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Real almost reducibility of differentiable real quasi-periodic
cocycles

M.Chatal* C.Chavaudret! L.H.Eliasson?
January 26, 2025

Abstract

We prove that infinitely differentiable almost reducible quasi-periodic cocycles, under a Dio-
phantine condition on the frequency vector, are almost reducible to a real constant cocycle
with a real conjugation, up to a period doubling.

1 Introduction

Let w € R? a rationally independent vector, i.e a vector satisfying
(k,w) #0, VkeZ\ {0},

and let A : T¢ — gl(n,C) of class C*, where T? = R?/Z4. The quasiperiodic cocycle associated
to A is the map (of class C*) X, 4 : R x T¢ — Gl(n,C) which is solution of

X6 4(0) = A0 + tw) X[, 4(0)

Remark 1.1. In this paper, all functions and mappings will, unless otherwise specified, be of class

C™.

We will say that the cocycle X, 4 is real if A is a real valued map, and that it is constant if A is
a constant map.
A cocycle X, 4 is conjugated to a cocycle X, p if and only if there exists a map Z : T¢ — Gl(n, C)
such that

X5 A(0) = Z(0 4 tw) X, 5 Z(0)™" V(t,0) € R x T (1.1)

The mapping Z : T¢ — Gl(n,C) is a conjugation between X, 4 and X, p. It satisfies the condition
0,Z(0) = A0)Z(9) — Z(9)B(H) V6 € T?, (1.2)

where

d
&JZ(@) = EZ(Q + tCU)‘t:(),
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which is equivalent to (1.1).
A cocycle is reducible if and only if it is conjugated to a constant cocycle. A cocycle is real reducible
if and only if it is real and conjugated to a constant cocycle by a real conjugation.

A natural question is whether a real and reducible cocycle is real reducible. The answer is yes
modulo a “period-doubling”:

Theorem 1.2. If X, 4 is a real and reducible cocycle, then X%,A2 is real reducible, where
Ay(0) = A(20) 6 €T
Hence, there exist a map Z : T¢ — Gl(n,R) and a constant matrix B € gl(n,R) such that
02Z(0) = A(20)Z(0) — Z(0)B V0 € T". (1.3)

If we denote

W(20) = Z(0),

then (1.3) says that
O,W () = AOYW(F) — W (0B VO € 2T

which looks very much like real reducibility of X, 4. But with the difference that ¥ is not defined
on T¢, but only on the 29¢-fold covering R?/(2Z)¢ of T¢ — this “period-doubling” cannot be avoided
in general.

Theorem 1.2 was proven in the article [4], which also contains several other results of similar
nature.

In this paper we shall discuss a similar result in the framework of almost reducible cocycles,
i.e. cocycles that can be conjugated arbitrarily close to constant cocycles. There is no canonical
meaning of “arbitrarily close” and we shall use a pretty stringent formulation.

A cocycle X, 4 is almost reducible if and only if there exist sequences of maps Z; : T —
Gl(n,C), F; : T — gl(n,C) and a sequence of matrices B; € gl(n,C) such that

0.7;(0) = A(0)Z;(0) — Z;(0)(B; + F;(0)) V0 € T (1.4)
with
Jim [ ZF e Flle =0, ¥rom e N (1.5)

We will say that a real cocycle X, 4 is real almost reducible if and only if it is almost reducible
with a sequence of real-valued maps Z; and a sequence of real matrices B; verifying (1.4) and
(1.5) (then Fj is automatically real).

In this paper we shall prove:

Theorem 1.3. If X, 4 is a real cocycle which is almost reducible and w is Diophantine, then
X a, ts real almost reducible.

This means that there exist a sequences of maps Z; : T¢ — Gl(n,R), F; : T — gl(n,R) and a
sequence of matrices B; € gl(n,R) such that

0s Z;(0) = A(20)Z;(0) — Z;(0)(B; + F;(0)) V0 € T

Lthis formulation denotes the condition: Z;“l =Z;



satisfying (1.5).

An important difference with respect to the reducible case is worth pointing. In the reducible
case, no arithmetical conditions on the frequency vector w is needed, but in the almost reducible
case the proof requires some such conditions. Indeed, we need to assure that the primitive of a
quasi-periodic function

R>tw— f(tw)

is quasi-periodic and smooth, and this requires arithmetical conditions on the frequency vector w.
We have no idea if the theorem remains true without such conditions.

Reducibility and almost-reducibility of quasiperiodic cocycles are important properties to
understand the behaviour of a cocycle. See for example [6] and [11] for applications to one-
dimensional quasi-periodic Schrodinger operators, and [7] for applications to quasi-periodic cocy-
cles on SO(3,R).

The notion of almost reducibility is strictly weaker than that of reducibility 2. For example, in
the analytic perturbative case, under arithmetical assumptions on the frequency vector, there are
constant cocycles, all of whose perturbations are almost reducible but, generically, not reducible
— see for example [6] and [7].

Both reducibility and almost-reducibility are® very much perturbative phenomena. Most results
are available in analytic or ultradifferentiable category (see [6],[7],[10],[3]...), much fewer in class
C> — for a result in C* see for example [9)].

Perturbative reducibility results require arithmetical conditions on the frequency vector. A
Diophantine condition is most often used but it can be relaxed to a Brjuno-Riissmann condition
(see [5],[2]...).

Without arithmetical conditions, weaker notions ? have been proven using renormalization
techniques — see for example [1]. These results are for the moment very much restricted to two
frequencies w = (wy, wy).

1.1 A word about the proof

It is pretty forward to show that if a real cocycle can be conjugated to a real matrix by a complex
conjugation, then it can be conjugated by a real conjugation. Therefore it suffices to prove that a
real cocycle can be conjugated to a real matrix.

In the article [4] one uses (complex) invariant subbundles of a real cocycle to construct real
invariant subbundles. In this paper we give another proof of this. Indeed here we prove that
a complex matrix to which a real reducible cocycle can be conjugated, has the same spectral
properties (i.e. Jordan normal form) as a real matrix — it can therefore be conjugated to a real
matrix. We prove this in section 2. We generalize then this approach to almost reducible cocycles,
but there are several complications.

We would like to prove that if a real cocycle can be almost conjugated to a sequence of real
matrices by complex conjugations, then it can thus be conjugated by real conjugations. This may
be true, but we have only been able to prove this under a Diophantine condition on the frequency
vector w — see section 3.

We can always conjugate a matrix to Jordan normal form but we have no control on the
conjugation. In the reducible case this gives no problem, but in the almost reducible case it does.

2except whenn=1ord=1
3except whenn =1ord=1
4rotational reducibility and almost rotational reducibility



This problem is treated in section 4. Finally an almost reducibility to a Jordan normal form
cocycle result is given in section 5.

In section 6 we analyse the spectral properties of a complex matrix to which a real cocycle is
almost reduced. We show that, up to a sufficiently small perturbation, it has the same spectral
properties as a real matrix.

Finally we put the results from sections 5 and 6 together and show that the estimates obtained
are good enough to guarantee almost reducibility to real cocycles.

1.2 Notations
For any set X, we denote by #.X its cardinality.

For any n x n-matrix A we denote by o(A) its spectrum, that is to say the subset of C consisting
of the eigenvalues of A. Clearly #o(A) < n.

Since all norms on gl(n,C) are equivalent, the definition of almost reducibility does not depend
on the choice of matrix norms. We shall usually, unless otherwise said, use the operator norm,
but any other norm on gi(n, C) would do.

For a vector k = (ki,...ks) € R denote by |k| its I* norm: |k| = 3 |ki].

As for the function-norms, they are the usual:

| Alleo = sup [|A®)]

and for all r € N,
|Aller = max{||[0*A|co : @ € N |a] < 7}
The norm ||.||¢r is a complete norm on the space of (matrix-valued) C"-functions.

Let us also recall two inequalities which we shall use frequently:

|ABlle < CollAlle-|Bller, %A, B € C7(T%, gl(n, C)) (L6)

1A ler < CHlATH G I Aller, YA € C7(T?, Gl(n, ©)) (L.7)
where C). is a constant which depends on r.

Let us finally recall the Diophantine condition. We say that w € DC(k,7) (for some x > 0 and
7> d—1) if and only if

(e, w)] > vk € Z4\ {0} (1.8)

e
L
2 Real reducibility

In this section, we prove a real reducibility proposition. This result has been already proved in
[4], but the proof here is different, and will be useful to understand the real almost reducibility
result later.

Proposition 2.1. If two real cocycles X, 4 and X, p of dimension n are conjugated, then they
are conjugated by a real conjugation.



Proof. Let Z : T — Gl(n,C) a conjugation between X, 4 and X, g
0,74 =AZ — ZB.

The polynomial
det(RZ(0) + A\3Z(0))

is of degree n and is not the zero polynomial because it doesn’t vanish when A = ¢ (since Z(0) =
RZ(0) +i3Z(0) is invertible) and thus it has at most n zeros. Choose A € R such that RZ(0) +
ASZ(0) is invertible and let
W(0) =RZ(0) + \3IZ(0),
then
XL A(0)W(0) =W(0 +tw) X, 5(0), 0€ T
Moreover, if there exists § € T? such that det W () = 0, then the previous relations imply

det W (0 +tw) = 0 for all ¢ € R, and since w is rationally independent, {[tw];t € R} is a dense set

in T¢ and the continuity of det W implies det W = 0, which is impossible because we chose A real
such that RZ(0) + ASZ(0) is invertible. Thus W (6) is invertible for all § € T O

Remark 2.2. The real conjugation in the proposition 2.1 and the given conjugation have the same
period: there is no period doubling.

Proposition 2.3. Let n € N*, U : T — Gl(n,C) continuous and let B € gl(n,C) in Jordan
normal form. If B
0,U=BU -UB (2.1)

then there exist W : T¢ — Gl(n,C) of class C* and B’ € gl(n,R) such that, for all € T?

D W (0) = BW(6) — W (6) B

We postpone the proof of Proposition 2.3 after a few lemmas.
Denote

M = {2in(k,w), k€ '}

Let o(B) = {ai, -+, a;} the spectrum of B. The relation (2.1) implies, denoting B = diag(B;) ;=1
«; the eigenvalue of a block B; and U = (U}); j=1...,

.....

d,U} = BU! — U/ B;. (2.2)

Lemma 2.4. 1. Ifa; —a; ¢ M, the block Uij is zero. In particular, if o, —a; ¢ M for a given
7 and for all @, then det U = 0.

2. Moreover, if o — a; = 2im(k;j,w) for some k;; € Z\{0}, then the only non zero Fourier
mode of the block U] is indexed by k; ;.

Proof. The relation (2.1) implies, if U/ = (wir ), denoting s; = mult(e;) and s; = mult(e;), for
all (i/,j/) < [[17 Si]] X [[17 Sj]] (letting do = 531’ = 0)7

Outtir jr = (i — Q) uir o + Ogtis g jr — -1y jr1, (2.3)



with the 0,0, € {0,1}. Let i, j such that o; — &; ¢ M, then decomposing these equations with
Fourier coefficients and solving the equations in the right order, this implies

uy,jr =0

whenever o = a; and o = ;.
Now, given ay, if a; — 5 ¢ M for all 3, this implies that there is a zero column in U and then
det U = 0 which is impossible by assumption on U.

Now assume that for some 4, j, a; — &; = 2im(k; j,w). If 6y = 65— = 0, then (2.3) implies that
the only non zero Fourier mode of u; j: is indexed by k; ;. Then recursively on ¢, j' corresponding
to the same two eigenvalues of B, one proves that the only non zero Fourier mode of the block Ul-j
is indexed by &; ;.

O

Definition 2.5. We will say that two complex numbers a; and «; are linked if and only if there
exists k; ; € Z% such that

o; — @j = 2i7r<kij,w>
(that is to say a; — a; € M).

Remark 2.6. The relation of being linked is symmetric, but neither reflexive nor transitive.

Definition 2.7. We call chain of length k — 1 a sequence «;,,---,q;, such that for all j €
{1,--,k =1}, ay, is linked to ay,,,. If moreover oy, = ;, and k > 2, we will say it is a loop of
length k — 1.

We will say that two numbers «, § are chain-linked if there is a chain between « and (.

Remark 2.8. The relation of being chain-linked is an equivalence relation on any set of complex
numbers I' which satisfy

for all x € I, there exists y € I' such that « and y are linked (2.4)

(this will be the case when we will consider the spectrum of our matrix B). Considering such a
set I' C C, we shall denote by [a] the equivalence class of a € T.

Notice that if o, § are linked by a chain with even length, then o — 8 € M.

Also, it is easy to notice that if there is a chain of length 3 then the first and the last numbers
are linked (simply write the resonances relations).

Sublemma 2.9. Let I' C C satisfying property (2.4). Given o € I', « is linked to itself if and
only if [] contains a loop of odd length.

Proof. 1f « is linked to itself, then there is a loop of length 1 between « and itself. Suppose now
there is a loop of odd length in [a]. Denote ag, ... a4 this loop, and suppose a = «a;. Then,

ap— Q=] — Qg +0y —ag+--+a,— o €M

and then «; is linked to itself. O



Let us investigate the possible links between the eigenvalues of B.

Lemma 2.10. Under the assumptions of Proposition 2.3, o(B) satisfies property (2.4). Moreover,
for all « € o(B), if [a] does not contain any loop of odd length, then there is a partition of
[a] = X1 U Xy where

o every element of 31 is linked to every element of ¥,
o the sum of multiplicities of the eigenvalues in ¥y equals the sum of multiplicities of the
eigenvalues in .

Proof. By the lemma 2.4, the property (2.4) holds, and the blocks of U relating different equiv-
alence classes of eigenvalues are zero. Therefore, if U has invertible values, the blocks of U
corresponding to an equivalence class of o(B) are invertible.

Define the equivalence relation
a; ~ «; < there exists a chain of even length between a; and «; in [«].

From remark 2.8, there are only 2 distinct equivalence classes ¥ = {fi,...,0,} and ¥y =
{71, ,7s}.- Moreover, two elements of the same equivalence class cannot be linked, otherwise
we would have a loop of odd length. Any element in ¥; is linked to all elements of ¥5. Indeed let
f € ¥y and v € ¥y, then  and 7 are linked by a chain (because they both are in [«]), now this
chain has an odd length by definition of Y1, ¥, therefore they are linked.

Then from lemma 2.4, the block U corresponding to [a] has the form

51 67“ Yo s

07— o 0 = *
’yl ES * O O

Vs * * 0 0

(because the f3; are not linked to each other, nor are the ;), which is invertible only if }-}_; mult(5;) =
Y5y mult(;). [

We can now prove proposition 2.3:

Proof. [of the proposition 2.3] Construction of W. By lemma 2.10, o(B) satisfies the property
(2.4) therefore the relation of being chain linked is an equivalence. Let [a] C o(B). There are two
cases:

1. If [ contains a loop of odd length, then by sub-lemma 2.9, for all «; € [a],
oy — C_Vz = 2Z7T<]€Z, w>



2. Otherwise, [@] does not contain odd loops, and from lemma 2.10 write [a] = 3, UX,. Choose
arbitrarily o;; € ;. Then from remark 2.8, for all a; € X, there exists k; € Z% such that

a; — oy = 2im(k;, w).
Also, for all a; € ¥y, there is k; € Z? such that

a; — o = 2im(k;, w).

Then we construct W € C°(T¢ Gl(n,C)),W = diag(wg)r=1...; (where wy is a sub-matrix
associated to the generalized eigenspaces of the eigenvalue ay,) such that for all § € T¢,

wz(9> — e2i7r(ki,€>l

in case 1;

'LUZ(Q) — e4i7r(ki,€>[

in case 2.

The relation

0sW = BW — WB' (2.5)

defines a matrix B’ of dimension nxn (notice that B’— B is a diagonal matrix, since the coefficients
for B and B’ outside the diagonal are the same), whose diagonal coefficients are either real (in
case 1) or come by pairs of complex conjugates with the same multiplicity (in case 2).

Now we will prove that, in case 2, the two blocks of B’ corresponding to complex conjugate
eigenvalues are algebraically conjugate, which will imply that they have the same Jordan structure.

The relation (2.2) combined with (2.5) implies that for all 4, j, if we denote Uj (0) = U} (26),

s (w; ' Ui w;) = Bj(w; U] w;) — (w; U} w;)Bj

and by construction and the second statement of Lemma 2.4, w; U/ w; is constant. Up to a
permutation, one can assume that the blocks of B corresponding to the eigenvalues in the same
equivalence class are next to each other and can be grouped in a block By, (where [a] stands for
the equivalence class in question). For any a € o(B), letting Wi = diag(w;, i € [a]) and U, (0)
be tlrflie block of U(f) := U(20) corresponding to [a] (so U = diag(Ujq))ja]), then W[;}lU[a}W[a]
satisfies

O (Wiol Ut Wia)) = Biog Wi UaiWia) — Wig Uie) Wiay Bl

Moreover, W[;}l UjjW)a) is constant and also invertible since U is invertible. Thus B, and Bfa] are
algebraically conjugate, which means that two blocks of B’ corresponding to complex conjugate
eigenvalues have the same Jordan structure.

The matrix B’ is not necessary real, but can be conjugated to a real matrix applying lemma
8.9 in appendix. O



We now prove the first main theorem:

Theorem 2.11 (Real reducibility). Let A : T — gl(n,R) such that X, a is reducible. Then
X 4, 1s real reducible, where

Ay(0) := A(20), VO e T
Proof. By assumptions, there exist B € gl(n,C) and Z : T? — Gl(n, C) such that
0wt =AZ —ZB

and then

and
0,2V =BZ'—Z71A.

Let P an invertible matrix such that B = PJP~!, where .J is in normal Jordan form. Let
U=P'Z7'ZP,
then
0,U = 0,(P*Z7'ZP)

=P 10,2 NZ+Z10,(Z))P

=P '((BZ ' - Z'A)Z+ 72 (AZ - ZB))P

=JU -UJ.
We can apply proposition 2.3 and deduce that there exist W : T — GI(n,C) and J' € gl(n,R)

such that
8%W =JW —-WJ.

Let Z'(0) = Z(20) PW (8). Therefore

05 7'(0) = 0= Z(20) PW (8) + Z(20) Pos W (6)
= (A(20)Z(20) — Z(20)B)PW (0) + Z(20)P(JW (8) — W (6).J')
— A(20)Z(20)PW (0) — Z(20)PW (0).J'  since BP = JP
= Ay(0)2'(0) — Z'(0) .

Remark that Z’ is not necessary real, however by proposition 2.1, there exists A € R such that
RZ'+ 237" T — Gl(n,R)

conjugates the two real cocycles Xy 4, and Xw .
O

In the remainder of the article, we will prove the second main result, which is that almost
reducibility for a real cocycle implies real almost reducibility.



3 Construction of a real change of variables

3.1 Lemmas
In this section, we prove a few lemmas about the trace of a system and the determinant of a
conjugation. They will be used to construct real changes of variables for real almost-reducible
cocycles. Here, we need an arithmetical condition on w.
3.1.1 A small divisor lemma
Let f: T? — C be C* and consider the equation

{awg =/ -0

3(0) = 0. 3

Lemma 3.1. If w € DC(k,T), then there exists a unique solution g : T¢ — C to (3.1) and it
satisfies

1
lgller < Cofllersasrer, ¥r 20,
where C,. 4 is a constant depending only on r,d.

Proof. Developing g in Fourier series, we get
f k i
g(e) ~ Z ( ) 62 (k,G).
Then for all s > 1, since w € DC(k, T),

< AL L S
lgllco < k%éo Gy

1 —
< Cs— > [k|™" sup |0 f (k)]

R k0 |a|=s
1 T—S58
< Co=|flles > |kl
k k0
1 e sdd—
< Csa—|flles > 57!
K >0
and this converges if s > 7+ d + 1.
The higher derivatives are obtained by differentiating in the Fourier series. O

3.1.2 Trace and determinant

Lemma 3.2. Let A : T¢ — gl(n,C) and w € DC(k, 7). There exist Z : T¢ — Gi(n,C) and
B € gl(n,C) of constant trace and of class C* such that

0uZ =AZ — ZB.
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Proof. Let B = A—(Tr A— [1a Tr A(9)d#)I. Then B has constant trace. If f = Tr A— [3. Tr A(6)d6,
then f(0) = 0 and the equation
{ Oug = f
9(0) =0
has a unique solution T¢ — C (which is of class C*°) by Lemma 3.1. Let now Z = 9] : T? —

Gl(n,C), then Z satisfies
0uZ = AZ — ZB.

Lemma 3.3. Let A, B, F, 7 : T — gl(n,C), with Z differentiable. If
0.2 =AZ —ZB+ F
then
O, det Z = Tr(A — B) det Z + Tr(FZY)
where Z°Y s the transpose of the cofactor matriz of Z.
Proof. We have, for all § € T¢, Z(0)Z%(0) = det Z(0) - I, so
O, det Z(0) - I =0,2(0)Z°%(0) + Z(0)0,2°Y(h),
and taking the trace we find
nd,det Z = Tr((AZ — ZB + F)Z°Y) + Tx(Z0,2°Y) =
= Tr(A— B)det Z + Tr(FZ*Y) + Tr(Z0,2°Y).
We want to show that (n — 1), det Z = Tr(Z09,Z°%). From the formula of the differential of
the determinant: ’
D(det A)[H] = Tr(A"Y H)
where A% is the transpose of the cofactor matrix of A, and from the formula of the derivative of
composite functions

9 of
&(F o fli=o = Df(t)F[E Ji=o

where here 9
F=det, f=7(0+tw) = f(0) = Z(0), a—{lt:o = 0.2

and therefore _
Dy Fli=o = Tr(Z2°Y).

Hence,

O,det Z =Tr(2°%9,7) = Tr(0,272°%)
=Tr(0,(Z22°%)) — Tr(Z20,2*Y)
= Tr(0,(det ZId)) — Tr(Z0,2°Y)
=nd, det Z — Tr(Z0,2°Y).

Finally,

O, det Z = nd, det Z — Tr(Z0,7Z°Y)
= Tr(A — B) det Z + Tr(FZ°%).

11



Remark 3.4. This lemma does not require any arithmetical condition on w.

The following lemma will be used to construct a real invertible conjugation out of a complex
one.

Lemma 3.5. If Z : T? — Gl(n,C) satisfies
|/Td det Z(8)dd] = 1,
then there exists A € [—1,1] such that
| /T det(RZ(6) + ASZ(8))d8] > C,y > 0, (3.2)

and the constant C,, only depends on n.

Proof. Let
_ /T | det(RZ(0) + ASZ(6))do.

Then P is a polynomial of degree n which is non zero because P(i) is complex number of unit
modulus by assumption. Hence

PN =pA—a1)...(A—ay)

for some u # 0, «, - -+, a,, € C, and we have

_ P(i)
=G

i—ay)...(i—a,)
By the Pigeon hole principle, there exists k € {0,...,n} such that
2k . %+1

(_1+’)’L——|—1’ ﬂ {%al,...,%an}:@.
If \o=—1+ 275:11, then one has
1 .
Ao — aj| = Ao — Ray| > il V.
If |ovj| < 3, then |/\Z.° aa]” > I +1 . If now |a;| > 3, we have |’\°| < 2 therefore |’\0 1] > 3, and
also |--| < ¢ which implies |~ — 1| < 3. Thus
A
|>\-0—Oéj| _ ‘a_o_l‘ 21
iyl 12171
SO
P> Tp Dozl p Dozl

Iz—%l | i—a;| — (An+1)"

loj| <3 aj|>3

so Ao satisfies (3.2).

12



3.2 Construction of a sequence of real changes of variables

Proposition 3.6. Let X, 4 be a real cocycle which is almost reducible to real matrices, i.e. there
exist sequences Z; : T¢ — Gl(n,C), B; € gl(n,R) and F; : T¢ — gl(n,C) such that

0.2; = AZj — Z;(B; + F})
and
: +1m _
i |ZE B F e =0, Ym,r >0

If w € DC(k,T), then X, 4 is real almost reducible.

Proof. By Lemma 3.2 we can assume Tr A is constant, and since Tr(A)I commutes with Z;,

1 1
0,Z;=(A—=Tr(A)-1NZ; — Z;(B; + F; — =Tr(A) - I)
n n
therefore, by replacing B; with B; — %T r(A) - I, we can assume that

TrA=0.

We have, for all § € T¢,
| det Z7 ()] < CullZ5 ([0

and, hence for all § € T,

1

det Z71(0)|| = |-
et 27 O = 35715

1 -n
|2 1771

So the quantity

1
a; = (/Tddeth(ﬁ)dG)" eC
satisfies ]
0< ———— <la;| <C|Z|co- 3.3
C,,/,LHZj_lHCO | J| || ]HC ( )
Define now )
Zj — —Zj.
a;
Then

0.7; = AZ; = Z;(B; + F)
and for all » € N, (3.3) implies
1Zller < CUIZ Mol Zillers 1125 ler < CrllZjlleo 1 25 e
which implies that .
tim | ZE 2] Fler =0, ¥m,r >0,
J—+0o0

Replacing Z; by Zj, we can therefore simply assume that
) det Z;(0)df =1, Vj. (3.4)
T
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Applying Lemma 3.3 with B = B, and F' = —Z;F}, we have

0., det Z; = Tr(A — By) det Z; — Tx(Z;F; Z3%)
= — TI'(B]' + F’]) det Zj.

Hence

0= /T 0, det Z,(6)d6 = — Tx(B;) — /T TR(F(0)) det Z,(6)do.

We can therefore simply assume (replacing B; by B; + + [ra Tr(F;(6)) det Z;(6)d61, which is real
since B; is real and from the previous equality), that

Tr(B;) =0, V.

By Lemma 3.5, which can be applied thanks to (3.4), there exists a A\; € [—1,1] and C,, > 0 such
that
Wj = éRZ] + )\j%Zj

satisfies -
|det W, (0)] = | /T et W, (0)d6] > C,. V). (3.5)

Clearly, since A and B; are real,
0.W; = AW; — W;(B; + G;)
where G; = W, (R(Z;F}) + \;S(Z;F})). In particular
Jim [[Wlie-|Giller =0, Vm, 7 > 0.

There remains to study the inverse of W;.
By Lemma 3.3, we have

0., det W; = Tr(A — B;) det W; — Te(W;G, W) =

= —Tr(W,G;WiY) = —Tr(Gidet(W;)) := H;.

Since
| Hjller < CollGjller[[Wlle-

we have
lim ||Hj|ler =0, Vr>0.
j—o00

By Lemma 3.1, if w € DC(k, T), we have
— 1
|| det W, — det VVj(O)HCO < CT»,dEHHjHCTJr&H.
So for j sufficiently large and thanks to (3.5), we have

| det W;(0)| > =C,,, VO € T

N —

14



This implies that W; is invertible, and for j sufficiently large,
W o < Crl|Wjlleat

and, by (1.7), 1 1yr+1
Wi e < CHIW G IWSl1Er, V.

In panticulax
'liIH H J 1HE')Z"||GJ||CT - 07 VT, 1 Z O
J—+o0

O

4 Jordan normal form with estimates on the conjugation
matrix

This section is devoted to conjugating a matrix to its Jordan normal form with sufficient estimates.

4.1 Column echelon form by an algebraic conjugation

Definition 4.1. We say that a matrix A is in column echelon form if it has strictly increasing
column lengths, except the first columns which can be zero. Its pivots are the last non zero
coefficient of each non zero column.

We will now conjugate a nonzero nilpotent matrix A € gl(n,C) to a nilpotent one in column
echelon form. Moreover, the conjugation will be unitary.
Let m the index of A, that is to say the smallest integer m such that A™ = 0 (here m > 2 since
A is nonzero). Denote L : C* — C" the linear map represented by A in the canonical basis, and
K; = ker I’ the kernel of the iterates of L, for all j € {0,...,m}. Then we have

{0}:K0C¢K1QK2Q“'§Km_1 Cx K, =C".

Let for all j € {1,...,m}, U; = K; N Kj-L_l where Kjl_l is the orthogonal complement of K;_; in
C" equipped with the standard inner product. This implies the orthogonal direct sum

Kj — Kj—l @l U]
from which we can define proj v, I = Uj the orthogonal projection onto U;. Finally,
Ki=U et Uet - ot U,.

We will also denote
Tj = dlm Uj.

Lemma 4.2. With the above notations,

(i) L(K;) C K;—y forall j € {1,...,m},

(ii) the restriction L|y, of L to U; is injective for all j € {2,...,m},
(i1i) L(U;) N Kj_o ={0} forall j €{2,...,m},
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(iv) (dim U;);=1...m S a non increasing sequence.

-----

Proof. (i) Forall j € {1,...,m},

weK;je Du=0& L (Lu)=0& Luec K, ;.

(i) Let j € {2,...,m}, and let v € U; = K; N K-, with u # 0. Then u ¢ K;_; and then

L7 # 0, which implies (since j —1 > 1) Lu # 0.

(iii) Let j € {2,...,m} and let a nonzero u € U; = K; N K-, then u ¢ K;_, and from (i),
Lu € K;_1. Reasoning by absurdity, suppose that Lu € K;_», then L'~'u = L7=%(Lu) = 0,
which implies u € K;_; leading to a contradiction.

(iv) Let j € {2,...,m} and u,...,u, linearly independent vectors in U; C Kj;. From (ii),
Luy, ..., Lu, are linearly independent vectors in K;_; = K;_» & U;_; and from (iii),
projy, (Luy), . .. ,Projy,_, (Lu,) are linearly independent vectors in U;_;, which implies that

]

Proposition 4.3. Let A a nilpotent matriz of index m > 2. With the above notations, for all
j € {1,...,m}, there exists an orthonormal basis B = {uj,... ,uij} of U; (where r; = dimUj)
such that, for all j > 2 and for all k € {1,...,7;}, letting K_1 = {0},

Lul, € span(ul ™', ... ,ui_l) ot K; o
and o
(Luj,uf ') # 0.
Proof. Let B™ = {uf",...,u" } an orthonormal basis of U,,. From (i) of lemma 4.2, { Luf", ..., Lu)" }

are linearly independant vectors of K,,_; = K,,_o &+ U,,_1 and from (iii) of lemma 4.2, {v, =
projy _ (Lui),...,v,,, = projy _ (Lu )} are linearly independant vectors of U,,_;. Apply
Gram-Schmidt on {vy,...,v,,}. Then there exists an orthonormal basis B = {uf,...,u,. }

7 Trm—1

(taking {v1,...,v,, } and completing into an orthonormal basis if 7,1 — 1, > 0) of U,,_; such
that for all k € {1,...,r,} (recall rpp, < 7ppq),

vy, € span(ul, ..., uy)

and
(u,, vg) # 0.
Then for all k € {1,--- ,r,},

Lu™ € span(u), ..., u}) & Ko

and
<Lu2n’,u;€> = <u;mvk> 7£ 07

and let B™~! = B. Now if m = 2 we are done, and if m > 3, we construct every B’ the same way
from Uj 1 and B/, O

16



Corollary 4.4. Let L be a nilpotent linear application of index m > 2. With the above notations,
there exists an orthonormal basis B = {uq,...,u,} of C" such that L is represented in this basis
by the matrix

0 A% *
0 0 A3 - :
A=109 0 0 .« (4.1)
00 0 0 A7
0O 0 O 0 0

where, for all j € {2,m}, A;_l is a 7;_; x r; matrix of the form

(071 * *

0 *
0 0 ap
0

0 0

if rj_y >rjor
(03] * ES

0o . x
0 0 a

if ri—1 =Ty, and with (673 §£ 0 for all 7 € {1, . .,Tj}.

Proof. Concatenating the basis B° obtained for all i € {1,...,m} in proposition 4.3, blocks A;_l
have coefficients ' '
(uf, ", Luf)

forall ke {1,...,m1}, e {l,...,r} O

Lemma 4.5. Let A of the form (4.1). Let B with the same block-triangular form as A, that is to
say, according to the notation of corollary 4.4, for all i > 7,

Al=0= B!/ =0.

Denote by L and Lg the linear maps represented by A and B respectively in the canonical basis.
Then

(4) . .
ker L7, D ker LY, Vj.

(it) If ' ‘
ker L7, = ker LYy, Vj,

then the block Bg_l is of maximal rank r; for all j.
Proof. (i) follows from the assumption on B.

To see (ii), notice that _
K =ker L)y = R""*75 % {0}
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and
A T;
Uj = {0} x R" x {0}.

Then
0 0
La:Urs |ul = |A_ju| €U,
0 0

which is an injective map.
If now ker L}; = ker LY, then, by the second statement of Lemma 4.2,

0 0
Lp:U!> |u|— | Bl_ju| €Ul
0 0

is injective. This is the same as Bj_; being of maximal rank 7;.

4.2 Reduced column echelon form

Definition 4.6. A matrix A € gl(n,C) is on reduced column echelon form if and only if it is on
column echelon form with all pivots equal to 1.

We shall conjugate a (nonzero) nilpotent matrix on column echelon form to reduced column
echelon form modulo a perturbation with control on the conjugation.

Lemma 4.7. Let B be a matriz on column echelon form with pivots (a;);. If
|aj| 2 o> O> \V/],
then there exists a diagonal matriz S,

I
) )%

such that ST1BS is on reduced column echelon form.
The constant C' only depends on n.

1] < ¢

Proof. Let B in column echelon form, then up to a change of orthonormal basis, it has the form of
Corollary 4.4; we will look for a block-diagonal S where the diagonal blocks S; are diagonal and
their dimensions are r; (the number of columns in Bj-'_l). Then for all j, we want to find S; such
that

* *

*

-1 i .
Sj—1B§—1Sj = 0 1

- OO =

where S;_; is given. These equations can be solved uniquely, one by one, starting with S; = 1.

Thus,

1 — n
ISIH< = IS7H < 1BI™

One can then just multiply S by /|| B||"0™ to get the estimate.

18



Proposition 4.8. Let A a nilpotent block diagonal matriz. Let € > 0 and (0x)r>0 a positive
decreasing sequence such that

e e < 2% V>,

Then there exists 1 < k < "72 and S € Gl(n,C) with

ISE] < C(l| Al + 2%-1) 55 (4.2)

such that
S71AS = A+ F,

with
IF|| < C(||All 4 2e%-1)re om0, (4.3)

where the constant C only depends on n, and S and A’ are block diagonal with the same block
decomposition as A, and each block of A" is on reduced column echelon form.

Proof. For any nilpotent matrix A, define
oker(A) = (dimker L4, dimker L%, ..., dimker L'y 1)

where L, is associated to A in the canonical basis. This is an increasing sequence of integers
€ [1,n] and
oker(A) = (n,n,...,n) <<= A=0. (4.4)

If B is another nilpotent matrix we say that o ker(A) > oker(B) if and only if

> dimker L, for all j

dim ker L/, . . 4
> dimker L};  for some j

(this is of course not a total ordering).

By applying Corollary 4.4 to each block of A we can assume, without restriction, that each
block of A; = A is on column echelon form. By induction:

Base case: If no pivot is < £, applying Lemma 4.7 to each block of A;, there exists a diagonal
matrix S; with ||ST| < C(”ﬁ;—i”)% such that S;'A4;5; is on reduced column echelon form, so we
are done with F' = 0.

If there are pivots which are < &%, let Fy € gl(n,C) whose non zero coefficients are those
pivots (then || F|| < %, and A; — F} has a block not of maximal rank). Apply Corollary 4.4 to
A, — Fy: there exists a unitary matrix U; € Gl(n,C) such that Ay, = U; (A, — Fy)U; is block
diagonal, with blocks on column echelon form and by Lemma 4.5, o ker(As) > o ker(A;). We have
estimates

IF ] < e

1A2]| = 1UT" (Ay = P)UL| < [ Al + &

Induction step: Assume that for some k& > 1 there exists a unitary U;_, € Gl(n,C) with
U AU, = Ay, + F} such that Ay is block diagonal and has blocks on column echelon form,
with [|[F|| < &%t + -+ % and || Ax]| < [JA|| + &% + -+ + g1,
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If no pivot of A is < &%, applying Lemma 4.7 to each block of A, we get S, € Gl(n,C)
diagonal, with || S| < C(”;‘};—Z”)%, and A’ = S; ' A4,.S; is block diagonal with blocks on reduced
column echelon form. Let then S = U} _,Sy, then

STYAS = (U_,S)) " A(UL_,Sk) = Sy (Ay + FL)Sk

:AI+F/
with F € gl(n,C) of norm
A
||F/|| < ||Sk|| ||Sk—1||(€6k,1 4t 861) < 202(@)71851@1 < 202(||A|| + 256k—1)n€—n5k+5k—1
15

where the constant C' depends only on n, and the proposition is proved.

If some pivots of Ay are < €%, let F}, € gl(n,C) whose non zero coefficients are those pivots
(then || Fy|| < &%, and A, — F}, is block diagonal and has an block not of maximal rank). Apply
Corollary 4.4 to A — Fy: there exists a unitary matrix Uy, € GI(n, C) such that A, = Uy ' (A —
Fy,)Uy is block diagonal and has blocks in column echelon form and by Lemma 4.5, o ker( A1) >
o ker(Ay) with estimates

[F3]] < &%,

Akl < [1AR]] + €

therefore

Up ' U AU U = U (A + FOUs = Agga + U (Fe + FUy
and then, letting U, = U;,_ U, and F},, = Fj + Fj, the induction step is established. By

construction, the constructed matrices have the same block decomposition as A.

After at most ”72 steps, the algorithm stops according to 4.4, since the matrix is zero and is
then trivially in normal Jordan form. O

4.3 From reduced echelon to Jordan

We shall conjugate a (nonzero) nilpotent matrix A € gl(n,C) on reduced column echelon form
to Jordan normal form with control on the conjugation. If A is on reduced column echelon form,
iterating the following lemma will remove the non zero coefficients above the pivots of A. We
denote in the following A;. the u:th row of A, and A.; the l:th column of A.

Fix 1 < kg < iy < jo and define M := My, ;, € gl(n,C) by
M, = 0 (Z,]) 4 (k‘o,Z:o)
L (4,7) = (ko, o)

Multiplying a matrix A to the left by I + aM amounts to replacing the ky:th row Ay, . by
Ak07. + aA,-O,..
Multiplying a matrix A to the right by

(I+aM)™ =1—aM

amounts to replacing the iy:th column A. ;) by A.;, — aA. k.
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Let A be a nilpotent matrix on reduced column echelon form with a pivot
Aiggos 10 < Jo-

Let ko € {1,...,ip — 1} the row index of the last non zero coefficient before the pivot in the jo:th
column of A, let M as above, and

B=(I—-aM)A(I +alM), a= Ay j-
The following lemma will be used to remove that coefficient from the matrix A.

Lemma 4.9. The matriz B is on reduced column echelon form with the same pivots as A.
If the only non-zero coefficients in A. j, j > jo are the pivots, then

B;=A; 7>

Bi’jo _ {Ai,jo { ;é kO

and
0 i = ko
Proof. We have
Vj # 1o, Bryj = Aroyj — aAiy; & Vi# ko, Bii, = Aiiy + aA; g,
and By, i, = Aky.ip, and for i # kg and 7 # jo,
Bij=(A—aMA+ aAM — a®>MAM); ; = A; ;.

Since kg < g, the column A. j, is strictly shorter than A. ;. The pivot in B.; is therefore the
same as in A. ;.
Since A, j, is a pivot, we have A;, ; = 0 for all j < jo. Hence

By j = Akoj — aligj = Ake gy Y3 < Jo

So if there is a pivot in By, ., it is the same as that in Ay, ..

If the only non-zero coefficients in A. ;, 7 > jo, are the pivot, then, since ky < jo and ip < Jo,
Bko,j = Ako,j — aA,'(),j =0 VJ > j().

Hence B.; = 0 for all j > jo. Moreover,

B . = Al}jo i%k‘O.
” Bryjo = Akojo — 0Aigjo =0 i =ko

Now we can conjugate to the Jordan normal form:
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Proposition 4.10. Let A be a non zero block diagonal nilpotent matriz, with each block on reduced
column echelon form. There exists S € Gl(n,C),

IS < C+[1AlD™,

such that S™*AS is on Jordan normal form and S are also block diagonal with the same block
decomposition as A. The constant C' only depends on n.

Proof. We start with the column A™ and apply the lemma 4.9 to each coefficient above the pivot.
This gives a S; € Gl(n,C),
ISEH < Cu(1 +[JAID",

such that
Ay = STTAS,

diagonal on reduced column echelon form with the same pivots as A, and whose only non-zero
coefficient in the last column is the pivot.

Then we do the same with the next to last column in A;, and so on and so forth. This stops
after at most n steps producing a S € Gl(n,C),

ISFH| < Cu(1+ [IAID™,
such that
B=S"14S8

is block diagonal on reduced column echelon form with the same pivots as A, and whose only
non-zero coefficient are the pivots. By construction the block decomposition is the same as A.
Since there are only finitely many such matrices, they can be conjugated to Jordan normal
form with (uniform) bound on the conjugation and its inverse.
]

4.4 Jordan normal form with estimates

Proposition 4.11. Let N be a non zero nilpotent block diagonal matriz. For any e € (0,1) and
m € N*, there exists S € Gl(n,C) block diagonal, a constant C > 0 only depending on n and
constants ¢ > 0, € (0, %] only depending on n and m (in particular, they do not depend on €)
such that

|5*4] < CUIN| + 1)e T (4.5)
STINS = A+ F',
with A" on Jordan normal form and

IS IE] < (CAUN + 1)) *ree. (4.6)

Moreover, S and A’ have the same block diagonal decomposition as N .
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Proof. Let ¢ € (0,1) and m > 1. Let g = 1, ¢, = 2(n+ 1)(2n)! + n, and for all k£ > 1,
Op—1 = 2(m + 2)Cn5k~

Apply Proposition 4.8 to N with this choice of (J). This gives a 1 < k < n? and a block diagonal
matrix S € Gl(n,C),
ISEH < CINI + 1) 5%

such that
STINS, =N +G,

with N’ on reduced column echelon form and
|Gl < C(IN]| 4 1) oxF 0k,

Moreover, S; and N’ are block diagonal with the same block structure as V.
Apply now Proposition 4.10 to each block of N’ to find a block diagonal Sy € Gl(n, C) satisfying

IS5 < (1 + [N

such that the block diagonal matrix A’ = S5 ' NS, is on Jordan normal form. Then we have, with
S =515,
STINS = S;H N+ G)Sy = A’ + S5 ' GS,.

Moreover, S and A" are block diagonal with the same block structure as N.

The estimates:

IN'|| = IS;INS, — G| <
< C(IN[ + )" [N + C(|N|| + 1)me™ron o
< C(IN|| +1)rtieno

Hence
1S5 < CIN]| 4 1)tmtDmtgmmmion,

In particular
SE < CYIN + 1) Eemmniies 0 < O(|N]| + 1)nends

(recall ¢, = 2(n + 1)(2n)! + n) and by the definition of (), c,0p <
Moreover,

o (4.5) holds.

1
2m+2) S

||S2—1GS2|| S O(HNH + 1)2(n+1)!+n€—2n-n!6k—n6kgék,1
< (V] + 1)oreertioins,

Hence
HSileHSz_lGSQH S Cm+1(||N|| + 1)(m+1)cn€—(m+1)cn6k+6k,1
< (CIN + 1)emymietmtenss,
so (4.6) holds with ¢ = ¢, and ¢ = (m + 1)¢, 6. O
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5 An almost reducibility result to a Jordan normal form

In this section, we construct an almost conjugation to a cocycle which is in Jordan normal form.
A control of the estimates requires to do it in two steps.

Proposition 5.1. Let X, 4 an almost reducible cocycle in C*. Ifw is Diophantine, then there exist
sequences (Z;), (F;), (Bj) such that every B; is block diagonal, each block being upper triangular
with only one eigenvalue,

0.2 = AZ; — Z;(B; + Fj)
and for all m € N,
1Z57 I | Fllem — . (5.1)

Proof. We will construct such a sequence for a fixed m, and then the lemma 8.10 will imply the
conclusion.

Fix m € N\{0} and define the parameters

g1
~ 3 T 4(16mnd)n

and for ¢ > 1, the increasing sequence
Yi+1 = 16mn3%.

Estimate of B; The conjugation relation can be written as
B; = Z;'(AZ; - 0.2;) — I

and then
I1B;|l < CawallZiller |1 Z; Hleo + [|Fsller < ClhyallZiller 125 o,

with Ca w4 and C , ; depending only on A, w and d.
The assumption
: +1|m o
jgﬂ-noo ||Zj ||CT||F’]'||CT =0, VT, m €N

implies that for J; large enough, for all j > Ji,

=

1 —
U1 Zllen N1 Z7 Hlem) P Il Fillen < Cha

therefore for all j > Jy,
1Bl < I1F5lles’ (5.2)

From now on, we will work with j > J;.
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Construction of a matrix similar to B;, block diagonal with separated spectrum Let

gj = || Fjllem. From Corollary 8.5 given in appendix and applied to B; and I'; = £}, there exists
do € {1,...,n} such that we can conjugate B; to a matrix D; which is block diagonal, with each

block being upper triangular with 5;-Yd°—connected spectrum (as defined in 8.2), and if we denote
by M; € GL(n,C) the conjugation (so that D; = M;'B;M; and G; = M; ' F;M;), then
- ng IBill \ns
MGG < P ()™ (5.3)
&

Writing D; + G = Bj + F i, where E ; is obtained from D; by adding a diagonal with coefficients
smaller than n||Fj||29, and Ej is block diagonal, with blocks upper triangular having only one
eigenvalue, we obtain a conjugation

M;M(B; + Fj))M; = B; + I}
with the estimate

1-28n3 —4n3’yd0 _1
J

1Ejllem < [|Gjllem + n|F

o < MM les 4 nef® < Cre +ne)® < Cpe®

(where C), only depends on n). Then
1B

2Ydg-1
<

)2mn3 éf_/do

— 2, 3
125 I M M ™ 1 Elle < (1257 (lEmn ™ ( j

— 3 _ 3
< Om,m)| 257 ey " o T

By the choice of $ and the sequence «;, the exponent on ¢; is positive, therefore the almost
reducibility assumption implies that this quantity tends to 0. O

Proposition 5.2. Let X, 4 an almost reducible cocycle in C*°. If w is Diophantine, then it is
almost reducible to a sequence (B;) of matrices that are in Jordan normal form.

Proof. By Proposition 5.1, there exist sequences (Z;), (F}), (B;) such that

OuZ; = AZj — Z;(B; + F})

where the convergence condition (5.1) holds, and the matrices B; are block diagonal, every block
being upper triangular with only one eigenvalue.

Fix m € N. Define g =
depend only on n, m.
Reasoning similarly as in the proof of Proposition 5.1, there exists an index J, such that if 7 > Js,
then

Wlﬂ) where ¢ > 0, € (0, %] are given by the proposition 4.11 and

1B;1l < 11 Flln.

We shall apply Proposition 4.11 with N being the matrix B; without its diagonal coefficients, and
e=c¢; = |Fjlem-

Let A" = AL, F' = F}, S = S; given by proposition 4.11 (in particular S; block diagonal with the
same block structure as B;). Therefore, since the diagonal part of B; commutes with S; (recall
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that B; has only one eigenvalue for each diagonal block), B; + F} is conjugate via S; to Bj + Fj,
such that B is in Jordan normal form and F Fi+ S5 1F S w1th

—Be— 1
1S5 < OB, + 1, ™ < Clmn)e; ™ o
and
" m d —cB(m+1
ISE™IF < (C(|Bs]| + 1)) e < Cm, m)e; P+ 5.5
Therefore
m —cB(m+1)+ m
ISEI™Fyllen < Cm, s P - SE ™2 o (5:6)
< O(m, n)g ef(m+1)+ —|—C( n)e —(m+2) (Bet gy )1 .
J
Thus

1Z5H I LS ™ 15 e

—(m+2)(Be+ 5oz )+
< C(m,n)||Z o (5 eBm+1)+ +e, mrapet s )

The choice of the parameter 3 implies that the exponent on €; on the right hand side will be
positive, thus the convergence condition holds for fixed m. Applying Lemma 7?7, there is almost

reducibility to the sequence (B;). O

6 Construction of a conjugation to a real matrix

In this section, B = diag(B;)" ;=1 will be a block diagonal matrix where each block B; is on Jordan
normal form with only one eigenvalue ;. The spectrum of B is

o(B)=Aai,...,q} (#o(B)=1).

We shall study the equation B
F=0,V—BV+VB. (6.1)

where V : T? — Gl(n,C) and w € DC(k, T), and where F is supposed to be “small”.
This equation decomposes into its block-components

= 0,V/ — BV} + V!B, (6.2)

for each 1, 5.

6.1 (N, p)-linkedness

In this section, we will study resonances between the eigenvalues of the matrix B. This way, we
want to create sets of eigenvalues with same cardinality, linked by resonances. Fix N € N, p > 0.

Definition 6.1. Two complex numbers « and [ are (IV, p) — linked if and only if
|12 (k,w) — (o — &) < p

for some |k| < N.
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Let I be a finite set of complex numbers with 0 < #I" < n.

Definition 6.2. An (N, p) — chain in I' of length  — 1 is a sequence
A1, Qgy . ey Qp—1, Oy
in I" such that a; and a;41 are (IV, p)- linked for all j. The numbers oy and «, are then said to
be (N, p) — chain — linked.
An (N, p) —loop in I' is an (N, p)- chain
A1, Qg . ey Qp—1, Oy
such that oy = o, . An (N, p) — loop is odd if it is of odd length.

It is easy to verify that if o and [ are (IV, p)-chain-linked, then they are (N, p)-chain-linked by a
chain of length < n.

Lemma 6.3. Let
Qp,02,...,0_1,Qp

be an (N, p) — chain in T.

o Ifr—11is odd, then aq and o, are (nN,np) — linked.
o Ifr —1is even, then ay and &, are (nN,np) — linked.

Proof. We can assume without restriction that r — 1 < n.
We have for all j and for some k;,

127 (kj,w) — (o5 — aj1)[ < p, k] < N,
Let k = Zj odd kj - Zj even kjv then
|k| < nN.
If r — 1 is odd, then
Oél—C_MT»: (Oél—5(2)+(542—Oé3)+(0é3—@4)+"'+(0ér_1—C_Er)

SO

i2m(k,w) = (o1 — &) = > (12m(ky,w) — (0g — agen)) + Y (i2m(—kjw) = (@5 — aj41)).

J odd J even

This implies that
|i2m(k,w) — (o — ;)| < np.

If » — 1 is even, then
a1 — Oy = (Oél—5&2)+(5&2—Oég)+(0&3—5é4)+"'+(5ér_1—Oér)
SO

i2m(k,w) — (o1 — 0p) = 3 (12 (k;,w) — (0 —agn)) + Y (27 (—kj ) — (@5 — o))

J odd j even

This implies that
li2m(k,w) — (o — ;)| < mp.
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We shall assume that I is such that
for any o € I, there is a § such that « and [ are (N, p) — linked. (6.3)
Then "being (N, p)-chain-linked” is an equivalence relation and we denote by
o]

the equivalence class of a € I' — it depends on (N, p).

Lemma 6.4. If [a] contains an odd (N, p)-loop, then any 5 € [a] is ((2n — 1)N, (2n — 1)p)-linked
to itself.
Proof. Consider an odd (N, p)-loop
1,0, ..o Qe 1, Qe =, T 2> 2.
If r—1>n+1, then there exist 1 <7 < j <r — 1 such that o; = ;. Then
Qi Qg - o O = Q
is an (N, p)-loop of length j — i. Moreover
Qjy Qt1y ooy Q1 O = O, Qg .o, QG , O = (U

is an (N, p)-loop of length (r — j) + (i — 1).
Since
=)+ (=g +-1)=r—1

is odd, one of these two “sub-loops” must be odd. So there exists a shorter odd (V, p)-loop, and we
conclude that there exists an odd (NN, p)-loop of length < r—1, i.e. we can assume that r —1 < n.
Let now (3 € [a]. Then there is an (N, p)-chain connecting 5 to the odd (N, p)-loop

Qp,09,...,0p_1,0, = (71,

ie.
6:61a627"‘758—1758:aja S—lgn—(’f’—l)

We can without restriction assume that j = 1. Then
B=PB1,...,Bs-1,8s = 1,0, ...,0p = a1 = B, fe_1,..., 02,1 =0
is an (N, p)-loop of length
(s—D+@r—-—1D+G-1)<2(n—r+1)+(r—-—1)=2n—r+1<2n-1.
This length is odd, thus by Lemma 6.3, § is (nN, np)-linked to itself. O

Lemma 6.5. If [a] contains no odd (N, p)-loops, then there exists a partition [o] = 31 U Xy such
that
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(1) B and -~y are not (N, p)-linked if 5,y € 31, and the same holds for ¥,
(1) B and 7 are (nN,np)-linked if 5,~v € 31, and the same holds for 3,
(7i1) B and vy are (nN,np)-linked if § € ¥y and v € 5.

Proof. Fix o € ' and define
Y1 ={p € [a] : there exists a (IV, p)—chain of even length between o and g} U {a}

and
Yo = {p € [a] : there exists a (N, p)—chain of odd length between o and }.

Notice that Y5 contains all elements that are (I, p)-linked to «. In particular, ¥y # (), by
assumption (6.3) on I'.
Notice also that X1 N3y = (), because if not, then [a] would contain an odd (N, p)-loop.

Proof of (i): Two elements in ¥; cannot be (N, p)-linked to each other, because then there would
be an odd (N, p)-loop in [a]. Idem for ¥.

Proof of (ii): Any two elements in ¥; are linked by an even (N, p)-chain (by transversality). Idem
for ¥y. Therefore (ii) follows from Lemma 6.3.

Proof of (iii): Any element in ¥; are linked to any element of ¥ by a chain of odd length (by
transversality). Therefore (iii) follows from Lemma 6.3. O

6.2 Analysis of resonances

Lemma 6.6. If for some 0 < p <1,
127 (k, w) — (0w — &;)| = p,

then 5
V7 (k)| < (;)2"_1||F||c0-

Proof. From (6.2) we have
(i2m(k, w) — (s — a;))V7 (k) = NV (k) = V7 (k)N + F] (k),

where

Changing notations, we can write this as
VX =NX-XN;+Y =LX+Y.
The operator L verifies for all matrix X in the domain of L,
I£x|| <2|X| & L7 =o0.

Then 1 ] ] ]
X = —(Y—I—EX) = —Y+—2£Y—|——3£2X—|—...
v v v v
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1

0§j§n—2 I
Hence, since v > p,
1 . 1 2
X1 < —2IY] < 5—C)" YL
0<j§2:n—2 P 2=pp

Lemma 6.7. Assume

1.
[V]leo + [V Hleo <&

2.V is a trigonometric polynomial of degree < N

3.
p< (2N)_T/<;
| Fllco < (4”71!(3N)d£n)—1p2n—1.
Then, for any i, there exists a j and a unique |ki;| < N such that
li27 (ki j, w) — (o — &;)] < p.

Proof. Given i, suppose that
127 (b, w) — (ai — &) 2 p

for all j and all |k| < N. By Lemma 6.6,
g 2 2n—1
VIR < (;) £l co

SO
) 2.
Vi lleo < (3N)d(;)2" HIFleo =&

This implies that
| det Vjeo < nleg™ .

Since
oV =BV '+ VIB=V19 VvV -BV'+V !B
=V Y BV -VB+F)V!'-BV'+V'B
=yvlry!

we find, by a similar reasoning, that

I det(V‘l)HCo < nlegen1,
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Hence
L= det(VV™Y|lco < (nle€™)?

which is forbidden by assumption 4.
Uniqueness: Suppose there exists k # [ such that |k|, |I| < N and

li2m(k,w) — (a; —ay)| < p & |i27(l,w) — (v — ;)| < p.

Then, since w € DC(k, T),

<z — <
oN) = li2m(k — l,w)| < 2p

which is forbidden by assumption 3. O

Corollary 6.8. Under assumptions 1 —4 of Lemma 6.7, being (V, p)-chain-linked is an equivalence
relation on o(B).

Indeed these assumptions imply that the condition (6.3) holds for o(B).

6.3 The Jordan structure of B

Assumption: From now on, in this section, we assume properties 1 — 4.

Let
[a] € o(B)

be an equivalence class that contains no odd (N, p)-loop. By Lemma 6.5 there exists a partition
[a] = ¥; U X, such that

(1) f and v are not (N, p)-linked if 3,7 € ¥, and the same holds for ¥,
(i) [ and 7 are (nN,np)-linked if 5,y € 31, and the same holds for ¥,
(7i1) B and v are (nN,np)-linked if 8 € ¥; and v € 3.

Let ¥3 = 0(B) \ [a] and define

X3 = (x7)

for any matrix X — we often write Xy, for the diagonal block Xg*.

ajGEu
u,v=1,2,3,

Q;EXy ’

Lemma 6.9. If

1
F < 2n—1
IFlle = gnanyie?
then szf is an invertible square-matriz and

- _ Lion
IV ™ = (VIS lleo §6n(3N)d§2(;)2 I Elleo-
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Proof. We can assume without restriction that

Z1 = {ala"'aar}a Z2 = {ar+1>"'>ar+s}
SO
2
v =(0p) Ul =V
uw u,v:1,2,3’ w Zu

By Lemma 6.6, for any |k| < N,

9 aieZl,ajeZlng
V7 (k)| < (;)2"_1||F||cO =c if {ora; € ¥y, a5 € Ny UXNs
or «; 623,04]' € 2 U,

which implies that

u=1 v=1,3
|TY(E)| <ne if Su=2 v=23
u=3 v=12
Hence
u=1 v=13
|U]lco < n(3N)e if Su=2 v=23
u=3 v=12
Let now
0 U 0
W=|(Uj 0 0.
0 0 U
Since

W = V|co < 3n(3N)%e =4
we get that W is invertible and

W =V er < SNV = V)V oo < 30(66)6

j=21 j=21

Now if
— <t = | e < ! -l
= 6n = 4n3n(3N)de”

o< (BN)%

N —

(which holds by assumption), then

1
W =V lon € 506 < 206 = 6n(BN)e€? = 6n(3N)/ () Pl
- p
Finally, by a computation,
0 ()t 0
W= (U)o 0 |,
o0 Uy

thus the estimate on (Vi3?)™' — (V~1)3! holds.
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Lemma 6.10. There exists a constant C' — only depending on n and d — such that if

wmw<m%¢%1

) (6.5)

1
C'Ndf”“fl 9

then By, and By, have the same Jordan structure, i.e. for any k > 1, they have the same number
of Jordan blocks of dimension k.

Proof. From (6.2) we have
(i2m(k,w) — (a; — a;))V7 (k) = NiVP (k) = VI ()N, + EJ(k), Y1<i,j<I, VkeZ

where

If

then, by Lemma 6.6,
. 2
V7 (R)]| < (;)2 HE o

If
i2n{k,w) — (0 — )| < p.
then
1NV (k) = VI (k)N | < pé + (| Fleo.
Hence N N 9
[IN:V (k) = Vi (k)N | < maX(2(;)2"_1IIFHco,p£ + | Flleo) =€
and

IN;V? = VI Njlleo < (3N)%e.

This implies that
| N5, Va2 — V2 N, [leo < n(3N)“e.

By Lemma 6.9, the bound on ||F||co implies
Vezlleo,  I1(VER) Hleo < 26,
so, by Proposition 8.8, Ny, and Ny,, hence By, and By,, have the same Jordan structure if

1 1
d e —
n<3N)€<n~n!2”§” = €<n2-n!2"(3]\f)d§"'

This holds if

1
F 2n—1

and
1

n2 . n!2n+1(3N)d€n+l :

p <
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6.4 Construction of W and conjugation to a real matrix.

Lemma 6.11. Assume that V' is a trigonometric polynomial of degree N, let & > 0 such that
Vllco + IV leo < €. (6.6)
There exists a constant C' which only depends on n,d such that if
| Fller < 2 (6.7)
and

. 1 K
PS G mln(ma F)a
then there exist W : T¢ — Gl(n,C) of class C*, B' € gl(n,R) and B" € gl(n,C) such that

1.
0sW = BW — W (B' + B"),

2. W commutes with B, B' and B”, and B’ has the same diagonal block structure as B,

3.
IB”|| < 2np,

4. forallr € R,
[WE|er < (4nmN)",

5. there is the estimate
1Bl < C| B

Proof. By Corollary 6.8, o(B) satisfies the property (6.3). Let [o] C o(B) be an equivalence class.

o Case 1: if [a] contains an odd (N, p)-loop, then by Lemma 6.3, for all «; € [a], there exists
k; € Z% with |k;| < (2n — 1)N such that

la; — a; — 2im(k;,w)| < (2n — 1)np.

» Case 2: if [a] does not contain any odd (N, p)-loop, let [a] = £; U X, be the partition given
by the Lemma 6.5. Choose arbitrarily ay € 31 N [a]. Then for all a; € ¥5 N [a], by Lemma
6.3, there exists k; € Z%, |k;| < nN such that

la; — ag — 2im (k;,w)| < np.
And for all a; € 31 N [a], there exists k; € Z%, |k;| < 2nN such that
| — g — 2im ks, w)| < 2np.

and if a; = ag then k; = 0;
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Then we construct W € C°(T¢, Gl(n,C)) the diagonal matrix whose diagonal coefficients are
(w;) defined as follows: given an eigenvalue o; € o(B) associated with k; as defined before, if a;
appears on line j in B, then

wj(e) — eZiw(kiﬂ)I

in case (1) and .
’LU](Q) _ e4z7r(ki,€>[

in case (2).
Then it holds that
0sW = BW — W(B'+ B")

where the coefficients of B’ + B” will be defined as follows:
e in case (1): Since
, 1 _ 1 _ :
a; —im(k;,w) = 5(0@- +a;) + 5(0@- — a; — 2im(k;,w)),
one can define Ray; as the coefficient of B' and 1 (c; — &; — 2im(k;,w)) as the coefficient of

B//,
e in case (2), if a; € Xo N a],

a; — 2im(ki,w) = a+ (o — o — 2im(k;, w))

Then a is the coefficient of B" and «; —a —2im(k;, w) is the coefficient of B”. If o; € 31 N[,
a; — 2im(ki,w) = a+ (o — a — 2im(k;, w))

Then « is the coefficient of B’ and «o; — a — 2im(k;,w) is the coefficient of B”.

Therefore, if @ is an eigenvalue of B’, then & is also an eigenvalue with the same multiplicity.
Moreover, by Lemma 6.10, the blocks with eigenvalues a and & have the same Jordan structure.
Thus, by Lemma 8.9, one can assume up to a unitary transformation that B’ is in real Jordan

normal form.
With our choices of the k;, the values of W commute with B, B’ and B”. The norm of W and
the norm of W~ follows from the fact that |k;| < (2n — 1)N.

The matrix B” is bounded by (2n—1)p. Moreover, the coefficients of the matrix B’ are the same
as those of B outside the diagonal. The diagonal coefficients of B’ are in o(B) U o(B) U Ro(B),
which implies

1B < C)|B.

6.5 Application of the main lemma 6.11

To apply the result of the previous section, it will be necessary to have an estimate of the truncation
of an application U satisfying U~! = U, which will be obtained in the following lemma.
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Lemma 6.12. Let N € N. Let U : T¢ — Gl(n,C) of class C> such that

U'=0U,
and let
V(e) — Z 27,7r (k 9
k| <N

There exists a constant Cq > 0 depending only on d such that if N satisfies

CallUllea+1|Ullco < N, (6.8)
then ]

V= V]eo < ZHVHCO- (6.9)

Proof. We have .

10K < (m)dHHUHcdH, k ezt
which implies

IV —=Ulleo < 3~ 1U(K)

|k|>N

>~ 2 N||U||cd+l =IO0N. (610)

where C' depends only on d. Therefore
VU ~Ifleo < [V =T leo|Ullco
< |V =Ulleo||U]leo from U™t =T

< IV = Ulleo |U]leo
< on||U]leo

The last line of the equation is satisfied by hypothesis (6.8) with Cy > % This implies that, for
all 6, X () = V(0)U(0) is invertible and

X'=I+WVU-D)"=>(-D)}VU -1)

k>0
hence _
X7 = Ifleo < S (VU = D]k < 2|V = Ulleo||U|lco < 205U ||co-
k>1
Therefore
P UU = UX = U U 1)
=U '+ UX ' =1) sinceU=U""!
=X WH+UX -1
—V+ (X' =-DV+UXT=1T),
and then

VII-V=X'-DV+UX"1-1)



which gives

V== Vleo = (X' =DV + UX " = Dfeo
<X = Ileo([IVlleo + [Ulleo)
< 20n[[Ulleo(V [leo + U lleo)

1
< don|[Ullee([Vlieo + o)

(by definition of o), therefore, using (6.8) with Cy > %<,

1 1
) < <l[Vleo + 16N (6.11)

_ — 1 o
[V = Vlleo < S(IVlleo + =+
8 2

Now (6.8) also implies

1
< -
TN = 320U o

and the property that U~' = U implies that ||U|co > 1, so 3oy < 2||U||¢o also holds. This,
together with (6.10), implies that

on < 2([|Ulleo — on) < 2([[Ullco = IV = Ulleo) < 2[[Vlco-
Thus (6.11) implies that (6.9) holds. O

The following proposition allows us to apply the previous lemma to the change of variables
given by the almost reducibility, in order to conjugate the almost reducible cocycle to a cocycle
arbitrarily close to a real one.

Proposition 6.13. Let N €N, p > 0. Let U : T — Gl(n,C) of class C* such that
U'=0U.
Let B € gl(n,C) in Jordan normal form, and let
G =0,U—~BU+UB.

There exists a constant C; > 0 (depending only on n,d) such that if

1.
Ci[|Ullea+1[|[Ulleo < N, (6.12)
2.
1Gllearr < CTH "IN UG (6.13)
3. 1
p < C7" min( ", (6.14)

NU|5 " N7
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then there exist W € C*(T¢,Gl(n,C)), B' € gl(n,C), and B" € gl(n,C) such that
dsW = BW — W(B' + B")
where B’ is as in Lemma 6.11. Moreover,
IB"|] < 2n°p,

and

Vs €N, |[WE e < (27nN)*.

Proof. Denote & = ||U||co > 1 (the lower bound comes from U~ = U). Let

V=RyU= > U(k)er o).
k|<N

We have B
0,V =BV -VB+F, F=TRyNG.

We will now apply lemma 6.11 and for this, we need to find an upper bound of ||[V|co and an
upper bound of ||[V71||co. We have
A 1
IV = Ulles < 3 WO < Cog U e
|k|>N

where Cy > 1 only depends on d. Suppose that C; > 32C5 and that N > C4[|U||¢a+1||U||co, then

1 N 1
— <Chp—m— < —,
IV = Ulleo < C2NC’1HUHCO =2

Therefore since £ > 1,

1
Vlleo < [[Ullco + |V = Ulleo <€+ % < 2.

Let C,; the constant given by lemma 6.12. If moreover C'; > C,;, we have
N 2 Cal|U|lcas:[|U]lco,

and we can apply lemma 6.12 which gives
_ _ _ _ 1
V= leo < VT = Viieo + [[V]leo < ZHVHCO + [Vlleo < 3¢,

and the assumption (6.6) of lemma 6.11 is satisfied with 4¢ instead of £. So,

1
2rN

[Ellco < [|Gllco + [[F' = Glleo < [[Glleo + Cal5—5)IGllea

—dn?
< 20| Gllears < 2CCT o™ (N|U]|eo)
so, if (' is large enough depending on n, d, the assumption (6.7) of Lemma 6.11 holds since
9,V =BV —VB+F, F=TRyG.

Therefore one can apply the Lemma 6.11 which directly gives the conclusions. O
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7 Proof of the main result

Theorem 7.1. Let X, 4 an almost reducible cocycle in C*. If X, 4 is real and if w is Diophantine,
then X 4, is real almost reducible in C>, where As(0) = A(20) for all 6 € T,

Proof. By the proposition 5.2, there exist Z; : T¢ — Gl(n, C) of class C*, B; € gl(n,C) in Jordan
normal form and F; € C*(T?, gl(n, C)) such that

Vj, 8ij = AZJ — Zj(Bj —+ Fj)
||Zji1||(7?r||Fj||CT —7j—00 0, Vr,meN. (71)
Fix r > d+1 and denote || F}||c- = ;. By a similar reasoning as when proving (5.2), and from the

L), there exists J3 such that, for all j > Js,

convergence condition (7.1), given ' < min(m, Torb

12 e < &7 (72)
Let U; = Zj_IZj. Then Uj_1 = Uj and
& = Ujllco = 1U; Yo > 1,

and
—924’
1Ujller < 5%

Moreover

0,U; = 04(2;71 2;)
=0,(Z; N2+ Z;710,7;
= ((Bj+ F)Z; ' = 2,7 AV Z; + 2,7 Y (AZ; — Zi(B; + F))
=B, Z; ' Z;+ F;Z;,7'Z; — ;7'\ Z;B; — Z; /' Z;F; + Z;/ " (A — A) Z;

and since A is real, B
aij — BjUj - Uij ‘l‘ Gj

where

Gj = F;U; — U;F;
with, from inequality (1.6) given in introduction,
1Giller < 2C|Ujller || ller-
Let
&; = 2C:||Ujller || Flle.
N; = Cil[Ujllca[|Ujlleo

with € the constant of proposition 6.13. We will apply Proposition 6.13 with N = N;,p = p; =

ES#, U =U;,B = Bj,G = G;. There are three assumptions to check. The assumption (6.12)

holds by definition of N.
By definition of ', we have
Pl Ul (2N))™ = jostes O,
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and there exists J; (which we can choose > J3) such that for all j > Jj,

k> Cupi | Ujllea ™ (2N;)",

therefore the assumption (6.14) of Proposition 6.13 holds. Moreover, by definition of N; and &/,

p—(2n—1) (Ng || Uj ||C0)dn2€;~ < (8/')1_22%;31 (Clé‘;ﬁﬁ/)dm
—1

—2ﬂ 2n71+3dn2 1_2n 3
< C( ) o3 E] 2n

where C' is a constant depending only on d,n,r, and the right hand side tends to 0 as j tends to

infinity. Therefore there exists J5 (> J;) such that, for j > Js,

1Gsller < & < CT' ™" (N U fleo) ™"

therefore the assumption (6.13) of Proposition 6.13 holds. Apply the proposition 6.13: there exist
W, : T¢ = Gl(n, C) of class C*, B} € gl(n,R) and B} € gl(n,C) such that B} has the same block

diagonal structure as B;, with
0V, = B,V = Wy(B; + BJ),

1

|B|| < 2np = 2n5’2"3 < CMHU ||2n3 27
W es < (27nN;)*, Vs €N,
J J

Moreover, denoting G; = BY + W, ' F;W;, we get

1 1
1Gille, < CWIIU-IIM 7+ (2mnN;) Ve,
1

< Cop UGl 7 ey + (32C1) " | Ujl|gan |U; [l coe;

< CLllU; HEW”S-

Finally, for our fixed m and r > d 4+ 1,

1

1(Z;W) @ Giller < CLIWEHIE N Z5H e 1U; || ez
< O NI ZE | Uy | e e
< C////HU ||8rm+8r||Zi1||Cr€#

< C///// || Z:I:l || 16rm+167’+m€27ll3

which tends to 0 as 7 — oo by assumption (7.1).

This construction depends on m, r; however, applying Lemma 8.10, one gets almost reducibility

to a sequence of real matrices.

The transformations Z;W; are not real, but we can now apply Proposition 3.6.
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8 Appendix

8.1 A small divisors lemma

The following classical lemma is useful to control the small divisors which might occur:

Lemma 8.1. Let f : T? — C of class C* and N € N* such that
f(k)y=0, |k|>N.
Let p > 0. If a € C is such that
o = 2im(k, w)| = p,  V|k[ <N,
then the equation

o,u(l) = au(d) + f(0), 6eT
{ a(k) =0, if|k|]>N (+)

has a unique solution u : T — C of class C* and it satisfies

da+1

lulles < Cp™'N=" (| flleo
where C' is a constant depending on d.
Proof. Decomposing the first equation (x) into Fourier coefficients, we have
2im(k, wya(k) = aa(k) + f(k), kezd
and the unique solution of (x) is defined by

(k) = | Twamal (k). VIR <N
0, \V/|kf| > N.

a
By Holder’s inequality,

[EES UCIE % S (k)|

KI<N

1 - 1 _an 1 _an
<= > 1 > |f(R)P<C=NZ|flle2 < C=N"=| fllco,
k<N \ [k|<N P P

where C' depends only on d. O

8.2 Separating the spectrum of a matrix

Definition 8.2 (I-separation, [-connection). Let E;, F5 two finite sets of complex numbers and
let I' > 0. We say that E; and F, are ['-separated if for all & € E; and for all g € Es, |[a— 5] > T

We say that £y = {ay,...,a,} is [-connected if there is no decomposition F; = E} U EY with
E} and EY I'-separated.

Remark 8.3. If Ey is I'-connected, then for all o, 8 € Ey, |a — (| < #E; - T
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Lemma 8.4. Let B € gl(n,C) and T > 0. There exists M € Gl(n,C) such that M~'BM is
block diagonal, with each block being upper triangular with I'-connected spectrum, and such that
the spectrum of two distinct blocks are I'-separated. Moreover M satisfies

"~ n ||B|| n3
) < i (150
r— n HBH n3

) < w18

and ) )
IM~'BM|| < C(n)B

where C(n) is a constant depending on n.

Proof. Step 1: By Schur decomposition, there exist an unitary matrix ) € Gl(n,C) and an upper
triangular matrix 7' € gl(n, C) such that

B=QTQ!
Therefore || B|| = ||7T||.

Step 2: Let Ey, ..., E; be I'-separated sets of eigenvalues of B, each of them being I'-connected,
and write (up to a permutation, which doesn’t change the estimates)

(T T (T O
o-(07) = (0 1)
where T} is the block corresponding to the eigenvalues of E; and T} is the block corresponding to
the eigenvalues of Fr U---U E;. Write

(I R . (I -R
v=(a 7)) =0 )

then the conjugation M BM~! = D is equivalent to
T'\R+ T, = RT,

where R is the unknown. Let n; be the dimension of 77 and ns the dimension of Ty. Decomposing
to coefficients, the previous matrix equation can be written

_(T2)i,j = Z T ZkRk_] ZRzl T4
k=i
Solve these equations in the following order:

(’L,j) = (nl, 1), (n1,2), ey (nl,ng), (n1 — 1, 1), ey (n1 — 1,712), ey (1, 1), (1,2), ey (1,77,2).

Therefore, the coefficients of R have upper bound (nlng)(”%”)m”? which implies that

H )nlnz

I
1M < nnine) (-
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Iterate step 2 replacing B by T, and Ty by the blocks corresponding to E;_, U ---U E;. The
algorithm stops when 7 only has the eigenvalues of Ej, that is to say after at most n — 1 steps.

Finally there exist an invertible matrix M of dimension n, a block diagonal matrix D = (Dl, ey Dl)
of dimension n, with each block T; corresponding to the group of eigenvalues E; (which remains
[-separated).

D=MBM™
with 13
Y Vi n n3
[, M < ™ ()™
Since D is constructed from B by removing coefficients, its norm is < C(n)||B|| where C(n) is a
constant depending on n. O

Corollary 8.5. Let A € gl(n,C). Given a positive decreasing sequence (I';), there exists dy € N,
do < n, depending on A, and there exists B € gl(n,C) a block diagonal matrix where each block
is upper-triangular with I'j,-connected spectrum, and S invertible such that

A=SBS™!
) B s
IS 57 < (L)
do—1
and
4] < C)|5]

where C'(n) is a constant depending on n.

Proof. By induction on I';: Base case: first apply lemma 8.4 on A with I' = I'g. This gives
a conjugation S from A to a matrix B where each block is upper triangular with I'g-connected
spectrum. If the spectrum of every block of B is also I';-connected, then we are done, if not, apply
lemma 8.4 to A with I';.

Induction step: given d € N*, apply lemma 8.4 on A with I'y. This gives a conjugation S from
A to a block diagonal matrix B where each block is upper triangular with I';-connected spectrum.
If the spectrum of every block of B is also 'y, 1-connected, then we are done, if not, apply lemma
(8.4) to A with T'yyq.

After each step, the number of eigenvalues in each block decreases (because you split a block
at each step). Then there exists an index dy such that applying lemma (8.4) on A with I'y,_1, this
gives B and S where the spectrum of every block of B is I'y,-connected and the matrix S satisfies
the estimate with I'g,_1. OJ

Remark 8.6. If #0(A) = ny, then if the induction is applied ng times, each block contains only
one eigenvalue. Also notice that the induction does not change A, whence the exponents in the
estimate.

43



8.3 Stability of the Jordan structure

Let A = (a])1<;j<n and B = (b])1<;j<n be two matrices with entries 0 and 1 such that for some
re{l,...,n—1}, . '
al =0 =0 if j—i#r

Lemma 8.7. If there exists an invertible matriz C,
IC e <¢

such that ]
||AC—CBH =e< an,

then rank A = rankB.

Proof. Let
I={ie[lin—r]:a" =1} & J={jer+Ln]]:b_ =1}
Then .
o -cmp=ardy -~ = [T HETEIE
thus

| <e ifiel&j¢J
7 <e ifidT&je

It follows that if #1 £ #.J,
|det C| < nle€™ 1.

Now

IC™' A= BC™Y|| = || (AC - CB)CT!| < €

so, in the same way as for C,
|det O] < nleg¢™!

if #1 is different from #.J.
Therefore
1 = |det(CC™h)| < (nl€me)?

which is impossible by assumption. Hence #1 = #J. O

Let now A and B be two nilpotent n x n-matrices on Jordan normal form.

Proposition 8.8. If there exists an invertible matriz C,
ICl IC7 I < €

such that

1
AC - CB| = —
|AC ~ CBll == < — =0,

then A and B have the same Jordan structure, i.e. they have the same number of Jordan blocks
of dimension k, for allk =1,2,....
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Proof. Let
X, = A*C - CB".

Since || X;| < e, it follows by an easy induction that
| Xkl < ke < (n—1)e:

e For k =1, this is the assumption;
e For k£ > 1, notice

Xpy1 = AMTIC — OB = APAC — CB*!' = AK(CB + X)) — CB"B = X, B + A*X,
and the estimate follows by induction since A, B have norm < 1.

Then, by the lemma 8.7,
rankA* = rankB*, Vi >1

This implies the statement.
O

8.4 Conjugation to a real matrix whose spectrum is stable by complex
conjugation
Lemma 8.9. Let A a matriz in Jordan normal form, such that if « is an eigenvalue, then & is

also an eigenvalue and the Jordan blocks of o and & are identical. There exists a unitary matrix
P such that P*AP is on real Jordan normal form.

I+ N
Proof. 1t suffices to prove this for A = ( @ 0+ al 0+ N ) where N is a nilpotent Jordan block
(of dimension n x n). After the permutation (e1, e, ..., e;m) > (€1, €nt1, €2, €n42, - - -, €21, €2n),

the matrix A takes the block triangular form A = (A7), j—1

(Uit =i
Al={ Tifj—i=1
0 otherwise

and U = ( g g ) Let C = % < 1 _Z.Z ) (which is unitary) and let P = diag(P;)j=1,.n, P} =

Rea Ima
—Ima Rea

B/ = 0 otherwise. 0

C. Then P*AP = (B}); 1. Wmm3ﬁ:< )ﬁizﬁ[ﬁz[ﬁj—i:Lam

8.5 A lemma about almost reducibility

Lemma 8.10. Assume for all m' € N, there exist (Z;); a sequence of C* maps defined on T¢
and (Fj.); a sequence of C* maps defined on T¢ such that

I ZEL 2 | Et o =400 O,

then there exists (Z;) and (Fj), subsequences of (Zjm); and (Fj); extracted from the same
indices, such that for all m,r € N,

IZFH e Eller =400 0.

45



Proof. For all m € N, let j,, € N such that, for all j > j,,,

1
+1 m
125l e < —
and such that the sequence (j,,)men is strictly increasing. Then, for all j large enough, there exists
m :=m(j) € N such that j,, < j < jms1. Denote then, for all j large enough

Ey = FimGy, Zi = Zjm(j)-
Let m € N. Then for all j large enough such that m(j) > m,

; 1
a < ||ZE NN E i lom < ——.
cm = H ]Jn(])HC H s (])HC = m(])

Since the constructed sequence (j,)nm is increasing, the sequence (m(j)); is also increasing, and
then

def

VZE 18 Fs len 1228 ) 1 | s

,m

= 415 | 5 .
125 llew | Ejllen — 0, j — oo (8.1)

Now let r,m € N. Since (8.1) holds for all 7, then in particular for m = max(r, m),

125 18 1 F

cm — 0

which implies the convergence condition is satisfied.
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