
HAL Id: hal-04664006
https://hal.science/hal-04664006v2

Preprint submitted on 31 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximal Admissible Set for Graph-Dependent Switched
Systems with Dwell Time Restriction

Hoai Nam Nguyen

To cite this version:
Hoai Nam Nguyen. Maximal Admissible Set for Graph-Dependent Switched Systems with Dwell Time
Restriction. 2024. �hal-04664006v2�

https://hal.science/hal-04664006v2
https://hal.archives-ouvertes.fr


Maximal Admissible Set for Graph-Dependent

Switched Systems with Dwell Time

Restriction

Hoai-Nam Nguyen a

aSamovar, Telecom SudParis, Institute Polytechnique de Paris, 91120 Palaiseau,
France

Abstract

In this paper we present an extension of the concept of the maximal admissible
set for constrained graph-dependent switched systems with bounded disturbances
under dwell time restriction. Termed as the maximal switch-dependently robustly
admissible set (MSDRAS), we provide efficient numerical procedures for its determi-
nation. For this purpose, we exploit available information about the current active
mode, minimum dwell times, and mode transition graph. We employ the MSDRAS
for three purposes: i) characterizing the largest set of initial states ensuring con-
straint satisfaction; ii) establishing necessary and sufficient conditions for stability
of switched systems; iii) computing the minimum mode-dependent dwell times. Fur-
thermore, we extend the results to switched systems with parametric uncertainties.
Through three numerical examples, we compare our solutions with earlier from the
literature to illustrate the effectiveness of our approach.

Key words: Dwell Time, Mode Transition Graph, Switched System, Constraint
Admissible Set, Constrained Control

1 Introduction

The concept of the maximal admissible set (MAS) plays an important role in
safety-critical applications for dynamical systems [3], [11], [9], [5]. The MAS
is the largest set of initial states from which the system can operate while
satisfying constraints. The MAS serves as fundamental tools for evaluating
the system’s capability to maintain states within predefined safe regions. In
addition, the MAS offers critical insights into the system’s safety margins.

Email address: hoai-nam.nguyen@telecom-sudparis.eu (Hoai-Nam Nguyen).

Preprint submitted to Elsevier Science 31 July 2024



Moreover, the MAS has attracted significant interest from the control com-
munity due to its close relationship with stability theory.

Different numerical procedures have been proposed in the literature to com-
pute the MAS for different classes of discrete-time systems, e.g., [10], [18], [7].
Effort often lies on searching for the maximal invariant set (MIS), which for
many classes of systems coincides with the MAS. Recently, it was shown [17]
that for a particular class of systems, the MAS can be larger than the MIS.

In this paper, we study the MAS for a linear discrete-time switched system
with bounded disturbances. The system is subject to various constraints, in-
cluding bounds on both the state and the disturbances. Additionally, there
are two other types of constraints. The first one is on the mode transitions.
The system operates in different subsystems or equivalently modes, each rep-
resenting a distinct behavior. These modes can be switched between based
on certain conditions. The constraints on admissible mode transitions refer to
the permissible changes from one mode to another. This can be represented
by a directed graph, where nodes correspond to different modes, and edges
represent permissible transitions between these modes. The second constraint
is on the dwell times, which refer to the minimum duration that the system
must remain in a particular mode before transitioning to another. In the past
decade, switched systems with restrictions on the mode transition graph and
on the dwell times find applications in various domains such as power systems,
communication networks, control theory [4], [8], [14], [20], [13].

Related works. To characterize the MAS for the considered class of switched
systems, to the best of the author’s knowledge, all of the works in the literature
are concerned with the computation of invariant sets. There are three works
[6], [2], [12] that studied different concepts of invariance, closely related to the
research presented in this paper. Since we will use the results in [6] as the
foundation for Algorithm 1, we will detail the work [6] in Section 3.

In [2], the concept of multi-set invariance was considered for switched systems
represented on a graph without specific consideration of dwell time restric-
tions. In parallel, in [1], the graph based modeling framework was extended
to encompass switched systems with minimum dwell time. Nevertheless, the
graph structures in [2], [1] are different from those used in the current study.
Specifically, the nodes in [2], [1] do not correspond to the modes, and the edges
do not signify admissible mode transitions, as they do in the current paper.
In addition, the lifting technique is required to model a switched system with
dwell time. Hence, the complexity of the lifted system can increase signifi-
cantly compared to the original switched system, especially for large dwell
times. This complexity arises from the increased number of nodes and edges
needed to represent the system’s state transitions accurately. This complexity
can be mitigated by using techniques such as the unavoidable set of nodes [1].
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Despite this reduction, the number of sets in the invariant multi-set remains
substantial, as it mirrors the complexity of the non-reduced lifted system.

In [12], the authors introduced the concept of switch - robustly ”control”
invariant set, but the definition deviates from the standard, see definition 3 in
[12]. This leads different computational procedures and results compared to
those presented in the paper.

The paper is concerned with the computation of the MAS for constrained
switched systems with bounded disturbances. Using available information on
the current active mode, we introduce the notions of the maximal switch-
dependent robustly admissible set (MSDRAS), and of the maximal switch-
dependent robustly invariant set (MSDRIS). The main contributions are:

• We show that the MSDRAS is equivalent to the MSDRIS.
• We provide two new numerical algorithms to construct the MSDRAS. The
algorithms are designed to operate directly within the original, non-lifted
system, offering a significant computational advantage by avoiding the com-
plexities associated with system lifting.
• We show that the MSDRAS/MSDRIS is a star-shaped set.
• We extend the results to constrained switched systems with parametric
uncertainties.
• We show that the existence of the MSDRAS provides a necessary and suf-
ficient condition for the stability of switched systems.

The paper is organized as follows. Section II is dedicated to the problem
formulation and preliminaries. Section III is concerned with earlier works.
Section IV presents the main results on the computation of invariant sets for
switched systems. Three simulated examples are evaluated in Section V before
drawing the conclusions in Section VI.

Notation: We denote by N the set of natural numbers, by R the set of real
numbers, by Rn×m the set of real n×m matrices. For a given integer N > 0,
we use 1, N to denote the set {1, 2, . . . , N}. For given sets Ωi,∀i ∈ 1, N , we

use
N⋂
i=1

Ωi and
N⋃
i=1

Ωi, respectively, to denote the intersection, and the union of

Ωi ⊆ Rn,∀i ∈ 1, N , i.e.,

N⋂
i=1

Ωi = {x ∈ Rn : x ∈ Ω1 and . . . and x ∈ ΩN}
N⋃
i=1

Ωi = {x ∈ Rn : x ∈ Ω1 or . . . or x ∈ ΩN}

For a given set Ω, we use Bd(Ω) to denote its boundary. Given two sets
X ⊂ Rn, Y ⊂ Rn, the Minkowski sum Z of X and Y is denoted as Z = X⊕Y ,
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and is defined by

Z := {z ∈ Rn : z = x+ y,∀x ∈ X, ∀y ∈ Y }

2 Problem Formulation and Preliminaries

2.1 Problem Formulation

We consider the following constrained switched linear discrete-time system

x(k + 1) = Aσ(k)x(k) + w(k) (1)

x(k) ∈ Xσ(k), w(k) ∈ Wσ(k) (2)

where x(k) ∈ Rn is the state, w(k) ∈ Rn is the disturbance. The switching
signal σ(k) is an exogenous input that takes values in a finite set I = 1, N at
each time instant. N is the number of subsystems. σ(k) indicates the active
dynamics Ai ∈ Rn×n, and the active constraint sets Xi, Wi at time k. In this
paper, it is assumed that all eigenvalues of Ai lie strictly inside the unit circle,
∀i ∈ I.

The set Xi is
Xi = {x ∈ Rn : Fix ≤ gi} (3)

where Fi, gi are known matrices such that gi > 0, ∀i ∈ I. This implies that
Xi contains the origin in its interior. The inequalities are taken element-wise.
Wi is a polyhedral set, and contains the origin.

Remark 1: For simplicity, we consider only linear switched systems in this
paper. However, our technique can be straightforwardly extended to affine
switched systems of the form

x(k + 1) = Aσ(k)x(k) + vσ(k) + w(k)

where vi ∈ Rn is constant, ∀i ∈ I. 2

We consider two constraints on the switching sequence σ(k). The first one
is a restriction on the admissible mode transitions. They are represented by
a directed graph G = {I, E}, where nodes in I denotes modes, and edge
(i, l) ∈ E indicates that a switch from mode i to mode l is possible, l ̸= i. We
use σ(k) ∈ G to denote the set of σ(k) with the restricted mode transition
graph G.

Let {ks} be the sequence of switching times with k0 = 0, ks < ks+1, and
σ(ks+1) ̸= σ(ks). This implies that σ(ks) = σ(ks+1) = . . . = σ(ks+1− 1). The

4



second constraint for σ(k) is on ks. Define τi as the dwell time of mode i ∈ I,
i.e.,

τi := min{ks+1 − ks : σ(ks) = i, s ∈ N}
In the paper we consider only switching sequences σ(k) with dwell times of at
least τi time steps for each mode i ∈ I. No future information of σ is available,
but we assume that σ(k) is known at time k.

For proceeding further, we use Σ to denote the set of all admissible switching
sequences σ(k), i.e., ∀σ(k) ∈ G that satisfy the constraints on the dwell time.

The objective of this paper is to provide a numerical procedure to compute
the largest set of all the states that if the initial state x(0) belongs to this
set, then the constraints are satisfied all the time, i.e., x(k + 1) ∈ Xσ(k+1),
∀w(k) ∈ Wσ(k), ∀σ(k) ∈ Σ, ∀k ≥ 0. We will give a precise definition of the set
at the beginning of the next sub-section.

2.2 Preliminaries

Definition 1: Switch-Dependently Robustly Admissible Set. Given

the sets Φi ⊆ Xi,∀i ∈ I. The union
N⋃
i=1

Φi is a switch-dependently robustly

constraint-admissible set (SDRAS) for system (1) with constraints (2) if and
only if ∀x(0) ∈ Φσ(0) ⊆ Xσ(0), one has x(k + 1) ∈ Xσ(k+1), ∀w(k) ∈ Wσ(k),

∀σ(k) ∈ Σ, ∀k ≥ 0. Furthermore, if every SDRAS is contained in
N⋃
i=1

Φi, then

N⋃
i=1

Φi is the maximal switch-dependently robustly constraint-admissible set

(MSDRAS).

Definition 2: Switch-Dependently Robustly Invariant Set. Given the

sets Φi ⊆ Xi, ∀i ∈ I. The union
N⋃
i=1

Ωi is a switch-dependently robustly invari-

ant set (SDRIS) for system (1) with constraints (2) if and only if ∀x(0) ∈ Ωσ(0),
one has x(k + 1) ∈ Ωσ(k+1), ∀w(k) ∈ Wσ(k), ∀σ(k) ∈ Σ, ∀k ≥ 0. Further-

more, if every SDRIS is contained in
N⋃
i=1

Ωi, then
N⋃
i=1

Ωi is the maximal switch-

dependently robustly constraint-admissible set (MSDRIS).

The following result holds.

Proposition 1: The set
N⋃
i=1

Ωi with Ωi ⊆ Xi,∀i ∈ I is the MSDRIS for (1),

(2) if and only if
N⋃
i=1

Ωi is the MSDRAS.
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Proof: If
N⋃
i=1

Ωi is the MSDRIS, then ∀x(0) ∈ Ωσ(0) ∈ Xσ(0), one has x(k+1) ∈

Ωσ(k+1) ∈ Xσ(k+1), ∀w(k) ∈ Wσ(k), ∀σ(k) ∈ Σ, ∀k ≥ 0. Hence,
N⋃
i=1

Ωi is a

SDRAS. Therefore, it is contained in the MSDRAS.

Conversely, if
N⋃
i=1

Ωi is the MSDRAS, then ∀x(0) ∈ Ωσ(0), one has x(k + 1) ∈
Xσ(k+1), ∀w(k) ∈ Wσ(k), ∀σ(k) ∈ Σ, ∀k ≥ 0. Because Ωσ(k+1) is the largest

SDRAS in Xσ(k+1), one should have x(k + 1) ∈ Ωσ(k+1). Hence,
N⋃
i=1

Ωi is a

SDRIS. Consequently, it is contained in the MSDRIS. The proof is complete.
2

Using Proposition 1, we conclude that the problem of computing the MSDRAS
is equivalent to the problem of finding MSDRIS. In the rest of the paper, we
will characterize the MSDRAS mostly via the MSDRIS.

Given an integer t ≥ 1. In the context of set invariance theory, the t-step set
plays an important role [3,?]. We recall this concept in the following. Consider
the linear discrete-time system subject to the bounded disturbance δ(k) ∈ ∆

x(k + 1) = Ax(k) + δ(k) (4)

Using (4), the t−step ahead state x(k + t) is given as, t ≥ 1

x(k + t) = Atx(k) +
t−1∑
m=0

Amδ(k + t− 1−m) (5)

Definition 3: t-Step Set. Given a set Ψ ⊂ Rn, the t-step set Qt(Ψ) for
system (4) is the set of all x(0) such that x(t) ∈ Ψ, i.e.,

Qt(Ψ) := {x(0) ∈ Rn : x(t) ∈ Ψ}

in spite of disturbances ∀δ(0) ∈ ∆, . . . ,∀δ(t− 1) ∈ ∆.

Using (5), if Ψ is a polyhedral set, i.e.,

Ψ = {x ∈ Rn : Fψx ≤ gψ}

then Qt(Ψ) is a polyhedral set, and is computed by

Qt(Ψ) =
{
x ∈ Rn : FψAtx ≤ gψ − gδ

}
(6)

where gδ = max
δ∈∆

Fψδ +max
δ∈∆

FψAδ + . . .+max
δ∈∆

FψAt−1δ.

Definition 4: Robustly Invariant Set. Ψ ⊂ Rn is a robustly invariant
set (RIS) for system (4) if and only if x(k) ∈ Ψ, one has x(k + 1) ∈ Ψ,
∀δ(k) ∈ ∆,∀k ≥ 0.
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If Ψ contains every RIS, then Ψ is the maximal robustly invariant set (MRIS).
If Ψ is contained in any RIS, then Ψ is the minimal robustly invariant set
(mRIS).

It is well known [3] that Ψ is a RIS if and only if Ψ ⊆ Q1(Ψ). It is also well
known [19] that if Ψ is the mRIS for system (4), then Ψ can be computed by

Ψ = lim
t→∞

t⊕
k=0
Ak∆.

3 Earlier Works on Invariant Sets

To the best of the author’s knowledge, [6] is the first work that considers
the problem of calculating the so-called dwell time robustly invariant set for
system (1). In the following, we will recall key definitions, and extend key
results of [6]. We will use them later to construct our new algorithms.

Definition 5: Dwell Time Robustly Invariant Set. Ω ⊂ Rn is a dwell
time robustly invariant set (DTRIS) for system (1) if and only if ∀x(0) ∈ Ω,
one has x(ks) ∈ Ω, ∀w(k) ∈ Wσ(k), ∀σ(k) ∈ Σ, for any sequence of switching
times ks, and ∀k ≥ 0.

Define

Ti := {τi, τi + 1, . . . , 2τi − 1},∀i ∈ I (7)

Consider the following associated system of (1)

x̂(k + 1) = At
ix̂(k) + ŵi,t(k) (8)

where t ∈ Ti, and ŵi,t ∈ Wi,t with

Wi,t = Wi ⊕ AiWi ⊕ . . .⊕ At−1
i Wi (9)

In the following, we will provide a generalization of the results in [6]. They
were presented only for the case τi = τ , Wi = W , ∀i ∈ I. In this paper, there
is no additional requirement on τi,Wi, ∀i ∈ I, except the ones in Section 2.1.

Lemma 1: Under the assumption that G is the complete graph, Ω ⊂ Rn is a
DTRIS for system (1) if and only if it is a RIS for (8).

Proof: The proof follows the same steps as Theorem 1 in [6]. Hence, it is
omitted here. 2

An interesting feature of Ω is that if x(k) ∈ Ω and x(k + 1) /∈ Ω for system
(1) with σ(k) = i, then x(k + τi) ∈ Ω for any i ∈ I. In other words, x(k) is
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allowed to leave temporally Ω, but will come back to Ω in no more than τi
time steps under the dynamics

x(k + 1) = Aix(k) + w(k) (10)

Define X :=
N⋂
i=1

Xi. Since Xi contains the origin in its interior ∀i ∈ I, the set

X is non-empty. Using (3), one gets

X :=


x ∈ Rn :


F1

...

FN

x ≤

g1
...

gN




(11)

Clearly, a necessary condition for constraint admissibility is that Ω ⊆ X. If
x(0) ∈ Ω and Ω ⊆ X is a DTRIS, then by imposing x(k) ∈ X, ∀k ∈ Si with

Si := {1, 2, . . . , τi − 1} (12)

under the dynamics (10), ∀i ∈ I, we will have x(k) ∈ X ⊆ Xi,∀i ∈ I, ∀k ≥ 0.

For a given set Ψ ⊂ Rn, define Qi,Si
(Ψ) :=

⋂
t∈Si

Qi,t(Ψ) and Qi,Ti(Ψ) :=⋂
t∈Ti
Qi,t(Ψ), where Qi,t(Ψ) as the t−step set of Ψ under the dynamics (10),

∀i ∈ I

The following algorithm computes a DTRIS for system (1).

Algorithm 1: Computation of DTRIS

1: Set q ← 0 and let Ω(q) ← X ∩
(
N⋂
i=1
Qi,Si

(X)

)
.

2: Let Ω(q+1) ← Ω(q) ∩
(
N⋂
i=1
Qi,Ti(Ω(q))

)
.

3: If Ω(q+1) ≡ Ω(q) set Ω← Ω(q) then stop, else set q ← q + 1 and go to step
2.

Step (1) of algorithm imposes the constraints for the first τi − 1 steps to
assure constraint satisfaction of Ω under the dynamics (10). Step (2) imposes
the condition of Lemma 1. It ensures that Ω is robustly invariant for system
(8). Since X is a polyhedral set, so are Ω(q), Ω(q+1) and Ω.

Lemma 2: Suppose that the disturbance-free system (1) is asymptotically
stable with dwell times τi under the dynamics (10) and with the complete
mode transition graph G. Then: i) Ω(q+1) ⊆ Ω(q) ⊆ X, ∀q ≥ 0; ii) Algorithm
1 terminates after a finite number of steps; iii) If Ω is non-empty, then Ω is
the maximal dwell time robustly invariant set (MDTRIS) for (1), (2); iv) If
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Ω is empty, then so is the MSDRAS, i.e., there is no x(0) ∈ Xσ(0) such that
x(k) ∈ Xσ(k),∀k ≥ 1.

Proof: It is omitted here, since it follows the same steps of Theorem 3 in [6].
2

4 Computation of MSDRIS

4.1 Complete Mode Transition Graph Case

In this section it is assumed that: i) the graph G is complete; ii) the MDTRIS
Ω is already computed, and is non-empty. Our aim is to provide a numerical
algorithm to construct the MSDRPI.

It is worth noticing that Ω is a SDRAS for (1), (2), as ∀x(0) ∈ Ω, one has
x(k) ∈ X ⊆ Xi,∀i ∈ I, ∀k ≥ 0. However, Ω is not the MSDRAS. ∀x(0) ∈ Ω
we have the guarantee that x(τi) ∈ Ω under the dynamics (10), ∀i ∈ I.
Nonetheless x(k) is allowed to leave Ω, ∀k ∈ 1, τi − 1. It is clear that Ω ∪(
τi−1⋃
k=1

x(k)

)
is a SDRAS, and that Ω ⊂ Ω ∪

(
τi−1⋃
k=1

x(k)

)
. Hence Ω is not the

MSDRAS.

Define, ∀i ∈ I
Zi := Xi ∩Qi,τi(Ω) (13)

i.e., Zi is the set of all states x ∈ Xi that can be brought into Qi,τi(Ω) in no
more than τi time steps under the dynamics (10). Clearly, Zi is a polyhedral
set.

For any i ∈ I, the following algorithm is used to construct the MSDRIS or
equivalently the MSDRAS for system (1), (2).

Algorithm 2: Computation of MSDRIS - Complete Mode Transition Graph

1: Set q ← 0 and let Ω
(q)
i ← Zi.

2: Let Ω
(q+1)
i ← Ω

(q)
i ∩Qi,1

(
Ω

(q)
i

)
.

3: If Ω
(q+1)
i ≡ Ω

(q)
i set Ωi ← Ω

(q)
i then stop, else set q ← q + 1 and go to step

2.

By executing N times Algorithm 2 for all i ∈ I, one obtains N sets Ωi. Because
Zi is a polyhedral set, so is Ωi.

It is worth noticing that Algorithm 2 is a standard procedure [11] to compute
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the MRIS for system (10) with the constraints

x(k) ∈ Zi, w(k) ∈ Wi (14)

Step (1) initializes the construction of Ω
(q)
i with the outer approximation

Ω
(q)
i = Zi. Step (2) removes states x ∈ Ω

(q)
i that cannot by kept in Ω

(q)
i

under the dynamics (10). Algorithm 2 stops when Ω
(q+1)
i = Ω

(q)
i .

The following result holds

Proposition 2: Suppose the MDTRIS Ω produced by Algorithm 1 is non-
empty. Then Ωi is non-empty and is finitely determined for any i ∈ I.

Proof: Denote the mRIS of (10) as Φi. It is well known [16] that for proving
that Ωi is non-empty, and is finitely determined by Algorithm 2, it suffices to
show Φi ⊆ Zi.

Since Ω is a DTRIS, one gets x(ks) ∈ Ω, ∀x(0) ∈ Ω. It follows that

Aks
i Ω⊕

ks−1⊕
t=0

At
iWi ⊆ Ω (15)

Because all eigenvalues ofAi lie strictly inside the unit circle, on has lim
ks→∞

Aks
i Ω =

0. Hence, lim
ks→∞

ks−1⊕
t=0

At
iWi ⊆ Ω, or equivalently Φi ⊆ Ω.

Using (15) with ks = τi, one obtains

Aτi
i Ω⊕

τi−1⊕
t=0

At
iWi ⊆ Ω

Hence Ω ⊆ Qi,τi(Ω). Recall that Ω ⊆ X ⊆ Xi. Therefore Ω ⊆ Xi ∩ Qi,τi(Ω),
or equivalently, Ω ⊆ Zi. It follows that Φi ⊆ Zi. The proof is complete. 2

We will use the following two propositions to show that
N⋃
i=1

Ωi is the MSDRIS

for system (1) with constraints (2).

Proposition 3: Consider Ωi constructed by Algorithm 2. The following rela-
tion holds ∀t ≥ τi, ∀i ∈ I

At
iΩi ⊕

t−1⊕
k=0

At
iWi ⊆

N⋂
l=1

Ωl (16)
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Proof: We prove (16) by showing,

At
iΩi ⊕

t−1⊕
k=0

Ak
iWi ⊆ Ω,∀t ≥ τi,∀i ∈ I (17)

Ω ⊆
N⋂
l=1

Ωl (18)

We show (17) by induction ∀t ≥ τi, ∀i ∈ I. From the construction of Ωi, one

has Aτi
i Ωi⊕

τi−1⊕
t=0

At
iWi ⊆ Ω. Hence, (17) holds for t = τi. Assume now that (17)

holds for t = t0, i.e.,

At0
i Ωi ⊕

t0−1⊕
k=0

Ak
iWi ⊆ Ω

We need to show that (17) holds for t = t0 + 1. Because Ωi is a RIS for (10),
(14), one has AiΩi +Wi ⊆ Ωi. It follows that

At0+1
i Ωi ⊕

t0⊕
k=0

Ak
iWi = At0

i (AiΩi +Wi)⊕
t0−1⊕
k=0

Ak
iWi

⊆ At0
i Ωi ⊕

t0−1⊕
k=0

Ak
iWi ⊆ Ω

Hence (17) holds ∀t ≥ τi, ∀i ∈ I.

Now we will prove (18) by showing that Ω ⊆ Ωi,∀i ∈ I. Recall that Ωi is the
MRPIS for (10), (14), ∀i ∈ I. Consequently, it is well known [16] that Ωi is
also the maximal robustly constraint-admissible set for (10), (14).

Due to the construction of Zi, and the fact that Ω is a dwell time robustly
invariant set for (1), (2), one has Ω ⊆ Zi and x(k) ∈ Zi, ∀x(0) ∈ Ω under the
dynamics (10), ∀k ≥ 0. It follows that Ω is a robustly constraint-admissible
set for (10), (14). Consequently, Ω ⊆ Ωi,∀i ∈ I. This completes the proof. 2

Proposition 4: Consider Ω, Ωi,∀i ∈ I, constructed by Algorithm 1 and
Algorithm 2, respectively. The following relation holds

Ω =
N⋂
i=1

Ωi (19)

Proof: Define Ω̂ :=
N⋂
i=1

Ωi. Using the proof of Proposition 3, one has Ω ⊆ Ω̂.

It remains to show that Ω̂ ⊆ Ω. Because Ωi ⊆ Xi and
N⋂
i=1

Xi = X, one gets

Ω̂ ⊆ X. Using (16), and since Ω̂ ⊆ Ωi, one has At
iΩ̂ ⊕

t−1⊕
k=0

Ak
iWi ⊆ Ω̂,∀t ∈ Ti,

∀i ∈ I. It follows that Ω̂ is a RIS for system (8) and is constraint-admissible for
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x(k) ∈ X. Recall that Ω is the MRIS for (8) and for the constraint x(k) ∈ X.
It follows that Ω̂ ⊆ Ω. The proof is complete. 2

We are ready to state the main theorem of this section.

Theorem 1: Under the assumption that the mode transition graph G is com-

plete,
N⋃
i=1

Ωi is the MSDRIS for (1), (2).

Proof: We decompose the proof of Theorem 1 into two parts. First we will

prove that
N⋃
i=1

Ωi is a SDRIS for (1), (2). Then we will show that
N⋃
i=1

Ωi is the

largest SDRIS.

To prove
N⋃
i=1

Ωi is a SDRIS, we need to show that ∀x(0) ∈ Ωσ(0), one has

x(k) ∈ Ωσ(k),∀k ≥ 0. Without loss of generality, assume that x(0) ∈ Ω1 and
σ(0) = 1. Since Ω1 is a RIS for (10), (14), one has x(k) ∈ Ω1,∀k ∈ 0, τ1 − 1.

Using Proposition 2, one obtains x(k) ∈
N⋂
i=1

Ωi,∀k ≥ τ1 if (10) with i = 1

is the active dynamics. Note that
N⋂
i=1

Ωi ⊆ Ωl for any l ∈ I. If for the next

switching time ks, σ(ks) = l, one has x(ks+ k) ∈ Ωl, ∀k ∈ 0, τl − 1 because Ωl

is a RIS. Using Proposition 2, it follows that x(ks + k) ∈
N⋂
i=1

Ωi,∀k ≥ τl, e.t.c.

We conclude that x(k) ∈ Ωσ(k),∀k ≥ 0.

The proof that
N⋃
i=1

Ωi is the MSDRIS comes from three facts: (i) Proposition

4; (ii) Ωi is the MRIS for (10), (14); (iii) Ω is the MDTRIS for (1), (2). 2

4.2 Arbitrary Mode Transition Graph Case

Simplicity is the main advantage of Algorithm 2. Once Ω is available, the set
Ωi is constructed separately, ∀i ∈ I. Nevertheless, it is not trivial to extend
Algorithm 2, or more precisely Algorithm 1 for an arbitrary mode transition
graph G. This is because Lemma 1 heavily relies on the assumption that G is
the complete graph. We will show later that if G is not complete, then Ω could
be empty. The aim of this section is to provide a new procedure for computing
the MSDRIS without any requirement on G.

The following two remarks can be made concerning Ωi.

• Ωi ⊆ Xi is the MRIS for system (10), ∀i ∈ I.
• Aτi

i Ωi ⊕
τi−1⊕
k=0

Ak
iWi ⊆

N⋂
l=1

Ωl,∀i ∈ I.

12



Using the two remarks, the following procedure is used to build the MSDRIS
for (1), (2) in the arbitrary mode transition graph case.

Algorithm 3: Computation of MSDRIS - Arbitrary Mode Transition Graph

1: Set q ← 0 and let Ω̃
(q)
i ← Xi,∀i ∈ I.

2: for each i ∈ I do
3: Ω̃

(q+1)
i ← Ω̃

(q)
i ∩Qi,1

(
Ω̃

(q)
i

)
∩ ⋂

(i,l)∈E
Qi,τi

(
Ω̃

(q)
l

)
.

4: If Ω̃
(q+1)
i ≡ Ω̃

(q)
i ,∀i ∈ I set Ω̃i ← Ω̃

(q)
i ,∀i ∈ I then stop, else set q ← q + 1

and go to step 2.

Algorithm 3 initializes the construction of Ω̃i,∀i ∈ I in Step (1) with the
outer approximation Ω̃i = Xi,∀i ∈ I. At each iteration and for each mode
i ∈ I, Step (3) of Algorithm 3 removes states x ∈ Ω̃

(q)
i that cannot be kept

in Ω̃
(q)
i under the dynamics (10) and cannot reach Ω̃

(q)
l for all possible mode

transitions (i, l) ∈ E in τi time steps under the dynamics (10). Algorithm 3

stops when Ω̃
(q+1)
i = Ω̃

(q)
i , ∀i ∈ I.

Remark 2: It is clear that if Ω̃
(q)
i is empty at any iteration q and for any

i ∈ I, then Algorithm 3 will stop and all the sets Ω̃i,∀i ∈ I are empty. 2

We will prove the finite termination of Algorithm 3 later. For the moment,
let us assume that Algorithm 3 terminates in finite time, and that Ω̃i is non-
empty, ∀i ∈ I.

The following result holds.

Proposition 5: Assume that Ω̃i produced by Algorithm 3 is non-empty, ∀i ∈
I. The following relation holds, ∀i ∈ I

At
iΩ̃i ⊕

t−1⊕
k=0

Ak
iWi ⊆

⋂
(i,l)∈E

Ω̃l,∀t ≥ τi (20)

Proof: The proof of Proposition 5 follows closely the one of Proposition 3,
and is done by induction. By the construction of Ω̃i, it is clear that (20) holds
for t = τi. Assume now that (20) holds for t = t0, i.e.,

At0
i Ω̃i ⊕

t0−1⊕
k=0

Ak
iWi ⊆

⋂
(i,l)∈E

Ω̃l (21)

One needs to show that (20) holds for t = t0 + 1. One has

At0+1
i Ω̃i ⊕

t0⊕
k=0

Ak
iWi = At0

i

(
AiΩ̃i +Wi

)
⊕

t0−1⊕
k=0

Ak
iWi

⊆ At0
i Ω̃i ⊕

t0−1⊕
k=0

Ak
iWi ⊆

⋂
(i,l)∈E

Ω̃l

(22)

13



For the last equation of (22), we used (21) and the fact that AiΩ̃i +Wi ⊆ Ω̃i.
It follows that (20) holds ∀t ≥ τi, ∀i ∈ I. This completes the proof. 2

The following result shows that
N⋃
i=1

Ω̃i is the MSDRIS.

Theorem 2: Assume that Ω̃i is non-empty, ∀i ∈ I. Then,
N⋃
i=1

Ω̃i is the MS-

DRIS for (1), (2).

Proof: As for Theorem 1, we decompose the proof of Theorem 2 into two

parts. First we will prove that
N⋃
i=1

Ω̃i is a SDRIS. Then we will show that

N⋃
i=1

Ω̃i is the MSDRIS.

We omit here the proof that
N⋃
i=1

Ω̃i is a SDRIS, as with Proposition 5, it follows

the same as the one of Theorem 1.

We prove that
N⋃
i=1

Ω̃i is the MSDRIS or equivalently the MSDRAS for (1), (2).

It is clear that by the construction Ω̃i ∈ Xi is the largest set such that

AiΩ̃i ⊕Wi ⊆ Ω̃i,∀i ∈ I (23)

Aτi
i Ω̃i ⊕

τi−1⊕
k=0

Ak
iWi ⊆

⋂
(i,l)∈E

Ω̃l (24)

Since σ(k) = i, ∀k ≥ 0 is an admissible switching sequence, it is clear that (23)

is a necessary condition for invariance of
N⋃
i=1

Ω̃i. We will prove now that (24)

is also a necessary condition by contradiction. Assume there exist (i, l) ∈ E
such that

Aτi
i Ω̃i ⊕

τi−1⊕
k=0

Ak
iWi ̸⊂ Ω̃l

That is ∃x(0) ∈ Ω̃i such that ∃w(0) ∈ Wi, . . . , ∃w(τi − 1) ∈ Wi such that

x(τi) = Aτi
i x0 +

τi−1∑
k=0

Ak
iw(k) /∈ Ω̃l

Consider the following admissible switching sequence σ(k) = i, ∀k = 0, τi − 1,
and σ(k) = l,∀k ≥ τi. If x(τi) /∈ Xl, then the constraint (2) is violated.
Consider now the case when x(τi) ∈ Xl. Recall that Ω̃i ∈ Xi is the largest set
for conditions (23), (24). Consequently, x(τi) cannot belong to any RIS for the
mode l. This implies that x(τi) does not belong to the maximal constraint-
admissible set for the mode l. It follows that the constraint x(k) ∈ Xl will
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be eventually violated. We conclude that (24) is a necessary condition for

invariance of
N⋃
i=1

Ω̃i. 2

Using Theorem 2, it is clear that the outputs of Algorithm 3 is the same as that
of Algorithm 2, but for a more general case. From this point on for simplicity,
we use Ωi,∀i ∈ I as the outputs of Algorithm 3.

It is worth noticing that unlike the complete mode transition graph case,
the MDTRIS Ω is generally empty in the case where G is not complete. For
example, consider a case where G is a disconnected graph, i.e., at least two
modes of G are not connected by an edge. Without loss of generality, suppose
that mode 1 and mode 2 in G are not connected. Using Algorithm 3, one
obtains Ω1 and Ω2 for these two modes. For any x(0) ∈ Ω1, if σ(k) = 2, then
there is no guarantee that x(k) ∈ Ω1 ∩Ω2, for any k = ks. Hence, Ω is empty.

The following result is a direct consequence of Theorem 2.

Corollary 1: Suppose that the disturbance-free system (1) is asymptotically
stable with dwell times τi for the dynamics Ai and with the mode transition
graph G. Then i) Algorithm 3 terminates after a finite number of steps; ii) If

Ωi exists, then
N⋃
i=1

Ωi is the MSDRIS for (1), (2); iii) If Ωi is empty, ∀i ∈ I,
then there is no x(0) ∈ Xσ(0) such that x(k) ∈ Xσ(k),∀k ≥ 0 for any admissible
switching sequence σ(k), i.e., the MSDRAS is empty.

Proof: The proof comes directly from Theorem 2 and the fact that the se-
quences of sets Ω

(q)
i are non-increasing, i.e., Ω

(q+1)
i ⊆ Ω

(q)
i ,∀q ≥ 0, and are

bounded from below ∅ ⊆ Ω
(q)
i ,∀q ≥ 0, ∀i ∈ I. 2

Remark 3: Algorithm 3 could also terminate in finite time if the disturbance-
free system (1) is only stable. For example consider (1) with two nodes

A1 =

 cos(π2 ) − sin(π
2
)

sin(π
2
) cos(π

2
)

 ; A2 =

 cos(π4 ) − sin(π
4
)

sin(π
4
) cos(π

4
)


The mode transition graph G is complete. The dwell times are τ1 = τ2 = 1.
Note that (1) is only stable. The constraint sets are X1 = {x ∈ R2 : |x1| ≤
1, |x2| ≤ 1},X2 = X1,W1 = W2 = 0. Algorithm 3 terminates in two steps. The
sets Ω1,Ω2 are Ω1 = {x ∈ R2 : |x1| ≤ 1, |x2| ≤ 1, |x1 + x2| ≤

√
2, |x1 − x2| ≤√

2}. 2

Note that Ωi in Algorithm 3 is a polyhedral set containing the origin in its

interior, ∀i ∈ I. In this case
N⋃
i=1

Ωi is a star-shaped or radially convex set. It
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means that ∀x ∈
N⋃
i=1

Ωi, ∀0 ≤ λ ≤ 1, one has λx ∈
N⋃
i=1

Ωi.

We can use Algorithm 3 as a tool to compute the minimal dwell time τi,min,∀i ∈
I that ensures stability of the origin of the disturbance-free system (1), (2).
For simplicity, in the rest of this section, when we write system (1) we refer
to (1) without the disturbance w(k).

The following result holds

Proposition 6: Given polyhedral sets Ωi containing the origin in the interior,

∀i ∈ I.
N⋃
i=1

Ωi is a SDRIS for (1), (2) if and only if
N⋃
i=1

Ωi,λ with Ωi,λ = λΩi for

any λ ∈ (0, 1] is a SDRIS for (1), (2).

Proof: Note that
N⋃
i=1

Ωi,λ ⊆
N⋃
i=1

Ωi, ∀λ ∈ (0, 1]. We can represent Ωi,λ by,

∀i ∈ I
Ωi,λ = λΩi = {x ∈ Rn : Fi,wx ≤ λgi,w}

where (Fi,w, gi,w) is a half-space representation of Ωi, i.e.,

Ωi = {x ∈ Rn : Fi,wx ≤ gi,w}

Therefore, ∀x(0) ∈ λΩσ(0), one has x(0)
λ
∈ Ωσ(0). Since

N⋃
i=1

Ωi is a SDRIS for

(1), one obtains Aσ(k)
x(0)
λ
∈ Ωσ(k) for all admissible switching sequence σ(k).

It follows that Aσ(k)x(k) ∈ λΩσ(k). Hence,
N⋃
i=1

Ωi,λ is a SDRIS for (1), (2). 2

Remark 4: In Proposition 6 for simplicity, we consider only polyhedral sets
Ωi,∀i ∈ I. However, Proposition 6 holds for any convex sets Ωi,∀i ∈ I con-
taining the origin in the interior. 2

Theorem 3: System (1) is stable under admissible switching sequence σ(k) ∈
G with dwell time τi,∀i ∈ I if and only if Algorithm 3 produces a non-empty
set Ωi, ∀i ∈ I. In addition, if for any i ∈ I there is no x(0) ∈ Ωi such that

x(k) ∈ Bd

( ⋂
(i,l)∈E

Ωl

)
,∀k ≥ 0 under any admissible switching sequence σ(k),

then (1) is asymptotically stable.

Proof: (⇒) comes directly from Corollary 1. (⇐) If Algorithm 3 produces a

non-empty set Ωi ⊆ Xi, ∀i ∈ I. In this case
N⋃
i=1

Ωi is a SDRIS for (1). Hence,

∀x(0) ∈ Ωσ(0), one has x(k) ∈ Ωσ(k),∀k ≥ 0. Consequently, x(k),∀k ≥ 0 is
bounded. In other words (1) is stable.

For the asymptotic stability proof, for simplicity, we consider only the complete
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mode transition graph case. If there is no mode i and no state x ∈ Ωi such

that the state trajectory stays forever on Bd

(
N⋂
l=1

Ωl

)
any admissible switching

sequence σ(k). In this case, ∃0 < λ < 1 and a finite index k1 such that x(k1) ∈

Bd

(
N⋂
l=1

Ωl,λ

)
. Using Proposition 6,

N⋃
l=1

Ωl,λ is a SDRIS for (1). Since Ωl,λ is a

scaled version of Ωl, one has ∃k2 such that x(k2) ∈ Bd

(
N⋂
l=1

Ωl,λ2

)
. As such

∃km such that x(km) ∈ Bd

(
N⋂
l=1

Ωl,λm

)
. Since λ < 1, one has lim

m→∞
x(km)→ 0.

Hence (1) is asymptotically stable. 2

4.3 Extension to Switched Systems with Parametric Uncertainties

We extend the results in Section 4.2 to switched systems with parametric
uncertainties. Consider the uncertain and/or time-varying switched linear
discrete-time systems

x(k + 1) = Aσ(k)(θσ(k)(k))x(k) + w(k) (25)

The matrix Ai(θi(k)) satisfies, ∀i ∈ I

Ai(θi(k)) =
ri∑
j=1

θi,j(k)Ai,j (26)

whereAi,j ∈ Rn×n,∀j = 1, ri are known matrices. θi(k) = [θi,1(k) θi,2(k) . . . θi,ri(k)]
T ∈

Θi is a vector of unknown and/or time-varying parameters, with

Θi =

θi ∈ Rri :
ri∑
j=1

θi,j = 1, θi,j ≥ 0

 (27)

x(k) and w(k) are subject to constraints (2), i.e., x(k) ∈ Xσ(k), w(k) ∈ Wσ(k), ∀k ≥
0. The switching sequence σ(k) satisfies σ(k) ∈ Σ,∀k ≥ 0.

Our objective is to provide a numerical procedure to construct the MSDRAS
for (25), (2). Using similar arguments as that of Proposition 1, we can conclude
that for (25), (2), the MSDRAS is the RSDRIS.

It is easy to observe that Algorithm 3 can be straightforwardly extended to
the case (25), (2). The main difficulty here is the computation of the set

Qi,τi
(
Ω

(q)
j

)
. Recall that Qi,τi

(
Ω

(q)
l

)
is the set of all states x that can reach to

Ω
(q)
l in no more than τi steps under the dynamics

x(k + 1) = Ai(θi(k))x(k) + w(k) (28)
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∀w(k) ∈ Wi. Applying directly (6) to system (28) may lead to a computation-
ally prohibitive condition.

Our idea to overcome the computational issue is to calculate Qi,τi
(
Ω

(q)
l

)
re-

cursively as

Qi,t
(
Ω

(q)
l

)
= Qi,1

(
Qi,t−1

(
Ω

(q)
l

))
,∀t ∈ 1, τi (29)

starting from t = 1. It is well known [15] that for a given polyhedral set
Ψ = {x ∈ Rn : Fψx ≤ gψ}, the set Qi,1 (Ψ) for system (28) can be computed
as

Qi,1 (Ψ) =


x ∈ Rn :


FψAi,1

...

FψAi,ri

x ≤

gw
...

gw




(30)

where gw = gψ−max
w∈Wi

{Fψw}. In general, Qi,1(Ψ) in (30) contains many redun-

dant constraints. It is well known [15] that these constraints can be eliminated
by using linear program.

Combining (29), (30), we obtain the following algorithm to computeQi,τi
(
Ω

(q)
l

)
for system (28).

Algorithm 4: Computation of Qi,τi
(
Ω

(q)
l

)
1: Let Ψ← Ω

(q)
l .

2: for t← 1 to τi do
3: Ψ← Qi,1(Ψ).

4: Set Qi,τi
(
Ω

(q)
l

)
← Ψ and stop.

The following Algorithm, which is an extension of Algorithm 3, can be used
to compute the MSDRIS for (25), (2).

Algorithm 5: Computation of MSDRIS - Switched Systems with Parametric
Uncertainties

1: Set q ← 0 and let Ω
(q)
i ← Xi,∀i ∈ I.

2: for each i ∈ I do
3: for each l ∈ I such that (i, l) ∈ E do

4: Using Algorithm 4 to obtain Qi,τi
(
Ω

(q)
l

)
.

5: Ω
(q+1)
i ← Ω

(q)
i ∩Qi,1

(
Ω

(q)
i

)
∩ ⋂

(i,l)∈E
Qi,τi

(
Ω

(q)
l

)
.

6: If Ω
(q+1)
i ≡ Ω

(q)
i ,∀i ∈ I set Ωi ← Ω

(q)
i , ∀i ∈ I then stop, else set q ← q + 1

and go to step 2.

Corollary 2: Suppose that the disturbance-free switched system (25) is ro-
bustly asymptotically stable. Then i) Algorithm 5 terminates after a finite
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number of steps; ii) If Ωi exists, then
N⋃
i=1

Ωi is the MSDRIS for (25), (2); iii)

If Ωi is empty, ∀i ∈ I, then so is the MSDRAS.

Proof: It is omitted here, since it follows the same steps as that of Theorem
2, and of Corollary 1. 2

As for Algorithm 3, we can use Algorithm 5 to compute the minimal dwell
time τi,min,∀i ∈ I that assures robust stability of the origin of system (25),
(2) without the disturbance w(k). The following result holds.

Corollary 3: The disturbance-free system (25) is robustly stable under ad-
missible switching sequence σ(k) ∈ G with dwell time τi,∀i ∈ I if and only
if Algorithm 5 produces a non-empty set Ωi, ∀i ∈ I. In addition, if for any

i ∈ I there is no x(0) ∈ Ωi such that x(k) ∈ Bd

( ⋂
(i,l)∈E

Ωl

)
,∀k ≥ 0 under

any admissible switching sequence σ(k), then (25) is robustly asymptotically
stable.

Proof: It is omitted here. 2

5 Examples

We demonstrate the obtained results via three examples in this section. In all
three examples, a numerical description of the obtained sets is not reported,
but will be sent to reader upon request.

5.1 Example 1

This example is taken from [6]. Consider system (1) with

A1 =

 0.1321 0.2494

−2.4940 −0.1173

 , A2 =

 0.9885 0.4406

−0.0441 0.7682


The constraint sets are

X1 = {x ∈ R2 : |x1| ≤ 1, |x2| ≤ 1}, X2 = X1,

W1 = {w ∈ R2 : |w1| ≤ 0.001, |w2| ≤ 0.001},W2 = W1

The graph G is complete. The dwell times are τ1 = τ2 = 6.
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Since G is complete, both Algorithms 2 and 3 are applicable, and both produce
the same result. Using Algorithm 2, Fig. 1 presents the sets Ω1 (red), Ω2

(blue). Recall that Ω1 ∪ Ω2 is the MSDRAS/MSDRIS. Algorithm 2 requires
7 and 6 iterations to calculate Ω1,Ω2, respectively. Fig. 1 also presents the
MDTRIS Ω = Ω1∩Ω2 (green). Note that Ω is O∞ in the example in [6]. Fig. 1
also presents a phase trajectory (magenta) starting from the initial condition
x(0) = [−1 0.2481]T . It can be observed that the phase trajectory is always
confined in Ω1 ∪ Ω2.
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Fig. 1. Invariant sets Ω1 ∪ Ω2, Ω, and phase trajectory for τ1 = τ2 = 6 for example
1.

For this example using Algorithm 3, we found that the minimum dwell times
are τ1 = 6, τ2 = 1. The number of iterations is q = 11. Fig. 2 shows Ω1 (red),
Ω2 (blue), Ω (green). Fig. 2 also shows a phase trajectory (magenta) starting
from the initial condition x(0) = [−0.6831 0.5755]T .

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x
1

-1

-0.5

0

0.5

1

x
2

1

2

Fig. 2. Invariant sets Ω1∪Ω2, Ω, and phase trajectory for τ1 = 6, τ2 = 1 for example
1.
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5.2 Example 2

The second example system is inspired by a triple integrator. Consider system
(1) with

A1 =


1.1600 0.4000 −1.2200

−0.5000 0.3400 0.8600

0.3400 −0.0600 0.0800

 , A2 =


2.0000 2.0000 0.0000

−0.8600 −0.4600 −0.2600

−0.0800 0.0400 0.4800

 ,

A3 =


1.3510 −1.3126 −0.8112

0.6636 −0.2480 −0.6254

−0.6490 0.6874 1.1888



The constraint sets are

X1 = {x ∈ R3 : |xj| ≤ 20,∀j ∈ 1, 3}, X2 = {x ∈ R3 : |xj| ≤ 40,∀j ∈ 1, 3},

X3 = {x ∈ R3 : |xj| ≤ 30,∀j ∈ 1, 3}, W1 = {w ∈ R3 : |wj| ≤ 0.01,∀j ∈ 1, 3},

W2 = W1,W3 = W1

Fig. 3 presents the mode transition graph G. The dwell times are τ1 = 4,

Fig. 3. Mode transition graph G for example 2.

τ2 = 8, τ3 = 1. The number of iterations is q = 13 for Algorithm 3. Fig. 4
illustrates the sets Ω1 (red), Ω2 (blue), Ω3 (green).
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Fig. 4. Illustration of Ω1(red), Ω2(blue), Ω3(green) for example 2.

5.3 Example 3

For the third example, we consider the disturbance-free system (25) with

A11 =

 0.75 0

1.00 0.75

 , A12 =

 0.75 0.025

1.00 0.750

 ,
A21 =

 0.75 −2.50
0 0.75

 , A22 =

 0.750 −2.50
0.025 0.75


(31)

This system is obtained by discretizing the uncertain switched continuous-
time system in Example 1 from [21] using Euler’s method with the sampling
time Ts = 0.25(sec). The constraints are X1 = {x ∈ R2 : |x1| ≤ 1, |x2| ≤ 1},
X2 = X1. The graph G is complete.

By using a method based on homogeneous polynomial Lyapunov function, it
was found in [21] that the minimum dwell time for the switched continuous-
time system is 3.5(sec). This is equivalent to the dwell times τ1 = τ2 =

3.5
Ts

= 14
for the switched discrete-time system (31). Using Algorithm 5, we found that
the minimum dwell times are τ1 = τ2 = 13. The number of iteration is q = 6.
Fig. 5 presents Ω1 (red), Ω2 (blue). This figure also presents a phase space
trajectory (magenta) starting from the initial condition x(0) = [−0.384 1]T .

6 Conclusion

We introduced two new notions of the maximal switch-dependently robustly
admissible set (MSDRAS), and of the maximal switch-dependently robustly
invariant set (MSDRIS) for constrained graph-dependent switched systems
with bounded disturbances under dwell time restriction. We showed that the
MSDRAS coincides with the MSDRIS. We presented two new numerical pro-
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Fig. 5. Invariant sets Ω1 ∪ Ω2, and phase trajectory for example 3.

cedures to construct the MSDRAS, and showed that the MSDRAS is a star-
shaped set. We extended the obtained results to constrained switched systems
with parametric uncertainties. We proved that the existence of the MSDRAS
provides a necessary and sufficient condition for the stability of switched sys-
tems. Using the proposed algorithms as the foundation to calculate the mini-
mal dwell times needed for stability of the origin of the switched system, we
found that the obtained dwell times are smaller, in terms of their sum, than
that of earlier solutions in recent literature for examples considered in this
paper.
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