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Real almost reducibility of differentiable real quasi-periodic

cocycles

M.Chatal∗, C.Chavaudret†, L.H.Eliasson‡

January 26, 2025

Abstract

We prove that infinitely differentiable almost reducible quasi-periodic cocycles, under a Dio-

phantine condition on the frequency vector, are almost reducible to a real constant cocycle

with a real conjugation, up to a period doubling.

1 Introduction

Let ω ∈ Rd a rationally independent vector, i.e a vector satisfying

〈k, ω〉 6= 0, ∀k ∈ Z
d \ {0},

and let A : Td → gl(n,C) of class C∞, where Td = Rd/Zd. The quasiperiodic cocycle associated
to A is the map (of class C∞) Xω,A : R × Td → Gl(n,C) which is solution of

{

d
dt

X t
ω,A(θ) = A(θ + tω)X t

ω,A(θ)
X0

ω,A(θ) = I.

Remark 1.1. In this paper, all functions and mappings will, unless otherwise specified, be of class
C∞.

We will say that the cocycle Xω,A is real if A is a real valued map, and that it is constant if A is
a constant map.
A cocycle Xω,A is conjugated to a cocycle Xω,B if and only if there exists a map Z : Td → Gl(n,C)
such that

X t
ω,A(θ) = Z(θ + tω)X t

ω,BZ(θ)−1 ∀(t, θ) ∈ R × T
d. (1.1)

The mapping Z : Td → Gl(n,C) is a conjugation between Xω,A and Xω,B. It satisfies the condition

∂ωZ(θ) = A(θ)Z(θ) − Z(θ)B(θ) ∀θ ∈ T
d, (1.2)

where

∂ωZ(θ) =
d

dt
Z(θ + tω)|t=0,
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which is equivalent to (1.1).
A cocycle is reducible if and only if it is conjugated to a constant cocycle. A cocycle is real reducible
if and only if it is real and conjugated to a constant cocycle by a real conjugation.

A natural question is whether a real and reducible cocycle is real reducible. The answer is yes
modulo a “period-doubling”:

Theorem 1.2. If Xω,A is a real and reducible cocycle, then Xω
2

,A2 is real reducible, where

A2(θ) = A(2θ) θ ∈ T
d.

Hence, there exist a map Z : Td → Gl(n,R) and a constant matrix B ∈ gl(n,R) such that

∂ω
2
Z(θ) = A(2θ)Z(θ) − Z(θ)B ∀θ ∈ T

d. (1.3)

If we denote
W (2θ) = Z(θ),

then (1.3) says that
∂ωW (θ) = A(θ)W (θ) − W (θ)B ∀θ ∈ 2Td.

which looks very much like real reducibility of Xω,A. But with the difference that W is not defined
on Td, but only on the 2d-fold covering Rd/(2Z)d of Td – this “period-doubling” cannot be avoided
in general.

Theorem 1.2 was proven in the article [4], which also contains several other results of similar
nature.

In this paper we shall discuss a similar result in the framework of almost reducible cocycles,
i.e. cocycles that can be conjugated arbitrarily close to constant cocycles. There is no canonical
meaning of “arbitrarily close” and we shall use a pretty stringent formulation.

A cocycle Xω,A is almost reducible if and only if there exist sequences of maps Zj : Td →
Gl(n,C), Fj : Td → gl(n,C) and a sequence of matrices Bj ∈ gl(n,C) such that

∂ωZj(θ) = A(θ)Zj(θ) − Zj(θ)
(

Bj + Fj(θ)
)

∀θ ∈ T
d (1.4)

with
lim

j→+∞
‖Z±1

j ‖m
Cr‖Fj‖Cr = 0, ∀r, m ∈ N. 1 (1.5)

We will say that a real cocycle Xω,A is real almost reducible if and only if it is almost reducible
with a sequence of real-valued maps Zj and a sequence of real matrices Bj verifying (1.4) and
(1.5) (then Fj is automatically real).

In this paper we shall prove:

Theorem 1.3. If Xω,A is a real cocycle which is almost reducible and ω is Diophantine, then
Xω

2
,A2 is real almost reducible.

This means that there exist a sequences of maps Zj : Td → Gl(n,R), Fj : Td → gl(n,R) and a
sequence of matrices Bj ∈ gl(n,R) such that

∂ω
2
Zj(θ) = A(2θ)Zj(θ) − Zj(θ)(Bj + Fj(θ)) ∀θ ∈ T

d

1this formulation denotes the condition: Z
+1
j = Zj
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satisfying (1.5).
An important difference with respect to the reducible case is worth pointing. In the reducible

case, no arithmetical conditions on the frequency vector ω is needed, but in the almost reducible
case the proof requires some such conditions. Indeed, we need to assure that the primitive of a
quasi-periodic function

R ∋ t 7→ f(tω)

is quasi-periodic and smooth, and this requires arithmetical conditions on the frequency vector ω.
We have no idea if the theorem remains true without such conditions.

Reducibility and almost-reducibility of quasiperiodic cocycles are important properties to
understand the behaviour of a cocycle. See for example [6] and [11] for applications to one-
dimensional quasi-periodic Schrödinger operators, and [7] for applications to quasi-periodic cocy-
cles on SO(3,R).

The notion of almost reducibility is strictly weaker than that of reducibility 2. For example, in
the analytic perturbative case, under arithmetical assumptions on the frequency vector, there are
constant cocycles, all of whose perturbations are almost reducible but, generically, not reducible
– see for example [6] and [7].

Both reducibility and almost-reducibility are3 very much perturbative phenomena. Most results
are available in analytic or ultradifferentiable category (see [6],[7],[10],[3]...), much fewer in class
C∞ – for a result in C∞ see for example [9].

Perturbative reducibility results require arithmetical conditions on the frequency vector. A
Diophantine condition is most often used but it can be relaxed to a Brjuno-Rüssmann condition
(see [5],[2]...).

Without arithmetical conditions, weaker notions 4 have been proven using renormalization
techniques – see for example [1]. These results are for the moment very much restricted to two
frequencies ω = (ω1, ω2).

1.1 A word about the proof

It is pretty forward to show that if a real cocycle can be conjugated to a real matrix by a complex
conjugation, then it can be conjugated by a real conjugation. Therefore it suffices to prove that a
real cocycle can be conjugated to a real matrix.

In the article [4] one uses (complex) invariant subbundles of a real cocycle to construct real
invariant subbundles. In this paper we give another proof of this. Indeed here we prove that
a complex matrix to which a real reducible cocycle can be conjugated, has the same spectral
properties (i.e. Jordan normal form) as a real matrix – it can therefore be conjugated to a real
matrix. We prove this in section 2. We generalize then this approach to almost reducible cocycles,
but there are several complications.

We would like to prove that if a real cocycle can be almost conjugated to a sequence of real
matrices by complex conjugations, then it can thus be conjugated by real conjugations. This may
be true, but we have only been able to prove this under a Diophantine condition on the frequency
vector ω – see section 3.

We can always conjugate a matrix to Jordan normal form but we have no control on the
conjugation. In the reducible case this gives no problem, but in the almost reducible case it does.

2except when n = 1 or d = 1
3except when n = 1 or d = 1
4rotational reducibility and almost rotational reducibility
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This problem is treated in section 4. Finally an almost reducibility to a Jordan normal form
cocycle result is given in section 5.

In section 6 we analyse the spectral properties of a complex matrix to which a real cocycle is
almost reduced. We show that, up to a sufficiently small perturbation, it has the same spectral
properties as a real matrix.

Finally we put the results from sections 5 and 6 together and show that the estimates obtained
are good enough to guarantee almost reducibility to real cocycles.

1.2 Notations

For any set X, we denote by #X its cardinality.

For any n × n-matrix A we denote by σ(A) its spectrum, that is to say the subset of C consisting
of the eigenvalues of A. Clearly #σ(A) ≤ n.

Since all norms on gl(n,C) are equivalent, the definition of almost reducibility does not depend
on the choice of matrix norms. We shall usually, unless otherwise said, use the operator norm,
but any other norm on gl(n,C) would do.
For a vector k = (k1, . . . kd) ∈ Rd, denote by |k| its l1 norm: |k| =

∑

|ki|.
As for the function-norms, they are the usual:

‖A‖C0 = sup
θ

‖A(θ)‖

and for all r ∈ N,
‖A‖Cr = max{‖∂αA‖C0 : α ∈ N

d, |α| ≤ r}.

The norm ‖.‖Cr is a complete norm on the space of (matrix-valued) Cr-functions.
Let us also recall two inequalities which we shall use frequently:

‖AB‖Cr ≤ Cr‖A‖Cr‖B‖Cr , ∀A, B ∈ Cr(Td, gl(n,C)) (1.6)

‖A−1‖Cr ≤ Cr‖A−1‖r+1
C0 ‖A‖r

Cr , ∀A ∈ Cr(Td, Gl(n,C)) (1.7)

where Cr is a constant which depends on r.

Let us finally recall the Diophantine condition. We say that ω ∈ DC(κ, τ) (for some κ > 0 and
τ > d − 1) if and only if

|〈k, ω〉| ≥
κ

|k|τ
, ∀k ∈ Z

d \ {0}. (1.8)

2 Real reducibility

In this section, we prove a real reducibility proposition. This result has been already proved in
[4], but the proof here is different, and will be useful to understand the real almost reducibility
result later.

Proposition 2.1. If two real cocycles Xω,A and Xω,B of dimension n are conjugated, then they
are conjugated by a real conjugation.
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Proof. Let Z : Td → Gl(n,C) a conjugation between Xω,A and Xω,B

∂ωZ = AZ − ZB.

The polynomial
det(ℜZ(0) + λℑZ(0))

is of degree n and is not the zero polynomial because it doesn’t vanish when λ = i (since Z(0) =
ℜZ(0) + iℑZ(0) is invertible) and thus it has at most n zeros. Choose λ ∈ R such that ℜZ(0) +
λℑZ(0) is invertible and let

W (θ) = ℜZ(θ) + λℑZ(θ),

then
X t

ω,A(θ)W (θ) = W (θ + tω)X t
ω,B(θ), θ ∈ T

d.

Moreover, if there exists θ ∈ Td such that det W (θ) = 0, then the previous relations imply
det W (θ + tω) = 0 for all t ∈ R, and since ω is rationally independent, {[tω]; t ∈ R} is a dense set
in Td and the continuity of det W implies det W = 0, which is impossible because we chose λ real
such that ℜZ(0) + λℑZ(0) is invertible. Thus W (θ) is invertible for all θ ∈ Td.

Remark 2.2. The real conjugation in the proposition 2.1 and the given conjugation have the same
period: there is no period doubling.

Proposition 2.3. Let n ∈ N∗, U : Td → Gl(n,C) continuous and let B ∈ gl(n,C) in Jordan
normal form. If

∂ωU = BU − UB̄ (2.1)

then there exist W : Td → Gl(n,C) of class C∞ and B′ ∈ gl(n,R) such that, for all θ ∈ Td

∂ω
2
W (θ) = BW (θ) − W (θ)B′.

We postpone the proof of Proposition 2.3 after a few lemmas.
Denote

M =
{

2iπ〈k, ω〉, k ∈ Z
d
}

.

Let σ(B) = {α1, · · · , αl} the spectrum of B. The relation (2.1) implies, denoting B = diag(Bj)j=1,...,l,
αj the eigenvalue of a block Bj and U = (U j

i )i,j=1,....,l

∂ωU j
i = BiU

j
i − U j

i B̄j . (2.2)

Lemma 2.4. 1. If αi − ᾱj /∈ M, the block U j
i is zero. In particular, if αi − ᾱj /∈ M for a given

j and for all i, then det U = 0.

2. Moreover, if αi − ᾱj = 2iπ〈ki,j, ω〉 for some ki,j ∈ Zd\{0}, then the only non zero Fourier
mode of the block U j

i is indexed by ki,j.

Proof. The relation (2.1) implies, if U j
i = (ui′,j′), denoting si = mult(αi) and sj = mult(αj), for

all (i′, j′) ∈ J1, siK × J1, sjK (letting δ0 = δsi
= 0),

∂ωui′,j′ = (αi − ᾱj)ui′,j′ + δiui′+1,j′ − δj′−1ui′,j′−1, (2.3)
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with the δi′, δj′ ∈ {0, 1}. Let i, j such that αi − ᾱj /∈ M, then decomposing these equations with
Fourier coefficients and solving the equations in the right order, this implies

ui′,j′ = 0

whenever αi′ = αi and αj′ = αj.
Now, given αj , if αj − β /∈ M for all β, this implies that there is a zero column in U and then

det U = 0 which is impossible by assumption on U .

Now assume that for some i, j, αi − ᾱj = 2iπ〈ki,j, ω〉. If δi′ = δj′−1 = 0, then (2.3) implies that
the only non zero Fourier mode of ui′,j′ is indexed by ki,j. Then recursively on i′, j′ corresponding
to the same two eigenvalues of B, one proves that the only non zero Fourier mode of the block U j

i

is indexed by ki,j.

Definition 2.5. We will say that two complex numbers αi and αj are linked if and only if there
exists ki,j ∈ Zd such that

αi − ᾱj = 2iπ〈kij, ω〉

(that is to say αi − ᾱj ∈ M).

Remark 2.6. The relation of being linked is symmetric, but neither reflexive nor transitive.

Definition 2.7. We call chain of length k − 1 a sequence αi1 , · · · , αik
such that for all j ∈

{1, · · · , k − 1}, αij
is linked to αij+1

. If moreover αik
= αi1 and k ≥ 2, we will say it is a loop of

length k − 1.
We will say that two numbers α, β are chain-linked if there is a chain between α and β.

Remark 2.8. The relation of being chain-linked is an equivalence relation on any set of complex
numbers Γ which satisfy

for all x ∈ Γ, there exists y ∈ Γ such that x and y are linked (2.4)

(this will be the case when we will consider the spectrum of our matrix B). Considering such a
set Γ ⊆ C, we shall denote by [α] the equivalence class of α ∈ Γ.

Notice that if α, β are linked by a chain with even length, then α − β ∈ M.

Also, it is easy to notice that if there is a chain of length 3 then the first and the last numbers
are linked (simply write the resonances relations).

Sublemma 2.9. Let Γ ⊆ C satisfying property (2.4). Given α ∈ Γ, α is linked to itself if and
only if [α] contains a loop of odd length.

Proof. If α is linked to itself, then there is a loop of length 1 between α and itself. Suppose now
there is a loop of odd length in [α]. Denote α1, . . . αk this loop, and suppose α = α1. Then,

α1 − ᾱ1 = α1 − ᾱ2 + ᾱ2 − α3 + · · · + αk − ᾱ1 ∈ M

and then α1 is linked to itself.
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Let us investigate the possible links between the eigenvalues of B.

Lemma 2.10. Under the assumptions of Proposition 2.3, σ(B) satisfies property (2.4). Moreover,
for all α ∈ σ(B), if [α] does not contain any loop of odd length, then there is a partition of
[α] = Σ1 ∪ Σ2 where

• every element of Σ1 is linked to every element of Σ2,
• the sum of multiplicities of the eigenvalues in Σ1 equals the sum of multiplicities of the

eigenvalues in Σ2.

Proof. By the lemma 2.4, the property (2.4) holds, and the blocks of U relating different equiv-
alence classes of eigenvalues are zero. Therefore, if U has invertible values, the blocks of U
corresponding to an equivalence class of σ(B) are invertible.

Define the equivalence relation

αi ∼ αj ⇔ there exists a chain of even length between αi and αj in [α].

From remark 2.8, there are only 2 distinct equivalence classes Σ1 = {β1, . . . , βr} and Σ2 =
{γ1, · · · , γs}. Moreover, two elements of the same equivalence class cannot be linked, otherwise
we would have a loop of odd length. Any element in Σ1 is linked to all elements of Σ2. Indeed let
β ∈ Σ1 and γ ∈ Σ2, then β and γ are linked by a chain (because they both are in [α]), now this
chain has an odd length by definition of Σ1, Σ2, therefore they are linked.

Then from lemma 2.4, the block Ũ corresponding to [α] has the form

Ũ =

β1 · · · βr γ1 · · · γs












































β1 0 · · · 0 ∗ · · · ∗
...

...
. . .

...
...

. . .
...

βr 0 · · · 0 ∗ · · · ∗
γ1 ∗ · · · ∗ 0 · · · 0
...

...
. . .

...
...

. . .
...

γs ∗ · · · ∗ 0 · · · 0

(because the βi are not linked to each other, nor are the γi), which is invertible only if
∑r

i=1 mult(βi) =
∑s

i=1 mult(γi).

We can now prove proposition 2.3:

Proof. [of the proposition 2.3] Construction of W . By lemma 2.10, σ(B) satisfies the property
(2.4) therefore the relation of being chain linked is an equivalence. Let [α] ⊂ σ(B). There are two
cases:

1. If [α] contains a loop of odd length, then by sub-lemma 2.9, for all αi ∈ [α],

αi − ᾱi = 2iπ〈ki, ω〉

with ki ∈ Zd.
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2. Otherwise, [α] does not contain odd loops, and from lemma 2.10 write [α] = Σ1 ∪Σ2. Choose
arbitrarily αj ∈ Σ1. Then from remark 2.8, for all αi ∈ Σ1, there exists ki ∈ Zd such that

αi − αj = 2iπ〈ki, ω〉.

Also, for all αi ∈ Σ2, there is ki ∈ Zd such that

αi − ᾱj = 2iπ〈ki, ω〉.

Then we construct W ∈ C0(Td, Gl(n,C)), W = diag(wk)k=1,··· ,l (where wk is a sub-matrix
associated to the generalized eigenspaces of the eigenvalue αk) such that for all θ ∈ Td,

•
wi(θ) = e2iπ〈ki,θ〉I

in case 1;
•

wi(θ) = e4iπ〈ki,θ〉I

in case 2.

The relation

∂ω
2
W = BW − WB′ (2.5)

defines a matrix B′ of dimension n×n (notice that B′−B is a diagonal matrix, since the coefficients
for B and B′ outside the diagonal are the same), whose diagonal coefficients are either real (in
case 1) or come by pairs of complex conjugates with the same multiplicity (in case 2).

Now we will prove that, in case 2, the two blocks of B′ corresponding to complex conjugate
eigenvalues are algebraically conjugate, which will imply that they have the same Jordan structure.

The relation (2.2) combined with (2.5) implies that for all i, j, if we denote Ũ j
i (θ) = U j

i (2θ),

∂ω
2
(w−1

i Ũ j
i w̄j) = B′

i(w
−1
i Ũ j

i w̄j) − (w−1
i Ũ j

i w̄j)B̄
′
j

and by construction and the second statement of Lemma 2.4, w−1
i Ũ j

i w̄j is constant. Up to a
permutation, one can assume that the blocks of B corresponding to the eigenvalues in the same
equivalence class are next to each other and can be grouped in a block B[α] (where [α] stands for
the equivalence class in question). For any α ∈ σ(B), letting W[α] = diag(wi, i ∈ [α]) and Ũ[α](θ)
be the block of Ũ(θ) := U(2θ) corresponding to [α] (so Ũ = diag(Ũ[α])[α]), then W −1

[α] Ũ[α]W̄[α]

satisfies

∂ω
2
(W −1

[α] Ũ[α]W̄[α]) = B′
[α]W

−1
[α] Ũ[α]W̄[α] − W −1

[α] Ũ[α]W̄[α]B̄
′
[α].

Moreover, W −1
[α] Ũ[α]W̄[α] is constant and also invertible since Ũ is invertible. Thus B′

[α] and B̄′
[α] are

algebraically conjugate, which means that two blocks of B′ corresponding to complex conjugate
eigenvalues have the same Jordan structure.

The matrix B′ is not necessary real, but can be conjugated to a real matrix applying lemma
8.9 in appendix.
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We now prove the first main theorem:

Theorem 2.11 (Real reducibility). Let A : Td → gl(n,R) such that Xω,A is reducible. Then
Xω

2
,A2 is real reducible, where

A2(θ) := A(2θ), ∀θ ∈ T
d.

Proof. By assumptions, there exist B ∈ gl(n,C) and Z : Td → Gl(n,C) such that

∂ωZ = AZ − ZB

and then
∂ωZ̄ = AZ̄ − Z̄B̄

and
∂ωZ−1 = BZ−1 − Z−1A.

Let P an invertible matrix such that B = P JP −1, where J is in normal Jordan form. Let

U = P −1Z−1Z̄P̄ ,

then

∂ωU = ∂ω(P −1Z−1Z̄P̄ )

= P −1(∂ω(Z−1)Z̄ + Z−1∂ω(Z̄))P̄

= P −1((BZ−1 − Z−1A)Z̄ + Z−1(AZ̄ − Z̄B̄))P̄

= JU − UJ̄.

We can apply proposition 2.3 and deduce that there exist W : Td → Gl(n,C) and J ′ ∈ gl(n,R)
such that

∂ω
2
W = JW − WJ ′.

Let Z ′(θ) = Z(2θ)P W (θ). Therefore

∂ω
2
Z ′(θ) = ∂ω

2
Z(2θ)P W (θ) + Z(2θ)P ∂ω

2
W (θ)

= (A(2θ)Z(2θ) − Z(2θ)B)P W (θ) + Z(2θ)P (JW (θ) − W (θ)J ′)

= A(2θ)Z(2θ)P W (θ) − Z(2θ)P W (θ)J ′ since BP = JP

= A2(θ)Z ′(θ) − Z ′(θ)J ′.

Remark that Z ′ is not necessary real, however by proposition 2.1, there exists λ ∈ R such that

ℜZ ′ + λℑZ ′ : Td → Gl(n,R)

conjugates the two real cocycles Xω
2

,A2 and Xω
2

,J ′.

In the remainder of the article, we will prove the second main result, which is that almost
reducibility for a real cocycle implies real almost reducibility.
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3 Construction of a real change of variables

3.1 Lemmas

In this section, we prove a few lemmas about the trace of a system and the determinant of a
conjugation. They will be used to construct real changes of variables for real almost-reducible
cocycles. Here, we need an arithmetical condition on ω.

3.1.1 A small divisor lemma

Let f : Td → C be C∞ and consider the equation







∂ωg = f − f̂(0)

ĝ(0) = 0.
(3.1)

Lemma 3.1. If ω ∈ DC(κ, τ), then there exists a unique solution g : Td → C to (3.1) and it
satisfies

‖g‖Cr ≤ Cr

1

κ
‖f‖Cτ+d+1+r, ∀r ≥ 0,

where Cr,d is a constant depending only on r, d.

Proof. Developing g in Fourier series, we get

g(θ) ≃
∑

k 6=0

f̂(k)

2iπ〈k, ω〉
e2iπ〈k,θ〉.

Then for all s ≥ 1, since ω ∈ DC(κ, τ),

‖g‖C0 ≤
∑

k 6=0

|k|τ |f̂(k)|

2πκ

≤ Cs

1

κ

∑

k 6=0

|k|τ−s sup
|α|=s

|∂̂αf(k)|

≤ Cs

1

κ
‖f‖Cs

∑

k 6=0

|k|τ−s

≤ Cs,d

1

κ
‖f‖Cs

∑

j>0

jτ−s+d−1

and this converges if s ≥ τ + d + 1.
The higher derivatives are obtained by differentiating in the Fourier series.

3.1.2 Trace and determinant

Lemma 3.2. Let A : Td → gl(n,C) and ω ∈ DC(κ, τ). There exist Z : Td → Gl(n,C) and
B ∈ gl(n,C) of constant trace and of class C∞ such that

∂ωZ = AZ − ZB.
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Proof. Let B = A−(Tr A−
∫

Td Tr A(θ)dθ)I. Then B has constant trace. If f = Tr A−
∫

Td Tr A(θ)dθ,

then f̂(0) = 0 and the equation
{

∂ωg = f
ĝ(0) = 0

has a unique solution Td → C (which is of class C∞) by Lemma 3.1. Let now Z = egI : Td →
Gl(n,C), then Z satisfies

∂ωZ = AZ − ZB.

Lemma 3.3. Let A, B, F, Z : Td → gl(n,C), with Z differentiable. If

∂ωZ = AZ − ZB + F

then
∂ω det Z = Tr(A − B) det Z + Tr(FZadj)

where Zadj is the transpose of the cofactor matrix of Z.

Proof. We have, for all θ ∈ Td, Z(θ)Zadj(θ) = det Z(θ) · I, so

∂ω det Z(θ) · I = ∂ωZ(θ)Zadj(θ) + Z(θ)∂ωZadj(θ),

and taking the trace we find

n∂ω det Z = Tr((AZ − ZB + F )Zadj) + Tr(Z∂ωZadj) =

= Tr(A − B) det Z + Tr(FZadj) + Tr(Z∂ωZadj).

We want to show that (n − 1)∂ω det Z = Tr(Z∂ωZadj). From the formula of the differential of
the determinant:

D(det A)[H ] = Tr(AadjH)

where Aadj is the transpose of the cofactor matrix of A, and from the formula of the derivative of
composite functions

∂

∂t
(F ◦ f)|t=0 = Df(t)F [

∂f

∂t
|]t=0

where here

F = det, f = Z(θ + tω) ⇒ f(0) = Z(θ),
∂f

∂t
|t=0 = ∂ωZ

and therefore
Df(t)F |t=0 = Tr(Zadj ).

Hence,

∂ω det Z = Tr(Zadj∂ωZ) = Tr(∂ωZZadj)

= Tr(∂ω(ZZadj)) − Tr(Z∂ωZadj)

= Tr(∂ω(det ZId)) − Tr(Z∂ωZadj)

= n∂ω det Z − Tr(Z∂ωZadj).

Finally,

∂ω det Z = n∂ω det Z − Tr(Z∂ωZadj)

= Tr(A − B) det Z + Tr(FZadj).
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Remark 3.4. This lemma does not require any arithmetical condition on ω.

The following lemma will be used to construct a real invertible conjugation out of a complex
one.

Lemma 3.5. If Z : Td → Gl(n,C) satisfies

|
∫

Td
det Z(θ)dθ| = 1,

then there exists λ ∈ [−1, 1] such that

|
∫

Td
det(ℜZ(θ) + λℑZ(θ))dθ| ≥ Cn > 0, (3.2)

and the constant Cn only depends on n.

Proof. Let

P (λ) =
∫

Td
det(ℜZ(θ) + λℑZ(θ))dθ.

Then P is a polynomial of degree n which is non zero because P (i) is complex number of unit
modulus by assumption. Hence

P (λ) = µ(λ − α1) . . . (λ − αn)

for some µ 6= 0, α, · · · , αn ∈ C, and we have

µ =
P (i)

(i − α1) . . . (i − αn)
.

By the Pigeon hole principle, there exists k ∈ {0, . . . , n} such that

(−1 +
2k

n + 1
, −1 +

2(k + 1)

n + 1
)
⋂

{ℜα1, . . . , ℜαn} = ∅.

If λ0 = −1 + 2k+1
n+1

, then one has

|λ0 − αj | ≥ |λ0 − ℜαj | ≥
1

n + 1
, ∀j.

If |αj| ≤ 3, then
|λ0−αj |
|i−αj | ≥ 1

4(n+1)
. If now |αj| > 3, we have |λ0

αj
| ≤ 2

3
therefore |λ0

αj
− 1| ≥ 1

3
, and

also | i
αj

| ≤ 1
3

which implies | i
αj

− 1| ≤ 4
3
. Thus

|λ0 − αj|

|i − αj |
=

|λ0

αj
− 1|

| i
αj

− 1|
≥

1

4

so

|P (λ0)| ≥
∏

|αj |≤3

|λ0 − αj|

|i − αj |

∏

|αj |>3

|λ0 − αj |

|i − αj|
≥

1

(4(n + 1))n
,

so λ0 satisfies (3.2).
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3.2 Construction of a sequence of real changes of variables

Proposition 3.6. Let Xω,A be a real cocycle which is almost reducible to real matrices, i.e. there
exist sequences Zj : Td → Gl(n,C), Bj ∈ gl(n,R) and Fj : Td → gl(n,C) such that

∂ωZj = AZj − Zj(Bj + Fj)

and
lim

j→+∞
‖Z±1

j ‖m
Cr‖Fj‖Cr = 0, ∀m, r ≥ 0.

If ω ∈ DC(κ, τ), then Xω,A is real almost reducible.

Proof. By Lemma 3.2 we can assume Tr A is constant, and since Tr(A)I commutes with Zj,

∂ωZj = (A −
1

n
Tr(A) · I)Zj − Zj(Bj + Fj −

1

n
Tr(A) · I)

therefore, by replacing Bj with Bj − 1
n
Tr(A) · I, we can assume that

Tr A = 0.

We have, for all θ ∈ Td,
‖ det Z±1

j (θ)‖ ≤ Cn‖Z±1
j ‖n

C0

and, hence for all θ ∈ Td,

‖ det Z±1
j (θ)‖ = ‖

1

det Z∓1
j (θ)

‖ ≥
1

Cn

‖Z∓1
j ‖−n

C0 .

So the quantity

aj =
(

∫

Td
det Zj(θ) dθ

) 1
n ∈ C

satisfies

0 <
1

C ′
n‖Z−1

j ‖C0

≤ |aj | ≤ C ′
n‖Zj‖C0 . (3.3)

Define now

Z̃j =
1

aj

Zj.

Then
∂ωZ̃j = AZ̃j − Z̃j(Bj + Fj)

and for all r ∈ N, (3.3) implies

‖Z̃j‖Cr ≤ C ′
n‖Z−1

j ‖C0‖Zj‖Cr , ‖Z̃−1
j ‖Cr ≤ C ′

n‖Zj‖C0‖Z−1
j ‖Cr ,

which implies that
lim

j→+∞
‖Z̃±1

j ‖m
Cr‖Fj‖Cr = 0, ∀m, r ≥ 0.

Replacing Zj by Z̃j , we can therefore simply assume that

∫

Td
det Zj(θ) dθ = 1, ∀j. (3.4)
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Applying Lemma 3.3 with B = Bj and F = −ZjFj , we have

∂ω det Zj = Tr(A − Bj) det Zj − Tr(ZjFjZ
adj
j )

= − Tr(Bj + Fj) det Zj .

Hence
0 =

∫

Td
∂ω det Zj(θ)dθ = − Tr(Bj) −

∫

Td
Tr(Fj(θ)) det Zj(θ)dθ.

We can therefore simply assume (replacing Bj by Bj + 1
n

∫

Td Tr(Fj(θ)) det Zj(θ)dθI, which is real
since Bj is real and from the previous equality), that

Tr(Bj) = 0, ∀j.

By Lemma 3.5, which can be applied thanks to (3.4), there exists a λj ∈ [−1, 1] and Cn > 0 such
that

Wj = ℜZj + λjℑZj

satisfies
|d̂et Wj(0)| = |

∫

Td
det Wj(θ)dθ| ≥ Cn, ∀j. (3.5)

Clearly, since A and Bj are real,

∂ωWj = AWj − Wj(Bj + Gj)

where Gj = W −1
j (ℜ(ZjFj) + λjℑ(ZjFj)). In particular

lim
j→+∞

‖Wj‖
m
Cr‖Gj‖Cr = 0, ∀m, r ≥ 0.

There remains to study the inverse of Wj.
By Lemma 3.3, we have

∂ω det Wj = Tr(A − Bj) det Wj − Tr(WjGjW
adj
j ) =

= − Tr(WjGjW
adj
j ) = −Tr(Gjdet(Wj)) := Hj.

Since
‖Hj‖Cr ≤ Cr‖Gj‖Cr‖Wj‖

n
Cr

we have
lim
j→∞

‖Hj‖Cr = 0, ∀r ≥ 0.

By Lemma 3.1, if ω ∈ DC(κ, τ), we have

‖ det Wj − d̂et Wj(0)‖C0 ≤ Cr,d

1

κ
‖Hj‖Cτ+d+1.

So for j sufficiently large and thanks to (3.5), we have

| det Wj(θ)| ≥
1

2
Cn, ∀θ ∈ T

d.
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This implies that Wj is invertible, and for j sufficiently large,

‖W −1
j ‖C0 ≤ C ′

n‖Wj‖
n−1
C0

and, by (1.7),
‖W −1

j ‖Cr ≤ Cr‖W −1
j ‖r+1

C0 ‖Wj‖
r
Cr , ∀r.

In particular
lim

j→+∞
‖W −1

j ‖m
Cr‖Gj‖Cr = 0, ∀m, r ≥ 0.

4 Jordan normal form with estimates on the conjugation

matrix

This section is devoted to conjugating a matrix to its Jordan normal form with sufficient estimates.

4.1 Column echelon form by an algebraic conjugation

Definition 4.1. We say that a matrix A is in column echelon form if it has strictly increasing
column lengths, except the first columns which can be zero. Its pivots are the last non zero
coefficient of each non zero column.

We will now conjugate a nonzero nilpotent matrix A ∈ gl(n,C) to a nilpotent one in column
echelon form. Moreover, the conjugation will be unitary.
Let m the index of A, that is to say the smallest integer m such that Am = 0 (here m ≥ 2 since
A is nonzero). Denote L : Cn → Cn the linear map represented by A in the canonical basis, and
Kj = ker Lj the kernel of the iterates of L, for all j ∈ {0, . . . , m}. Then we have

{0} = K0 ⊂6= K1 ⊆ K2 ⊆ · · · ⊆ Km−1 ⊂6= Km = C
n.

Let for all j ∈ {1, . . . , m}, Uj = Kj ∩ K⊥
j−1 where K⊥

j−1 is the orthogonal complement of Kj−1 in
Cn equipped with the standard inner product. This implies the orthogonal direct sum

Kj = Kj−1 ⊕⊥ Uj

from which we can define projUj
: Kj → Uj the orthogonal projection onto Uj. Finally,

Kj = U1 ⊕⊥ U2 ⊕⊥ · · · ⊕⊥ Uj .

We will also denote
rj = dim Uj .

Lemma 4.2. With the above notations,

(i) L(Kj) ⊆ Kj−1 for all j ∈ {1, . . . , m},

(ii) the restriction L|Uj
of L to Uj is injective for all j ∈ {2, . . . , m},

(iii) L(Uj) ∩ Kj−2 = {0} for all j ∈ {2, . . . , m},

15



(iv) (dim Ui)i=1,...,m is a non increasing sequence.

Proof. (i) For all j ∈ {1, . . . , m},

u ∈ Kj ⇔ Lju = 0 ⇔ Lj−1(Lu) = 0 ⇔ Lu ∈ Kj−1.

(ii) Let j ∈ {2, . . . , m}, and let u ∈ Uj = Kj ∩ K⊥
j−1 with u 6= 0. Then u /∈ Kj−1 and then

Lj−1u 6= 0, which implies (since j − 1 ≥ 1) Lu 6= 0.

(iii) Let j ∈ {2, . . . , m} and let a nonzero u ∈ Uj = Kj ∩ K⊥
j−1, then u /∈ Kj−1, and from (i),

Lu ∈ Kj−1. Reasoning by absurdity, suppose that Lu ∈ Kj−2, then Lj−1u = Lj−2(Lu) = 0,
which implies u ∈ Kj−1 leading to a contradiction.

(iv) Let j ∈ {2, . . . , m} and u1, . . . , ur linearly independent vectors in Uj ⊂ Kj . From (ii),
Lu1, . . . , Lur are linearly independent vectors in Kj−1 = Kj−2 ⊕⊥ Uj−1 and from (iii),
projUj−1

(Lu1), . . . , projUj−1
(Lur) are linearly independent vectors in Uj−1, which implies that

dim Uj−1 ≥ dim Uj .

Proposition 4.3. Let A a nilpotent matrix of index m ≥ 2. With the above notations, for all
j ∈ {1, . . . , m}, there exists an orthonormal basis Bj = {uj

1, . . . , uj
rj

} of Uj (where rj = dim Uj)
such that, for all j ≥ 2 and for all k ∈ {1, . . . , rj}, letting K−1 = {0},

Luj
k ∈ span(uj−1

1 , . . . , uj−1
k ) ⊕⊥ Kj−2

and
〈Luj

k, uj−1
k 〉 6= 0.

Proof. Let Bm = {um
1 , . . . , um

rm
} an orthonormal basis of Um. From (ii) of lemma 4.2, {Lum

1 , . . . , Lum
rm

}
are linearly independant vectors of Km−1 = Km−2 ⊕⊥ Um−1 and from (iii) of lemma 4.2, {v1 =
projUm−1

(Lum
1 ), . . . , vrm

= projUm−1
(Lum

rm
)} are linearly independant vectors of Um−1. Apply

Gram–Schmidt on {v1, . . . , vrm
}. Then there exists an orthonormal basis B = {u′

1, . . . , u′
rm−1

}
(taking {v1, . . . , vrm

} and completing into an orthonormal basis if rm−1 − rm > 0) of Um−1 such
that for all k ∈ {1, . . . , rm} (recall rm ≤ rm−1),

vk ∈ span(u′
1, . . . , u′

k)

and
〈u′

k, vk〉 6= 0.

Then for all k ∈ {1, · · · , rm},

Lum
k ∈ span(u′

1, . . . , u′
k) ⊕⊥ Km−2

and
〈Lum

k , u′
k〉 = 〈u′

k, vk〉 6= 0,

and let Bm−1 = B. Now if m = 2 we are done, and if m ≥ 3, we construct every Bj the same way
from Uj+1 and Bj+1.
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Corollary 4.4. Let L be a nilpotent linear application of index m ≥ 2. With the above notations,
there exists an orthonormal basis B = {u1, . . . , un} of Cn such that L is represented in this basis
by the matrix

A =



















0 A2
1 ∗ · · · · · ·

0 0 A3
2

. . .
...

0 0 0
. . . ∗

0 0 0 0 Am
m−1

0 0 0 0 0



















(4.1)

where, for all j ∈ {2, m}, Aj
j−1 is a rj−1 × rj matrix of the form



















α1 ∗ ∗

0
. . . ∗

0 0 αrj

0 0 0
...

...
...



















if rj−1 > rj or








α1 ∗ ∗

0
. . . ∗

0 0 αrj









if rj−1 = rj , and with αi 6= 0 for all i ∈ {1, . . . , rj}.

Proof. Concatenating the basis Bi obtained for all i ∈ {1, . . . , m} in proposition 4.3, blocks Aj
j−1

have coefficients
〈uj−1

k , Luj
l 〉

for all k ∈ {1, . . . , rj−1}, l ∈ {1, . . . , rj}.

Lemma 4.5. Let A of the form (4.1). Let B with the same block-triangular form as A, that is to
say, according to the notation of corollary 4.4, for all i ≥ j,

Aj
i = 0 ⇒ Bj

i = 0.

Denote by LA and LB the linear maps represented by A and B respectively in the canonical basis.
Then

(i)
ker Lj

B ⊇ ker Lj
A, ∀j.

(ii) If
ker Lj

B = ker Lj
A, ∀j,

then the block Bj
j−1 is of maximal rank rj for all j.

Proof. (i) follows from the assumption on B.
To see (ii), notice that

KA
j = ker Lj

A = R
r1+···+rj × {0}
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and
UA

j = {0} × R
rj × {0}.

Then

LA : UA
j ∋







0
u
0





 7→







0

Aj
j−1u
0





 ∈ UA
j−1

which is an injective map.
If now ker Lj

B = ker Lj
A then, by the second statement of Lemma 4.2,

LB : UA
j ∋







0
u
0





 7→







0

Bj
j−1u
0





 ∈ UA
j−1

is injective. This is the same as Bj
j−1 being of maximal rank rj .

4.2 Reduced column echelon form

Definition 4.6. A matrix A ∈ gl(n,C) is on reduced column echelon form if and only if it is on
column echelon form with all pivots equal to 1.

We shall conjugate a (nonzero) nilpotent matrix on column echelon form to reduced column
echelon form modulo a perturbation with control on the conjugation.

Lemma 4.7. Let B be a matrix on column echelon form with pivots (αj)j. If

|αj| ≥ δ > 0, ∀j,

then there exists a diagonal matrix S,

‖S±‖ ≤ C(
‖B‖

δ
)

n
2 ,

such that S−1BS is on reduced column echelon form.
The constant C only depends on n.

Proof. Let B in column echelon form, then up to a change of orthonormal basis, it has the form of
Corollary 4.4; we will look for a block-diagonal S where the diagonal blocks Sj are diagonal and
their dimensions are rj (the number of columns in Bj

j−1). Then for all j, we want to find Sj such
that

S−1
j−1B

j
j−1Sj =















1 ∗ ∗

0
. . . ∗

0 0 1
...

...
...















where Sj−1 is given. These equations can be solved uniquely, one by one, starting with S1 = I.
Thus,

‖S‖ ≤
1

δn
, ‖S−1‖ ≤ ‖B‖n.

One can then just multiply S by
√

‖B‖nδn to get the estimate.
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Proposition 4.8. Let A a nilpotent block diagonal matrix. Let ε > 0 and (δk)k≥0 a positive
decreasing sequence such that

εδ1 + · · · + εδk ≤ 2εδk , ∀k ≥ 1.

Then there exists 1 ≤ k ≤ n2

2
and S ∈ Gl(n,C) with

‖S±‖ ≤ C(‖A‖ + 2εδk−1)
n
2 ε− n

2
δk (4.2)

such that
S−1AS = A′ + F,

with
‖F‖ ≤ C(‖A‖ + 2εδk−1)nε−nδk+δk−1 , (4.3)

where the constant C only depends on n, and S and A′ are block diagonal with the same block
decomposition as A, and each block of A′ is on reduced column echelon form.

Proof. For any nilpotent matrix A, define

σker(A) = (dim ker LA, dim ker L2
A, . . . , dim ker Ln−1

A )

where LA is associated to A in the canonical basis. This is an increasing sequence of integers
∈ J1, nK and

σ ker(A) = (n, n, . . . , n) ⇐⇒ A = 0. (4.4)

If B is another nilpotent matrix we say that σ ker(A) > σ ker(B) if and only if

dim ker Lj
A







≥ dim ker Lj
B for all j

> dim ker Lj
B for some j

(this is of course not a total ordering).

By applying Corollary 4.4 to each block of A we can assume, without restriction, that each
block of A1 = A is on column echelon form. By induction:

Base case: If no pivot is ≤ εδ1 , applying Lemma 4.7 to each block of A1, there exists a diagonal
matrix S1 with ‖S±1

1 ‖ ≤ C(‖A1‖
εδ1

)
n
2 such that S−1

1 A1S1 is on reduced column echelon form, so we
are done with F = 0.

If there are pivots which are ≤ εδ1 , let F1 ∈ gl(n,C) whose non zero coefficients are those
pivots (then ‖F1‖ ≤ εδ1 , and A1 − F1 has a block not of maximal rank). Apply Corollary 4.4 to
A1 − F1: there exists a unitary matrix U1 ∈ Gl(n,C) such that A2 = U−1

1 (A1 − F1)U1 is block
diagonal, with blocks on column echelon form and by Lemma 4.5, σ ker(A2) > σ ker(A1). We have
estimates

‖F1‖ ≤ εδ1

‖A2‖ = ‖U−1
1 (A1 − F1)U1‖ ≤ ‖A1‖ + εδ1 .

Induction step: Assume that for some k > 1 there exists a unitary U ′
k−1 ∈ Gl(n,C) with

U ′−1
k−1AU ′

k−1 = Ak + F ′
k such that Ak is block diagonal and has blocks on column echelon form,

with ‖F ′
k‖ ≤ εδk−1 + · · · + εδ1 and ‖Ak‖ ≤ ‖A‖ + εδ1 + · · · + εδk−1.
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If no pivot of Ak is ≤ εδk , applying Lemma 4.7 to each block of Ak, we get Sk ∈ Gl(n,C)

diagonal, with ‖S±1
k ‖ ≤ C(‖Ak‖

εδk
)

n
2 , and A′ = S−1

k AkSk is block diagonal with blocks on reduced
column echelon form. Let then S = U ′

k−1Sk, then

S−1AS = (U ′
k−1Sk)−1A(U ′

k−1Sk) = S−1
k (Ak + F ′

k)Sk

= A′ + F ′

with F ′ ∈ gl(n,C) of norm

‖F ′‖ ≤ ‖Sk‖ ‖S−1
k ‖(εδk−1 + · · · + εδ1) ≤ 2C2(

‖Ak‖

εδk
)nεδk−1 ≤ 2C2(‖A‖ + 2εδk−1)nε−nδk+δk−1

where the constant C depends only on n, and the proposition is proved.
If some pivots of Ak are ≤ εδk , let Fk ∈ gl(n,C) whose non zero coefficients are those pivots

(then ‖Fk‖ ≤ εδk , and Ak − Fk is block diagonal and has an block not of maximal rank). Apply
Corollary 4.4 to Ak − Fk: there exists a unitary matrix Uk ∈ Gl(n,C) such that Ak+1 = U−1

k (Ak −
Fk)Uk is block diagonal and has blocks in column echelon form and by Lemma 4.5, σ ker(Ak+1) >
σ ker(Ak) with estimates

‖Fk‖ ≤ εδk ,

‖Ak+1‖ ≤ ‖Ak‖ + εδk

therefore

U−1
k U

′−1
k−1AU ′

k−1Uk = U−1
k (Ak + F ′

k)Uk = Ak+1 + U−1
k (Fk + F ′

k)Uk

and then, letting U ′
k = U ′

k−1Uk and F ′
k+1 = Fk + F ′

k, the induction step is established. By
construction, the constructed matrices have the same block decomposition as A.

After at most n2

2
steps, the algorithm stops according to 4.4, since the matrix is zero and is

then trivially in normal Jordan form.

4.3 From reduced echelon to Jordan

We shall conjugate a (nonzero) nilpotent matrix A ∈ gl(n,C) on reduced column echelon form
to Jordan normal form with control on the conjugation. If A is on reduced column echelon form,
iterating the following lemma will remove the non zero coefficients above the pivots of A. We
denote in the following Ai,· the i:th row of A, and A·,l the l:th column of A.

Fix 1 ≤ k0 < i0 < j0 and define M := Mk0,i0 ∈ gl(n,C) by

Mi,j =







0 (i, j) 6= (k0, i0)

1 (i, j) = (k0, i0)

Multiplying a matrix A to the left by I + aM amounts to replacing the k0:th row Ak0,· by
Ak0,· + aAi0,·.

Multiplying a matrix A to the right by

(I + aM)−1 = I − aM

amounts to replacing the i0:th column A·,i0 by A·,i0 − aA·,k0.
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Let A be a nilpotent matrix on reduced column echelon form with a pivot

Ai0,j0, i0 < j0.

Let k0 ∈ {1, . . . , i0 − 1} the row index of the last non zero coefficient before the pivot in the j0:th
column of A, let M as above, and

B = (I − aM)A(I + aM), a = Ak0,j0.

The following lemma will be used to remove that coefficient from the matrix A.

Lemma 4.9. The matrix B is on reduced column echelon form with the same pivots as A.
If the only non-zero coefficients in A·,j, j > j0 are the pivots, then

B·,j = A·,j, j > j0

and

Bi,j0 =







Ai,j0 i 6= k0

0 i = k0

Proof. We have

∀j 6= i0, Bk0,j = Ak0,j − aAi0,j & ∀i 6= k0, Bi,i0 = Ai,i0 + aAi,k0

and Bk0,i0 = Ak0,i0 , and for i 6= k0 and j 6= j0,

Bi,j = (A − aMA + aAM − a2MAM)i,j = Ai,j .

Since k0 < i0, the column A·,k0 is strictly shorter than A·,i0. The pivot in B·,i0 is therefore the
same as in A·,i0.

Since Ai0,j0 is a pivot, we have Ai0,j = 0 for all j < j0. Hence

Bk0,j = Ak0,j − aAi0,j = Ak0,j, ∀j < j0.

So if there is a pivot in Bk0,·, it is the same as that in Ak0,·.

If the only non-zero coefficients in A·,j, j > j0, are the pivot, then, since k0 < j0 and i0 < j0,

Bk0,j = Ak0,j − aAi0,j = 0 ∀j > j0.

Hence B·,j = 0 for all j > j0. Moreover,

Bi,j0 =







Ai,j0 i 6= k0

Bk0,j0 = Ak0,j0 − aAi0,j0 = 0 i = k0

.

Now we can conjugate to the Jordan normal form:
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Proposition 4.10. Let A be a non zero block diagonal nilpotent matrix, with each block on reduced
column echelon form. There exists S ∈ Gl(n,C),

‖S±1‖ ≤ C(1 + ‖A‖)n!,

such that S−1AS is on Jordan normal form and S are also block diagonal with the same block
decomposition as A. The constant C only depends on n.

Proof. We start with the column An and apply the lemma 4.9 to each coefficient above the pivot.
This gives a S1 ∈ Gl(n,C),

‖S±1
1 ‖ ≤ C1(1 + ‖A‖)n−1,

such that
A1 = S−1

1 AS1

diagonal on reduced column echelon form with the same pivots as A, and whose only non-zero
coefficient in the last column is the pivot.

Then we do the same with the next to last column in A1, and so on and so forth. This stops
after at most n steps producing a S ∈ Gl(n,C),

‖S±1‖ ≤ Cn(1 + ‖A‖)n!,

such that
B = S−1AS

is block diagonal on reduced column echelon form with the same pivots as A, and whose only
non-zero coefficient are the pivots. By construction the block decomposition is the same as A.

Since there are only finitely many such matrices, they can be conjugated to Jordan normal
form with (uniform) bound on the conjugation and its inverse.

4.4 Jordan normal form with estimates

Proposition 4.11. Let N be a non zero nilpotent block diagonal matrix. For any ε ∈ (0, 1) and
m ∈ N∗, there exists S ∈ Gl(n,C) block diagonal, a constant C > 0 only depending on n and
constants c > 0, c′ ∈ (0, 1

2
] only depending on n and m (in particular, they do not depend on ε)

such that

‖S±1‖ ≤ C(‖N‖ + 1)cε− 1
2(m+2) (4.5)

S−1NS = A′ + F ′,

with A′ on Jordan normal form and

‖S±1‖m‖F ′‖ ≤ (C(‖N‖ + 1)c)m+1εc′

. (4.6)

Moreover, S and A′ have the same block diagonal decomposition as N .
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Proof. Let ε ∈ (0, 1) and m ≥ 1. Let δ0 = 1, cn = 2(n + 1)(2n)! + n, and for all k ≥ 1,

δk−1 = 2(m + 2)cnδk.

Apply Proposition 4.8 to N with this choice of (δk). This gives a 1 ≤ k ≤ n2 and a block diagonal
matrix S1 ∈ Gl(n,C),

‖S±1
1 ‖ ≤ C(‖N‖ + 1)

n
2 ε− n

2
δk

such that
S−1

1 NS1 = N ′ + G,

with N ′ on reduced column echelon form and

‖G‖ ≤ C(‖N‖ + 1)nε−nδk+δk−1.

Moreover, S1 and N ′ are block diagonal with the same block structure as N .
Apply now Proposition 4.10 to each block of N ′ to find a block diagonal S2 ∈ Gl(n,C) satisfying

‖S±1
2 ‖ ≤ C(1 + ‖N ′‖)n!

such that the block diagonal matrix A′ = S−1
2 N ′S2 is on Jordan normal form. Then we have, with

S = S1S2,
S−1NS = S−1

2 (N ′ + G)S2 = A′ + S−1
2 GS2.

Moreover, S and A′ are block diagonal with the same block structure as N .

The estimates:

‖N ′‖ = ‖S−1
1 NS1 − G‖ ≤

≤ C(‖N‖ + 1)nε−nδk‖N‖ + C(‖N‖ + 1)nε−nδk+δk−1

≤ C(‖N‖ + 1)n+1ε−nδk

Hence
‖S±1

2 ‖ ≤ C(‖N‖ + 1)(n+1)n!ε−n·n!δk.

In particular

‖S±1‖ ≤ C(‖N‖ + 1)(n+1)!+ n
2 ε−n·n!δk− n

2
δk ≤ C(‖N‖ + 1)cnε−cnδk

(recall cn = 2(n + 1)(2n)! + n) and by the definition of (δk), cnδk ≤ 1
2(m+2)

so (4.5) holds.

Moreover,

‖S−1
2 GS2‖ ≤ C(‖N‖ + 1)2(n+1)!+nε−2n·n!δk−nδkεδk−1

≤ C(‖N‖ + 1)cnε−cnδk+δk−1.

Hence
‖S±1‖m‖S−1

2 GS2‖ ≤ Cm+1(‖N‖ + 1)(m+1)cnε−(m+1)cnδk+δk−1

≤ (C(‖N‖ + 1)cn)m+1ε(m+1)cnδk ,

so (4.6) holds with c = cn and c′ = (m + 1)cnδk.
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5 An almost reducibility result to a Jordan normal form

In this section, we construct an almost conjugation to a cocycle which is in Jordan normal form.
A control of the estimates requires to do it in two steps.

Proposition 5.1. Let Xω,A an almost reducible cocycle in C∞. If ω is Diophantine, then there exist
sequences (Zj), (Fj), (Bj) such that every Bj is block diagonal, each block being upper triangular
with only one eigenvalue,

∂ωZj = AZj − Zj(Bj + Fj)

and for all m ∈ N,

‖Z±1
j ‖m

Cm‖Fj‖Cm → 0. (5.1)

Proof. We will construct such a sequence for a fixed m, and then the lemma 8.10 will imply the
conclusion.

Fix m ∈ N\{0} and define the parameters

β =
1

4n3
, γ1 =

1

4(16mn3)n
,

and for i ≥ 1, the increasing sequence

γi+1 = 16mn3γi.

Estimate of Bj The conjugation relation can be written as

Bj = Z−1
j (AZj − ∂ωZj) − Fj

and then
‖Bj‖ ≤ CA,ω,d‖Zj‖C1‖Z−1

j ‖C0 + ‖Fj‖Cr ≤ C ′
A,ω,d‖Zj‖C1‖Z−1

j ‖C0 ,

with CA,ω,d and C ′
A,ω,d depending only on A, ω and d.

The assumption
lim

j→+∞
‖Z±1

j ‖m
Cr‖Fj‖Cr = 0, ∀r, m ∈ N

implies that for J1 large enough, for all j ≥ J1,

(‖Zj‖Cm‖Z−1
j ‖Cm)

1
β ‖Fj‖Cm ≤ C ′

A,ω,d
− 1

β

therefore for all j ≥ J1,
‖Bj‖ ≤ ‖Fj‖

−β

C0 . (5.2)

From now on, we will work with j ≥ J1.
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Construction of a matrix similar to Bj, block diagonal with separated spectrum Let
εj = ‖Fj‖Cm . From Corollary 8.5 given in appendix and applied to Bj and Γi = εγi

j , there exists
d0 ∈ {1, . . . , n} such that we can conjugate Bj to a matrix Dj which is block diagonal, with each
block being upper triangular with ε

γd0
j -connected spectrum (as defined in 8.2), and if we denote

by Mj ∈ GL(n,C) the conjugation (so that Dj = M−1
j BjMj and Gj = M−1

j FjMj), then

‖Mj‖, ‖M−1
j ‖ ≤ n3n(

‖Bj‖

ε
2γd0−1

j

)n3

. (5.3)

Writing Dj + Gj = B̂j + F̂j , where F̂j is obtained from Dj by adding a diagonal with coefficients

smaller than n‖Fj‖
γd0
Cm , and B̂j is block diagonal, with blocks upper triangular having only one

eigenvalue, we obtain a conjugation

M−1
j (Bj + Fj)Mj = B̂j + F̂j

with the estimate

‖F̂j‖Cm ≤ ‖Gj‖Cm + n‖Fj‖
γd0
Cm ≤ ‖Mj‖‖M−1

j ‖εj + nε
γd0
j ≤ Cnε

1−2βn3−4n3γd0−1

j + nε
γd0
j ≤ Cnε

γd0
j

(where Cn only depends on n). Then

‖Z±1
j ‖m

Cm‖Mj‖
m‖M−1

j ‖m‖F̂j‖Cm ≤ ‖Z±1
j ‖m

Cmn6mn3

(
‖Bj‖

ε
2γd0−1

j

)2mn3

ε
γd0
j

≤ C(m, n)‖Z±1
j ‖m

Cmε
−4mn3γd0−1−2mn3β+γd0
j

By the choice of β and the sequence γi, the exponent on εj is positive, therefore the almost
reducibility assumption implies that this quantity tends to 0.

Proposition 5.2. Let Xω,A an almost reducible cocycle in C∞. If ω is Diophantine, then it is
almost reducible to a sequence (Bj) of matrices that are in Jordan normal form.

Proof. By Proposition 5.1, there exist sequences (Zj), (Fj), (Bj) such that

∂ωZj = AZj − Zj(Bj + Fj)

where the convergence condition (5.1) holds, and the matrices Bj are block diagonal, every block
being upper triangular with only one eigenvalue.

Fix m ∈ N. Define β = c′

2c(m+2)
where c > 0, c′ ∈ (0, 1

2
] are given by the proposition 4.11 and

depend only on n, m.
Reasoning similarly as in the proof of Proposition 5.1, there exists an index J2 such that if j ≥ J2,
then

‖Bj‖ ≤ ‖Fj‖
−β
Cm.

We shall apply Proposition 4.11 with N being the matrix Bj without its diagonal coefficients, and
ε = εj = ‖Fj‖Cm.
Let A′ = A′

j , F ′ = F ′
j , S = Sj given by proposition 4.11 (in particular Sj block diagonal with the

same block structure as Bj). Therefore, since the diagonal part of Bj commutes with Sj (recall
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that Bj has only one eigenvalue for each diagonal block), Bj + Fj is conjugate via Sj to B̃j + F̃j ,
such that B̃j is in Jordan normal form and F̃j = F ′

j + S−1
j FjS with

‖S±1
j ‖ ≤ C(‖Bj‖ + 1)cε

− 1
2(m+2)

j ≤ C(m, n)ε
−βc− 1

2(m+2)

j (5.4)

and
‖S±1

j ‖m‖F ′
j‖ ≤ (C(‖Bj‖ + 1)c)m+1εc′

j ≤ C(m, n)ε
−cβ(m+1)+c′

j . (5.5)

Therefore

‖S±1
j ‖m‖F̃j‖Cm ≤ C(m, n)ε

−cβ(m+1)+c′

j + ‖S±1
j ‖m+2‖Fj‖Cm

≤ C(m, n)ε
−cβ(m+1)+c′

j + C(m, n)ε
−(m+2)(βc+ 1

2(m+2)
)+1

j

(5.6)

Thus

‖Z±1
j ‖m

Cm‖S±1
j ‖m‖F̃j‖Cm

≤ C(m, n)‖Z±1
j ‖m

Cm(ε
−cβ(m+1)+c′

j + ε
−(m+2)(βc+ 1

2(m+2)
)+1

j )

The choice of the parameter β implies that the exponent on εj on the right hand side will be
positive, thus the convergence condition holds for fixed m. Applying Lemma ??, there is almost
reducibility to the sequence (B̃j).

6 Construction of a conjugation to a real matrix

In this section, B = diag(Bj)
l
j=1 will be a block diagonal matrix where each block Bj is on Jordan

normal form with only one eigenvalue αj . The spectrum of B is

σ(B) = {α1, . . . , αl} (#σ(B) = l).

We shall study the equation
F = ∂ωV − BV + V B̄. (6.1)

where V : Td → Gl(n,C) and ω ∈ DC(κ, τ), and where F is supposed to be “small”.
This equation decomposes into its block-components

F j
i = ∂ωV j

i − BiV
j

i + V j
i B̄j (6.2)

for each i, j.

6.1 (N, ρ)-linkedness

In this section, we will study resonances between the eigenvalues of the matrix B. This way, we
want to create sets of eigenvalues with same cardinality, linked by resonances. Fix N ∈ N, ρ > 0.

Definition 6.1. Two complex numbers α and β are (N, ρ) − linked if and only if

|i2π〈k, ω〉 − (αi − ᾱj)| < ρ

for some |k| ≤ N .
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Let Γ be a finite set of complex numbers with 0 < #Γ ≤ n.

Definition 6.2. An (N, ρ) − chain in Γ of length r − 1 is a sequence

α1, α2, . . . , αr−1, αr

in Γ such that αj and αj+1 are (N, ρ)- linked for all j. The numbers α1 and αr are then said to
be (N, ρ) − chain − linked.
An (N, ρ) − loop in Γ is an (N, ρ)- chain

α1, α2, . . . , αr−1, αr

such that α1 = αr . An (N, ρ) − loop is odd if it is of odd length.

It is easy to verify that if α and β are (N, ρ)-chain-linked, then they are (N, ρ)-chain-linked by a
chain of length ≤ n.

Lemma 6.3. Let
α1, α2, . . . , αr−1, αr

be an (N, ρ) − chain in Γ.

• If r − 1 is odd, then α1 and αr are (nN, nρ) − linked.
• If r − 1 is even, then α1 and ᾱr are (nN, nρ) − linked.

Proof. We can assume without restriction that r − 1 ≤ n.
We have for all j and for some kj,

|i2π〈kj, ω〉 − (αj − ᾱj+1)| ≤ ρ, |kj| ≤ N,

Let k =
∑

j odd kj −
∑

j even kj, then
|k| ≤ nN.

If r − 1 is odd, then

α1 − ᾱr = (α1 − ᾱ2) + (ᾱ2 − α3) + (α3 − ᾱ4) + · · · + (αr−1 − ᾱr)

so

i2π〈k, ω〉 − (α1 − ᾱr) =
∑

j odd

(

i2π〈kj, ω〉 − (αj − ᾱj+1)
)

+
∑

j even

(

i2π〈−kj, ω〉 − (ᾱj − αj+1)
)

.

This implies that
|i2π〈k, ω〉 − (α1 − ᾱr)| ≤ nρ.

If r − 1 is even, then

α1 − αr = (α1 − ᾱ2) + (ᾱ2 − α3) + (α3 − ᾱ4) + · · · + (ᾱr−1 − αr)

so

i2π〈k, ω〉 − (α1 − αr) =
∑

j odd

(

i2π〈kj, ω〉 − (αj − ᾱj+1)
)

+
∑

j even

(

i2π〈−kj, ω〉 − (ᾱj − αj+1)
)

.

This implies that
|i2π〈k, ω〉 − (α1 − αr)| ≤ nρ.
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We shall assume that Γ is such that

for any α ∈ Γ, there is a β such that α and β are (N, ρ) − linked. (6.3)

Then ”being (N, ρ)-chain-linked” is an equivalence relation and we denote by

[α]

the equivalence class of α ∈ Γ – it depends on (N, ρ).

Lemma 6.4. If [α] contains an odd (N, ρ)-loop, then any β ∈ [α] is ((2n − 1)N, (2n − 1)ρ)-linked
to itself.

Proof. Consider an odd (N, ρ)-loop

α1, α2, . . . , αr−1, αr = α1, r ≥ 2.

If r − 1 ≥ n + 1, then there exist 1 ≤ i < j ≤ r − 1 such that αi = αj . Then

αi, αi+1, . . . , αj = αi

is an (N, ρ)-loop of length j − i. Moreover

αj , αj+1, . . . , αr−1, αr = α1, α2, . . . , αi−1, αi = αj

is an (N, ρ)-loop of length (r − j) + (i − 1).
Since

(j − i) + (r − j) + (i − 1) = r − 1

is odd, one of these two “sub-loops” must be odd. So there exists a shorter odd (N, ρ)-loop, and we
conclude that there exists an odd (N, ρ)-loop of length < r − 1, i.e. we can assume that r − 1 ≤ n.
Let now β ∈ [α]. Then there is an (N, ρ)-chain connecting β to the odd (N, ρ)-loop

α1, α2, . . . , αr−1, αr = α1,

i.e.
β = β1, β2, . . . , βs−1, βs = αj, s − 1 ≤ n − (r − 1)

We can without restriction assume that j = 1. Then

β = β1, . . . , βs−1, βs = α1, α2, . . . , αr = α1 = βs, βs−1, . . . , β2, β1 = β

is an (N, ρ)-loop of length

(s − 1) + (r − 1) + (s − 1) ≤ 2(n − r + 1) + (r − 1) = 2n − r + 1 ≤ 2n − 1.

This length is odd, thus by Lemma 6.3, β is (nN, nρ)-linked to itself.

Lemma 6.5. If [α] contains no odd (N, ρ)-loops, then there exists a partition [α] = Σ1 ∪ Σ2 such
that
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(i) β and γ are not (N, ρ)-linked if β, γ ∈ Σ1, and the same holds for Σ2,
(ii) β and γ̄ are (nN, nρ)-linked if β, γ ∈ Σ1, and the same holds for Σ2,

(iii) β and γ are (nN, nρ)-linked if β ∈ Σ1 and γ ∈ Σ2.

Proof. Fix α ∈ Γ and define

Σ1 = {β ∈ [α] : there exists a (N, ρ)−chain of even length between α and β} ∪ {α}

and
Σ2 = {β ∈ [α] : there exists a (N, ρ)−chain of odd length between α and β}.

Notice that Σ2 contains all elements that are (N, ρ)-linked to α. In particular, Σ2 6= ∅, by
assumption (6.3) on Γ.
Notice also that Σ1 ∩ Σ2 = ∅, because if not, then [α] would contain an odd (N, ρ)-loop.

Proof of (i): Two elements in Σ1 cannot be (N, ρ)-linked to each other, because then there would
be an odd (N, ρ)-loop in [α]. Idem for Σ2.
Proof of (ii): Any two elements in Σ1 are linked by an even (N, ρ)-chain (by transversality). Idem
for Σ2. Therefore (ii) follows from Lemma 6.3.
Proof of (iii): Any element in Σ1 are linked to any element of Σ2 by a chain of odd length (by
transversality). Therefore (iii) follows from Lemma 6.3.

6.2 Analysis of resonances

Lemma 6.6. If for some 0 < ρ ≤ 1,

|i2π〈k, ω〉 − (αi − ᾱj)| ≥ ρ,

then

‖V̂ j
i (k)‖ ≤ (

2

ρ
)2n−1‖F‖C0.

Proof. From (6.2) we have

(i2π〈k, ω〉 − (αi − ᾱj))V̂
j

i (k) = NiV̂
j

i (k) − V̂ j
i (k)Nj + F̂ j

i (k),

where
Ni = Bi − αiI and Nj = Bj − αjI.

Changing notations, we can write this as

γX = NiX − XNj + Y = LX + Y.

The operator L verifies for all matrix X in the domain of L,

‖LX‖ ≤ 2‖X‖ & L2n−1 = 0.

Then

X =
1

γ

(

Y + LX) =
1

γ
Y +

1

γ2
LY +

1

γ3
L2X + . . .
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=
∑

0≤j≤2n−2

1

γj+1
LjY.

Hence, since γ ≥ ρ,

‖X‖ ≤
∑

0≤j≤2n−2

1

ρj+1
2j‖Y ‖ ≤

1

2 − ρ
(
2

ρ
)2n−1‖Y ‖.

Lemma 6.7. Assume

1.
‖V ‖C0 + ‖V −1‖C0 ≤ ξ

2. V is a trigonometric polynomial of degree ≤ N

3.
ρ < (2N)−τ κ

4.
‖F‖C0 ≤ (4nn!(3N)dξn)−1ρ2n−1.

Then, for any i, there exists a j and a unique |ki,j| ≤ N such that

|i2π〈ki,j, ω〉 − (αi − ᾱj)| < ρ.

Proof. Given i, suppose that
|i2π〈k, ω〉 − (αi − ᾱj)| ≥ ρ

for all j and all |k| ≤ N . By Lemma 6.6,

‖V̂ j
i (k)‖ ≤ (

2

ρ
)2n−1‖F‖C0

so

‖V j
i ‖C0 ≤ (3N)d(

2

ρ
)2n−1‖F‖C0 = ε.

This implies that
‖ det V ‖C0 ≤ n!εξn−1.

Since

∂ωV −1 − B̄V −1 + V −1B = V −1∂ωV V −1 − B̄V −1 + V −1B

= V −1(BV − V B̄ + F )V −1 − B̄V −1 + V −1B

= V −1FV −1

(6.4)

we find, by a similar reasoning, that

‖ det(V −1)‖C0 ≤ n!εξ2ξn−1.
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Hence
1 = ‖ det(V V −1)‖C0 ≤ (n!εξn)2

which is forbidden by assumption 4.

Uniqueness: Suppose there exists k 6= l such that |k|, |l| ≤ N and

|i2π〈k, ω〉 − (αi − ᾱj)| < ρ & |i2π〈l, ω〉 − (αi − ᾱj)| < ρ.

Then, since ω ∈ DC(κ, τ),

2π
κ

(2N)τ
≤ |i2π〈k − l, ω〉| ≤ 2ρ

which is forbidden by assumption 3.

Corollary 6.8. Under assumptions 1−4 of Lemma 6.7, being (N, ρ)-chain-linked is an equivalence
relation on σ(B).

Indeed these assumptions imply that the condition (6.3) holds for σ(B).

6.3 The Jordan structure of B

Assumption: From now on, in this section, we assume properties 1 − 4.

Let
[α] ⊆ σ(B)

be an equivalence class that contains no odd (N, ρ)-loop. By Lemma 6.5 there exists a partition
[α] = Σ1 ∪ Σ2 such that

(i) β and γ are not (N, ρ)-linked if β, γ ∈ Σ1, and the same holds for Σ2,
(ii) β and γ̄ are (nN, nρ)-linked if β, γ ∈ Σ1, and the same holds for Σ2,

(iii) β and γ are (nN, nρ)-linked if β ∈ Σ1 and γ ∈ Σ2.

Let Σ3 = σ(B) \ [α] and define

XΣv

Σu
=
(

Xj
i

)αj∈Σv

αi∈Σu

, u, v = 1, 2, 3,

for any matrix X – we often write XΣu
for the diagonal block XΣu

Σu
.

Lemma 6.9. If

‖F‖C0 ≤
1

4n3n(3N)dξ
ρ2n−1

then V Σ2
Σ1

is an invertible square-matrix and

‖(V Σ2
Σ1

)−1 − (V −1)Σ1
Σ2

‖C0 ≤ 6n(3N)dξ2(
1

ρ
)2n−1‖F‖C0.
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Proof. We can assume without restriction that

Σ1 = {α1, . . . , αr}, Σ2 = {αr+1, . . . , αr+s}

so
V =

(

Uv
u

)

u,v=1,2,3
, Uv

u = V Σv

Σu
.

By Lemma 6.6, for any |k| ≤ N ,

‖V̂ j
i (k)‖ ≤ (

2

ρ
)2n−1‖F‖C0 = ε if















αi ∈ Σ1, αj ∈ Σ1 ∪ Σ3

or αi ∈ Σ2, αj ∈ Σ2 ∪ Σ3

or αi ∈ Σ3, αj ∈ Σ1 ∪ Σ2

which implies that

‖Ûv
u(k)‖ ≤ nε if















u = 1 v = 1, 3

u = 2 v = 2, 3

u = 3 v = 1, 2.

Hence

‖Uv
u‖C0 ≤ n(3N)dε if















u = 1 v = 1, 3

u = 2 v = 2, 3

u = 3 v = 1, 2.

Let now

W =







0 U2
1 0

U1
2 0 0

0 0 U3
3





 .

Since
‖W − V ‖C0 ≤ 3n(3N)dε = δ

we get that W is invertible and

‖W −1 − V −1‖C0 ≤
∑

j≥1

‖V −1(W − V )‖j
C0‖V −1‖C0 ≤

∑

j≥1

(δξ)jξ

Now if

δξ ≤
1

2
⇐⇒ ε ≤

1

6n(3N)dξ
⇐⇒ ‖F‖C0 ≤

1

4n3n(3N)dξ
ρ2n−1

(which holds by assumption), then

‖W −1 − V −1‖C0 ≤
1

1 − δξ
δξ2 ≤ 2δξ2 = 6n(3N)dεξ2 = 6n(3N)d(

2

ρ
)2n−1ξ2‖F‖C0

Finally, by a computation,

W −1 =







0 (U1
2 )−1 0

(U2
1 )−1 0 0
0 0 (U3

3 )−1





 ,

thus the estimate on (V Σ2
Σ1

)−1 − (V −1)Σ1
Σ2

holds.
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Lemma 6.10. There exists a constant C – only depending on n and d – such that if






‖F‖C0 < 1
CNdξn ρ2n−1

ρ < 1
CNdξn+1 ,

(6.5)

then BΣ1 and BΣ2 have the same Jordan structure, i.e. for any k ≥ 1, they have the same number
of Jordan blocks of dimension k.

Proof. From (6.2) we have

(i2π〈k, ω〉 − (αi − ᾱj))V̂
j

i (k) = NiV̂
j

i (k) − V̂ j
i (k)Nj + F̂ j

i (k), ∀1 ≤ i, j ≤ l, ∀k ∈ Z
d,

where
Ni = Bi − αiI and Nj = Bj − αjI.

If
|i2π〈k, ω〉 − (αi − ᾱj)| ≥ ρ,

then, by Lemma 6.6,

‖V̂ j
i (k)‖ ≤ (

2

ρ
)2n−1‖F‖C0.

If
|i2π〈k, ω〉 − (αi − ᾱj)| < ρ,

then
‖NiV̂

j
i (k) − V̂ j

i (k)Nj‖ ≤ ρξ + ‖F‖C0.

Hence

‖NiV̂
j

i (k) − V̂ j
i (k)Nj‖ ≤ max(2(

2

ρ
)2n−1‖F‖C0, ρξ + ‖F‖C0) = ε

and
‖NiV

j
i − V j

i Nj‖C0 ≤ (3N)dε.

This implies that
‖NΣ1V

Σ2
Σ1

− V Σ2
Σ1

NΣ2‖C0 ≤ n(3N)dε.

By Lemma 6.9, the bound on ‖F‖C0 implies

‖V Σ2
Σ1

‖C0, ‖(V Σ2
Σ1

)−1‖C0 ≤ 2ξ,

so, by Proposition 8.8, NΣ1 and NΣ2, hence BΣ1 and BΣ2 , have the same Jordan structure if

n(3N)dε <
1

n · n!2nξn
⇐⇒ ε <

1

n2 · n!2n(3N)dξn
.

This holds if

‖F‖C0 <
1

n2 · n!8n(3N)dξn
ρ2n−1

and

ρ <
1

n2 · n!2n+1(3N)dξn+1
.
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6.4 Construction of W and conjugation to a real matrix.

Lemma 6.11. Assume that V is a trigonometric polynomial of degree N ; let ξ ≥ 0 such that

‖V ‖C0 + ‖V −1‖C0 ≤ ξ. (6.6)

There exists a constant C which only depends on n, d such that if

‖F‖C0 ≤
ρ2n−1

CNdξn
, (6.7)

and

ρ ≤
1

C
min(

1

Ndξn+1
,

κ

N τ
),

then there exist W : Td → Gl(n,C) of class C∞, B′ ∈ gl(n,R) and B′′ ∈ gl(n,C) such that

1.
∂ω

2
W = BW − W (B′ + B′′),

2. W commutes with B, B′ and B′′, and B′ has the same diagonal block structure as B,

3.
‖B′′‖ ≤ 2nρ,

4. for all r ∈ R,
‖W ±1‖Cr ≤ (4nπN)r,

5. there is the estimate
‖B′‖ ≤ C‖B‖.

Proof. By Corollary 6.8, σ(B) satisfies the property (6.3). Let [α] ⊂ σ(B) be an equivalence class.

• Case 1: if [α] contains an odd (N, ρ)-loop, then by Lemma 6.3, for all αi ∈ [α], there exists
ki ∈ Zd with |ki| ≤ (2n − 1)N such that

|αi − ᾱi − 2iπ〈ki, ω〉| ≤ (2n − 1)nρ.

• Case 2: if [α] does not contain any odd (N, ρ)-loop, let [α] = Σ1 ∪ Σ2 be the partition given
by the Lemma 6.5. Choose arbitrarily α0 ∈ Σ1 ∩ [α]. Then for all αi ∈ Σ2 ∩ [α], by Lemma
6.3, there exists ki ∈ Zd, |ki| ≤ nN such that

|αi − ᾱ0 − 2iπ〈ki, ω〉| ≤ nρ.

And for all αi ∈ Σ1 ∩ [α], there exists ki ∈ Zd, |ki| ≤ 2nN such that

|αi − α0 − 2iπ〈ki, ω〉| ≤ 2nρ.

and if αi = α0 then ki = 0;
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Then we construct W ∈ C0(Td, Gl(n,C)) the diagonal matrix whose diagonal coefficients are
(wj) defined as follows: given an eigenvalue αi ∈ σ(B) associated with ki as defined before, if αi

appears on line j in B, then
wj(θ) = e2iπ〈ki,θ〉I

in case (1) and
wj(θ) = e4iπ〈ki,θ〉I

in case (2).
Then it holds that

∂ω
2
W = BW − W (B′ + B′′)

where the coefficients of B′ + B′′ will be defined as follows:

• in case (1): Since

αi − iπ〈ki, ω〉 =
1

2
(αi + ᾱi) +

1

2
(αi − ᾱi − 2iπ〈ki, ω〉),

one can define ℜαi as the coefficient of B′ and 1
2
(αi − ᾱi − 2iπ〈ki, ω〉) as the coefficient of

B′′;
• in case (2), if αi ∈ Σ2 ∩ [α],

αi − 2iπ〈ki, ω〉 = ᾱ + (αi − ᾱ − 2iπ〈ki, ω〉)

Then ᾱ is the coefficient of B′ and αi − ᾱ−2iπ〈ki, ω〉 is the coefficient of B′′. If αi ∈ Σ1 ∩ [α],

αi − 2iπ〈ki, ω〉 = α + (αi − α − 2iπ〈ki, ω〉)

Then α is the coefficient of B′ and αi − α − 2iπ〈ki, ω〉 is the coefficient of B′′.

Therefore, if α is an eigenvalue of B′, then ᾱ is also an eigenvalue with the same multiplicity.
Moreover, by Lemma 6.10, the blocks with eigenvalues α and ᾱ have the same Jordan structure.
Thus, by Lemma 8.9, one can assume up to a unitary transformation that B′ is in real Jordan
normal form.
With our choices of the ki, the values of W commute with B, B′ and B′′. The norm of W and
the norm of W −1 follows from the fact that |ki| ≤ (2n − 1)N .

The matrix B′′ is bounded by (2n−1)ρ. Moreover, the coefficients of the matrix B′ are the same
as those of B outside the diagonal. The diagonal coefficients of B′ are in σ(B) ∪ σ(B) ∪ ℜσ(B),
which implies

‖B′‖ ≤ C(n)‖B‖.

6.5 Application of the main lemma 6.11

To apply the result of the previous section, it will be necessary to have an estimate of the truncation
of an application U satisfying U−1 = Ū , which will be obtained in the following lemma.
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Lemma 6.12. Let N ∈ N. Let U : Td → Gl(n,C) of class C∞ such that

U−1 = Ū ,

and let
V (θ) = TNU(θ) :=

∑

|k|≤N

Û(k)e2iπ〈k,θ〉.

There exists a constant Cd > 0 depending only on d such that if N satisfies

Cd‖U‖Cd+1‖U‖C0 ≤ N, (6.8)

then

‖V −1 − V̄ ‖C0 ≤
1

4
‖V ‖C0. (6.9)

Proof. We have

‖Û(k)‖ ≤ (
1

2π|k|
)d+1‖U‖Cd+1, k ∈ Z

d,

which implies

‖V − U‖C0 ≤
∑

|k|>N

‖Û(k)‖ ≤
C

2πN
‖U‖Cd+1 =: σN . (6.10)

where C depends only on d. Therefore

‖V̄ U − I‖C0 ≤ ‖V̄ − U−1‖C0‖U‖C0

≤ ‖V̄ − Ū‖C0‖U‖C0 from U−1 = Ū

≤ ‖V − U‖C0‖U‖C0

≤ σN ‖U‖C0

≤
1

2
(∗1)

The last line of the equation is satisfied by hypothesis (6.8) with Cd ≥ C
π

. This implies that, for

all θ, X(θ) = V̄ (θ)U(θ) is invertible and

X−1 = (I + (V̄ U − I))−1 =
∑

k≥0

(−1)k(V̄ U − I)k

hence
‖X−1 − I‖C0 ≤

∑

k≥1

‖(V̄ U − I)‖k
C0 ≤ 2‖V − U‖C0‖U‖C0 ≤ 2σN ‖U‖C0 .

Therefore

V̄ −1 = UU−1V̄ −1 = UX−1 = U + U(X−1 − I)

= Ū−1 + U(X−1 − I) since Ū = U−1

= X̄−1V + U(X−1 − I)

= V + (X̄−1 − I)V + U(X−1 − I),

and then
V −1 − V̄ = (X−1 − I)V̄ + Ū(X̄−1 − I)
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which gives

‖V −1 − V̄ ‖C0 = ‖(X−1 − I)V̄ + Ū(X̄−1 − I)‖C0

≤ ‖X−1 − I‖C0(‖V ‖C0 + ‖U‖C0)

≤ 2σN‖U‖C0(‖V ‖C0 + ‖U‖C0)

≤ 4σN‖U‖C0(‖V ‖C0 +
1

2
σN)

(by definition of σN ), therefore, using (6.8) with Cd ≥ 16C
π

,

‖V −1 − V̄ ‖C0 ≤
1

8
(‖V ‖C0 +

σN

2
) ≤

1

8
‖V ‖C0 +

1

16
σN . (6.11)

Now (6.8) also implies

σN ≤
1

32‖U‖C0

and the property that U−1 = Ū implies that ‖U‖C0 ≥ 1, so 3σN ≤ 2‖U‖C0 also holds. This,
together with (6.10), implies that

σN ≤ 2(‖U‖C0 − σN) ≤ 2(‖U‖C0 − ‖V − U‖C0) ≤ 2‖V ‖C0.

Thus (6.11) implies that (6.9) holds.

The following proposition allows us to apply the previous lemma to the change of variables
given by the almost reducibility, in order to conjugate the almost reducible cocycle to a cocycle
arbitrarily close to a real one.

Proposition 6.13. Let N ∈ N, ρ > 0. Let U : Td → Gl(n,C) of class Cd+1 such that

U−1 = Ū .

Let B ∈ gl(n,C) in Jordan normal form, and let

G = ∂ωU − BU + UB̄.

There exists a constant C1 ≥ 0 (depending only on n, d) such that if

1.
C1‖U‖Cd+1‖U‖C0 ≤ N, (6.12)

2.
‖G‖Cd+1 ≤ C−1

1 ρ2n−1N−(d−1)‖U‖−n
C0 , (6.13)

3.

ρ ≤ C−1
1 min(

1

Nd‖U‖n+1
C0

,
κ

N τ
), (6.14)
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then there exist W ∈ C∞(Td, Gl(n,C)), B′ ∈ gl(n,C), and B′′ ∈ gl(n,C) such that

∂ω
2
W = BW − W (B′ + B′′)

where B′ is as in Lemma 6.11. Moreover,

‖B′′‖ ≤ 2n2ρ,

and
∀s ∈ N, ‖W ±1‖Cs ≤ (2πnN)2s.

Proof. Denote ξ = ‖U‖C0 ≥ 1 (the lower bound comes from U−1 = Ū). Let

V = RN U =
∑

|k|≤N

Û(k)e2iπ〈k,θ〉.

We have
∂ωV = BV − V B̄ + F, F = RN G.

We will now apply lemma 6.11 and for this, we need to find an upper bound of ‖V ‖C0 and an
upper bound of ‖V −1‖C0. We have

‖V − U‖C0 ≤
∑

|k|>N

‖Û(k)‖ ≤ C2
1

N
‖U‖Cd+1

where C2 ≥ 1 only depends on d. Suppose that C1 ≥ 32C2 and that N ≥ C1‖U‖Cd+1‖U‖C0 , then

‖V − U‖C0 ≤ C2
1

N

N

C1‖U‖C0

≤
1

2ξ
.

Therefore since ξ ≥ 1,

‖V ‖C0 ≤ ‖U‖C0 + ‖V − U‖C0 ≤ ξ +
1

2ξ
≤ 2ξ.

Let Cd the constant given by lemma 6.12. If moreover C1 ≥ Cd, we have

N ≥ Cd‖U‖Cd+1‖U‖C0,

and we can apply lemma 6.12 which gives

‖V −1‖C0 ≤ ‖V −1 − V̄ ‖C0 + ‖V̄ ‖C0 ≤
1

4
‖V ‖C0 + ‖V ‖C0 ≤ 3ξ,

and the assumption (6.6) of lemma 6.11 is satisfied with 4ξ instead of ξ. So,

‖F‖C0 ≤ ‖G‖C0 + ‖F − G‖C0 ≤ ‖G‖C0 + C2(
1

2πN
)‖G‖Cd+1

≤ 2C2‖G‖Cd+1 ≤ 2C2C
−1
1 ρ2n−1

(

N‖U‖C0

)−dn2

so, if C1 is large enough depending on n, d, the assumption (6.7) of Lemma 6.11 holds since

∂ωV = BV − V B̄ + F, F = RN G.

Therefore one can apply the Lemma 6.11 which directly gives the conclusions.
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7 Proof of the main result

Theorem 7.1. Let Xω,A an almost reducible cocycle in C∞. If Xω,A is real and if ω is Diophantine,
then Xω

2
,A2 is real almost reducible in C∞, where A2(θ) = A(2θ) for all θ ∈ Td.

Proof. By the proposition 5.2, there exist Zj : Td → Gl(n,C) of class C∞, Bj ∈ gl(n,C) in Jordan
normal form and Fj ∈ C∞(Td, gl(n,C)) such that

∀j, ∂ωZj = AZj − Zj(Bj + Fj)

‖Z±1
j ‖m

Cr‖Fj‖Cr →j→∞ 0, ∀r, m ∈ N. (7.1)

Fix r ≥ d + 1 and denote ‖Fj‖Cr = εj . By a similar reasoning as when proving (5.2), and from the

convergence condition (7.1), given β ′ < min( 1
2+8n3τ

, 1
16n6 ), there exists J3 such that, for all j ≥ J3,

‖Z±1
j ‖Cr ≤ ε−β′

j . (7.2)

Let Uj = Zj
−1Z̄j . Then U−1

j = Ūj and

ξj = ‖Uj‖C0 = ‖U−1
j ‖C0 ≥ 1,

and
‖Uj‖Cr ≤ ε−2β′

j

Moreover

∂ωUj = ∂ω(Zj
−1Z̄j)

= ∂ω(Zj
−1)Z̄j + Zj

−1∂ωZ̄j

= ((Bj + Fj)Zj
−1 − Zj

−1A)Z̄j + Zj
−1(AZj − Zj(Bj + Fj))

= BjZj
−1Z̄j + FjZj

−1Z̄j − Zj
−1Z̄jB̄j − Zj

−1Z̄jF̄j + Zj
−1(Ā − A)Z̄j

and since A is real,
∂ωUj = BjUj − UjB̄j + Gj

where
Gj = FjUj − UjF̄j

with, from inequality (1.6) given in introduction,

‖Gj‖Cr ≤ 2Cr‖Uj‖Cr‖Fj‖Cr .

Let
ε′

j = 2Cr‖Uj‖Cr‖Fj‖Cr

Nj = C1‖Uj‖Cd+1‖Uj‖C0

with C1 the constant of proposition 6.13. We will apply Proposition 6.13 with N = Nj, ρ = ρj =

ε′
j

1
2n3 , U = Uj , B = Bj , G = Gj . There are three assumptions to check. The assumption (6.12)

holds by definition of N .
By definition of β ′, we have

ρj‖Uj‖
n+1
C0 (2Nj)

τ →j→+∞ 0,
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and there exists J4 (which we can choose ≥ J3) such that for all j ≥ J4,

κ > C1ρj‖Uj‖
n+1
C0 (2Nj)

τ ,

therefore the assumption (6.14) of Proposition 6.13 holds. Moreover, by definition of Nj and ε′
j,

ρ−(2n−1)(Nj‖Uj‖C0)dn2

ε′
j ≤ (ε′

j)
1− 2n−1

2n3 (C1ε
−6β′

j )dn2

≤ C(ε−2β′

j )1− 2n−1

2n3 +3dn2

ε
1− 2n−1

2n3

j

where C is a constant depending only on d, n, r, and the right hand side tends to 0 as j tends to
infinity. Therefore there exists J5 (≥ J4) such that, for j ≥ J5,

‖Gj‖Cr ≤ ε′
j ≤ C−1

1 ρ2n−1(Nj‖Uj‖C0)−dn2

therefore the assumption (6.13) of Proposition 6.13 holds. Apply the proposition 6.13: there exist
Wj : Td → Gl(n,C) of class C∞, B′

j ∈ gl(n,R) and B′′
j ∈ gl(n,C) such that B′

j has the same block
diagonal structure as Bj, with

∂ω
2
Wj = BjWj − Wj(B

′
j + B′′

j ),

‖B′′
j ‖ ≤ 2nρ = 2nε′

1
2n3

j ≤ Cn,r‖Uj‖
1

2n3

Cr ε
1

2n3

j ,

‖W ±1
j ‖Cs ≤ (2πnNj)

2s, ∀s ∈ N, (7.3)

Moreover, denoting Gj = B′′
j + W −1

j FjWj , we get

‖Gj‖Cr
≤ Cn,r‖Uj‖

1
2n3

Cr ε
1

2n3

j + (2πnNj)
4rεj

≤ Cn,r‖Uj‖
1

2n3

Cr ε
1

2n3

j + (32C1n)4r‖Uj‖
4r
Cd+1‖Uj‖

4r
C0εj

≤ C ′
r,n‖Uj‖

8r
Crε

1
2n3

j .

Finally, for our fixed m and r ≥ d + 1,

‖(ZjWj)
±1‖m

Cr‖Gj‖Cr ≤ C ′′
r,n‖W ±1

j ‖m
Cr‖Z±1

j ‖m
Cr‖Uj‖

8r
Crε

1
2n3

≤ C ′′′
r,nN4rm

j ‖Z±1
j ‖m

Cr‖Uj‖
8r
Crε

1
2n3

≤ C ′′′′
r,n‖Uj‖

8rm+8r
Cr ‖Z±1

j ‖m
Crε

1
2n3

≤ C ′′′′′
r,n ‖Z±1

j ‖16rm+16r+m
Cr ε

1
2n3

which tends to 0 as j → ∞ by assumption (7.1).

This construction depends on m, r; however, applying Lemma 8.10, one gets almost reducibility
to a sequence of real matrices.

The transformations ZjWj are not real, but we can now apply Proposition 3.6.
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8 Appendix

8.1 A small divisors lemma

The following classical lemma is useful to control the small divisors which might occur:

Lemma 8.1. Let f : Td → C of class C∞ and N ∈ N∗ such that

f̂(k) = 0, |k| > N.

Let ρ > 0. If α ∈ C is such that

|α − 2iπ〈k, ω〉| ≥ ρ, ∀|k| ≤ N,

then the equation

{

∂ωu(θ) = αu(θ) + f(θ), θ ∈ Td,
û(k) = 0, if |k| > N

(∗)

has a unique solution u : Td → C of class C∞ and it satisfies

‖u‖C0 ≤ Cρ−1N
d+1

2 ‖f‖C0

where C is a constant depending on d.

Proof. Decomposing the first equation (∗) into Fourier coefficients, we have

2iπ〈k, ω〉û(k) = αû(k) + f̂(k), k ∈ Z
d

and the unique solution of (∗) is defined by

û(k) =

{

1
2iπ〈k,ω〉−α

f̂(k), ∀|k| ≤ N

0, ∀|k| > N.

By Hölder’s inequality,

‖u‖C0 ≤
∑

k

|û(k)| ≤
1

ρ

∑

|k|≤N

|f̂(k)|

≤
1

ρ

√

∑

|k|≤N

1
√

∑

|k|≤N

|f̂(k)|2 ≤ C
1

ρ
N

d+1
2 ‖f‖L2 ≤ C

1

ρ
N

d+1
2 ‖f‖C0,

where C depends only on d.

8.2 Separating the spectrum of a matrix

Definition 8.2 (Γ-separation, Γ-connection). Let E1, E2 two finite sets of complex numbers and
let Γ > 0. We say that E1 and E2 are Γ-separated if for all α ∈ E1 and for all β ∈ E2, |α −β| > Γ.

We say that E1 = {α1, . . . , αn} is Γ-connected if there is no decomposition E1 = E ′
1 ∪ E ′′

1 with
E ′

1 and E ′′
1 Γ-separated.

Remark 8.3. If E1 is Γ-connected, then for all α, β ∈ E1, |α − β| ≤ #E1 · Γ.

41



Lemma 8.4. Let B ∈ gl(n,C) and Γ > 0. There exists M̃ ∈ Gl(n,C) such that M̃−1BM̃ is
block diagonal, with each block being upper triangular with Γ-connected spectrum, and such that
the spectrum of two distinct blocks are Γ-separated. Moreover M̃ satisfies

‖M̃‖ ≤ n3n(
‖B‖

Γ2
)n3

‖M̃−1‖ ≤ n3n(
‖B‖

Γ2
)n3

,

and
‖M̃−1BM̃‖ ≤ C(n)B

where C(n) is a constant depending on n.

Proof. Step 1: By Schur decomposition, there exist an unitary matrix Q ∈ Gl(n,C) and an upper
triangular matrix T ∈ gl(n,C) such that

B = QTQ−1

Therefore ‖B‖ = ‖T‖.

Step 2: Let E1, . . . , El be Γ-separated sets of eigenvalues of B, each of them being Γ-connected,
and write (up to a permutation, which doesn’t change the estimates)

B =

(

T1 T2

0 T4

)

, D =

(

T1 0
0 T4

)

where T1 is the block corresponding to the eigenvalues of E1 and T4 is the block corresponding to
the eigenvalues of E2 ∪ · · · ∪ El. Write

M =

(

I R
0 I

)

, M−1 =

(

I −R
0 I

)

,

then the conjugation MBM−1 = D is equivalent to

T1R + T2 = RT4

where R is the unknown. Let n1 be the dimension of T1 and n2 the dimension of T4. Decomposing
to coefficients, the previous matrix equation can be written

−(T2)i,j =
n1
∑

k=i

(T1)i,kRk,j −
j
∑

l=1

Ri,l(T4)l,j

Solve these equations in the following order:

(i, j) = (n1, 1), (n1, 2), . . . , (n1, n2), (n1 − 1, 1), . . . , (n1 − 1, n2), . . . , (1, 1), (1, 2), . . . , (1, n2).

Therefore, the coefficients of R have upper bound (n1n2)(
‖B‖
Γ2 )n1n2 which implies that

‖M‖ ≤ n(n1n2)(
‖B‖

Γ2
)n1n2 .
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Iterate step 2 replacing B by T4 and T4 by the blocks corresponding to El−k ∪ · · · ∪ El. The
algorithm stops when T4 only has the eigenvalues of El, that is to say after at most n − 1 steps.

Finally there exist an invertible matrix M̃ of dimension n, a block diagonal matrix D̃ = (D̃1, . . . , D̃l)
of dimension n, with each block Ti corresponding to the group of eigenvalues Ei (which remains
Γ-separated).

D̃ = M̃BM̃−1

with

‖M̃‖, ‖M̄−1‖ ≤ n3n(
‖B‖

Γ2
)n3

.

Since D̃ is constructed from B by removing coefficients, its norm is ≤ C(n)‖B‖ where C(n) is a
constant depending on n.

Corollary 8.5. Let A ∈ gl(n,C). Given a positive decreasing sequence (Γi), there exists d0 ∈ N,
d0 ≤ n, depending on A, and there exists B ∈ gl(n,C) a block diagonal matrix where each block
is upper-triangular with Γd0-connected spectrum, and S invertible such that

A = SBS−1

‖S‖, ‖S−1‖ ≤ n3n(
‖B‖

Γ2
d0−1

)n3

,

and
‖A‖ ≤ C(n)‖B‖

where C(n) is a constant depending on n.

Proof. By induction on Γi: Base case: first apply lemma 8.4 on A with Γ = Γ0. This gives
a conjugation S from A to a matrix B where each block is upper triangular with Γ0-connected
spectrum. If the spectrum of every block of B is also Γ1-connected, then we are done, if not, apply
lemma 8.4 to A with Γ1.
Induction step: given d ∈ N∗, apply lemma 8.4 on A with Γd. This gives a conjugation S from
A to a block diagonal matrix B where each block is upper triangular with Γd-connected spectrum.
If the spectrum of every block of B is also Γd+1-connected, then we are done, if not, apply lemma
(8.4) to A with Γd+1.

After each step, the number of eigenvalues in each block decreases (because you split a block
at each step). Then there exists an index d0 such that applying lemma (8.4) on A with Γd0−1, this
gives B and S where the spectrum of every block of B is Γd0-connected and the matrix S satisfies
the estimate with Γd0−1.

Remark 8.6. If #σ(A) = n0, then if the induction is applied n0 times, each block contains only
one eigenvalue. Also notice that the induction does not change A, whence the exponents in the
estimate.
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8.3 Stability of the Jordan structure

Let A = (aj
i )1≤i,j≤n and B = (bj

i )1≤i,j≤n be two matrices with entries 0 and 1 such that for some
r ∈ {1, . . . , n − 1},

aj
i = bj

i = 0 if j − i 6= r.

Lemma 8.7. If there exists an invertible matrix C,

‖C‖, ‖C−1‖ ≤ ξ

such that

‖AC − CB‖ = ε <
1

n!ξn
,

then rankA = rankB.

Proof. Let

I = {i ∈ [[1, n − r]] : ai+r
i = 1} & J = {j ∈ [[r + 1, n]] : bj

j−r = 1}.

Then

(AC − CB)j
i = ai+r

i cj
i+r − cj−r

i bj
j−r =







cj
i+r if i ∈ I & j /∈ J

−cj−r
i if i /∈ I & j ∈ J.

thus






|cj
i+r| ≤ ε if i ∈ I & j /∈ J

|cj−r
i | ≤ ε if i /∈ I & j ∈ J.

It follows that if #I 6= #J ,
| det C| ≤ n!εξn−1.

Now
‖C−1A − BC−1‖ = ‖C−1

(

AC − CB
)

C−1‖ ≤ εξ2

so, in the same way as for C,
| det C−1| ≤ n!εξ2ξn−1

if #I is different from #J .
Therefore

1 = | det(CC−1)| ≤ (n!ξnε)2

which is impossible by assumption. Hence #I = #J .

Let now A and B be two nilpotent n × n-matrices on Jordan normal form.

Proposition 8.8. If there exists an invertible matrix C,

‖C‖, ‖C−1‖ ≤ ξ

such that

‖AC − CB‖ = ε <
1

n · n!ξn
,

then A and B have the same Jordan structure, i.e. they have the same number of Jordan blocks
of dimension k, for all k = 1, 2, . . . .
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Proof. Let
Xk = AkC − CBk.

Since ‖X1‖ ≤ ε, it follows by an easy induction that

‖Xk‖ ≤ kε ≤ (n − 1)ε :

• For k = 1, this is the assumption;
• For k ≥ 1, notice

Xk+1 = Ak+1C − CBk+1 = AkAC − CBk+1 = Ak(CB + X1) − CBkB = XkB + AkX1

and the estimate follows by induction since A, B have norm ≤ 1.

Then, by the lemma 8.7,
rankAk = rankBk, ∀k ≥ 1

This implies the statement.

8.4 Conjugation to a real matrix whose spectrum is stable by complex

conjugation

Lemma 8.9. Let A a matrix in Jordan normal form, such that if α is an eigenvalue, then ᾱ is
also an eigenvalue and the Jordan blocks of α and ᾱ are identical. There exists a unitary matrix
P such that P ∗AP is on real Jordan normal form.

Proof. It suffices to prove this for A =

(

αI + N 0
0 ᾱI + N

)

, where N is a nilpotent Jordan block

(of dimension n × n). After the permutation (e1, e2, . . . , e2n) 7→ (e1, en+1, e2, en+2, . . . , e2n−1, e2n),
the matrix A takes the block triangular form A = (Aj

i )i,j=1,...,n with

Aj
i =











U if j = i
I if j − i = 1
0 otherwise

and U =

(

α 0
0 ᾱ

)

. Let C = 1√
2

(

1 −i
1 i

)

(which is unitary) and let P = diag(Pj)j=1,...,n, Pj =

C. Then P ∗AP = (Bj
i )i,j=1,...,n with Bj

i =

(

Re α Im α
− Im α Re α

)

if i = j, Bj
i = I if j − i = 1, and

Bj
i = 0 otherwise.

8.5 A lemma about almost reducibility

Lemma 8.10. Assume for all m′ ∈ N, there exist (Zj,m′)j a sequence of C∞ maps defined on Td

and (Fj,m′)j a sequence of C∞ maps defined on Td such that

‖Z±1
j,m′‖m′

Cm′ ‖Fj,m′‖Cm′ →j→+∞ 0,

then there exists (Z̃j) and (F̃j), subsequences of (Zj,m′)j and (Fj,m′)j extracted from the same
indices, such that for all m, r ∈ N,

‖Z̃±1
j ‖m

Cr‖F̃j‖Cr →j→+∞ 0.
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Proof. For all m ∈ N, let jm ∈ N such that, for all j ≥ jm,

‖Z±1
jm,m‖m

Cm‖Fjm,m‖Cm ≤
1

m

and such that the sequence (jm)m∈N is strictly increasing. Then, for all j large enough, there exists
m := m(j) ∈ N such that jm ≤ j < jm+1. Denote then, for all j large enough

F̃j = Fj,m(j), Z̃j = Zj,m(j).

Let m̃ ∈ N. Then for all j large enough such that m(j) > m̃,

‖Z̃±1
j ‖m̃

Cm̃‖F̃j‖Cm̃
def
= ‖Z±1

j,m(j)‖
m̃
Cm̃‖Fj,m(j)‖Cm̃ ≤ ‖Z±1

j,m(j)‖
m(j)
Cm̃ ‖Fj,m(j)‖Cm̃ ≤

1

m(j)
.

Since the constructed sequence (jm)m is increasing, the sequence (m(j))j is also increasing, and
then

‖Z̃j
±1

‖m̃
Cm̃‖F̃j‖Cm̃ → 0, j → ∞. (8.1)

Now let r, m ∈ N. Since (8.1) holds for all m̃, then in particular for m̃ = max(r, m),

‖Z̃±1
j ‖m̃

Cm̃‖F̃j‖Cm̃ → 0

which implies the convergence condition is satisfied.
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