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Abstract

Background: Electroencephalography (EEG) stands as a pivotal non-invasive tool, capturing brain signals with millisecond precision
and enabling real-time monitoring of individuals’ mental states. Using appropriate biomarkers extracted from these EEG signals and
presenting them back in a neurofeedback loop offers a unique avenue for promoting neural compensation mechanisms. This approach
empowers individuals to skillfully modulate their brain activity. Recent years have witnessed the identification of neural biomarkers
associated with aging, underscoring the potential of neuromodulation to regulate brain activity in the elderly. Methods and Objectives:
Within the framework of an EEG-based brain-computer interface, this study focused on three neural biomarkers that may be disturbed
in the aging brain: Peak Alpha Frequency, Gamma-band synchronization, and Theta/Beta ratio. The primary objectives were twofold:
(1) to investigate whether elderly individuals with subjective memory complaints can learn to modulate their brain activity, through
EEG-neurofeedback training, in a rigorously designed double-blind, placebo-controlled study; and (2) to explore potential cognitive en-
hancements resulting from this neuromodulation. Results: A significant self-modulation of the Gamma-band synchronization biomarker,
critical for numerous higher cognitive functions and known to decline with age, and even more in Alzheimer’s disease (AD), was ex-
clusively observed in the group undergoing EEG-neurofeedback training. This effect starkly contrasted with subjects receiving sham
feedback. While this neuromodulation did not directly impact cognitive abilities, as assessed by pre- versus post-training neuropsycho-
logical tests, the high baseline cognitive performance of all subjects at study entry likely contributed to this result. Conclusion: The
findings of this double-blind study align with a key criterion for successful neuromodulation, highlighting the significant potential of
Gamma-band synchronization in such a process. This important outcome encourages further exploration of EEG-neurofeedback on this
specific neural biomarker as a promising intervention to counter the cognitive decline that often accompanies brain aging and, eventually,
to modify the progression of AD.

Keywords: EEG-neurofeedback; neuromodulation; gamma-band synchronization; healthy aging; Alzheimer’s disease; double-blind
study

1. Introduction
Lifespan is increasing worldwide, giving rise to new

medical and socio-economic challenges. In this respect, de-
veloping strategies for promoting successful aging has be-
come a cornerstone of cognitive neuroscience research.

Cognitive difficulties occur with aging, even in the
absence of brain disease. For instance, it is frequent that
healthy elderly subjects present everyday memory com-
plaints, such as forgetting where they put their glasses
or keys, which likely involves poor encoding and/or re-
trieval processes linked to reduced attentional resources that
mainly depend on the prefrontal cortex [1–3]. This is im-
portant because it suggests that developing strategies for
improving attention in the elderly may be beneficial for
healthy aging.

Neurofeedback is one such promising strategy, re-
lying on a training approach to achieve conscious self-
modulation of specific brain waves on the basis of real-
time feedback [4–7]. For example, neurofeedback train-
ing, through electroencephalography (EEG) passive Brain-
Computer Interfaces (BCI), has been found to improve at-
tention in the elderly when focused on the Peak Alpha Fre-
quency (PAF) — a neural biomarker of aging [8–10]. No-
tably, it is well documented that the PAF (i.e., the frequency
of the spectral power density peak within the extended al-
pha band, 8–13 Hz) increases from early childhood until
adolescence, remains stable during adulthood, and starts to
decrease with age [1,2,11]. In patients suffering from ei-
ther mild cognitive impairment [12] or Alzheimer’s disease
(AD) [8], the PAF becomes pathologically lower than ex-
pected for healthy elderly subjects. Several positive corre-
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Fig. 1. Schematic representation of the experimental protocol. NFB, neurofeedback; EEG, electroencephalography.

lations between PAF and speed of information processing,
PAF and memory performance, PAF and inhibitory control
have been reported [13,14]. Another neural biomarker of
aging is the synchronization of neural activity in the gamma
frequency band, which decreases with age, and even more
in patients suffering from AD [15]. Specifically, Gamma-
band synchronization has been associated with multiple
cognitive functions according to its role in neural systems
for attention, memory, motivation, and behavioral control
[16]. Additional biomarkers that may be disturbed in the
aging brain include decreased EEG complexity, as well as
an increased power of EEG low frequencies (i.e., delta and
theta rhythms) together with a decreased power of high
EEG frequencies (i.e., alpha, beta, and gamma rhythms)
[17–19]. In particular, Theta/Beta ratio (TBR) has been
claimed as a potential biomarker of attention control [20],
and has also proved useful for detecting underlying cogni-
tive impairments [21–24].

The efficacy of EEG-neurofeedback can be measured
based on cognitive outcomes [1,2,25,26], but a promi-
nent and more direct first outcome changes is at the level
of brain activity itself [27]. Indeed, it is hypothesized
that EEG-neurofeedback could activate self-regulatory re-
sponses which, in turn, would lead to the normalization of
abnormal neural patterns. However, the lack of appropri-
ate double-blind protocols has thrown some doubt on the
efficacy of neurofeedback interventions [28].

This work presents a double-blind study conducted
following a placebo-controlled approach on a sample of
healthy elderly subjects with subjective memory com-
plaints. Our primary goal was to investigate whether these
subjects could use EEG-neurofeedback to modulate three
EEG biomarkers that are often linked to impaired neuronal
activities in the aging brain, namely PAF, Gamma-band
synchronization, and TBR. More precisely, we aimed at
studying the changes in neuronal dynamics of these EEG
biomarkers, pre- versus post-neurofeedback training, in or-
der to explore their potential for self-modulation of brain
activity by elderly subjects. Of note, with the purpose of

developing a friendly-use and affordable BCI system, this
exploratory study was implemented on the basis of a multi-
session neurofeedback training protocol employing a rela-
tively limited number of electrodes. We investigated the
feasibility of EEG-neurofeedback within this constrained
framework.

2. Methods
2.1 Participants

To carry out this double-blind study, 37 subjects were
recruited at the Institut de la Mémoire et de la Maladie
d’Alzheimer (IM2A), in the Salpêtrière hospital (Paris,
France). The study was approved by the ethical commit-
tee for the Protection of Persons of Ile-de-France XI and
performed in accordance with the Declaration of Helsinki
(the approval number: 2017-A02610-53). All subjects gave
written informed consent prior to the experiments.

Participants were cognitively healthy subjects aged
over 55, with a Mini-Mental State Examination (MMSE;
[29]) score ≥27 and a Free and Cued Selective Remind-
ing Test (FCSRT; [30]) total recall score ≥42, while pre-
senting with subjective memory complaints for at least six
months. We excluded subjects with concomitant neurolog-
ical disorders (including neurodegenerative disorders, mi-
graine, epilepsy, traumatic brain injury, stroke, tumors) or
psychiatric illnesses, as well as those with major visual dis-
turbances and those usingmedicationswith a possible effect
on cognitive performance, such as benzodiazepines, antide-
pressants, and antipsychotics. The eligibility criteria were
verified by the medical investigator at the screening visit.
This was also the pre-training visit (V0) for the subjects
who met all the criteria. Further details are given in the
next sections.

2.2 Study Design
In this double-blind, placebo-controlled study, sub-

jects were randomly assigned either to a real EEG-
neurofeedback group (referred to as Group A) or to a sham
feedback group (referred to as Group B), stratified by age,

2

https://www.imrpress.com


Fig. 2. Brain-Computer Interface training. Left: Picture of two subjects during a session of the training phase. Right: The image of
the feedback task is displayed on the screen.

gender, and education level. The sham feedback was based
on an electromyography biofeedback. The allocation of
subjects to each of these two groups was performed by one
of the collaborators not involved in the experiments, and
remained hidden from the investigators until the end of the
data analysis.

Fig. 1 displays a schematic representation of the study
based on the timeline of the experimental protocol. The
subjects were asked to participate in a research, neuro-
modulation protocol, over a three-month period (for each
subject), during which they completed 22 visits: one pre-
training visit (V0), 20 training visits (V1 to V20), and one
post-training visit (V21). Neuropsychological and EEG
data analyses performed in this work exploited the data col-
lected during the pre- and post-training visits (V0 and V21)
in order to investigate potential changes in the neural dy-
namics before and after training, as well as their possible
impact on subjects’ cognition.

2.2.1 Neuropsychological Assessment at V0 and V21
The battery of neuropsychological tests administered

to subjects in V0 and V21, included the MMSE [29] that is
a measure of global cognition, the FCSRT [30], a memory
test that controls attention and cognitive processing to better
investigate episodic memory performance, as well as other
tests focused on attention and executive functions [31], such
as the Trail-Making Test A and B (TMT A and B; [32]), the
Digit span forward and backward, and the Frontal Assess-
ment Battery (FAB; [33]). Additional instruments included
the 15-item version of the McNair Frequency of Forgetting
Questionnaire [34], the Geriatric Depression Scale (GDS;
[35]), and the State-Trait Anxiety Inventory (STAI A and
B; [36]) for assessing, respectively, memory complaints,
mood, and anxiety disturbances.

2.2.2 EEG Data Acquisition at V0 and V21
At V0, and upon completion of the neuropsychologi-

cal tests, EEG data resting state was acquired for 150 sec-
onds: 75 seconds with eyes closed, and 75 seconds with
eyes open looking at a fixation cross on the screen. A

similar EEG acquisition was performed at V21, the post-
training visit, for the subjects who completed the full train-
ing protocol. For both sessions (V0 and V21), the same
EEG amplifier with the same recording parameters were
used: a 20-electrodes cap with a traditional 10–20 elec-
trodes layout and a NIC® EEG amplifier system (Neuro-
electrics, Barcelona, Spain). The left earlobe electrode was
used as the EEG reference [37]. The impedance of all elec-
trodes was kept below 10 kΩ. The sampling rate of EEG
signals with the NIC system was 500 Hz, and no filter was
applied during the acquisition phase. For EEG data analysis
at pre- and post-training visits, we considered only the five
electrodes on fronto-central and parieto-central sites (Cz,
Pz, Fz, C3, and C4), in accordance with the low-density
EEG system used for neuromodulation. More details are
given in the next section.

2.2.3 Training Visits between V1 and V20
The training started up to seven days after the pre-

training visit (V0). It was performed in three blocks of 10
minutes per biomarker (30 minutes per session) during 20
visits over three months.

In practical terms, when the subject arrived, he/she
was invited to sit in front of a screen. For the first session,
the investigator explained to the subject how the EEG
is performed and how the feedback will appear on the
screen. Then, the technician places the EEG system
(Neuroelectrics, Barcelona, Spain) on the scalp and
two electromyography (EMG) sensors on the trapezius
muscles of each subject (from either the real or the
sham feedback group). The feedback information was
provided visually to each subject as a picture of a tree
on her/his computer screen (see Fig. 2 ). There were
three different tree models: for each session, a different
tree was assigned randomly to each biomarker. Subjects
were only instructed to concentrate in order to make
the tree grow. All subjects were asked to make the tree
grow the same way; however, the feedback presented to
subjects of Group A was based on their brain dynamics,
while the feedback presented to subjects of Group B was
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Table 1. Demographic characteristics of the subjects randomly distributed into two groups.
Group A (n = 17) Group B (n = 14) p-value (Intergroup A vs B) All (n = 31)

Gender (M/F; % M, % F) 4/13; 24% M, 76% F 6/8; 43% M, 57% F 0.05* 10/21; 33% M, 67% F
Age: mean ± SD (range) 71 ± 7.6 (60–85) 73 ± 5.5 (64–82) 0.44 72 ± 6.7 (60–85)
Education level (% High) 82% 86% 0.77 84%
p-values were computed using a Wilcoxon-Mann-Whitney test for the numerical variables (Age) and Fisher’s exact test for cate-
gorical variables (Gender, Education level). Significant differences are indicated by an asterisk. SD, standard deviation; M, male;
F, female.

Table 2. The number of subjects and of epochs in the training set and the test set of the classifiers.
Training set (70%) Test set (30%) All data (100%)

Classifiers (i) and (ii)
Subjects 22 9 31
Epochs 704 288 992

Classifiers (iii)
Subjects 12 5 17
Epochs 768 320 1088

Classifiers (iv)
Subjects 10 4 14
Epochs 640 256 896

based on their muscular activity. All precautions were
taken to prevent the experimenters and subjects from
identifying the task type (neurofeedback or shame/control).
The task design was performed with the MATLAB Psy-
chtoolbox (version 3, https://www.psychtoolbox.net/)
[38], and the EEG synchronized and the stim-
uli presentation on the screen was performed with
the System Level Simulations (SLS) library (https:
//fr.mathworks.com/matlabcentral/fileexchange/134292-w
ireless-system-level-simulations-sls-event-logger-) [39].

At the beginning of each visit, one minute of the rest-
ing state EEG was recorded. These data were used to com-
pute the threshold values of the subject’s biomarkers. Dur-
ing training, each biomarker was computed, in real-time,
from the recorded signals. If the actual computed value of
the biomarker was higher than the threshold, the tree grew
up; otherwise, the tree size remained constant. The same
protocol was followed for subjects submitted to sham feed-
back.

For neuromodulation, we built an EEG-
neurofeedback BCI based on a small set of EEG electrodes.
Indeed, as mentioned earlier in the introduction, our aim
was to study the feasibility of EEG-neurofeedback in a
constrained context with a limited number of electrodes for
a low-cost and portable BCI. We considered five fronto-
central and parieto-central electrodes: Fz, Cz, Pz, C3, C4.
These electrodes were chosen based on experiments that
we had carried out on an EEG database of 22 subjects
with Subjective Cognitive Impairment (SCI) and 28 mild
AD patients. EEG data were recorded during resting
state eyes-closed condition, using a Deltamed digital EEG
acquisition system (http://medicalsystems.ma/) with 30
scalp electrodes positioned over the whole head according
to the 10–20 international system [19]. To discriminate
between SCI and AD groups, we considered different
combinations of a small number of electrodes among the

30 available, on which we computed an average Phase
Synchrony measure [40] at different frequency bands.
Then, such average synchrony value was used as input of
a Linear Discriminant Analysis classifier to evaluate the
discrimination performance in terms of specificity (SCI
correctly classified) and sensitivity (AD correctly clas-
sified). The best performances (specificity = 81.8% and
sensitivity = 71.4%) were obtained using EEG electrodes
of fronto-central and parieto-central sites, namely Cz, Pz,
Fz, C3, and C4.

2.3 Data Analysis
2.3.1 Demographic Data

Thirty-seven subjects were initially included and ran-
domly assigned into two groups, called Group A and Group
B for preserving the double-blind approach. Six subjects
were desisted for personal and scheduling reasons at the
beginning of the protocol, thus explaining the unbalanced
number of subjects in the groups: 17 subjects in Group A
and 14 subjects in Group B.

Neuropsychological and EEG data analyses were per-
formed on the data collected in pre- and post-training visits
from the 31 subjects who completed the study. As summa-
rized in Table 1, a significant difference in terms of gender
ratio was observed between the two groups, with a more
significant proportion of women in Group A (p = 0.05,
Fisher’s test), while no significant differences were found
between the groups for age and education level. Note that
categorizations of the education level into “high” and “low”
or “intermediate” are as indicated in [31]. In short, more
than 80% of our participants had an education level score
≥7, which corresponds to the label “high education” (i.e.,
“higher than up-secondary”, according to the International
Standard Classification of Education, 2011).
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2.3.2 EEG Data Pre-Processing and Feature Extraction
Due to the high number of artifacts on eyes-open EEG

recordings, the EEG analysis was performed only on the
data collected from the eyes-closed condition [41], and con-
sidering only Fz, Cz, Pz, C3 and C4 electrodes, as explained
in Section 2.2.3.

The pre-processing of the resting-state EEG signals
was performed on MATLAB version 2016b (The Math-
Works, Natick, MA, USA), using the Brainstorm software
[42,43] in combination with custom scripts developed inter-
nally within the MATLAB environment (MathWorks). The
sampling rate of the data during the acquisition was 500
Hz, and no downsamplingwas applied in the pre-processing
steps.

Data cleaning includes space separation to remove eye
blink and saccade artifacts. Then, EEG signals were notch-
filtered at 50 Hz to remove the power line noise and band-
pass-filtered in the four frequency bands corresponding to
theta [4–8 Hz], alpha [8–13 Hz], beta [13–25 Hz], and
gamma [35–45 Hz] bands. The filtered data, which had a
total duration of 75 seconds per acquisition and per subject,
were segmented into 2-second epochs. All the epochs with
a kurtosis below one or above five, or a peak-to-peak am-
plitude exceeding 100 µV, were considered rejected from
the analysis. The remaining epochs were visually checked,
and the bad segments were identified and rejected. The final
number of epochs without artifacts per acquisition ranged
from 32 to 37 for each subject. For the analysis, we kept
the same amount of data from each subject, thus retaining
32 epochs of 2 seconds per subject.

Finally, values of the three biomarkers of interest were
extracted from the pre-processed epochs at pre- and post-
training visits, and considering only the five electrodes
(Fz, Cz, Pz, C3, C4): (i) the PAF that measures the fre-
quency with the highest magnitude within the alpha rhythm
sub-band spectrum after estimating Welch’s Power Spec-
tral Density (PSD), on 1 s-window with 25% overlapping;
(ii) Gamma-band synchronization that relies on the compu-
tation of Phase Synchrony [40] between all pairs of EEG
signals in gamma band; (iii) the TBR calculated by di-
viding average theta power by average beta power after a
Welch’s PSD estimation on 1 s-window with 25% overlap-
ping. More precisely, the PAF and TBR biomarkers were
computed on each epoch from the signal captured by a sin-
gle electrode; hence, five features were extracted per epoch
from the PAF and five from the TBR. By contrast, Gamma-
band synchronization requires two electrodes; 10 pairwise
combinations of five electrodes exist, and ten features were
computed from that biomarker. Therefore, for each subject,
20 features were extracted per epoch.

To assess the effectiveness of our EEG-neurofeedback
framework, we adopted two statistical approaches for data
analysis based on classical statistical tests and machine
learning methods [44], as explained in the following sec-
tions.

2.3.3 Statistical Tests on Neuropsychological and EEG
Data

Since most neuropsychological and EEG data were
not found to be normally distributed, non-parametric tests
were performed in the analysis (for further details, see sec-
tion 3). All statistical analyses were conducted using R
version 3.6.1 (R Development Core Team, 2019, https:
//www.r-project.org/), and plots were generated with the
ggplot2 package (https://cran.r-project.org/web/packages/
ggplot2/index.html) [45]. The level of statistical signifi-
cance was set at p< 0.05 for all tests. To avoid type-I error,
correction for multiple comparisons was completed by us-
ing the Bonferroni method [46].

2.3.4 Machine Learning Methodology for EEG Data
Classification

To evaluate the effectiveness of EEG-neurofeedback
training, we conducted both inter-group and intra-group
data analyses. Therefore, four classifiers were designed
for four different purposes: (i) discriminating subjects of
Group A from subjects of Group B, using the EEG epochs
recorded during V0 (inter-group analysis at V0); (ii) dis-
criminating subjects of Group A from subjects of Group
B, using the EEG epochs recorded during V21 (inter-group
analysis at V21); (iii) discriminating epochs recorded from
subjects of Group A during V0 from epochs recorded from
the same subjects during V21 (intra-group analysis, V0
versus V21 within Group A); (iv) discriminating epochs
recorded from subjects of Group B during V0 from epochs
recorded from the same subjects during V21 (intra-group
analysis, V0 versus V21 within Group B).

As above-mentioned, each subject (among the 31) has
32 epochs at session V0 and 32 epochs at session V21, all
contributing to the data set available for classifier design.
On each epoch, 20 features were extracted (five PAF values,
five TBR values, and 10 Gamma-band synchrony values).
To compute such features and train the classifiers, we used
the SIGMABox (https://github.com/tmedani/SIGMAbox)
[47], a homemade MATLAB toolbox for EEG signal pro-
cessing and classification.

As all featuresmay not be equally relevant for the clas-
sification, a subsequent feature selection procedure was ap-
plied to discard irrelevant features. The procedure has two
steps: Orthogonal Forward Regression (OFR) for ranking
the features in order of decreasing relevance, followed by
the random probe method to find the threshold rank for re-
jecting irrelevant features [48]. The random probe method
consists of generating random variables (called probes) by
shuffling the components of the vectors of the candidate
variables (corresponding to the real features), ranking the
candidate variables and the probes in a single ranked list,
and estimating the acceptable risk value that a random vari-
able can explain the output process more reliably than one
of the selected real features.

5

https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://github.com/tmedani/SIGMAbox
https://www.imrpress.com


For inter-group analyses (classifiers (i) and (ii)), the
number of epochs available for the design of the classi-
fier was 32 epochs per subject, hence 992 examples were
available for classifier design. For intra-group analyses, the
number of epochs available for the design was 64 epochs
per subject, as the epochs to be classified were recorded
during V0 and V21, hence 1088 and 896 examples were
available for classifiers (iii) and (iv), respectively. Table 2
summarizes the number of subjects and epochs.

The subjects of Group A and Group B were randomly
assigned to the training set (70%) and the test set (30%).
The four classifiers were designed to perform epoch-wise
classification from the features; the classification of sub-
jects was performed according to the following rule: a
subject was assigned to the class to which the majority of
his/her epochs (at least 17) had been assigned by the epoch-
wise classifier.

We used Support Vector Machines (SVM) with linear
soft-margin classifiers [44]. The estimation of the regular-
ization constant of the SVM was performed by leave-one-
subject-out cross-validation. Due to the small size of the
test set, the estimation of the performance of the classifier
may vary with the partition of the examples into training
set and test set. In order to decrease the variance of that
estimation, 100 different partitions of the complete data set
were performed, ascertaining that the number of inclusions
Ni of each subject i in the test set was such that 5≤ Ni≤ 8.
The whole design procedure was performed for each par-
tition, thereby designing 100 classifiers. After completion
of the iterations, the number of correct classifications for
each subject when she/he was present in the test set, was
computed according to the following rule: if the number of
correct classifications of subject i was larger than the integer
part of Ni/2, the subject was considered correctly classified.
For instance, a subject with Ni = 5 was considered correctly
classified if she/he was correctly classified at least 3 times;
a subject with Ni = 8 was considered correctly classified if
she/he was correctly classified at least 5 times.

3. Results
3.1 Statistical Analysis of Neuropsychological Data

The results of the neuropsychological tests are detailed
in the supplementary material (Supplementary Tables 1–
3). Importantly, at study entry (V0), subjects’ performance
across the entire battery of tests was within the normal
range, and often close to the upper reference limit. Non-
parametric tests were used (ɑ = 0.05) because the criteria of
normality were not verified for all the data. Overall, we ob-
served only one significant result for subjects’ performance
on the TMT-A with an improvement between V0 and V21
for subjects of Group A and Group B together (p = 0.005),
as well as for each group separately, being significant for
Group A (p = 0.02) and a trend for Group B (p = 0.051).
This suggests that subjects had a faster processing speed
while performing this test at V21, regardless of the type of

feedback training they received. Concerning the other neu-
ropsychological tests, we did not observe any significant
change between visits (V21 vs V0, intra-group analysis) nor
between groups (GroupA vs Group B, inter-group analysis)
at V21, including also, in this case, the TMT-A test. In fact,
rather than suggesting a specific effect of feedback train-
ing, the improvement observed in the TMT-A test at V21
(the post-training visit), points to a possible gain related to
the previous exposure to this relatively simple attention test
at V0, which is known as a practice effect. With regard to
complaints about mood, anxiety, or memory, an absence of
significant differences was also observed in the intra-group
and inter-group analyses.

3.2 Statistical Analysis of EEG Data
3.2.1 Inter-Group Analysis at V0

To investigate whether the two groups (A and B) were
different regarding their EEG activity at V0 (before the
20 training sessions), Mann-Whitney non-parametric tests
were applied on the 20 features extracted from the three
biomarkers of interest. For each subject and each of the 20
features, a value was computed for each of the 32 epochs;
then the mean of these 32 values was used as the biomarker
associated to each subject. As shown in Supplementary
Table 4, irrespective of the biomarker or the electrode, there
were no significant differences between groups at V0. This
confirms that Group A and Group B were not significantly
different regarding the three biomarkers of interest at the
beginning of the study.

3.2.2 Inter-Group Analysis at V21
Inter-group analysis was also performed at V21 to de-

termine whether the 20 training sessions had a significantly
different effect on the EEG dynamics of the two groups
(A vs B). Mann-Whitney non-parametric tests were applied
on features (same procedure as presented in the previous
section). As shown in Supplementary Table 5, we ob-
served a significant difference between groups regarding
the Gamma-band synchronization for three pairs of elec-
trodes: Pz/C4, Pz/Fz, and C4/Fz, with greater values of
gamma-synchrony for Group A. A significant difference
between groups was also found for this biomarker when
considering the mean over all electrodes (p < 0.001). At
V21, the groups were therefore significantly different with
regard to the Gamma-band synchronization, suggesting that
subjects of Group A andGroup B did not modulate this neu-
ral biomarker similarly post-training.

3.2.3 Intra-Group Analysis
To investigate changes in brain dynamics between

pre- and post-training sessions (V0 vs V21), we compared,
for each group, the feature values computed at both V0
and V21. Thus, Mann-Whitney non-parametric tests were
applied separately for each group (A and B), and each
biomarker. As shown in Supplementary Table 6, there
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Table 3. Ranked list obtained by OFR; after application of
the random probe method with a risk of 20%.

Features Electrodes

1 Gamma band synchronization C4/C3
2 Gamma band synchronization Pz/C3
3 Theta/Beta ratio Pz
4 Gamma band synchronization Pz/C4
5 Gamma band synchronization Cz/Pz
6 Gamma band synchronization Cz/C3
7 Theta/Beta ratio Cz
OFR, Orthogonal Forward Regression.

Table 4. Confusion matrix resulting from the cross-test
procedure on data recorded at V0.

Population (N = 31) Group A Group B

Group A (N = 17) 9 8
Group B (N = 14) 6 8

were significant changes regarding the features computed
for the Gamma-band synchronization for both Group A and
Group B. However, for Group B (sham feedback), the dif-
ference was only observed in one pair of electrodes (Pz/Fz,
p < 0.001), whereas, for Group A (real neurofeedback),
a more global effect was corroborated by a significant in-
crease of Gamma-band synchronization for the mean of all
channels (p = 0.006). These results are consistent with the
observation reported in the previous section, thus confirm-
ing that subjects of Group A and Group B did not modulate
the Gamma-band synchronization similarly post-training.

3.3 Classification Performance Based on EEG Data

As described in Section 2.3.4, classifications were
based on subjects’ epochs (epoch-wise classification). For
inter-group comparison (Group A vs Group B, at V0 and
V21 separately), a subject of the test set was considered as
belonging to the group (A or B) to which more than 50%
of her/his epochs were assigned. For intra-group compar-
ison (V0 vs V21, Group A and Group B separately), the
subject’s data of the test set was considered as belonging to
the session (V0 or V21) to which more than 50% of her/his
epochs were assigned.

3.3.1 Inter-Group Classification at V0

We trained a SVM classifier to discriminate subjects
of Group A from those of Group B based on their EEG data
at V0. Using the three biomarkers, 20 features were ex-
tracted and the most relevant ones were selected with the
OFR algorithm and the random probe, as explained in Sec-
tion 2.3.4. A 20% risk of selecting a candidate variable al-
though it is irrelevant turned out to be a reasonable choice,
resulting in selecting seven features (among the 20). Ta-
ble 3 shows that Gamma-band synchronization biomarker
is predominant in the selected variables.

Table 5. Confusion matrix of the classifier’s performance on
the test data set at V21.

Population (N = 31) Group A Group B

Group A (N = 17) 11 6
Group B (N = 14) 3 11

These selected seven features were then used by the
classifier for inter-group classification, to determine which
epochs belonged to Group A or Group B. Table 4 reports
the confusionmatrix resulting from the cross-test procedure
described in Section 2.3.4.

The accuracy of the classifier estimated by cross-test
was 54.8%. It is good practice to compare the results of a
classifier to the results that would have been obtained by a
baseline classifier (called “zero-classifier”), which assigns
all examples to the most populated class (Group A in our
case), irrespective of the features. If a classifier does not
significantly outperform this baseline, it indicates a limita-
tion in classification ability. In this instance, the accuracy
of our classifier matches that of the “zero-classifier”, im-
plying an inability to distinguish between the two groups
based on the three selected biomarkers. This strongly sug-
gests that the EEG biomarkers computed from both groups
(A and B) were similar at V0 before training.

3.3.2 Inter-Group Classification at V21
Here, the purpose of the classifier was to discriminate

subjects of Group A from those of Group B based on their
EEG data at V21. Interestingly, at V21, among the 20 fea-
tures extracted from the three biomarkers, seven relevant
features were also selected with the OFR algorithm and the
random probe method, all belonged to the Gamma-band
synchronization. Such selected features were then used as
inputs to the SVM classifier.

As presented in the confusion matrix resulting from
cross-test (Table 5), the SVM classifier was able to discrim-
inate subjects from Group A and Group B with a global ac-
curacy of 71.0%. As the obtained accuracy is greater than
54.8% (the “zero-classifier”, see section 3.3.1), this result
strongly suggests that the selected Gamma-band synchro-
nization features were able to distinguish, post-training,
subjects of Group A (with real neurofeedback) from those
of Group B (sham feedback).

To validate the feature selection procedure performed
by the random probemethod, three classifiers (i.e., one clas-
sifier per biomarker) were designed to perform the same
inter-group analysis at V21, without the application of fea-
ture selection.

As presented in Table 6, the classifier whose feature
inputs were extracted from the Gamma-band synchroniza-
tion had an accuracy of 71%, while the accuracy of the clas-
sifiers trained with features extracted from either the TBR
or the PAF was 61.3% (estimated by cross-test).
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Table 6. True positive rate and accuracy, estimated by cross-test, of the classifiers discriminating subjects of Group A from
those of Group B at V21, with each biomarker separately.

Classification based on each biomarker Gamma-band synchronization Theta/Beta ratio Peak Alpha Frequency

Group A (n = 17) 12/17 11/17 11/17
Group B (n = 14) 10/14 8/14 8/14
Accuracy 71% 61.3% 61.3%
For more details, see supplementary material (Supplementary Tables 7–9).

Table 7. True positive rate and accuracy (estimated by cross-test) of the classifiers discriminating the epochs recorded at V0
from those recorded at V21 from Group A, for each biomarker separately.

Group A Gamma-band synchronization Theta/Beta ratio Peak Alpha Frequency

V0 (n = 17) 11/17 6/17 10/17
V21 (n = 17) 12/17 8/17 11/17
Accuracy 67.6% 41.2% 61.8%
For more details, see supplementary material (Supplementary Tables 10–12).

These results confirm that Gamma-band synchroniza-
tion biomarker is more pertinent for inter-group classifica-
tion at V21 than the other two biomarkers. Interestingly,
the accuracy of the classifier whose features were computed
from the Gamma-band synchronization alone (see Table 6)
considering all the 10 features, was equal to the accuracy
of the classifier that considered only the seven selected fea-
tures among the 10 Gamma-band synchronization features.
Again, this finding confirms the result of the feature selec-
tion by the random probe method, namely that the selected
Gamma-band synchronization features was particularly rel-
evant to discriminate subjects of the two groups based on
their respective epochs.

3.3.3 Intra-group classification (V0 versus V21)
Finally, we aimed to determine whether there was a

significant difference between V0 and V21, within each
group separately. In other words, we wondered whether
subjects of Group A and Group B, separately, were able to
self-modulate their brain dynamics on the basis of the three
biomarkers of interest.

Table 7,8 show that the classifiers that used features
extracted from the Gamma-band synchronization and the
PAF were able to discriminate between epochs recorded at
V21 and those recorded at V0, only for subjects of Group A
(accuracies of 67.6% and 61.8%, for the Gamma-band syn-
chronization and the PAF, as shown in Table 7, versus accu-
racies of 35.7% and 32.1% regarding the same biomarkers
in Group B, as shown in Table 8). By contrast, the classi-
fiers using features extracted from the TBR were unable to
discriminate V0 from V21 in Group A (Table 7) and Group
B (Table 8).

It is worth noting that these results were obtained in a
double-blind setting: the information that subjects who re-
ceived real neural feedback belonged to Group A, and sub-
jects who received sham feedback belonged to Group B,
was disclosed after completion of data collection and anal-
ysis.

4. Discussion

The neurophysiological hallmark of brain aging is
characterized by a loss of synapses and neuronal apop-
tosis, leading to age-dependent decline of cognitive (but
also motor and sensory) functions [49,50]. Importantly,
however, growing evidence has shown plastic compen-
satory mechanisms that maintain neural functions, as in the
case of the neuronal and synaptic death that may occur in
the absence of cognitive symptoms for an unknown dura-
tion [51]. A combination of cognitive strategies and ad-
juvant interventions, such as EEG-neurofeedback training,
might strengthen such mechanisms. Specifically, the cur-
rent study aimed to determine whether healthy elderly with
subjectivememory complaints could learn tomodulate their
brain activity, through EEG-neurofeedback training (as op-
posed to sham feedback training), by focusing on EEG
biomarkers of aging, and whether it could have a positive
effect on their cognitive abilities. Based on neuropsycho-
logical tests, results showed that there were no significant
effects of the feedback training (either EEG-neurofeedback
or sham feedback) on subjects’ cognition. However, these
subjects should have only slight potential for improvement
at V21 given that their performance in these tests was al-
ready within the normal range and often close to the upper
reference limit at baseline (V0). The TMT-A test—a rel-
atively simple timed test in which subjects are required to
draw a line to connect consecutive numbers from 1 to 25—
was the only neuropsychological test in which the whole
sample (n = 31) or each group, separately, significantly im-
proved their score at V21. Yet, rather than reflecting an
improvement related to the feedback training, this finding
suggests a processing-speed improvement probably due to
a practice effect (i.e., improvements in cognitive test perfor-
mance due to repeated evaluation with the same test mate-
rials [52]). Notably, the subjects’ education level was high,
without significant differences between groups, which may
have contributed to these cognitive results.

8

https://www.imrpress.com


Table 8. True positive rate and accuracy (estimated by cross-test) of the classifiers discriminating the epochs recorded at V0
from those recorded at V21 from Group B, for each biomarker separately.

Group B Gamma-band synchronization Theta/Beta ratio Peak Alpha Frequency

V0 (n = 14) 6/14 7/14 5/14
V21 (n = 14) 4/14 1/14 4/14
Accuracy 35.7% 28.6% 32.1%
For more details, see supplementary material (Supplementary Tables 13–15).

Based on the EEG data analysis, the machine learning
method not only confirmed but further detailed the differ-
ences between biomarkers and between groups already ver-
ified with classical statistical tests: specifically, seven fea-
tures were identified as the most relevant for distinguishing
Group A from Group B, all belonging to Gamma-band syn-
chronization. Using these selected features, the SVM clas-
sifier was able to correctly classify the epochs of 11 (out
of 17) subjects in Group A, and the epochs of 11 (out of
14) subjects in Group B, reaching an accuracy of 71%. The
same accuracy was obtained by the SVM classifier based on
all the 10 features extracted from theGamma-band synchro-
nization. When considering the PAF or the TBR features, a
lower accuracy value (accuracy = 61.3%) was obtained to
distinguish between the epochs of the two groups. These
classification-based results are in accordance with the sta-
tistical analyses on EEG biomarkers, which revealed a sig-
nificant difference between groups regarding Gamma-band
synchronization with greater synchrony values for Group A
at V21.

To further investigate the relevance of each biomarker,
we performed intra-group analysis and compared, within
Group A and within Group B, neural changes relative to
each biomarker from V0 to V21. Our findings revealed that
the features extracted from the Gamma-band synchroniza-
tion, as well as from the PAF, were able to correctly classify
the epochs of subjects of Group A (that is, epochs corre-
sponding to 12/17 and 11/17 subjects for the Gamma-band
synchronization and the PAF, respectively), but not to dis-
criminate the epochs of subjects of Group B (that is, epochs
corresponding to only 4/14 subjects, for either the Gamma-
band synchronization or the PAF).

Taken together, these results pointed out that subjects
of Group B, who underwent the sham feedback, seemed un-
able to modulate any of the neural biomarkers. On the con-
trary, the results strongly suggest that subjects of Group A,
who underwent the EEG-neurofeedback training, were able
to improve the Gamma-band synchronization, but not the
PAF nor the TBR, although apparently more able to mod-
ulate the PAF than the TBR, as reported in Table 7. In-
terestingly, contrary to the PAF and the Gamma-band syn-
chronization, the association between age and TBR remains
unclear in the literature, with research evidence indicating
that TBRmight be more useful as a biomarker of attentional
control and cognitive performance anxiety than a biomarker
that typically declines with age [53]. While the current

study offers valuable insights, it is important to note that
longer EEG recordings during resting states could further
enhance the precision and depth of our results, providing a
more comprehensive understanding of the neurophysiolog-
ical changes associated with neurofeedback training in the
aging population.

Overall, our findings are in line with one of the main
criteria for successful neurofeedback [54], clearly distin-
guishing subjects of Group A from those of Group B, based
on EEG changes pre- versus post-training (V0 vs V21). In
particular, they provide robust evidence that elderly sub-
jects can learn to self-modulate their brain activity, specifi-
cally enhancing the Gamma-band synchronization that sup-
ports higher cognitive processes (often disrupted by aging)
[55], through EEG-neurofeedback training. Last, these re-
sults also validate our portable, non-invasive, and low-cost
BCI, comprising only five EEG electrodes, as a pragmatic
tool for neurofeedback training.

5. Conclusion
The neuromodulation effect observed in this double-

blind study is a very encouraging outcome, which fits into
growing evidence suggesting that EEG-neurofeedback con-
stitutes a promising non-pharmacological intervention for
the effective improvement of brain activity in the elderly.
Such evidence may prove extremely valuable in the de-
velopment of combined strategies aimed at preserving a
healthy brain during the aging process, given the increased
risk of neurodegenerative disorders, like AD, with advanc-
ing age.

Note that gamma rhythms have been implicated in
recruiting neuronal and glial responses to effectively re-
duce amyloid pathology levels in a mouse model of AD
[56,57]. This is of utmost relevance because it suggests
a potential therapeutic benefit of training brain oscilla-
tions in the Gamma-band in elderly subjects at high risk
of developing this neurodegenerative disorder. Hence, it
would be of major interest to investigate whether our re-
sults can be extended to patients suffering from AD at its
earliest stages [31], and further explore whether, in this
case, EEG-neurofeedback targeting this specific Gamma-
band synchronization biomarker could have a positive im-
pact on patients’ cognition, but also on the clearance of
AD-pathology, ultimately delaying the course of this dev-
astating disorder. Following on from the previously cited
research on mouse models of AD, a recent study also con-
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ducted by Li-Hue Tsai demonstrated that 40 Hz light and
sound stimulation in humans can induce gamma entrain-
ment in multiple brain regions, including subcortical areas.
Remarkably, this study further revealed lesser ventricular
dilation and lesser hippocampal atrophy in mild AD pa-
tients receiving 40 Hz stimulation daily for three months
[58]. In line with these pioneering findings, the current
work supports the potential of Gamma-band synchroniza-
tion as a promising neural biomarker for meaningful inter-
ventions to tackle the cognitive decline that often accom-
panies brain aging and, eventually, to modify the progres-
sion of AD. These premises need to be validated in a large,
placebo-controlled trial on this specific biomarker from the
preclinical stages of this neurodegenerative disorder.
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