Eq. (30) and Eq. (31), we get the desired result.

Proposition 3. Let µ, ν ∈ P(Ω). For any diffeomorphism ζ of Ω,

lim
ε→0+

GσSW2
2 ([Id + εζ]♯µ, ν)− GσSW2

2 (µ, ν)
2ε =

 
Sd−1

ˆ
Ω

(ψ(σ)
µt,θ)′(⟨θ, x⟩)⟨θ, ζ(x)⟩dµdθ, (32)

where ψ(σ)
µt,θ is a Kantorovich potential between θ♯µ ∗ Nσ and θ♯ν ∗ Nσ.

Proof. Using the fact that ψ(σ)
µt,θ is a Kantorovich potential between θ♯µ ∗ Nσ and θ♯ν ∗ Nσ, we get the

following:

GσSW2
2 ([Id + εζ]♯µ, ν)− GσSW2

2 (µ, ν)
2ε ≥

 
Sd−1

ˆ
Ω

ψ
(σ)
µt,θ(⟨θ, x+ εζ(x)⟩)− ψ(σ)

µt,θ(⟨θ, x⟩)
2ε dµdθ. (33)

Since the Kantorovich potential is Lipschitz, it is differentiable almost everywhere, and so, we get the following
using Lebesgue’s differentiation theorem:

lim inf
ε→0+

GσSW2
2 ([Id + εζ]♯µ, ν)− GσSW2

2 (µ, ν)
2ε ≥

 
Sd−1

ˆ
Ω

(ψ(σ)
µt,θ)′(⟨θ, x⟩)⟨θ, ζ(x)⟩dµdθ. (34)

Conversely, we will now show the same upper bound on the lim sup. Let γθ,σ ∈ Π(θ♯µ ∗ Nσ, θ♯ν ∗ Nσ) be
the optimal transport plan corresponding to ψ(σ)

µt,θ. As is done in Proposition 5.1.7 in Bonnotte (2013), we
extend γθ,σ to πθ,σ ∈ Π(µ, ν) such that (θ ⊗ θ)♯πθ,σ = γθ,σ. In other words, if random variables (X,Y ) are
sampled from πθ,σ, then (⟨X, θ⟩, ⟨Y, θ⟩) will follow the law of γθ,σ for every θ ∈ Sd−1. Then, it follows that
[θ + εθ(ζ)⊗ θ]♯πθ ∈ Π(θ♯[Id + εζ]♯µ, θ♯ν). Hence,

GσSW2
2 ([Id + εζ]♯µ, ν)− GσSW2

2 (µ, ν) ≤
 ˆ

|⟨θ, x+ εζ(x)− y⟩|2 − |⟨θ, x− y⟩|2dπθ,σ(x, y)dθ.

Since πθ,σ is constructed from γθ,σ, which in turn is based on the Kantorovich potential ψ(σ)
µt,θ, we have

⟨θ, y⟩ = ⟨θ, x⟩ − (ψ(σ)
µt,θ)′(⟨θ, x⟩) for πθ,σ-a.e. (x, y), because of the optimality of γθ,σ for the one-dimensional

optimal transport. Therefore,

GσSW2
2 ([Id + εζ]♯µ, ν)− GσSW2

2 (µ, ν) ≤
 ˆ

|(ψ(σ)
µt,θ)′(⟨θ, x⟩)− ε⟨θ, ζ(x)⟩|2 − |(ψ(σ)

µt,θ)′(⟨θ, x⟩)|2dπθ,σ(x, y)dθ.
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Simplifying the right hand side of the above equation and taking the limit of ε→ 0+, we get the following:

lim sup
ε→0+

GσSW2
2 ([Id + εζ]♯µ, ν)− GσSW2

2 (µ, ν)
2ε ≤

 
Sd−1

ˆ
Ω

(ψ(σ)
µt,θ)′(⟨θ, x⟩)⟨θ, ζ(x)⟩dµdθ. (35)

Combining Eq. (35) and Eq. (34), we get the desired result.

We reproduce the following definition from (Liutkus et al., 2019).
Definition 2. (Generalized Minimizing Movement Scheme (GMMS)) Let r > 0 and F : R+ × P(B(0, r))×
P(B(0, r))→ R be a functional. For h > 0, let µh : [0,∞)→ P(B(0, r)) be a piecewise constant trajectory
for F starting at µ0 ∈ P(B(0, r)), such that: (i) µh(0) = µ0, (ii) µh(t) = µh(nh) for n = ⌊t/h⌋, and (iii)
µh((n+ 1)h) minimizes the functional ζ 7→ F(h, ζ, µh(nh)), for all n ∈ N.

We say that µ̂ is a Minimizing Movement Scheme (MMS) for F starting at µ0 if there exists a family of
piecewise constant trajectories (µh)h>0 for F such that limh→0 µ

h(t) = µ̂(t) for all t ∈ R+.

We say that µ̃ is a Generalized Minimizing Movement Scheme (GMMS) for F starting at µ0 if there exists a
family of piecewise constant trajectories (µhn)n∈N for F such that limn→∞ µhn(t) = µ̃(t) for all t ∈ R+.
Theorem 4 (Existence of solution to the minimization functional). Let ν ∈ P(B(0, 1)) and r >

√
d. For any

µ0 ∈ P(B(0, r)) with a density ρ0 ∈ L∞(B(0, r)) and h > 0, there exists a µ̂ ∈ P(B(0, r)) that minimizes the
following functional:

G(µ) = Fν
λ,σ(µ) + 1

2hW
2
2 (µ, µ0), (36)

where Fν
λ,σ(µ) is given by Eq. (10). Moreover µ̂ admits a density ρ̂ on B(0, r).

Proof. We note that P(B(0, 1)) is compact for weak convergence (and equivalently for convergence in W2).
Hence, showing that G(µ) is lower semi-continuous on P(B(0, 1)) would suffice to show the existence of a
solution µ̂. By Lemma 9.4.3 of Ambrosio (2008), H is lower semi-continuous. By Rakotomamonjy & Ralaivola
(2021), GσSW2(µ, ν) is symmetric and satisfies the triangle inequality. Moreover, GσSW2(µ, ν) ≤ SW2(µ, ν)
for any σ ≥ 0. Hence for any ξ, ξ′ ∈ P(B(0, 1)),

|GσSW2(ξ, ν)− GσSW2(ξ′, ν)| ≤ GσSW2(ξ, ξ′) ≤ SW2(ξ, ξ′) ≤ cdW(ξ, ξ′),

where cd > 0 is a constant only dependent on the dimension d, and the last inequality follows from Proposition
5.1.3 in Bonnotte (2013). Hence, there exists a minimum µ̂ ∈ P(B(0, r)) of G(µ). Moreover, µ̂ must admit a
density ρ̂ because otherwise H(µ̂) =∞.

Lemma 3 (Regularity of the solution to the minimizing functional). Under the assumptions of Theorem 4,
any minimizer µ̂ of G(µ) in Eq. (36) must admit a strictly positive density ρ̂ > 0 a.e., and ∥ρ̂∥L∞ ≤
(1 + h/

√
d)

√
d∥ρ0∥L∞ .

Proof. By Theorem 4, a minimizer µ̂ of G(µ) exists and admits a density ρ̂. Let µ̄ ∈ P(B(0, 1)) be an arbitrary
probability measure with density ρ̄. For ε ∈ (0, 1) let ρε = (1 − ε)ρ̂ + ερ̄ and let µε ∈ P(B(0, 1)) be the
probability measure corresponding to the density ρε. By the optimality of ρ̂, we have that G(µ̂) ≤ G(µε).
Hence,

0 ≥ lim
ε→0+

G(µ̂)− G(µε)
ε

= lim
ε→0+

GσSW2
2 (µ̂)− GσSW2

2 (µε)
2ε + λ lim sup

ε→0+

H(µ̂)−H(µε)
ε

+ lim
ε→0+

W2
2 (µ̂)−W2

2 (µε)
2hε

=
 
Sd−1

ˆ
Ω
ψ

(σ)
µt,θ(⟨θ, x⟩)d(µ̄− µ̂)dθ + λ lim sup

ε→0+

H(µ̂)−H(µε)
ε

+
ˆ

Ω
ϕd(µ̄− µ̂),

where the last equality follows by combining Proposition 2 with Proposition 1.5.6 in (Bonnotte, 2013). Here,
ψ

(σ)
µt,θ is a Kantorovich potential between θ♯µ̂ ∗ Nσ, and θ♯ν ∗ Nσ as in Proposition 2 and ϕ is a Kantorovich

18



potential between µ̂ and ν for W2. Rearranging, we get the following:

lim sup
ε→0+

H(µ̂)−H(µε)
ε

≤ 1
λ

ˆ
B(0,r)

Ψd(µ̄− µ̂), (37)

where Ψ(x) :=
ffl
Sd−1 ψ

(σ)
µt,θ(⟨θ, x⟩) + 1

hϕ(x). From this point, for any µ0 ∈ P(B(0, r)) with a density ρ0 that
is smooth and strictly positive, we get the desired result by following the proof strategy of Lemma 5.4.3 in
(Bonnotte, 2013). For a more general µ0 with a density ρ0 ∈ L∞(B(0, r)), we again arrive at the desired
result by following the proof strategy of Theorem S4 in (Liutkus et al., 2019), which proceeds by smoothing
ρ0 by convolution with a Gaussian.

Theorem 5 (Existence of GMMS). Under the assumptions of Theorem 4, there exists a GMMS (µt)t≥0 in
P(B(0, r)), starting from µ0 for the following functional:

Fν
λ,σ(h, µnxt, µprv) = Fν

λ,σ(µnxt) + 1
2hW

2
2 (µnxt, µprv). (38)

Moreover, for any t > 0, µt has a density ρt such that ∥ρt∥L∞ ≤ etd
√

d∥ρ0∥L∞ .

Proof. The desired result follows straightforwardly by following the proof of Theorem S5 in Liutkus et al.
(2019) or Theorem 5.5.3 in Bonnotte (2013), with the support of Lemma 3 and Theorem 4.

Theorem 6 (Continuity equation for GMMS). Under the assumptions of Theorem 4, let (µt)t≥0 be the
GMMS given by Theorem 5. For θ ∈ Sd−1, let ψ(σ)

µt,θ be the Kantorovich potential between P θ
#µt ∗ ξσ and

P θ
#ν ∗ ξσ, with ξσ ∼ N (0, σ2). For t ≥ 0, the density ρt of µt satisfies the following continuity equation in a

weak sense:
∂ρt

∂t
= −div(v(σ)

t ρt) + λ∆ρt,

with:

v
(σ)
t (x) = v(σ)(x, µt) =

ˆ
Sd−1

(ψ(σ)
µt,θ)′(⟨x, θ⟩)θdθ.

That is, for all ξ ∈ C∞
c ([0,∞)× B(0, r)),

ˆ ∞

0

ˆ
B(0,r))

[
∂ξ

∂t
(t, x)− v(σ)

t ∇ξ(t, x)− λ∆ξ(t, x)
]
ρt(x)dxdt = −

ˆ
B(0,r))

ξ(0, x)ρ0(x)dx. (39)

Proof. We will closely follow the proof of Theorem S6 in Liutkus et al. (2019) and Theorem 5.6.1 in Bonnotte
(2013). Just as in the proof of Theorem S6 in Liutkus et al. (2019), we will proceed in five steps.

Step (1): By the definition of GMMS, there exists a family of piecewise constant trajectories (µhn)n∈N for
Fν

λ,σ such that limn→∞ µhn
t = µt for all t ∈ R+. Let ξ ∈ C∞

c ([0,∞)×B(0, r)) and let ξn
k (x) denote ξ(khn, x).

Using step 1 of the proof of Theorem S6 in Liutkus et al. (2019), we get:
ˆ

B(0,r)
ξ(0, x)ρ0(x)dx+

ˆ ∞

0

ˆ
B(0,r)

∂ξ

∂t
(t, x)ρt(x)dxdt = lim

n→∞
−hn

∞∑
k=1

ˆ
B(0,r)

ξn
k (x)

ρhn

khn
(x)− ρhn

(k−1)hn
(x)

hn
dx.

(40)

Step (2): For any θ ∈ Sd−1, let ψ(σ),hn

µt,θ be the Kantorovich potential between P θ
#µ

hn
t ∗ ξσ and P θ

#ν ∗ ξσ, with
ξσ ∼ N (0, σ2). Using step 2 of the proof of Theorem S6 in Liutkus et al. (2019), we get:
ˆ ∞

0

ˆ
B(0,r)

 
(ψ(σ)

µt,θ)′(⟨θ, x⟩)⟨θ,∇ξ(x, t)⟩dθdµt(x)dt = lim
n→∞

hn

∞∑
k=1

ˆ
B(0,r)

 
ψ

(σ),hn

µhn
k

,θ
(θ∗)⟨θ,∇ξn

k ⟩dθdµhn

khn
.

(41)
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Step (3): From step 3 of the proof of Theorem S6 in Liutkus et al. (2019), we get:

lim
n→∞

hn

∞∑
k=1

ˆ
B(0,r)

∆ξn
k (x)ρhn

khn
(x)dx =

ˆ ∞

0

ˆ
B(0,r)

∆ξ(t, x)ρt(x)dxdt. (42)

Step (4): Let ϕhn

k be the Kantorovich potential from µhn

khn
to µhn

(k−1)hn
. From the optimality of µhn

khn
, the first

variation of the functional ζ 7→ Fν
λ,σ(ζ) + 1

2hW
2
2 (ζ, µhn

khn
) with respect to ζ at the point µhn

khn
in the direction

of the vector field ∇ξn
k is zero. Using Proposition 3 for the first variation of the GσSW2

2 term, Proposition
5.1.7 for the first variation of the W2

2 term, and Jordan et al. (1998) for the first variation of the H term, we
get the following:

0 = 1
hn

ˆ
B(0,r)

⟨∇ϕhn

k (x),∇ξn
k (x)⟩dµhn

khn
(x)−

ˆ
B(0,r)

 
(ψ(σ),hn

µhn
k

,θ
)′(θ∗)⟨θ,∇ξn

k (x)⟩dθdµhn

khn
(x)

−λ
ˆ

B(0,r)
∆ξn

k (x)dµhn

khn
(x). (43)

Proceeding as in step 4 of Liutkus et al. (2019) and using Eq. (43), we get the following:

lim
n→∞

−hn

∞∑
k=1

ξn
k (x)

ρhn

khn
− ρhn

(k−1)hn

hn
dx

= lim
n→∞

(
hn

∞∑
k=1

ˆ
B(0,r)

 
(ψ(σ),hn

µhn
k

,θ
)′(θ∗)⟨θ,∇ξn

k ⟩dθdµhn

khn
+ hn

∞∑
k=1

ˆ
B(0,r)

∆ξn
k (x)ρhn

khn
(x)dx

)
. (44)

Step (4): Combining Eq. (40), Eq. (41), Eq. (42) and Eq. (44), we get the desired result in Eq. (39).

B Proof of Theorem 2

We simply follow the proof strategy of Theorem 3 in Liutkus et al. (2019). We begin by restating the following
two discrete-time SDEs:

X̂k+1 = hv(σ)(X̂k, µ̂kh) +
√

2λhZk+1, (45)
X̄k+1 = hv̂(σ)(X̄k, µ̄kh) +

√
2λhZk+1, (46)

where Eq. (45) is equivalent to Eq. (17), which in turn is the Euler-Maruyama discretization of the continuous-
time SDE in Eq. (6). Equation 46 is equivalent to the particle update equation in Eq. (18).

Similar to the proof of Theorem 3 in Liutkus et al. (2019), we define two continuous-time processes (Yt)t≥0
and (Ut)t≥0, defined by the following continuous-time SDEs:

dYt = ṽ
(σ)
t (Y )dt+

√
2λdWt, (47)

dUt = v̄
(σ)
t (U)dt+

√
2λdWt, (48)

where

ṽt(Y ) := −
∞∑

k=0
v̂

(σ)
kh (Ykh, µ̂kh)1[kh,(k+1)h)(t), (49)

ṽt(U) := −
∞∑

k=0
v̂

(σ)
kh (Ukh, µ̄kh)1[kh,(k+1)h)(t). (50)
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In Eq. (49), µ̂kh follows the distribution of X̂k in the discrete-time process defined by the update equation in
Eq. (45). Therefore (Yt)t≥0 is a continuous linear interpolation of the discrete-time process (X̂k)k∈N+ .

In Eq. (50), µ̄kh follows the distribution of X̄k in the discrete-time process defined by the update equation in
Eq. (46). Therefore (Ut)t≥0 is a continuous linear interpolation of the discrete-time process (X̄k)k∈N+ .

Let πT
X , πT

Y , and πT
U denote the distributions of (Xt)t∈[0,T ], (Yt)t∈[0,T ], and (Ut)t∈[0,T ], respectively, with

T = Kh. We have the following lemma bounding the total variation distance between the pairs (πT
X , π

T
Y ) and

(πT
Y , π

T
U ) from Liutkus et al. (2019):

Lemma 4 (Lemmas S1 and S2 in Liutkus et al. (2019)). For all λ > 0, assume that the continuous-time
SDE in Eq. (6) has a unique strong solution (Xt)t≥0 for any starting point x ∈ Rd. For t ≥ 0, define
Ψ(σ)

µt,θ(x) :=
ffl
Sd−1 ψ

(σ)
µt,θ(⟨θ, x⟩)dθ. Suppose there exists constants A,B,L,m, b > 0, and δ ∈ (0, 1), such that

the following are true for any x, x′ ∈ Rd, µ, µ′ ∈ P(Ω), and all t ≥ 0:

∥v(σ)
t (x)− v(σ)

t′ (x′)∥ ≤ L(∥x− x′∥+ |t− t′|),
∥v̂(σ)(x, µ)− v̂(σ)(x′, µ′)∥ ≤ L(∥x− x′∥+ ∥µ− µ′∥TV),

⟨x, v(σ)
t (x)⟩ ≥ m∥x∥2 − b,

E[v̂(σ)
t ] = v

(σ)
t ,

E[∥v̂(σ)(x, µt)− v(σ)(x, µt)∥2] ≤ 2δ(L2∥x∥2 +B2).

Define:

Ce := H(µ0),

C0 := Ce + 2(1 ∨ 1
m

)(b+ 2B2 + dλ),

C1 := 12(L2C0 +B2) + 1,
C2 := 2(L2C0 +B2).

Then, we have:

∥πT
X − πT

Y ∥2
TV ≤

L2K

4λ

(
C1h

3

3 + 3λdh2
)

+ C2δKh

8λ ,

∥πT
Y − πT

U∥2
TV ≤

L2Kh

16λ ∥π
T
X − πT

U∥2
TV.

Theorem 7. Under the assumptions of Lemma 4 and for λ > TL2/8:

∥µT − µ̂Kh∥2
T V ≤

T

λ− TL2/8
[
L2h(c1h+ dλ) + c2δ

]
, (51)

where c1, c2, L, δ > 0 are constants independent of time.

Proof. We will emulate the proof of Theorem 3 in Liutkus et al. (2019).

∥πT
X − πT

U∥2
TV ≤ 2∥πT

X − πT
Y ∥2

TV + 2∥πT
Y − πT

U∥2
TV

≤ L2K

2λ

(C1h
3

3 + 3λdh2
)

+ C2δKh

4λ + L2Kh

8λ ∥πT
X − πT

U∥2
TV

≤
(

1− KL2h

8λ

)−1
{
L2K

2λ

(C1h
3

3 + 3λdh2
)

+ C2δKh

4λ

}
,

where the second inequality follows from Lemma 4 and the last inequality holds for λ > TL2/8. The desired
result then follows by plugging in T = Kh and rearranging.
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C Experimental Details

In this section, we explain all experimental details required running the experiments (along with the code
which is provided in the supplementary material). For this project we use 1 NVIDIA GPU Tesla V100 which
was necessary for the pretraining of the auto-encoder only. All neural networks are coded using PyTorch
(Paszke et al., 2019).

C.1 Datasets and Evaluation Metric

MNIST is a standard dataset introduced in LeCun et al. (1998), with no clear license to the best of our
knowledge, composed of monochrome images of hand-written digits. Each MNIST image is single-channel,
of size 28 × 28. We preprocess MNIST images by extending them to 32 × 32 frames (padding each image
with black pixels), in order to better fit as inputs and outputs of standard convolutional networks. MNIST
is comprised of a training and testing dataset, but no validation set. We split the training set into two
equally-sized public and private sets.

FashionMNIST is a similar dataset introduced by Xiao et al. (2017) under the MIT license, composed of
fashion-related images. Each FashionMNIST image is single-channel, of size 28 x 28, and we also preprocess
them by extending them to 32 × 32 frames. Like MNIST, FashionMNIST is comprised of a training and
testing dataset, but no validation set. We split the training set into two equally-sized public and private sets.

Notice that for MNIST and FashionMNIST, we scaled the pixel values to [0,1].

CelebA is a dataset composed of celebrity pictures introduced by (Liu et al., 2015). Its license permits use
for non-commercial research purposes. Each CelebA image has three color channels, and is of size 178 × 218.
We preprocess these images by center-cropping each to a square image and resizing to 64 × 64. CelebA is
comprised of a training, testing, and validation dataset. After conducting initial experiments and analysis
with the validation set, we removed it. We then split the training set into two equally-sized public and private
datasets.

Fréchet Inception Distance (FID) was introduced by Heusel et al. (2018). It measures the generative
performance of the models we consider. In our code we use the PyTorch implementation of TorchMetrics
(Skafte Detlefsen et al., 2022).

C.2 Structure of the Autoencoders for Data Dimension Reduction

The experiments performed on MNIST and FashionMNIST datasets utilize an autoencoder architecture as
per the framework proposed by Liutkus et al. (2019). Furthermore, we normalized the latent space before
adding Gaussian noise, ensuring that the encoded representations lie on a hyper-sphere. We use the following
autoencoder structure, which is the same as that used in Liutkus et al. (2019):

• Encoder. Four 2D convolution layers with (num chan out, kernel size, stride, padding) set to (3, 3,
1, 1), (32, 4, 2, 0), (32, 3, 1, 1), (32, 3, 1, 1), each one followed by a ReLU activation. At the output,
a linear layer is set to the desired bottleneck size, and then the outputs are normalized.

• Decoder. A linear layer receives from the bottleneck features a vector of dimension 8192, which is
reshaped as (32, 16, 16). Then, three convolution layers are applied, all with 32 output channels and
(kernel size, stride, panning) set to, respectively, (3, 1, 1), (3, 1, 1), (2, 2, 0). A 2D convolution layer
is then applied, with the specified output number of channels set to that of the data (1 for black and
white, 3 for color), and a (kernel size, stride, panning) set to (3, 1, 1). All layers are followed by a
ReLU activation, and a sigmoid activation is applied to the final output.

Conversely, experiments conducted on the CelebA dataset employ an autoencoder/generator architecture
based on the DCGAN framework proposed by Radford et al. (2016a). The structure is the following:

• Encoder. Four 2D convolution layers are employed with the following specifications: (64,3,1,1),
(64×2,4,2,1), (64×4,4,2,1) and (64×8,4,2,1). Each convolutional layer is followed by a leaky Rectified
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Linear Unit (LeakyReLU) activation function. Subsequently, a linear layer is applied to obtain the
desired bottleneck size. The outputs are then normalized.

• Decoder. Four 2D convolution layers are employed with the following specifications: (64×8,4,1,0),
(64×4,4,2,1), (64×2,4,2,1) and (64,4,2,1). Each convolutional layer is followed by a leaky Rectified
Linear Unit (LeakyReLU) activation function and batch normalization is added after the activation.

C.3 Additional Algorithm

Algorithm 2 describes the DP Sliced Wasserstein Flow without resampling of the θs.

Algorithm 2: DP Sliced Wasserstein Flow without resampling of the θs: DPSWflow.
1: Input: Y = [yT

1 , . . . , y
T
n ]T ∈ Rn×d i.e. N i.i.d. samples from target distribution ν, number of projections

Nθ, regularization parameter λ, variance σ, step size h.
2: Output: X = [xT

1 , . . . , x
T
n ]T ∈ Rn×d

3: // Initialize the particles
4: {xi}N

i=1 ∼ µ0, X̂ = [xT
1 , . . . , x

T
n ]T ∈ Rn×d

5: {θj}Nθ
j=1 ∼ Unif(Sd−1), Θ = [θT

1 , . . . , θ
T
Nθ

]
6: Sample ZY ∈ Rn×Nθ from i.i.d. N (0, σ2)
7: Compute the inverse CDF of YΘ + ZY .
8: // Iterations
9: for k = 0, . . . ,K − 1 do

10: Sample Mθ projections among Θ to obtain Υ
11: Sample ZX ∈ Rn×Mθ from i.i.d. N (0, σ2)
12: Compute the CDF of XΥ + ZX

13: Compute v̂(σ)(xi) using Eq. (20)
14: xi ← hv̂(σ)(xi) +

√
2λhz, z ∼ N (0, Id)

15: end for

C.4 Additional Comments on Hyperparameters and Algorithms

In this subsection we give all of the hyperparameters necessary for reproducing the experiments conducted.

MNIST and FashionMNIST. All three DPSWflow, DPSWflow-r, and DPSWgen models are evaluated
with a batch size of 250 and for δ = 10−5 and the latent space (of the autoencoder, used as input of the
mechanisms) has size 8. DPSWflow is evaluated over 1500 epochs for all values of ε, while DPSWflow-r
and DPSWgen are evaluated on 35 epochs for ε =∞ and ε = 10, and on 20 epochs for ε = 5. DPSWflow
uses Nθ = 31 and Mθ = 25, while DPSWflow-r and DPSWgen use Nθ = 70. As explained in Section 4.3,
the privacy tracker is different for DPSWflow compared to DPSWflow-r and DPSWgen. For DPSWflow we
directly input the desired value for ε and use the sensitivity bound from Eq. (23), along with σ ≥ c∆2(f)

ε
(from Section 2.3), to obtain the value of σ which is used in our code. For DPSWflow-r and DPSWgen we
used the following pairs of σ, ε: σ = 0, ε =∞; σ = 0.68, ε = 10; and σ = 0.9, ε = 5.

CelebA. All three DPSWflow, DPSWflow-r, and DPSWgen models are evaluated with a batch size of 250, for
δ = 10−6 and the latent space (of the autoencoder, used as input of the mechanisms) has size 48. DPSWflow
is evaluated over 2000 epochs for every value of ε, while DPSWflow-r and DPSWgen are evaluated on 30
epochs for every ε. DPSWflow uses Nθ = 250 and Mθ = 220, while DPSWflow-r and DPSWgen use Nθ = 300.
For DPSWflow-r and DPSWgen we used the following pairs of σ, ε: σ = 0, ε = ∞; σ = 0.59, ε = 10; and
σ = 0.8, ε = 5.

Also, notice that the architecture of the generator of DPSWgen is structured as follows: the input layer
consists of a linear layer that transforms the input vector to a 256-dimensional vector. The first hidden layer
applies a ReLU activation function to introduce non-linearity. The second hidden layer includes another
linear layer that increases the dimensionality from 256 to 512, followed by a Batch Normalization layer to
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stabilize and accelerate the training process, and a ReLU activation function. The third hidden layer contains
a linear layer that reduces the dimensionality from 512 to 256, followed by a ReLU activation function. The
output layer comprises a final linear layer that maps the 256-dimensional vector to the desired output vector.
This sequential arrangement of layers allows for progressive transformation and refinement of the input data,
leveraging non-linear activation functions and normalization techniques to improve the model’s learning
capacity and stability.
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