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Abstract 

The water bottle flip experiment is a recreational, non-conventional illustration of the 

conservation of angular moment. When a bottle partially filled with water is thrown in 

a rotational motion, water redistributes throughout the bottle, resulting in an increase 

of moment of inertia and thus to a decrease in angular velocity, which increases the 

probability of it falling upright on a table as compared with a bottle filled with ice. The 

investigation of this phenomenom is accessible to undergraduate students and should 

allow them to gain better understanding of combined translational and rotational 

motions in classical mechanics. We report a series of detailed experiments that are 

quantitatively compared with numerical calculations based on a simple theoretical 

framework in which the water volume is decomposed  into thin slices of a rigid body 

that are subjected to fictitious forces in the non-inertial frame of the spinning bottle. 

This model also allows us to capture and predict other experimental configurations. 

Finally, we discuss additionnal counter-intuitive effects that contribute to bottle 

stabilization on landing.  

 

Keywords: translational and rotational mechanics, angular momentum, non-inertial frame. 
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1. Introduction 

The motion of a rigid body can always be seen as the combination of a translation of the center of mass CM that 

describes a parabolic trajectory and a rotation around CM [1]. While rotation can often be overlooked to describe 

the motion of a high-symmetry projectile like a ball, the complex trajectory of an anisotropic body cannot be reduced 

to the motion of its center of mass. For instance, successful axe or knife throwing not only requires reaching the 

target but also ensuring that the blade points forward after one or several rotations. The identification of the center 

of mass of the projectile is thus the prerequisite to decompose the trajectory into translational and rotational 

components. First, from Newton’s second law, the sum of the forces acting on the system at CM is equal to the time 

variation in linear momentum. Second, in the frame of the flying body, the sum of the torques of these forces about 

CM is equal to the rate of change of the angular momentum about CM. Additional difficulties arise if the coordinates 

of CM within the reference frame of the body change during its motion. This situation is remarkably illustrated in 

the water bottle flip experiment.  

This experiment, which started as an award-winning challenge in 2016, consists in making a partially water-filled 

bottle do a somersault and having it land upright on a table [2]. The motion of the water bottle was analyzed by 

measuring the angular velocity throughout the trajectory from hand release to landing [3]. A toy model consisting 

of a tube containing two tennis balls was used to propose that there is a redistribution of mass leading to an increase 

of moment of inertia, with the two balls moving towards the ends of the tube, and thus to a decrease in the angular 

velocity according to the law of conservation of angular momentum. As reported in [3],  the moment of inertia of 

the water bottle can be simply written as a function of all geometric parameters (radius, length, mass) provided that 

the the position of CM is known. However, accurate determination of the coordinates of CM in a rotating water 

system is more complex that two balls of tennis. The approximation that the distribution of mass inside the bottle is 

uniform as assumed in this pioneering work [3] is very bold.  Stroboscopic snapshots taken during a typical 

experiment exhibit different shades of red (in false colors) that are a signature of varying light absorption and thus 

heterogeneous distribution of water (Fig. 1).  

 

 

Figure 1: Composite false-colour image of 4 snapshots taken during water bottle flipping showing that water 
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spreads out all over the bottle during rotation. The green dot at the bottom of the bottle is a marker to facilitate 

tracking. The bottle is 0.28 m high. Note that the shades of red  reflect the heterogenity of water mass distribution.  

 

In this article, we propose a simple numerical model that allows us to compute the coordinates of the center of mass 

along the trajectory of the bottle. We consider the water volume as a rigid body composed of N independent thin 

solid slices moving along the axis of the bottle. Moreover, in order to account for water sloshing, we assume that 

the slices are submitted to a tunable viscous force ant that they can bounce inelastically at the ends of the bottle.   

The whole duration of the movement is discretized into P small time intervals. In contrast to previous models [3], 

the position of CM, and subsequently the moment of inertia of the bottle, can be computed uniquely at each time 

step. We assess the validity of this model by comparison with dedicated experimental data in which the filling 

fraction of water is varied. Some predictions of the model for configurations that are difficult to achieve 

experimentally (eg. varying initial angular velocity and release angle, aspect ratio of the bottle) will be investigated. 

Finally, some limitations of the 1D model will also be discussed.  

The concepts of rotating non-inertial frames of reference are classical topics in introductory mechanics courses in 

college-level education. However, the associated fictitious forces are sometimes difficult to understand by students. 

Here, they are addressed in the direct context of an entertaining example  

2. Notations and Methodology 

The laboratory (inertial) reference frame ℛ is defined by the (O,x,y,z) cartesian coordinate system. (Oxy) is chosen 

to be the plane of the trajectory. The initial time is taken when the bottle is released from the hand. At t=0, the bottle 

of length L is represented by the vector 𝑂𝐵⃗⃗ ⃗⃗  ⃗, with the cap being taken as the origin at t=0, and the bottom of the 

bottle marked by B. The angle between 𝑂𝐵⃗⃗ ⃗⃗  ⃗ and the y-axis is θ0 = θ(t=0) (Fig. 2). All notations are summarized in 

Fig. 2a. In practice, there is a natural tendency from a human experimentalist to release the bottle when θ0 ≈ π/2. 

However, the numerical model will allow us to vary θ0 and the initial velocity 𝑣0. 

In the non-inertial reference frame ℛ’ associated with the bottle and defined by the polar coordinate system 

(𝑂′, 𝑢𝑟⃗⃗⃗⃗ , 𝑢𝜃⃗⃗ ⃗⃗  , 𝑢𝑧⃗⃗⃗⃗ ), the bottle is identified by the vector 𝑂′𝐵⃗⃗⃗⃗⃗⃗  ⃗ (with the cap coinciding with the origin) and its angle θ(t) 

with vertical axis.   

Experimentally, image analysis will yield the coordinates of cap C and bottom B in time, from t=0 to t=T (on 

landing). The angle θ will be directly derived from:  

𝑡𝑎𝑛 𝜃 =
𝑥𝐵−𝑥𝑂′

𝑦𝑂′−𝑦𝐵
            (1) 

Finally, after numerical derivation of θ(t), the time variation of the angular velocity ω(t) is obtained. Remarkably, 

the experimental determination of ω(t) via θ(t) does not require the knowledge of the coordinates of CM in time. 

Numerically, we aim instead to derive ω(t) by calculating the moment of inertia J(t) about the moving center of 
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mass of the partially filled bottle and applying the law of conservation of the angular momentum 𝐿(𝑡) =

𝐽(𝑡). 𝜔(𝑡) = 𝐽0. 𝜔0, where J0 and ω0 are the moment of inertia and angular velocity at t=0. To do so, we need to 

determine the polar coordinates of CM in ℛ’. Our approach consists in assuming that the water mass (Mw) is 

decomposed in N slices of mass Mw/N that have no interaction with each other and are free to slide along the main 

axis of the bottle. This alleviates the need to take rigorous account of the fluid properties of water while allowing 

to mimic water spreading through the motions of each slice of water taken as an independent solid body. the 

implementation of the numerical model will be detailed in the Supporting Text 1.   

 

Figure 2: Notations. (a) Representation of the inertial (laboratory) reference frame ℛ (Oxyz) and the non-inertial 

rotating reference frame associated with the bottle ℛ’ (𝑂′, 𝑢𝑟⃗⃗⃗⃗ , 𝑢𝜃⃗⃗ ⃗⃗  , 𝑢𝑧⃗⃗⃗⃗ ); (b) Sketch of the bottle at rest and in 

motion and the corresponding configurations derived from the numerical 1D model. 

 

3. Experimental data and analysis 

We performed a series of experiments to collect data against which our numerical model will be quantitatively 

compared. The methodological approach is similar to the one developed in [3, 4]. We used a tablet (iPad Pro, Apple) 

equipped with a camera acquiring 1280x720 pixels images at a rate of 240 frames per second. A plastic bottle was 

partially filled with colored water, with a varying filling mass fraction 𝑀̃ = 𝑀𝑤 𝑀𝑚𝑎𝑥⁄ , where Mmax is the mass of 

water corresponding to complete filling (in our case, Mmax=1 kg). Note that, if the bottle is assumed to be a perfect 

cylinder, we also have  𝑀̃ = ℎ 𝐿⁄ , where h is the height of water in the bottle at rest.  

Each video was analyzed using the Tracker software [5]. A sticker was placed at the bottom of the bottle to facilitate 

tracking. The cap served as a natural second marker at the top of the bottle. A white curtain was placed in the 

background to improve the efficiency of semi-automatic detection of the markers.  Only sequences corresponding 

to successful flips were selected (Supp. videos 1-5). As a control, we used a bottle partially filled with frozen water 
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(Supp. videos 6). In this case, the ice pack truly behaves as a rigid body with a fixed center of mass. We thus expect 

the angular velocity to remain constant throughout the trajectory. The probability of successful trials is significantly 

reduced with the frozen water bottle and the rare upright landings are often preceded with a rocking motion similar 

to the one of a roly-poly toy [6]. This effect is however beyond the scope of the present paper.  

Qualitatively, compositional pictures of the bottle trajectory were obtained with the ImageJ software [7] by using 

the Image calculator macro: the Min value of successive images taken in pairs provides a stroboscopic effect and 

the Difference with a background image produces false color images that enhance water mass distribution (Fig.1).  

Quantitatively, tracking data (𝑡, 𝑥𝑂′, 𝑦𝑂′, 𝑥𝐵 , 𝑦𝐵) were recorded and exported to the data processing Origin Pro 

software (version 7, RITME, France). First, we validated the methodology with a bottle partially filled with frozen 

water  (Fig. 3a).  In this case, we additionally tracked the coordinates of the top (T) surface of the ice pack, 

𝑥𝑇(𝑡), 𝑦𝑇(𝑡).  By neglecting here the mass of the plastic bottle, the center of mass of the system was taken to be 

located halfway between top of the ice pack (T) and base of the bottle (B). We immediately observe that, whereas 

O’, B and T exhibit complex trajectories  𝑥𝐶𝑀 varies linearly with time and 𝑦𝐶𝑀 follows a parabolic-like time 

variation, in agreement with the expected kinematics of  CM:  

𝑥𝐶𝑀 = 𝑣0𝑥𝑡 + (𝐿 −
ℎ

2
) 𝑠𝑖𝑛 𝜃0          (2a) 

𝑦𝐶𝑀 = −
1

2
𝑔𝑡2 + 𝑣0𝑦𝑡 − (𝐿 −

ℎ

2
) 𝑐𝑜𝑠 𝜃0         (2b) 

The fit of the data with Eq. (2a) and (2b) is excellent and yields for instance 𝑣0 = √𝑣0𝑥
2 + 𝑣0𝑦

2 ≈ 2m.s-1, or 

equivalently an initial angular velocity ω(t=0)= ω0≈15-20 rad.s-1, which we will use as an order of magnitude the 

numerical model. Fig. 3a also displays representative plots of 𝑥0′(𝑡), 𝑦𝑂′(𝑡), 𝑥𝐵(𝑡), 𝑦𝐵(𝑡) for three filling fractions 

of liquid water. These curves are quite diverse and difficult to interpret as they are. Fig. 3b shows a more visual 

representation of the trajectory based on a vector plot, where vector tail is the cap and vector direction is obtained 

from Eq. (1).   
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Figure 3:Representative experimental data: (a) Coordinates x (black lines) and y (red lines) of the cap (plain) 

and the bottom of the bottle (dotted) as a funtion of time  for 3 filling mass fractions of liquid water. For the 

frozen water case (last row), only the coordinates of the center of mass of the ice pack derived from tracking of 

the  the top  surface of the icae pack and the bottom of the bottle are  represented asblack (x) and red (y) stars. 

Linear and parabolic fits using Eq. (2a) and (2b) are shown in blue. The transparent grey portion of the graphs 

marks the moment when the bottle touches the ground. In all liquid cases, the bottle lands upright. In the case of 

the frozen bottle, the oscillations that follow correspond to a roly-poly effect: the bottle lands flat and bounces 

upright; (b) Vector plot representation, with O’coinciding with vector tail. 
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This vector plot implicitly required to calculate θ(t) using Eq.(1). Direct examination of the videos reveals that the 

spin of the bottle exceeds half a revolution, meaning that  θ(t)  becomes larger than π. Since θ(t) is derived from its 

tangent, we expect discontinuities the vicinity of π /2. The singularities were corrected manually by adding π when 

necessary.  Fig. 4a-b show representative plots of  θ(t), which is measured, and ω(t), which is obtained by calculating 

numerically the time derivative of θ(t) after interpolation (in case of missing points due to tracking errors) and 

smoothening (by averaging over 5 points) for the frozen water case and the liquid water case with 𝑀̃ = 0.33. Since 

all cases were successful tosses, the terminal values of θ(t)  are close to 0 (mod2). More important is the evolution 

of the the angular velocity during the motion. It remains constant, around 20 rad.s-1 for the frozen water experiment, 

while ω(t) exhibits two phases for the liquid water bottle before landing associated with a sudden drop of ω(t)  to 

zero: it first decays quickly and then remains constant at a lower value. The observed evolution of ω(t) is consistent 

with the previous report in [3], even though only normalized data were given. Here, we purposedly reported actual 

measurements. The first point of validation of the proposed complete numerical model will be to recover the order 

of magnitude of the angular velocity beyond the qualitative understanding of the physics of the phenomenon. Then, 

we explore whether this behavior is found for all filling fractions. Fig. 4b shows the normalized the angular velocity 

to its initial value ω0 , 𝜔̃ = 𝜔 𝜔0⁄ , as a function of the the time to the landing time T, 𝑡̃ = 𝑡 𝑇⁄ . Fig 4d summarizes 

the results for different 𝑀̃ values. We observe that 𝜔̃ is minimal for filling fractions between 0.25 and 0.50. 

Nontheless, there is already a significant reduction in 𝜔̃ for 𝑀̃ = 0.75. Contrastingly, the variation of 𝜔̃ for 𝑀̃ =

0.10 is very close to the one of the frozen water bottle, indicating that there is no significant redistribution of the 

water mass inside the bottle during the flip, which is indeed seen in the videos (Supp. Video 1). In other words, if 

the center of mass is initially too low, the centrifugal forces tend to keep water at the bottom of the bottle. For filling 

fractions close to 1, the center of mass is already quite high (roughly at the center of the bottle), and water 

redistribution is not accompanied with a large displacement of the center of mass. We thus expect an optimal filling, 

leading to a maximal increase in the moment of inertia, and thus to the maximal slowdown in angular velocity.  
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Figure 4:Representative variation of the angle and angular velocity of the bottle during motion for (a) frozen 

water, and (b) liquid water, with a filling fraction of 0.33; (c) Normalized angular velocity as a function of 

normaized time for frozen and liquid water at different filling fractions: 𝑀̃ =0.75; 0.50; 0.33; 0.25 and 0.10; (d) 

Average 𝜔̃ = 𝜔 𝜔0⁄  versus 𝑀̃. The red shaded area corresponds to the frozen water case.  

 

4. Theoretical framework 

Here, we are asking two question that seem bold at first sight: can the liquid nature of the water contained in the 

bottle be simulated in solid mechanics? Can the sloshing of water be modelled  to provide a quantitative description 

of the bottle trajectoriesor do we need to resort to a fluid mechanics formalism? To adress these questions, the water 

content of the bottle is modeled as composed of N identical solid slices that may slide along the main axis of the 

bottle. By considering that the slides are subject to a phenomenological drag coefficient and by introducing a 

adequate restitution coefficient that originates from the collision at the bottom or top of the bottle, we will show the 

we are able to numericaly reproduce the curves found in Fig. 4c.  

We further simplify the system by considering it as pseudo 1D given the cylindrical symmetry. As shown in Fig. 

2b, at t=0, all identical slices of mass 𝑚 = 𝑀𝑤 𝑁⁄  are stacked at the bottom of the bottle. Let us note Mi the center 

of mass of slice i.  At t=0, for 1 ≤ 𝑖 ≤ 𝑁, the position of Mi is defined by  𝑟𝑖⃗⃗ = 𝑂′𝑀𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and given by: 

𝑟𝑖⃗⃗ (𝑡 = 0) = [𝐿 − (2𝑖 − 1).
ℎ

2𝑁
 ] 𝑢𝑟⃗⃗⃗⃗           (3a) 
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The center of mass CW of the water content is located half-way between bottom and top of the water surface and 

𝑟𝐶𝑤⃗⃗ ⃗⃗ ⃗⃗  = 𝑂′𝐶𝑤
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is given by: 

 𝑟𝐶𝑤⃗⃗ ⃗⃗ ⃗⃗  (𝑡 = 0) = [𝐿 −
ℎ

2
 ] 𝑢𝑟⃗⃗⃗⃗            (3b) 

We have also to take into account the mass of the bottle, Mb. Its center of mass Cb is an invariant defined by 𝑟𝐶𝑏⃗⃗ ⃗⃗  ⃗ =

𝑂′𝐶𝑏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗:  

𝑟𝐶𝑏⃗⃗ ⃗⃗  ⃗(𝑡 = 0) = 𝑟𝐶𝑏⃗⃗ ⃗⃗  ⃗(𝑡 > 0) =
𝐿

2
𝑢𝑟⃗⃗⃗⃗            (3c) 

The total center of mass of the system is then identified by 𝑟𝐶𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑂′𝐶𝑀
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and  obtained by a weighted average of 

both sub-systems:  

𝑟𝐶𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑡 = 0) =
𝑀𝑏𝑟𝐶𝑏⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡=0)+𝑀𝑤𝑟𝐶𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡=0)

𝑀𝑏+𝑀𝑤
           (3d) 

Projection on  𝑢𝑟⃗⃗⃗⃗  reads: 

𝑟𝐶𝑀(𝑡 = 0) = (1 −
𝜖

2
) 𝐿 − (1 − 𝜖)

ℎ

2
           (3e) 

with 𝜖 =
𝑀𝑏

𝑀𝑏+𝑀𝑤
, the correction factor due to the bottle mass                    (3f)   

Note that Eqs (3d) and (3e) remain valid at any time t>0.  

At time t, the slices are spread out over the entire length of the bottle (Fig. 2b). In the non-inertial reference frame 

ℛ’, we apply the modified Newton’s second law of motion to the slices i defined by their centers of mass Mi by 

introducing the fictitious forces, namely the centrifugal (or inertial) force, 𝑓𝐶𝑒
⃗⃗ ⃗⃗  ⃗,  the Coriolis force, 𝑓𝐶𝑜

⃗⃗ ⃗⃗  ⃗, and the Euler 

(or azimuthal) force 𝑓𝐸𝑢
⃗⃗⃗⃗⃗⃗  [8]:  

 𝑚𝑎 𝑀𝑖/ℛ′ = 𝑚𝑔 + 𝑓𝐶𝑒
⃗⃗ ⃗⃗  ⃗ + 𝑓𝐶𝑜

⃗⃗ ⃗⃗  ⃗ + 𝑓𝐸𝑢
⃗⃗⃗⃗⃗⃗ +𝑓𝐷⃗⃗⃗⃗                  (4), 

With  𝑚𝑔  the weight of one slice, and 𝑓𝐷⃗⃗⃗⃗  a phenomenological drag force proportional to the velocity of the water 

slices and their mass m, and characterized by a drag coefficient  that needs to be optimized empirically (see 

Supporting Text 1). 

We need to adapt the general expression of the fictitious forces, which are usually given by taking the axis (O’z) as 

the axis of rotation. Here, the rotation takes place about the axis (CMz) which slides perpendicular to the bottle axis. 

We then have: 



 

 11  
 

𝑓𝐶𝑒
⃗⃗ ⃗⃗  ⃗ = −𝑚𝜔⃗⃗ × (𝜔⃗⃗ × 𝐶𝑀𝑀𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )          (5a) 

𝑓𝐶𝑜
⃗⃗ ⃗⃗  ⃗ = −2𝑚𝜔⃗⃗ × (

𝑑𝐶𝑀𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡
)
ℛ’

          (5b) 

𝑓𝐸𝑢
⃗⃗⃗⃗⃗⃗  = −𝑚 (

𝑑𝜔⃗⃗⃗ 

𝑑𝑡
)
ℛ’

× 𝐶𝑀𝑀𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗            (5c), 

with 𝐶𝑀𝑀𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑟𝑖⃗⃗ − 𝑟𝐶𝑀⃗⃗ ⃗⃗ ⃗⃗   

Note that the Euler force originating from variations in angular velocity is often omitted in classical mechanics 

problems. In the particular context of the water bottle fliping experiment, the variation of 𝜔(𝑡) in time is key for 

explaining the underlying physics. However since there is only a variation in magnitude and not in direction of 

𝜔(𝑡),  𝑓𝐸𝑢
⃗⃗⃗⃗⃗⃗  is tangential to the motion and therefore perpendicular to the main axis 𝑢𝑟⃗⃗⃗⃗ . Similarly, 𝑓𝐶𝑜

⃗⃗ ⃗⃗  ⃗ is also oriented 

along 𝑢𝜃⃗⃗ ⃗⃗  . To determine the distribution of mass inside the bottle, we only need to examine the motion of the Ns 

slices along the bottle axis. Projection of (4) on 𝑢𝑟⃗⃗⃗⃗  gives:  

𝑚𝑟𝑖̈ = 𝑚𝑔. 𝑐𝑜𝑠 𝜃 + 𝑚𝜔2 (𝑟𝑖 − 𝑟𝐶𝑀) − 𝛼(𝑟𝑖̇ − 𝑟𝐶𝑀̇)       (6) 

Eq. (6) defines the kinematics of the bottle motion. 

 

5. Numerical model 

Classical mechanics teach us that solutions of Eq.(6) take the form: 

𝑟𝑖(𝑡) − 𝑟𝐶𝑀(𝑡) = (𝐴𝑒𝜔𝑡 + 𝐵𝑒−𝜔𝑡)𝑒−(𝛼/2𝑚)𝑡 −
𝑔

𝜔2 𝑐𝑜𝑠 𝜃       (7a), 

by assuming 𝜔 and 𝜃 are constant and 
𝛼

2𝑚
=

𝛼𝑁

2𝑀𝑊
≪ 𝜔 and with A and B determined by the boundary conditions. 

The former assumption is obviously invalid over the whole duration of the motion. However, by discretizing the 

duration T of the bottle flight into Nt short time intervals 𝛥𝑡 = 𝑡𝑛 − 𝑡𝑛−1 (for n=1 to 𝑃 = 𝑇/𝛥𝑡), this assumption  

holds over one small time step 𝛥𝑡 if 𝜔 has slow variations, which is indeed found experimentally. As a corollary, 

𝜃(𝑡) and 𝑟𝐶𝑀(𝑡) are also expected to vary slowly over 𝛥𝑡 and all these variables will thus be taken as constants in 

a time interval 𝛥𝑡 as a first approximation.  

The boundary conditions are determined from the values of 𝑟𝑖(𝑡𝑛−1), 𝑟𝐶𝑀(𝑡𝑛−1), 𝑟𝑖̇(𝑡𝑛−1), 𝜔𝑛−1 = 𝜔(𝑡𝑛−1) and 

𝜃𝑛−1 = 𝜃(𝑡𝑛−1) calculated at the beginning of each time step [𝑡𝑛−1; 𝑡𝑛] and derived by recurrence from initial time 

t0. For the initial positions of the water slices i and the center of mass, we use Eqs.(3a) and (3e). The slices i  are at 

rest at t0, setting 𝑟𝑖̇(𝑡0) = 0. The initial angular velocity is 𝜔0 = 𝑣0 𝑟𝐶𝑀(𝑡 = 0)⁄  and 𝜃0 is chosen  equal to  𝜋/2 

unless otherwise stated. 
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Finally, we obtain the locations and velocities of the N slices (i=1 to N) at time 𝑡𝑛 (n=1 to P): 

𝑟𝑖(𝑡𝑛) = [𝑟𝑖(𝑡𝑛−1) − 𝑟𝐶𝑀(𝑡𝑛−1) +
𝑔

𝜔2 𝑐𝑜𝑠 𝜃𝑛−1] . 𝑒
−(

𝛼

2𝑚
)(𝑡−𝑡𝑛−1) 𝑐𝑜𝑠ℎ 𝜔𝑛−1(𝑡𝑛 − 𝑡𝑛−1) + [

𝑟𝑖̇(𝑡𝑛−1)

𝜔
+

𝛼

2𝑚

𝜔
(𝑟𝑖(𝑡𝑛−1) − 𝑟𝐶𝑀(𝑡𝑛−1) +

𝑔

𝜔2 𝑐𝑜𝑠 𝜃𝑛−1)] . 𝑒
−(

𝛼

2𝑚
)(𝑡−𝑡𝑛−1)𝑠𝑖𝑛ℎ𝜔𝑛−1(𝑡𝑛 − 𝑡𝑛−1) + 𝑟𝐶𝑀(𝑡𝑛−1) −

𝑔

𝜔2 𝑐𝑜𝑠 𝜃𝑛−1                                              (7b) 

and 

𝑟𝑖̇(𝑡𝑛) = [
𝜔2−(𝛼/2𝑚)2

𝜔
(𝑟𝑖(𝑡𝑛−1) − 𝑟𝐶𝑀(𝑡𝑛−1) +

𝑔

𝜔2 𝑐𝑜𝑠 𝜃𝑛−1) +
𝛼

2𝑚

𝜔
𝑟𝑖̇(𝑡𝑛−1)] . 𝑒

−(
𝛼

2𝑚
)(𝑡−𝑡𝑛−1)𝑠𝑖𝑛ℎ𝜔𝑛−1(𝑡𝑛 −

𝑡𝑛−1) − 𝑟𝑖̇(𝑡𝑛−1). 𝑒
−(

𝛼

2𝑚
)(𝑡−𝑡𝑛−1). 𝑐𝑜𝑠ℎ 𝜔𝑛−1(𝑡𝑛 − 𝑡𝑛−1)            (7c) 

Eq. (7b) and (7c) govern the motions of the rigid slices inside the non-inertial reference frame of the bottle. Their 

motion is mainly controlled by the balance between the centrifugal force and gravity. If the initial thrust is too small, 

the bottle will just fall. Eq. (6) yields the order of magnitude of the angular velocity: 𝜔~√𝑔/ℓ~10 𝑟𝑎𝑑. 𝑠−1 where 

ℓ is the characteristic length of the system, of the order of L/2≃0.1m. Note however that the more distant the slice 

of interest and the centre of mass, the larger the magnitude of the centrifugal force. In other words, slices that are 

next to the bottom or the top of the bottle will be pushed further against the bottom and the top of the bottle, 

respectively.  

We then have to define boundary conditions: water slices cannot go below 0 and above L, or more precisely, their 

center of mass are restricted to the [ℎ/2𝑁, 𝐿 − ℎ/2𝑁] interval. Moreover, the present model does not account for 

interaction beween slides, meaning that water slices can overlap. To avoid accumulation of all water slices either at 

the bottom or the top of the bottle and to account for water sloshing, we intoduce a rebound of the water slices when 

they hit the top and bottom of the bottle.  Numerically, we will introduce the following conditional statement: if 

𝑟𝑖(𝑡𝑛) ≤ ℎ/2𝑁 (slice i hits the cap) or 𝑟𝑖(𝑡𝑛) ≥ 𝐿 − ℎ/2𝑁 (slice i hits the bottom) then 𝑟𝑖(𝑡𝑛) = 𝑟𝑖(𝑡𝑛−1) (slice i 

does not move) and 𝑟𝑖̇(𝑡𝑛) = −𝛽𝑟𝑖̇(𝑡𝑛) (slice i bounces back in an elastic (𝛽 =-1) or inelastic (-1< 𝛽 ≤ 0) collision 

with the bottle bottom or top).  

At each time step, after computing 𝑟𝑖(𝑡𝑛), the coordinate of the center of mass of the “Bottle+Water” system is 

readily derived using Eq. (3c) and the definition of CM:  

𝑟𝐶𝑀(𝑡𝑛) = (1 − 𝜀)∑
1

𝑁
𝑟𝑖(𝑡𝑛)𝑁

𝑖=1 + 𝜀
𝐿

2
         (8) 

Knowing the position of CM, the next step is to compute the moment of inertia J of the water bottle about CM.  

The bottle itself, which is treated as a hollow cylinder of length L, radius R and mass Mb has a moment of inertia 

about its center of mass Cb:  

 𝐽𝑏/𝐶𝑏
= 𝑀𝑏 (

𝑅2

2
+

𝐿2

12
)           (9a) 
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However, the axis of rotation of the system passes through CM. Using the parallel-axis theorem [8], the moment of 

inertia of the bottle about CM becomes: 

𝐽𝑏/𝐶𝑀
(𝑡𝑛) = 𝑀𝑏 [

𝑅2

2
+

𝐿2

12
+ (

𝐿

2
− 𝑟𝐶𝑀(𝑡𝑛))

2
]        (9b) 

Regarding the water mass content, at 𝑡 = 𝑡𝑛, the moment of inertia about CM is:  

𝐽𝑤/𝐶𝑀
(𝑡𝑛) = ∑

𝑀𝑤

𝑁

𝑁
𝑖=1 (𝑟𝑖(𝑡𝑛) − 𝑟𝐶𝑀(𝑡𝑛))

2
        (9c) 

with 𝑟𝑖(𝑡𝑛) and 𝑟𝐶𝑀(𝑡𝑛) given by Eq. (7b) and (8) respectively. 

Finally, the total moment of inertia during water bottle flipping at time  𝑡𝑛 is given by: 

𝐽𝑛 = 𝐽(𝑡𝑛) = 𝐽𝑤/𝐶𝑀
(𝑡𝑛) + 𝐽𝑏/𝐶𝑀

(𝑡𝑛)         (9d) 

The moment of inertia around CM is therefore calculated by recurrence as for 𝑟𝐶𝑀(𝑡𝑛).   

The initial value 𝐽0, which is calculated by using the discrete definition of the moment of inertia and the expression 

of 𝑟𝐶𝑀(𝑡 = 0), can be brought to the form:    

𝐽0 = 𝑀𝑏𝐿
2 [

1

12
+

𝑅2

2𝐿2 + (
𝜀

2
+ (1 − 𝜀)

𝑀̃

2
)
2

] + 𝑀𝑤𝐿2 [𝑀̃2 (
1

3
− 𝜀 + 𝜀2) − 𝑀̃𝜀 (1 −

𝜀

2
) +

𝜀2

4
]   (9e) 

From angular moment conservation, we then derive the angular velocity during bottle flip:  

𝜔𝑛 =
𝐽0.𝜔0

𝐽𝑛
            (10) 

 

5. Simulated water bottle flipping experiments 

We have developed a MATLAB code and have included both the MATLAB script and its corresponding Python 

program (shared for open-source purposes) as Supplementary Text 3. The primary goal is to plot the angular velocity 

just before landing of the bottle as a function of the filling fraction and to compare these computed values with the 

experimental data from Figure 4. To do so, we first set the values of known parameters: bottle radius R=0.04 m, 

height of the bottle L=0.28 m, density of water 𝜌𝑤=1000 kg.m-3, bottle mass Mb=0.028 kg, Measured parameters 

𝜃0 = 𝜋/2 and 𝜔0 = 20 𝑟𝑎𝑑. 𝑠−1 were also set. The two phenomenological unknown parameters of the 

mathematical model, and  are unknown.  

To simplify the text, we have delegated to the Spplementary Material the determination and optimisation of  and 

 (Supp. Text 1). We summarize here briefly the findings. First, the restitution factor  is between -1 and 0 and  

describes how water slices bounce back when hiting the top or bottom of the water bottle. In a way  is a parameter 

that  reproduces the magnitude of water sloshing. By varying its values and comparing the simulated curves with 
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the experimental ones, we found that  =-0.5 was satisfactory (Fig. S1). Second, the drag coefficient  was explored 

manually. Since the damping time cosntant in (7b) is proportional to /m, with m the mass of one slice being 

constant and equal to 10-3 kg whatever the filling fraction, we found that ~0.01 yields curve shapes similar to the 

experimental ones with a flat plateau after a sudden drop for 𝜔(𝑡) (Fig. S3). 

Finally, we varied the water filling fraction by choosing the values =0.01, m=10-3 kg and =-0.5. The flipping 

duration from release to landing was T=0.5s. Figure 5a shows the dimentsionless angular velocity 𝜔/𝜔0 as a 

function of dimensionless time 𝑡/𝑇 for  0.05 ≤ 𝑀̃ ≤ 1. If we denote 𝜔𝑓 the plateau value of 𝜔(𝑡) obtained by 

calculating the average of 𝜔 over at least 20 time points around the minimum in the pseudo-plateau window, we 

observe that, in most cases, 𝜔𝑓/𝜔0 falls in the 0.2-0.5 range for intermediate filling fractions, as observed 

experimentally (Fig. 4). However, for low and high 𝑀̃ values, simulations and experiments show significant 

differences. First, even though all our tosses were failures for fully filled bottles (𝑀̃=1), we may anticipate that 

complete filling prevents water from sloshing around, the moment of inertia from increasing and thus the angular 

velocity from decreasing. It is expected to be similar to a bottle filled with fozen ice. Yet, we obtain a decrease in 

𝜔 (black curve in Fig. 5a), which may indicate a limit of the validity of the model since all slices are considered as 

independent and allowed to overlap, in particular with the possibility of accumulating a few slices at one end of the 

bottle. Second, the measured angular velocity for 𝑀̃=0.1, which displays no decrease during flipping is similar to 

the simulated one for 𝑀̃=0.05, while a net decrease in  𝜔(𝑡) is obtained for 𝑀̃=0.1 from the computational model. 

The reason why angular velocity is not affected by spin at ultra-low filling fractions is that the mass of the bottle is 

no longer negligible compared to the water mass and thus the center of mass of the “Bottle+Water” system is less 

sensitive to water motions, leading to weak variations in moment of inertia. The fact that this change in behavior 

occurs experimentally for  0.1 ≤ 𝑀̃ ≤ 0.2 and numerically for 0.05 ≤ 𝑀̃ ≤ 0.1 is therefore not a critical 

discrepancy. Altogether, when the plateau value 𝜔𝑓 of the angular velocity is plotted as a fiunction of 𝑀̃, the 

agreement between experimental (Fig. 4d) and numerical (Fig. 5b) data is excellent, allowing us to define a range 

of optimum filling between 0.2 and 0.5 to ensure that the rotation speed of the bottle on landing is as low as possible. 

Note that this range of 𝑀̃ also corresponds to the cases for which the highest number of successful tosses was 

obtained, even though comparison with success probability cannot be rigorously pursued because tosses were done 

by the authors of the present paper. More controlled launches performed by robots for instance would be preferred.   
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Figure 5:Influence of the filling fraction on the angular velocity. (a) Variation of the dimensionless angular velocity 

𝜔/𝜔0as a function of dimensionless time t/T for filling fractions varying from 0.05 to 1; (b) Dimensionless 𝜔𝑓/𝜔0 

taken on the plateau as a function of filling fraction. 

 

Since our numerical model is widely validated over a large range of filling fractions, we further used it to explore 

and predict the impact of parameters that are not easy to vary by human experimentalists. We observe that tosses 

are generally performed with an initial velocity close to  𝜔0 ≈ 20 rad.s-1 and a release angle 𝜃0 ≈ 𝜋/2 We thus run 

simulations by varying these parameters only, for 𝑀̃ = 0.5 (Fig. 6a and b).We find that tosses at  𝜔0 > 20 rad.s-1 

do not affect the final normalized angular velocity, but only the time to reach it. Conversely, tosses at 𝜔0 < 20 

rad.s-1 exhibit non monotonic features, suggesting that centrifugal forces become insufficient to redistribute water 

and clearly alter the moment of inertia for the whole duration of the movement. The impact of the initial release 

angle is very weak on the overall shape of 𝜔(𝑡). The decrease time is all the more longer than the bottle is realeased 

close to the vertical (𝜃0 = 0) because water redistribution, which is governed by the competition between 

centrifugal force and weight, is delayed. Finally, if the aspect ratio AR of the bottle is changed while keeping its 

volume (or total mass) constant (Fig. 6c), we observe that 𝜔(𝑡) curves are almost superimposed. However, we may 

expect that the stability upon landing may differ. We discuss this effect in Supplementary Text 3.  

 

 

Figure 6: Normalized angular velocity versus normalized time when (a) varying 𝜔0, (b) varying 𝜃0, and (c) 
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aspect ratio of the bottle AR=L/R while keeping the same volume.  

 

6. Discussion  

The pseudo 1D numerical model proposed here allows to capture the main features of the rotation of water-filled 

bottles landing upright. The model, which consists in decomposing the water content in thin rigid body slices and 

describing their motion in the non-inertial frame of the bottle, allows to account for the decrease in the angular 

velocity as a consequence of a reditribution of water within the bottle and thus an increase of the moment of inertia 

of the whole “Bottle+Water” system. We also recapitulate quantitatively the variations of 𝜔(𝑡) as compared to the 

experimental data, by adjusting two parameters, namely the drag coefficient for one slice and the restitution factor 

for the velocity of the slices at the end of the bottles. The model was proved to be very accurate for partially filled 

bottles of water. We show that there exist a range of filling fractions between 0.2 and 0.5 for which the angular 

velocity is minimal, suggesting a higher probability of succesful flips. Slight deviation between the model and the 

experiments is found for ultra-low filling fraction for which the mass of the empty bottle is no longer negligible. 

The model breaks down for complete filling, which in principle does not exhibit any variation of moment of inertia 

by contrast whith what is found in the model, where overlapping slices are not ruled out.  

The reduction of 𝜔 during bottle rotation was the focus of the present work allowing to investigate an unusual case 

of mechanics in non-inertial frames. Indeed, if the angular velocity of the spinning bottle is up to 5 times lower than 

that of a bottle partially filled with a rigid body with a fixed moment of inertia, the probability of maintaining an 

orientation close to vertical (θ ≈ 6𝜋), if roughly reached at the apex of the trajectory, will be higher in the last 

moments preceding landing and almost corresponding to free fall. The angle reached on landing does not need to 

be exactly 2𝜋. In Supplementary Text 2, we provide a semi-quntitative dicussion about the stability of landing. In 

brief, in static conditions, the toppling angle of a tilted bottle, which is primarily defined by the elevation of the 

centre of mass shows a maximum for 𝑀̃ = 0.14 and decreases at high filling fraction. However, in the case of a the 

bottle flip experiment, the fluid is in motion. By simpling estimating the position of CM at landing, this stabilisation 

effect would be drastically reduced. There is an additional phenomenon similar to the famous “stacked ball drop” 

leading to the amplification of the velocity of the upper ball after the rebound [9], but with different conditions 

leading to a reverse damping effect: the momentum of the ascending bouncing bottle is partly cancelled by the 

momentum of the descending dispersed fraction of water, leading to unexpected stabilization.    

 

7. Conclusion 

To summarize, we have performed water bottle flipping experiments, and we proposed a simple 1D numerical 

approach to model the physics of water flipping. The model is based on classical rotational mechanics in a non-

inertial frame, which allows undergraduate sutdents to explore with profound understanding the concepts of center 
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of mass, moment of inertia (variable), conservation of angular momentum. The experiments were systematically 

performed and analyzed in depth for different filling fractions. This work is also an example of combination between 

experimental and theoretical physics, and how both experiments and numerical model can feed each other. In 

particular, we extensively used the experimental findings to tune the only two phenomenological parameters of the 

model. Conversely, we could predict the behaviour of bottles with different aspect ratios and the trajectories of the 

bottle in unusual experimental configurations.  It is quite remarkable that the behavior of a bottle filled with fluid 

can be well recapitulated by decomposing the water mass into thin slices of rigid body. A thourough analysis of 

simple entertaining experiments, the derivation of a physical model implying a deep knowledge of non-inertial 

classical mechanis, and a simulation in Python and Matlab are provided in this work, which are expected to be 

helpful to students in computer science and mechanics.  
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Supplementary Text 1: Physical parameters for the implemantation of the numerical calculations 

 

After presenting in the main text the basics or the theoretical framework, we need to determine the two 

phenomenological unknown parameters  and  that are used to model friction of the slices and 

bouncing at the ends of the bottle respectively.  

  First,  we set the values of known parameters: bottle radius R=0.04 m, height of the bottle L=0.28 m, 

density of water 𝜌𝑤=1000 kg.m-3, bottle mass Mb=0.028 kg, Measured parameters 𝜃0 = 𝜋/2 and 𝜔0 =

20 𝑟𝑎𝑑. 𝑠−1 were also set.  

The locations and velocities of the N slices of water (i=1 to N) at time 𝑡𝑛 (n=1 to P): are given by the 

equations (7b) and (7c) from the main text.  

 

For given drag coefficient  and  filling fraction 𝑀̃,  sets the boundary conditions (restitution factor)  

for the velocity of water slices. We first investigate the impact of  on the trajectory of the slices and 

the center of mass of the bottle (Fig. S1a) and, subsequently on 𝜃(𝑡) (Fig. S1b) and 𝜔(𝑡) (Fig. S1c).  

= corresponds to the case where all slices that reach the ends of the bottle cannot be pushed further 

and remain stuck at this position. Only when the projection of the weight of a slice along 𝑢𝑟⃗⃗⃗⃗  exceeds the 

centrigugal force can the slices be redistributed. (FigS1a, top). In the opposite case of an elastic collision 

with a rebound of the slices without loss of speed (=− Fig. S1a, medium), we obtain multiple 

reflections making water slices bounce at the top and bottom of the bottle. This leads to a faster increase 

of the angle  in the late rotating stages (Fig. S1b), which is not observed experimentally. Finally, an 

intermediate value, =− seems to avoid accumulation of slides at the ends of the bottle while not 

amplifying the bounce effect (Fig. S1a, bottom). The difference seen in 𝜃(𝑡) for = and - seems to 

be minor. However, 𝜔(𝑡) only remains low and constant, without late increase, for =− (Fig. 



S1b) Note the bumpy and irregular variation of 𝜔(𝑡) when rebounds are elastic (Fig. S1c). Guided by 

the observation of these singularities in 𝜔(𝑡), we more generally investigated the influence of the 

number of slices N on the outcome. Previous results were obtained with N=10. Here, the shapes of the 

𝜔(𝑡) curves only display significant differences for N=2 and N=5. Nonetheless, slight differences in the 

minimum value of 𝜔 can be detected for 10<N<100 (Fig. S1d).    

 

Figure S1: Influence of the parameter  describing the boundary conditions for the velocity on (a) the 

trajectories of water slices The dashed black line corresponds to the trajectory of the centre of mass; 

(b) the angle 𝜃(𝑡) ; (c) the angular velocity 𝜔(𝑡). N=10 slices, 𝑀̃ = 0.5, and  =1. The impact of tne 

number of slices N on the curves 𝜔(𝑡) is shown in (d).  

 

Since the viscous force 𝑓𝐷 leads to a damping with a time constant in the order of 
2𝑀𝑊

𝛼𝑁
,  indicating that 

the drag coefficient is proportional to the “thickness” of a slice, we need to ensure that slices have all 

the same thickness whatever the filling fraction. In other words,  
𝑁

𝑀𝑊
 was taken constant for all 𝑀̃ values. 

To avoid loss of precision, we selected 
𝑀𝑊

𝑁
= 𝑚=10-3 kg. As shown in Supp. Fig. 2, taking 𝑁 = 103𝑀̃ is 

not the main limitation in terms of computation time. The most critical parameter is the number of time 

intervals P. Computing time tc roughly increases as N2. However, even for 𝑁 × 𝑃 = 1000 × 1000, tc 

does not exceed ~40 s. As a consequence, we chose to run all our calculations with P=1000 time steps. 

 



 
 

Fig. S2 : (a) Variation of 𝜔/𝜔0 as a function of t/T for different filling fractions (𝑀̃=0.25, 0.50 and 0.75) and 

different numbers of time steps (P=10, 100, and 1000).(b) Computing time tc versus number of slices N (for 

different P values). (c) Computing time tc versus number of time steps P (for different N values). 

 

Taking =− and 𝑚=10-3 kg  we evaluate the influence of  on the trajectories of the 1st, N/2th and 

Nth slices (Fig. S3a), and further the variations of 𝜃(𝑡) (Fig. S3b) and 𝜔(𝑡) (Fig. S3c). The outcomes 

are found to be highly sensitive to . For  ≥ 0.0125, friction is so large that redistribution of water 

through the whole bottle is impeded, leading to a non-monotonic variation of the bottle angle and some 

oscillations in 𝜔(𝑡). Conversely, if friction is abolished ( = 0), the early stages of flipping in 𝜃(𝑡) and 

𝜔(𝑡) are well recapitulated, but exhibit later increase which is not observed experimentally. Finally, 

 values between 0.0075 and 0.01 yield curve shapes similar to the experimental ones with a flat plateau 

after a sudden drop for 𝜔(𝑡). 

 

 

Figure S3: Influence of the drag parameter  on (a) the trajectories of water slices (1st, 250th and 500th).  



The dashed black line corresponds to the trajectory of the centre of mass; (b) the angle 𝜃(𝑡) ; (c) the 

angular velocity 𝜔(𝑡). N=500 slices, 𝑀̃ = 0.5, and  =-0.5. 

 

 

 

Supplementary Text 2: Further discussion on bottle stabilisation upon landing 

It is well known that there exists a maximal angle over which a tilted bottle will topple [1]. By assuming 

that water remains static and its surface parallel to the tilted base of the bottle, a bottle partially filled 

with fluid will return to its upright position as long as the gravity line does not exceed the contact point. 

As seen in Fig. S4a, this corresponds to a critical toppling angle defined by:  

𝑡𝑎𝑛𝜃𝑐 =
𝑅

𝐿−𝑟𝐶𝑀
           (S1)  

With 𝑟𝐶𝑀 = 𝑟𝐶𝑀(𝑡 = 0) given by Eq. (3e) in the main text, we obtain:  

𝜃𝑐 = 𝑎𝑡𝑎𝑛
𝑅/𝐿

(1−𝜖)
ℎ

2L
+

𝜖

2
 
          (S2) 

Fig. S4b shows that the variation of 𝜃𝑐 as a function of 𝑀̃ is non monotonic when the fluid is at rest. 

Naively, we could expect that the more water, the higher the centre of mass and the lower the value of 

𝜃𝑐. However, for 𝑀𝑊 < 𝑀𝑏, the center of mass of the ‘Bottle+Water’ system becomes mostly set by 

𝑀𝑏, and thus elevated with respect to the base of the bottle, which explains the maximum value  𝜃𝑐=45° 

obtained for 𝑀̃ = 0.14. Moreover, due to water redistribution during movement, the location of the 

centre of mass with respect to the bottle base just at the collision with the ground is expected to be higher 

as compared with the one for the same mass at rest. Indeed, if rCM(𝜃 = 2𝜋) is extracted from the 

simulated data for each filling fraction, we find that the corresponding dynamic critical toppling angle 

is lower than the expected static one, except for 𝑀̃ > 0.75 where the agreement is good due to negligible 

water redistribution. Images taken at collision (Fig. 9c) confirm that a significant mass of water is still 

elevated in the bottle for intermediate 𝑀̃ values at the moment of the collision. At low 𝑀̃ values, water 

is found at the bottom and along the body of the bottle in its lower half. As a consequence, in this context, 

water motion during bottle flip tends to elevate the centre of mass of the system and decrease the stability 

of the bottle upon landing. There is however an additional effect that contributes bottle stabilization. 

Quantitative explanations are beyond the scope of the present work and would require detailed fluid 

hydrodynamics considerations. From a qualitative point of view, collision between the falling bottle and 

the ground can be analysed in the same framework as the famous “stacked ball drop” leading to the 

amplification of the velocity of the upper ball after the rebound [2], but with different conditions leading 

to a damping effect. Here, since the collision duration is on the order of few milliseconds, we may 

neglect the rotation of the bottle and assume a vertical fall. In the case of the drop of two balls on top of 



each other, there is one collision between the ground and the lower ball, and a second collision between 

the two balls. Here the fraction of water that is still dispersed in the bottle at the moment of the collision 

plays the role of the upper ball. In the case of balls, the lower ball transfers its momentum to the small 

ball that rebounds with a speed that may exceed the free falling speed. Here, we may realistically assume 

that, in the early stages of collision (before sloshing and possible jet formation [3], i) the collision is 

completely inelastic, meaning that the two final velocities are equal, on the order of the weak bouncing 

velocity of the bottle, and ii) that the momentum of the ascending bottle is partly cancelled by the 

momentum of the descending dispersed fraction of water. Some favourable cases to enhance this 

damping effect occur when the velocity of the centre of mass of the whole system is negative. Fig. 9c 

shows that vCM is indeed negative and its magnitude larger than 0.2 m.s-1 in the range 𝑀̃ ≈ 0.25 − 0.6. 

Remarkably, this range also matches with the conditions for low angular velocity (Fig. 5b, main text).  

 

Figure S4: Stabilization effect on landing. (a) definition of the critical toppling angle 𝜃𝑐; (b) Variation 

of 𝜃𝑐 as a function of filling fraction 𝑀̃. The red curve is computed from Eq. (13b) and obtained from 

resting value of rCM. The data points correspond to the location of the centre of mass on landing; (c) 

Variation of the instantaneous velocity of the centre of mass on landing  as a function of filling 

fraction 𝑀̃ and images of the bottle with fire LUT enhancing the distribution of water inside the bottle. 
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Supplementary Text 3: Matlab and Python codes 

 

MATLAB program 

 

Main.m 

 

% Compute the trajectories of water slices, the center of mass,  

% the angle of the bottle during flipping and the angular velocity 

 

%initialisation 

tic, 

theta =pi/2;  %angle between the bottle and the vertical at t=0 

Nmax= 1000; %number of time steps 

T=1; %total duration of the flipping motion 

t=linspace(0,T,Nmax); 

dt =t(2)-t(1); 

N=500; %number of water slices 

L=0.28; %height of the bottle 

R=0.04; %radius of the bottle 

g=9.8; %gravity 

M_b=0.028; %mass of the bottle 

M_max=1; %maximal water in the bottle 

M_W =0.50; % mass of water in the bottle 

Mtilde=M_W/M_max; %filling fraction 

h=0.14; %height of the water level from the bottom of the bottle 

rho =1000; density of water 

H0 = M_b/(rho*pi*R^2); 

epsilon = H0/(H0+h); %correction to take into account the mass of 

the bottle 

alpha=0.01; %empirical drag coefficient 

omega = 20; %angular velocity  

omega_0 = omega; %angular velocity at time t=0 

 

%vector of the slice position 

r = L-(2*(1:N).'-1)*h/(2*N); 

%position of the center of mass 

r_CM=[]; 

%compute  the center of mass at time t=0 

r_CM0 = FindCenterOfMass(r_CM,r,L,epsilon,1);   

%compute the linear velocity at time t=0 from angular velocity 

v= 0*r_CM0*omega_0*(1:N).';  



%compute the moment of inertia of the water inside the bottle  

% with respect to the center of mass of the bottle+water system 

JW_CM0= InertiaMomentumWater(r,r_CM0,M_W,N,1,Mtilde,L,R,epsilon);  

%compute the moment of inertia of the empty bottle with respect  

% to the center of mass of the bottle+water system 

JB_CM0 = InertiaMomentumBottle(r_CM0,M_b,R,L,1);  

%compute the total moment of inertia of the bottle+water system 

J_0 = JW_CM0+JB_CM0;  

 

% Make a loop on time steps 

for n=1:length(t) 

     

    %compute the center of mass 

    r_CM = FindCenterOfMass(r_CM,r,L,epsilon,n);   

    %compute the moment of inertia of the water 

    JW_CM= InertiaMomentumWater(r,r_CM,M_W,N,n,Mtilde,R,L,epsilon); 

    %compute the moment of inertia of the bottle 

    JB_CM= InertiaMomentumBottle(r_CM,M_b,R,L,n); 

    %compute the moment of inertia of the bottle+water system 

    J=JW_CM+JB_CM; 

    %compute the angular velocity 

    omega = InstantaneousAngularFrequency(J_0,omega,omega_0,J,n); 

    %compute the angle 

    theta=FindTheta(theta,omega,dt,n); 

    %compute the  velocity and position of slices 

    [r,v]=FindNewlocation(r,v,r_CM,dt,g,omega,theta,n,alpha,M_W,N); 

    %check the boundary condition 

    [r,v]=CheckBoundaryConditions(r,v,h,N,L); 

 

end 

toc 

close all 

 

% Plot figures 

 

% angle versus time 

figure 

plot(t,theta(1:end-1),'o-') 

%center of mass versus time 

figure 

plot(t,r_CM(1:end)) 

% angular velocity versus time 

figure 

plot(t,omega) 

% Position of all slices versus time 

figure 

plot(t,r(1,1:end-1)) 

hold on 

plot(t,r(end,1:end-1)) 

plot(t,r(round(N/2),1:end-1)) 

% Position of 1st, (N/2)th and Nth slice versus time 

figure 



plot(t,r(:,1:end-1)) 

 

%Create data file (t, position center of mass, theta, omega) 

temporary = [t.'  r_CM(1:end)' theta(1:end-1).' omega.']; 

save('C:\Users\bottleflip\file1.txt','temporary','-ascii') 

 

FindCenterOfMass.m 

function r_CM = FindCenterOfMass(r_CM,r,L,epsilon,n) 

% find the center of mass from the position of the N slices and the 

prarmeters L and epsilon 

N=size(r,1); 

r_CM(n) = (1-epsilon)*sum(1/N*r(:,n),1)+epsilon*L/2; 

 

InertiaMomentumWater.m 

 

function JW_CM= 

InertiaMomentumWater(r,r_CM,M_W,N,n,Mtilde,R,L,epsilon) 

% compute the moment of inertia of the water with respect to the 

center of mass of the bottle+water system 

%r : position of the N slices 

%r_CM: position of the center of mass 

JW_CM = M_W/N*sum((r(:,n)-r_CM(n)).^2,1); 

 

InertiaMomentumBottle.m 

 

function JB_CM = InertiaMomentumBottle(r_CM,M_b,R,L,n) 

% compute the moment of inertia of the bottle with respect to the 

center of mass 

JB_CM(n) = M_b*(R^2/2+L^2/12+(L/2-r_CM(n)).^2); 

 

InstantaneousAngularFrequency.m 

 

function omega = 

InstantaneousAngularFrequency(J_0,omega,omega_0,J,n) 

%compute the Instantaneous Angular velocity from the conservation of 

the angular momentum 

omega(n) = J_0*omega_0/J(n); 

 

FindTheta.m 

 

function theta=FindTheta(theta,omega,dt,n) 

%find the new theta after dt at step n 

theta(n+1)=theta(n)+dt*omega(n); 

 

FindNewlocation.m 

 

function [r,v] = 

FindNewlocation(r,v,r_CM,dt,g,omega,theta,n,alpha,M_W,N) 

%compute the new locations and speeds of the N  slices at the 

iteration n 

% r and v are the position and velocity 

%r_CM is the center of mass 

%omega:  angular velocity  

%theta: angle of the bottle  



%g gravity 

%dt: step time  

 

r(:,n+1) = (r(:,n)-r_CM(n)+g/omega(n)^2.*cos(theta(n)))*exp(-

alpha/2/M_W*N*dt)*cosh(omega(n)*dt)+(v(:,n)/omega(n)+alpha/2/M_W*N/o

mega(n)*(r(:,n)-r_CM(n)+g/omega(n)^2.*cos(theta(n))))*exp(-

alpha/2/M_W*N*dt)*sinh(omega(n)*dt)... 

    +r_CM(n)-g/omega(n)^2*cos(theta(n)); 

 

v(:,n+1) = ((r(:,n)-

r_CM(n)+g/omega(n)^2.*cos(theta(n)))*(omega(n)^2-

(alpha/2/M_W*N)^2)/omega(n)+alpha/2/M_W*N/omega(n)*v(:,n))*exp(-

alpha/2/M_W*N*dt)*sinh(omega(n)*dt)+v(:,n)*cosh(omega(n)*dt)*exp(-

alpha/2/M_W*N*dt); 

 

CheckBoundaryConditions.m 

 

function [r_new,v_new]=CheckBoundaryConditions(r,v,h,N,L) 

 

N=size(r,1); 

%slices that do not hit the bottom of top of the bottle are 

unchanged  

current_v = v(:,end); 

current_r = r(:,end); 

% If slice touches the ends of the bottle, they bounce back with a 

new velocity equal to -1/2 of the previous velocity (value beta in 

the text) 

current_v(current_r<(h/(2*N))) = -

0.5*current_v(current_r<(h/(2*N))); 

current_v(current_r>(L-h/(2*N))) = -0.5*current_v(current_r>(L-

h/(2*N))); 

v_new = [v(:,1:end-1) current_v]; 

r_new = r; 

 

 

 

-------------------------------------------------------------------------- 

 

 

PYTHON program 

 

main.py 

 

# Import modules 

import numpy as np 

import matplotlib.pyplot as plt 

import kinetics 

from constants import * 

 

# Set kinetic parameters 

water_mass = 0.1  # Mass of water in the bottle, unit: kg 

filling_fraction = water_mass / WATER_MASS_MAX  # Filling fraction 

of the bottle 

water_height = filling_fraction * BOTTLE_HEIGHT  # Height of the 

water level from the bottom of the bottle at rest, unit: m 



epsilon = BOTTLE_MASS / (BOTTLE_MASS + water_mass)  # correction 

factor 

alpha = 0.01  # Empirical drag coefficient, unit: kg/m 

beta = -0.3  # Empirical restitution coefficient, unit: 1 

omega_0 = 20  # Initial angular velocity, unit: rad/s 

theta_0 = np.pi / 2  # Initial angle, unit: rad 

 

 

# Set numerical parameters for the simulation 

n_steps = 1000  # Number of time steps 

t_max = 0.6  # Total duration of the flipping motion, unit: s 

t, dt = np.linspace(0, t_max, n_steps, retstep=True)  # Time vector 

and time step 

n_slices = 100  # Number of water slices 

slice_height = water_height / n_slices  # Height of a slice, unit: m 

slice_mass = water_mass / n_slices  # Mass of a slice, unit: kg 

 

# Initialize the variables 

omega = omega_0  # Initial angular velocity, unit: rad/s 

theta = theta_0 

slices_positions = BOTTLE_HEIGHT - slice_height / 2 - np.arange(0, 

n_slices) * slice_height 

slices_velocities = 0 * slices_positions  # Initial radial velocity 

of the slices 

center_of_mass_system = 

kinetics.find_center_of_mass(slices_positions, epsilon) 

rotational_inertia_water = 

kinetics.rotational_inertia_water(slices_positions, 

center_of_mass_system, water_mass, n_slices) 

rotational_inertia_bottle = 

kinetics.rotational_inertia_bottle(center_of_mass_system, 

BOTTLE_MASS, BOTTLE_RADIUS, BOTTLE_HEIGHT) 

rotational_inertia = rotational_inertia_water + 

rotational_inertia_bottle 

 

# Create vectors to store the results 

omega_values = np.zeros(n_steps) 

theta_values = np.zeros(n_steps) 

slices_positions_values = np.zeros((n_steps, n_slices)) 

slices_velocities_values = np.zeros((n_steps, n_slices)) 

center_of_mass_system_values = np.zeros(n_steps) 

rotational_inertia_values = np.zeros(n_steps) 

 

# Store initial conditions 

omega_values[0] = omega 

theta_values[0] = theta 

slices_positions_values[0] = slices_positions 

slices_velocities_values[0] = slices_velocities 

center_of_mass_system_values[0] = center_of_mass_system 

rotational_inertia_values[0] = rotational_inertia 

 

# Numerical integration 



for k in range(1, len(t)): 

 

    # Recall values of the variables 

    omega = omega_values[k - 1] 

    theta = theta_values[k - 1] 

    slices_positions = slices_positions_values[k - 1] 

    slices_velocities = slices_velocities_values[k - 1] 

    center_of_mass_system = center_of_mass_system_values[k - 1] 

    rotational_inertia = rotational_inertia_values[k - 1] 

 

    # Update values of the variables using the previous values 

    slices_positions_tmp, slices_velocities_tmp = 

kinetics.update_slice_positions(slices_positions, 

center_of_mass_system, omega, theta, slices_velocities, alpha, 

slice_mass, dt, G) 

    new_slices_positions_tmp, new_slices_velocities_tmp = 

kinetics.check_boundary_conditions(slices_positions_tmp, 

slices_positions, slices_velocities_tmp, beta, slice_height / 2, 

BOTTLE_HEIGHT - slice_height / 2) 

    center_of_mass_system_tmp = 

kinetics.find_center_of_mass(slices_positions, epsilon) 

    rotational_inertia_water_tmp = 

kinetics.rotational_inertia_water(slices_positions, 

center_of_mass_system, water_mass,n_slices) 

    rotational_inertia_bottle_tmp = 

kinetics.rotational_inertia_bottle(center_of_mass_system, 

BOTTLE_MASS, BOTTLE_RADIUS, BOTTLE_HEIGHT) 

    rotational_inertia_tmp = rotational_inertia_water_tmp + 

rotational_inertia_bottle_tmp 

    omega_tmp = omega_values[0] * rotational_inertia_values[0] / 

rotational_inertia_tmp 

    theta_tmp = theta + omega * dt 

 

    # Store new values of the variables 

    omega_values[k] = omega_tmp 

    theta_values[k] = theta_tmp 

    slices_positions_values[k] = new_slices_positions_tmp 

    #print(slices_positions_values) 

    slices_velocities_values[k] = new_slices_velocities_tmp 

    center_of_mass_system_values[k] = center_of_mass_system_tmp 

    rotational_inertia_values[k] = rotational_inertia_tmp 

 

# Plot figures 

fig, ax = plt.subplots(3, 1, figsize=(5, 10)) 

ax[0].plot(t, theta_values) 

ax[0].set_xlabel('Time') 

ax[0].set_ylabel('Angle') 

 

ax[1].plot(t, center_of_mass_system_values, '--') 

ax[1].plot(t, slices_positions_values[:, 0], 'k') 

ax[1].plot(t, slices_positions_values[:, -1], 'k') 

ax[1].plot(t, slices_positions_values[:, n_slices // 2], 'k') 



ax[1].set_xlabel('Time') 

ax[1].set_ylabel('Center of Mass') 

ax[1].set_ylim(0, 1.1 * BOTTLE_HEIGHT) 

 

ax[2].plot(t, omega_values) 

ax[2].set_xlabel('Time') 

ax[2].set_ylabel('Angular Velocity') 

ax[2].set_ylim(0, 1.1 * omega_0) 

plt.tight_layout() 

plt.show() 

 

# Create data file (t, position center of mass, theta, omega) 

# data = np.array([t, center_of_mass_system_values, theta_values, 

omega_values]).T 

# np.savetxt('data.txt', temporary_data, delimiter=' ') 

 

Constants.py 
 

# Declare constants 

BOTTLE_HEIGHT = 0.28  # Height of the bottle, unit: m 

BOTTLE_RADIUS = 0.04  # Radius of the bottle, unit: m 

BOTTLE_MASS = 0.028  # Mass of the bottle, unit: kg 

WATER_MASS_MAX = 1  # Maximal water in the bottle, unit: kg 

G = 9.81  # Gravity constant on Earth, unit: m/s**2 

# WATER_DENSITY = 1000  # Density of water, unit: kg/m**3 
 

 

Kinetics.py 
 

# Import modules 

import numpy as np 

from constants import * 

 

# Compute the rotational inertia of the water with respect to the 

center of mass 

def rotational_inertia_water(positions, center_of_mass, 

water_mass,n_slices): 

    #j = np.sum(mass * (positions - center_of_mass) ** 2) 

    j = water_mass/n_slices*np.sum((positions - center_of_mass) ** 

2) 

    return j 

 

# Compute the rotational inertia of the bottle with respect to the 

center of mass 

def rotational_inertia_bottle(center_of_mass, 

mass_bottle=BOTTLE_MASS, radius=BOTTLE_RADIUS, 

length=BOTTLE_HEIGHT): 

    j_bottle_axis = mass_bottle * (radius ** 2 / 2 + length ** 2 / 

12) 

    j_new_axis = j_bottle_axis + mass_bottle * (length / 2 - 

center_of_mass) ** 2  # Parallel axis theorem 

    return j_new_axis 

 



 

# Compute the position of the center of mass 

def find_center_of_mass(positions, eps, 

length_bottle=BOTTLE_HEIGHT): 

    r_center_of_mass = eps * length_bottle / 2 + (1 - eps) * 

np.mean(positions) 

    return r_center_of_mass 

 

# Update slice positions and velocities using previous values 

def update_slice_positions(positions, center_of_mass, 

angular_velocity, angle, velocities, alpha, mass, dt, gravity): 

    tau = (2 * mass) / alpha 

    factor_1 = positions - center_of_mass + (gravity / 

(angular_velocity ** 2)) * np.cos(angle) 

    factor_2 = velocities / angular_velocity + (1 / (tau * 

angular_velocity)) * (positions - center_of_mass + (gravity / 

(angular_velocity ** 2)) * np.cos(angle)) 

    new_positions = center_of_mass - (gravity / (angular_velocity ** 

2)) * np.cos(angle) + factor_1 * np.exp(- dt / tau) * 

np.cosh(angular_velocity * dt) + factor_2 * np.exp(- dt / tau) * 

np.sinh(angular_velocity * dt) 

    factor_1 = ((angular_velocity ** 2 - (1 / (tau ** 2))) / 

angular_velocity) * (positions - center_of_mass + (gravity / 

(angular_velocity ** 2)) * np.cos(angle)) + (1 / (tau * 

angular_velocity)) *velocities 

    factor_2 =  velocities 

    new_velocities = factor_1* np.exp(- dt / tau) * 

np.sinh(angular_velocity * dt) + factor_2 * np.exp(- dt / tau) * 

np.cosh(angular_velocity * dt) 

    return new_positions, new_velocities 

 

 

# Take into account the rebound on the boundaries 

def check_boundary_conditions(positions, previous_positions, 

velocities, restitution, l_min, l_max): 

    for i in range(len(positions)): 

        if positions[i] < l_min: 

            velocities[i] = restitution * velocities[i] 

            positions[i] = previous_positions[i].copy()  # Just use 

the previous position 

            #positions[i] = l_min + (l_min - positions[i])  # Would 

make more sense to have a symmetrical rebound 

        elif positions[i] > l_max: 

            velocities[i] = restitution * velocities[i] 

            positions[i] = previous_positions[i].copy()  # Just use 

the previous position 

            #positions[i] = l_max - (positions[i] - l_max)  # Would 

make more sense to have a symmetrical rebound 

    return positions, velocities 

 

 

 



Supplementary videos :legends 

 

Supplementary Video1: 

Water bottle flipping sequence with a filling fraction of 10%. Video is slowed down 9.6 times (from 

initial frame rate of 240 fps to 25 fps) 

 

Supplementary Video2: 

Water bottle flipping sequence with a filling fraction of 25%. Video is slowed down 9.6 times (from 

initial frame rate of 240 fps to 25 fps) 

 

 

Supplementary Video3: 

Water bottle flipping sequence with a filling fraction of 33%. Video is slowed down 9.6 times (from 

initial frame rate of 240 fps to 25 fps) 



 

 

 

Supplementary Video4: 

Water bottle flipping sequence with a filling fraction of 50%. Video is slowed down 9.6 times (from 

initial frame rate of 240 fps to 25 fps) 

 

 

Supplementary Video5: 

Water bottle flipping sequence with a filling fraction of 75%. Video is slowed down 9.6 times (from 

initial frame rate of 240 fps to 25 fps) 



 

 

Supplementary Video6: 

Flipping sequence with a bottle partially filled with ice. Video is slowed down 9.6 times (from initial 

frame rate of 240 fps to 25 fps) 

 

 

 


