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Abstract: The scarcity of resources and the structuring of markets for essential resources
(water, energy, transportation) lead to a category of users being considered captive. Dissat-
isfaction among these users can lead to social events with consequences that are difficult to
predict. Inspired by compartmental models used in mathematical epidemiology, in this paper,
we introduce a new model allowing to analyze dissatisfaction among captive users. The model
has a single asymptotically stable equilibrium and its solution is monotone. It is then used for
optimal decision-making to avoid reaching a defined critical threshold. In order to take into
account the uncertainties of the model parameters, a scenario-based optimization approach is
developed.
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1. INTRODUCTION

Globally, development agendas and strategies are crafted
with the central goal of fostering equitable access to ser-
vices, which is often regarded as a human right, Koehler
(2018). Indeed, equal access to essential services promotes
socioeconomic development and ensures social justice,
Plata et al. (2019). However, in the realms of modern
society, the intricate interplay between infrastructure and
consumer dynamics delineates a landscape where certain
users find themselves entrapped within essential service
markets. This phenomenon, often referred to as captive us-
age, manifests prominently in transportation, energy, and
water sectors, shaping consumption patterns and market
dynamics alike, Fang et al. (2021). Understanding the in-
tricacies of captive users within these sectors is paramount,
not only for economic and policy formulation but also for
ensuring equitable access and sustainable resource man-
agement. Transportation, energy, and water infrastruc-
tures serve as lifelines, underpinning societal functions and
facilitating economic growth. However, the nature of these
services often engenders a form of dependence among con-
sumers, compelling them to rely on designated providers
within constrained markets. Captive users, thus trapped
within these systems, face unique challenges ranging from
limited choice and pricing disparities to implications for
environmental sustainability and social equity,Rayburn
(2015); Rayburn et al. (2020). Additionally, the absence
of adequate services have caused dissatisfaction, Furunes
and Mkono (2019); Mamokhere (2020), posing a threat
to overall well being of captive users. The dissatisfaction

of captive users is a pervasive concern. Constrained by
limited or nonexistent alternatives, they frequently expe-
rience frustration and discontentment with the quality,
accessibility, and affordability of the services they depend
upon. Whether facing exorbitant pricing, inadequate ser-
vice provision, or lack of responsiveness to consumer needs,
the grievances of captive users underscore systemic flaws
and inequities within these sectors. Moreover, disparities
in access to essential services exacerbate socioeconomic
inequalities, further amplifying the discontentment among
marginalized communities. Such a discontentment can
turn into a social bomb, the timing and consequences
of which are unpredictable. In essence, modeling popula-
tion dynamics of dissatisfaction enhances comprehension
of societal shifts in order to plan interventions, allocate
resources effectively, and ultimately work towards creating
inclusive and resilient communities. Therefore, the purpose
of this paper is to model the population dynamics of dissat-
isfaction and then, knowing that resources for enhancing
quality of service are limited, an optimal control problem
is formulated and solved to mitigate such a dissatisfaction.
The proposed model is inspired from compartmental mod-
els well known in mathematical epidemiology, precisely
the SIS (Susceptible Infectious Susceptible). The main
idea here is to consider dissatisfaction as an infection that
propagates within a constant population.

Historically, compartmental models have been essential
to analyze the dynamics of infectious diseases, Kermack
and Mc Kendrick (1927); Pimenov et al. (2012); Elhia
et al. (2021); Niazi et al. (2021b) and their impact on



daily life, Niazi et al. (2021a). Despite having their roots
in epidemiology, compartmental models have found use
outside of infectious diseases and have been useful tool for
understanding complex systems in society such as criminal
behaviour, Sooknanan and Seemungal (2023), predicting
transport and fate of radionuclides in the marine envi-
ronment,Maderich et al. (2018), and customer reaction
towards digital banking, Méndez-Suárez and Danvila-del
Valle (2023), to cite a few. To the best to authors knowl-
edge, this is the first time compartmental models are
used to model dissatisfaction in general and in particular
within the captive users context. The model is analyzed,
the equilibria are explicitly computed and their stability
analyzed. In addition, the trajectory of the system can
be precisely derived. We use this property to solve an
optimal time and magnitude of intervention problem to
prevent dissatisfaction going beyond a given threshold.
To overcome uncertainties in the model parameters, ran-
domized strategies as in scenario optimization approach,
Calafiore and Campi (2006); Campi et al. (2009); Alamo
et al. (2009), is adopted.

The paper is organized as follows. The model is de-
scribed and analyzed in section 2. Various optimization
approaches are discussed and evaluated in section 3. Fi-
nally concluding remarks and future works are provided
in section 4.

2. MODEL DEFINITION AND ANALYSIS

SIS is a compartmental model in which a population can
transit between two stages: susceptible and infected. Once
infected, they don’t get immunity and therefore can go
back to the susceptible compartment after they recover
from the sickness. The model is constituted with a system
of differential equations. Denoting s(t) the fraction of the
population that is not yet sick and by i(t) that of infected
people. The model is given by

ṡ(t) = −βs(t)i(t) + γi(t),

i̇(t) = βs(t)i(t)− γi(t).
Here, β > 0 represents the infection rate while γ > 0
stands for the recovery rate. In this model, people can’t
escape from these two compartments. The model has
two equilibrium points: disease free (s∗, i∗) = (1, 0) and
(s∗, i∗) = (γ/β, 1− γ/β).

Similar to SIS, we introduce the SDS (Satisfied-Dissatisfied-
Satisfied) model as a compartmental model for analysing
spreading of dissatisfaction among captive users of a given
service. The model is constituted with two compartments:
satisfied (S) and dissatisfied (D). Each compartment is
characterized by a single state: the proportion S(t) of
satisfied users andD(t) that of dissatisfied ones. The whole
population being captive, they cannot leave the system.
Therefore we adopt a constant population model:

S(t) +D(t) = 1 (1)

Transition from one compartment to another results from
social connections (word-of-mouth) and positive/negative
actions on the provided service. The model is then given
by:

Ṡ(t) = βS(t)D(t)− f(µ)S(t) + g(µ)D(t) (2a)

Ḋ(t) =−βS(t)D(t) + f(µ)S(t)− g(µ)D(t) (2b)

where:

• β stands for the word-of-mouth (WOM) coefficient.
It can be positive or negative. A positive value means
that the social interaction leads to increase the num-
ber of satisfied users while a negative value stands for
spreading of dissatisfaction.

• µ accounts for the quality of service of the considered
service while f(µ) and g(µ) allow modeling how the
quality of service impacts satisfaction and dissatis-
faction, respectively. They are assumed to be strictly
positive functions.

Fig. 1. SDS model’s chart.

Given (1), equation (2b) can be rewritten as:

Ḋ(t) = βD2(t)− c(β, µ)D(t) + f(µ) (3)

with
c(β, µ) = β + f(µ) + g(µ) (4)

or equivalently
Ḋ(t) = P(D(t)) (5)

with
P(x) = βx2 − c(β, µ)x+ f(µ). (6)

2.1 Analysis of the equilibrium points

In order to carry out stability analysis of the critical
points of this autonomous differential equation, we first
state some properties of the polynomial P(x) through few
lemmas.

Lemma 1. Since g(µ) > 0, the polynomial P(x) admits at
least one root outside the unit circle.

Proof: For a polynomial P (z) = a2z
2+a1z+a0, the Jury

criterion states that the roots are inside the unit circle if
and only the following three conditions hold, Jury (1963):

• (i) a2 > a0
• (ii) a2 + a1 + a0 > 0
• (iii) a2 − a1 + a0 > 0

For the polynomial P(x), the second condition corresponds
to β − c(β, µ) + f(µ) > 0. However, using (4), one gets
β − c(β, µ) + f(µ) = −g(µ) < 0. The Jury criterion fails.
Therefore, there is at least one root outside the unit circle.
□

Lemma 2. Since f(µ) > 0 and g(µ) > 0, the quantity
∆ = c2(β, µ)− 4βf(µ) is strictly positive.



Proof: ∆ can be expanded as

∆ = β2 + f2(µ) + g2(µ)− 2βf(µ) + 2βg(µ) + 2f(µ)g(µ).

Let us consider first the case β < 0. We can rewrite ∆ as

∆ = (β + g(µ))2 + f2(µ)− 2βf(µ) + 2f(µ)g(µ)

which is a sum of strictly positive numbers.
Consider now the case β > 0. We can rewrite ∆ as

∆ = (β − f(µ))2 + g2(µ) + 2βg(µ) + 2f(µ)g(µ)

As for the previous case, ∆ is a sum of strictly positive
numbers. □
Lemma 3. The polynomial P(x) admits two roots

x0(β, µ) =
c(β, µ) +

√
∆

2β
(7)

x1(β, µ) =
c(β, µ)−

√
∆

2β
(8)

which are such that

(1) (i) 0 < x1(β, µ) < 1 < x0(β, µ) if β > 0.
(2) (ii) x0(β, µ) < 0 < x1(β, µ) < 1 if β < 0

Proof : Since from Lemma 2, ∆ = c2(β, µ) − 4βf(µ) >
0, P(x) admits the two real valued roots x0(β, µ) and
x1(β, µ) given by (7) and (8) respectively. We can note
that

x0(β, µ)− x1(β, µ) =

√
∆

β
(9)

and

x0(β, µ) + x1(β, µ) =
c(β, µ)

β
. (10)

Let us consider the case β > 0. Since f(µ) > 0, the
two solutions are strictly positive. From (9), we have
x1(β, µ) < x0(β, µ). From Lemma 1, we know that at
least one root is greater than 1. Then, we can conclude
that x0(β, µ) > 1. To prove that x1(β, µ) is less than one,
we can analyze Q(x0, x1) = (x0(β, µ) − 1)(x1(β, µ) − 1).
Expanding it, we get

Q(x0, x1) = x0(β, µ)x1(β, µ)− (x0(β, µ) + x1(β, µ)) + 1.

Knowing that x0(β, µ)x1(β, µ) =
f(µ)
β and using (10), we

get:

Q(x0, x1) =
f(µ)− c(β, µ) + β

β
= −g(µ)

β
< 0

Meaning Q(x0, x1) = (x0(β, µ)−1)(x1(β, µ)−1) < 0. Since
x0(β, µ)− 1, we can conclude that x1(β, µ) < 1.

Let us consider the case β < 0. Since f(µ) > 0, the two
solutions are nonzero and have opposite sign. From (9)
we can conclude that x0(β, µ) < x1(β, µ), meaning that
x0(β, µ) < 0 and 0 < x1(β, µ). From Lemma 1, we note
that at least one root is outside the unit circle. Assume
that x1(β, µ) is greater than 1. As in the previous case,
we can analyze again Q(x0, x1). Since β < 0, we get

Q(x0, x1) = − g(µ)
β > 0. Therefore x0(β, µ)− 1 > 0, which

contradicts x0(β, µ) < 0. As a consequence, x1(β, µ) is
necessarily less than 1 and x0(β, µ) is the root outside the
unit circle. □

Based on these properties, we can now analyze the equi-
librium points of the SDS model and its trajectory.

Proposition 1. x1(β, µ) =
c(β,µ)−

√
∆

2β is the single equilib-

rium of the SDS model. It is asymptotically stable.

Proof : From (5), we know that the equilibrium points of
the system are the roots x0(β, µ) and x1(β, µ) of the second
order polynomial P(.). From Lemma 3, we know that
|x0(β, µ)| > 1 and 0 < x1(β, µ) < 1. The latter is the single
admissible equilibrium point since the state is constrained
to be positive and less than 1. If β < 0, P(x) > 0 if
x ∈ (x0(β, µ), x1(β, µ)) else P(x) < 0. The phase diagram
shows that x1(β, µ) is an attractor while x0(β, µ) is a
repeller. If β > 0, P(x) < 0 if x ∈ (x1(β, µ), x0(β, µ))
else P(x) > 0. The phase diagram shows that x0(β, µ) is a
repeller while x1(β, µ) is an attractor. We can therefore
conclude that whatever the type of WOM (β > 0 or
β < 0), x1(β, µ) is the unique admissible equilibrium and
it is asymptotically stable. □

2.2 Analysis of the trajectory of the solution

Now, we can analyze the trajectory of the solution of the
SDS model and even compute it explicitly.

Proposition 2. The trajectory D(t) of the SDS model is
monotone, positive and less than 1 for any positive initial
condition D(0) lower than 1.

Proof: In the domain (0, 1), the derivative Ḋ(t) is positive
for D(t) < x1(β, µ) and negative for D(t) > x1(β, µ).
Therefore, if the initial condition is smaller than the equi-
librium point, D(t) will be increasing until reaching the
equilibrium point. If the initial condition is greater than
the equilibrium point, the trajectory will be decreasing
towards the equilibrium point. □

Proposition 3. Given a fraction of dissatisfied users D(τ)
at time τ , the fraction D(t), at any time t, of dissatisfied
users evolves as

D(t) =
λ0(τ)x1(β, µ)− λ1(τ)x0(β, µ)e

−
√
∆(t−τ)

λ0(τ)− λ1(τ)e−
√
∆(t−τ)

(11)

with λi(τ) = D(τ)−xi(β, µ), i = 0, 1, x1(β, µ) being given
by (8) and x0(β, µ) by (7).

Proof: Since ∆ = c2(β, µ)− 4βf(µ) > 0, we can rewrite
P(x) as P(x) = β(x−x0(β, µ))(x−x1(β, µ)), x0(β, µ) and
x1(β, µ). The differential equation (5) can equivalently be
written as

Ḋ(t)

(D(t)− x0(β, µ))(D(t)− x1(β, µ))
= β.

In the sequel, for the brevity of notation, we skip the
dependency of the equilibrium points with respect to β
and µ. Resorting to partial fraction decomposition, one
can note that

1

(D(t)− x0)(D(t)− x1)
=

β√
∆

(
1

D(t)− x0
− 1

D(t)− x1

)
that yields

Ḋ(t)

D(t)− x0
− Ḋ(t)

D(t)− x1
=

√
∆

Taking the primitive of this equation, one gets

ln

∣∣∣∣D(t)− x0

D(t)− x1

∣∣∣∣ = √
∆t+ cste

cste being a constant. As a consequence,

D(t)− x0

D(t)− x1
= Ke

√
∆t, K ∈ ℜ.



In particular
D(τ)− x0

D(τ)− x1
= Ke

√
∆τ

which implies

K =
D(τ)− x0

D(τ)− x1
e−

√
∆τ .

Therefore
D(t)− x0

D(t)− x1
=

D(τ)− x0

D(τ)− x1
e
√
∆(t−τ)

Arranging this equation leads to (11). □

Now let us illustrate the properties of this model with an
example.

Example 1. We set the parameters f(µ) = g(µ) = 0.2 and
illustrate the trajectory of the system for a positive WOM
(Fig. 2) and a negative WOM (Fig. 3). In both cases, the
combined effects of f(µ) and g(µ) can counterbalance the
effect of WOM. The equilibrium point is however differ-
ent. As expected, the trajectory is monotone; decreasing
towards the equilibrium point when the initial condition is
D(0) = 0.7 and increasing when D(0) = 0.3. Here, β only
changes the location of the equilibrium point. □

Fig. 2. Dissatisfaction with a positive WOM.

3. OPTIMIZATION PROBLEM

Consider a system with a given dynamics of dissatisfaction.
We consider the case were dissatisfaction is growing and
We want to avoid reaching a critical threshold of dissat-
isfaction D̄. Let T ∗ be the instant of intervention of the
public decision maker. Therefore, f(µ) and g(µ) can be
considered as piece-wise functions in order to represent
the system before and after the intervention.

f(µ, t) = γH(t)− γ(1− e−aµ)H(t− T ∗), a > 0 (12)

and

g(µ, t) = αH(t) + (1− e−bµ)H(t− T ∗), b > 0 (13)

where H(.) stands for the Heaviside step function. With
such a choice, γ and α stand for the natural decays of
satisfaction and dissatisfaction before intervention. a and
b allow taking into account that quality of service can have
different impact on satisfaction and dissatisfaction. The

Fig. 3. Dissatisfaction with a negative WOM.

two notions are not symmetric. Indeed, it is well known
that a small decrease in quality of service can lead to huge
dissatisfaction while a small increase in quality of service
will have a small impact on the satisfaction. The trajectory
of the dissatisfaction rate is also a continuous piece-wise
function defined as follows:

D(t) = D(t)H(t) +
(
D̄(t)−D(t)

)
H(t− T ∗) (14)

the solutions D(t) and D̄(t) being obtained by using the
results of the previous section with different initial condi-
tion. Continuity of the solution is imposed by constraining
the initial condition of the intervention regime to be equal
to the last value taken by the dissatisfaction before inter-
vention. Therefore:

D(t) =
λ0(0)x1 − λ1(0)x0e

−
√

∆t

λ0(0)− λ1(0)e
−
√

∆t

λi(0) = D(0)− xi, i = 1, 2

x0 =
β + γ + α+

√
∆

2β

x1 =
β + γ + α−

√
∆

2β

∆ = (β + γ + α)
2 − 4βγ

D̄(t) =
λ̄0(T

∗)x̄1(µ)− λ̄1(T
∗)x̄0(µ)e

−
√
∆̄(t−T∗)

λ̄0(T ∗)− λ̄1(T ∗)e−
√
∆̄(t−T∗)

λ̄i(0) = D(T ∗)− x̄i(µ), i = 1, 2

x̄0(µ) =
β + γe−aµ + α(1− e−bµ) +

√
∆̄

2β

x̄1(µ) =
β + γe−aµ + α(1− e−bµ)−

√
∆̄

2β

∆̄ =
(
β + γe−aµ + α(1− e−bµ)

)2 − 4βγe−aµ.

Let T be the horizon time, i.e. the time at the end of the
intervention. We can assume that the economic normalized
cost of the intervention is

Ce(µ, T
∗) =

(
1− T ∗

T

)
µ.

It can represent subsidies to maintain a service at a given
level. A composite cost function as a convex combination



of the economic cost and the dissatisfaction rate at the end
of the intervention can be adopted:

Cν(T ∗, µ) = ν

(
1− T ∗

T

)
µ+ (1− ν)D(T ), (15)

D(T ) being given by (14). The optimization problem to
be solved is then formulated as

min
µ,T∗

Cν(µ, t) s.t. D(t) < D∗ (16)

Example 2. In this example we consider a case with a
negative WOM characterized by β = −0.5 while γ = 0.01
and α = 0.02. The social bomb threshold is defined as
being equal to D∗ = 0.8. At time 5.5 the decision maker
starts to envision setting up an intervention. Two different
cost functions are considered C3/4(.) and C1/4(.). The first
one gives more importance on the overall cost of the
intervention while the second prioritizes the dissatisfaction
rate at the end of the intervention. For the functions f(.)
and g(.) defined in (12) and (13), we set a = 2 and b = 0.3.
The obtained optimal values of T ∗ and µ are given in Table
1. The trajectories are depicted in Fig.4.

Table 1. Optimal interventions

Policy T ∗ µ Ce
Optimal intervention 1: C3/4(.) 7.3 0.29 0.18

Optimal intervention 2: C1/4(.) 7.3 1 0.63

Fig. 4. Dissatisfaction with optimal interventions.

For both cost functions, time for intervention is as late
as the dissatisfaction rate is near the social bomb thresh-
old. The first optimal intervention policy minimizes the
economic cost so that the dissatisfaction rate remains
constantly close to the social bomb threshold. The policy is
risky since it relies on a threshold one can’t be completely
sure of. To overcome this, one can set a lower threshold
than the social bomb one. The second policy minimizes the
dissatisfaction rate at the end of the intervention period.
However, the economic cost is greater than with the first
policy. □

The optimization as formulated above requires a perfect
knowledge of the parameters β, γ, and α. Estimating
these parameters from the observed trajectory is a difficult
task. Indeed, such estimation is to be carried out from

samples of the transient. Estimated parameters can be
far to represent the steady state behavior of the system’s
dynamics. In what follows, we assume these parameters
as being uncertain. Precisely, β ∼ U[β,β̄], γ ∼ U[γ,γ̄], and

α ∼ U[α,ᾱ]. Only the bounds are assumed to be known. A
robust optimization can be obtained based on the scenario
optimization theory, Calafiore and Campi (2006); Campi
et al. (2009). The purpose of scenario optimization is to
build randomly several, say N , scenarios. Here a scenario
is a triplet of parameters (α, β, γ). For each scenario an
optimal solution is computed by minimizing a cost func-
tion Cν(.). Let us denote by (T ∗

n , µn) the optimal solution
obtained from the nth scenario, n = 1, 2, · · · , N , and by
DT∗

n ,µn
(t) the corresponding trajectory. We define by T a

set of test scenarios; each scenario being randomly gener-
ated using the defined distributions. Each solution (T ∗

n , µn)
is evaluated in the training set T and we evaluate the
probability to satisfy the social bomb threshold constraint:
P
(
DT∗

n ,µn(t) < D∗). The optimal solution is then the one
maximizing such a probability:

n∗ = argmax
n

P
(
DT∗

n ,µn
(t) < D∗) . (17)

Among the solutions obtained from each scenario, we
select the one such as the social bomb threshold constraint
is satisfied with high probability in the test set T .

Example 3. As for the previous example, we consider
that the actual values of (α, β, γ) is (0.02,−0.5, 0.01)
and D∗ = 0.8. At time 5.5 the decision maker starts
to envision setting up an intervention. However the only
knowledge about the parameters (α, β, γ) is the following:
β ∼ U[−0.7,0.2, γ ∼ U[0.01,0.1], and α ∼ U[0.01,0.1]. N = 500
scenarios were generated while 100 scenarios were used
for testing. The obtained solutions are given by the table
below:

Table 2. Optimal interventions using scenario
optimization

Policy T ∗ µ Ce
Optimal intervention 1: C3/4(.) 6.6 0.42 0.28

Optimal intervention 2: C1/4(.) 6.6 1 0.67

The trajectories of the optimized solutions are depicted in
Fig. 5. As in the previous case, the time for intervention
is the same for both policies. It is earlier than the one
obtained in the previous case. It is sufficiently in advance
of the critical threshold. Therefore the policy has a higher
economic cost. We can also note that even the first optimal
intervention policy (cost function C3/4(.) allows reducing
the dissatisfaction rate.□

4. CONCLUSION

We have introduced SDS (Satisfied-Dissatisfied-Satisfied),
a new compartmental model for analyzing spreading of
dissatisfaction among captive users of a given essential
service. The model has a unique admissible equilibrium
point and the trajectory of the solution is monotone.
Closed form expression of the equilibrium point has been
provided. Therefore by adequately playing with the pa-
rameters of the model, one can place the equilibrium at
a desired point. The optimal location of the equilibrium
results in considering both the economic cost of the in-
tervention and the dissatisfaction rate at the end of the



Fig. 5. Dissatisfaction with scenario based optimal inter-
ventions.

intervention. It is shown that delaying intervention until
the dissatisfaction rate nears the social bomb threshold
is optimal. The first policy, aimed at minimizing economic
costs while maintaining the dissatisfaction rate close to the
social bomb threshold, carries inherent risk due to reliance
on a threshold that may not be entirely be certain. On
the other hand, the second policy focuses on minimizing
the dissatisfaction rate at the end of the intervention
period, although at a higher economic cost compared to
the first policy. The parameters like WOM being in gen-
eral unknown, a robust optimization approach is proposed
using random scenarios. It allows earlier intervention time.
The paper considers a homogeneous population. However,
depending on some demographic parameters the reaction
to the provided quality of service can differ. In addition,
a networked version of this model should be investigated
to take into account spatial disparities. This is crucial
in particular for territories exhibiting socioeconomic and
spatial segregation as it is the case in most developing
countries.
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Méndez-Suárez, M. and Danvila-del Valle, I. (2023). Neg-
ative word of mouth (nwom) using compartmental epi-
demiological models in banking digital transformation.
Contemporary Economics, 17(1), 77–91.

Niazi, M., Canudas de Wit, C., Kibangou, A., and Bliman,
P. (2021a). Optimal control of urban human mobility
for epidemic mitigation. In Proc. 60th IEEE Conference
on Decision and Control.

Niazi, M., Kibangou, A., Canudas de Wit, C., Nikitin,
D., Tumash, L., and Bliman, P. (2021b). Modeling
and control of epidemics under testing policies. Annual
Reviews in Control, 52(2).

Pimenov, A., Kelly, T., Korobeinikov, A., O’Callaghan,
M., Pokrovskii, A., and Rachinskii, D. (2012). Memory
effects in population dynamics: spread of infectious
disease as a case study. Mathematical Modelling of
Natural Phenomena, 7(3), 204–206.
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