
HAL Id: hal-04663862
https://hal.science/hal-04663862

Submitted on 29 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

EarlyBird: Energy belongs to those who wake up early
Hugo Reymond, Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou,

Isabelle Puaut, Erven Rohou

To cite this version:
Hugo Reymond, Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou, Isabelle Puaut, et al.. Early-
Bird: Energy belongs to those who wake up early. The 30th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA 2024), 2024, Sokcho, South
Korea. �hal-04663862�

https://hal.science/hal-04663862
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

EARLYBIRD: Energy belongs
to those who wake up early

Hugo Reymond∗, Jean-Luc Béchennec†, Mikaël Briday†, Sébastien Faucou†, Isabelle Puaut∗ and Erven Rohou∗

∗Univ Rennes, Inria, CNRS, IRISA, France - name.surname@irisa.fr
†Nantes Université, École Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France - name.surname@ls2n.fr

Abstract—By relying on ambient energy, battery-less devices
significantly increase the autonomy of IoT devices, enabling
maintenance-free operation in remote locations. However, due to
the scarcity of ambient energy, these devices rely on capacitors
to buffer energy, and alternate between power-off phases where
the device is harvesting energy and computation bursts. In
most existing techniques, the device resumes execution only
when the capacitor is full. However, we argue that doing so
is sub-optimal. Instead, we advocate that waking-up the device
sooner may yield better performance since the microcontroller
consumes less power when operating at lower voltage. To this
extent, we introduce EARLYBIRD, a technique that automatically
computes a fine-tuned wake-up voltage for each resume point.
EARLYBIRD leverages static analysis to determine how much
energy is needed before resuming from a given program location,
and provides a runtime library to enforce the early wake-
up strategy. We evaluated how EARLYBIRD improves existing
checkpointing techniques and results show an increase in the
number of benchmarks executed per minute of up to 5.65×.

Index Terms—Intermittent Computing, Battery-less devices,
Embedded and IoT devices, Implicit Path Enumeration Tech-
nique (IPET)

I. INTRODUCTION

Thanks to research in the energy-harvesting field, it is
now possible to power IoT devices directly from ambient
energy (solar, piezoelectric, radio frequency – RF –. . .) This
eliminates the need for batteries, and opens opportunities for
a “battery-less” future, where IoT devices only rely on a
capacitor to store the harvested energy. Battery-less devices
can operate without the need for frequent battery replacements,
allowing them to be used in remote locations where mainte-
nance is impossible (in space, into building foundations. . .)

Unfortunately, due to the scarcity and variability of the
energy available in the environment, battery-less devices ex-
perience frequent power failures. Such power failures result in
a device reset, which erase its volatile state (volatile memory,
CPU registers. . .), effectively wiping any progress achieved so
far. Therefore, one key challenge with battery-less devices is
to preserve the progress of the program across power failures,
a property known as forward progress.

One technique used to enforce forward progress across
power failures is static checkpointing. It consists in insert-
ing calls to checkpointing routines in the program code, as
depicted in Figure 1. At runtime, when the checkpointing
routine is called, it saves the program state and the CPU
registers into non-volatile memory. Then, in the event of a

int sum = 0;
for(int i = 0; i<4; i++){
 checkpoint();
 sum += array[i]
}
checkpoint();
send(sum);
checkpoint();

⚡

⚡⚡⚡

1

2

3

Program instrumented for intermittent execution. The program con-
tains three checkpoints, labeled 1 , 2 and 3 . The function send
must execute atomically – its entire execution must terminate before
a power failure – and requires more energy than the sum calculation.

Not enough energy to execute send

Capacitor voltage

Time1 1 1 21

(a) Program execution with low wake-up voltage.
Capacitor voltage

Time1 1 1 1 2 3

(b) Program execution with high wake-up voltage.

1 1 1 21 3 Time

Capacitor voltage

(c) Program execution with EARLYBIRD. The wake-up voltage when
resuming from checkpoint location 1 is low, while it is high for 2
as the function send is energy-intensive

Fig. 1: Example program instrumented for intermittent execu-
tion, and possible executions

power failure, the device can load the previous checkpoint to
resume program execution. Of course, the device must wait
until a certain amount of energy has been harvested before
resuming execution.

To determine how much energy has been harvested, battery-
less devices can monitor the voltage across the capacitor,
as it is directly linked to its state of charge. Battery-less
devices programmers/designers can then decide on the wake-
up voltage of the program, that is the voltage below which
the device should be off, harvesting energy. The choice of a
wake-up voltage is complex and impacts several parameters,
as described below.

P1 – Energy consumption: microcontrollers usually accept
a range of input voltages (e.g., from 1.8 V to 3.6 V), but their
energy consumption augments as the voltage increases. Thus,
diminishing the average input voltage of the microcontroller
reduces the energy consumption of the device, which in turn
reduces the amount of time spent harvesting. Consequently, a
low wake-up voltage implies that the energy available is used
more efficiently. This is illustrated on Figure 1, where the
execution reaches checkpoint 2 faster with a low wake-up
voltage (Figure 1a) than a higher one (Figure 1b).

P2 – Forward progress: the choice of a wake-up voltage
impacts the program’s ability to enforce forward progress
across power failures. Setting the wake-up voltage too low
may result in scenarios where the program’s state cannot be
saved before a power failure – thereby preventing any progress.
In Figure 1a, the low wake-up voltage fails to execute the
entire program as the energy consumed by the send function
exceeds the available energy upon restart. It is thus crucial for
the wake-up voltage to be adapted to the load to execute.

P3 – Progress regularity: it is sometimes important that
programs execute as regularly as possible, but when the
device is turned off due to a power failure, it cannot react to
environmental events. In order to enforce progress regularity,
an intermittent system must have short harvesting phases. The
choice of a wake-up voltage directly impacts the duration of
the harvesting phases, it is thus beneficial to select low wake-
up voltage to obtain short harvesting phases.

Given the complexity of choosing a wake-up voltage, leav-
ing this task to a developer might result in bad performance, or
even result in the program not making any progress. Moreover,
exploring different wake-up voltages and their impact on
program execution is a time-consuming process, that must
be performed every time the program changes. Thus, existing
techniques use a single wake-up voltage for the entire program,
overlooking the potential benefits of adapting the wake-up
voltage to the workload to execute. We argue that such
adaptability is crucial for enhancing program performance.

To this extent, we introduce EARLYBIRD. EARLYBIRD is,
to the best of our knowledge, the first technique that addresses
the problem of wake-up voltage selection in intermittent sys-
tems that uses static checkpointing. EARLYBIRD automatically
selects a wake-up voltage for each checkpoint location in the
program. The voltage is adapted to the portion of code to
be executed when resuming after a power failure. This allows
EARLYBIRD to take advantage of the energy-efficiency of low
wake-up voltages when the code section is short, while still
ensuring forward progress for energy-intensive functions with
a higher voltage. In our example, EARLYBIRD would select

a low wake-up voltage for checkpoint 1 , and a high one for
2 . This would result in the execution illustrated Figure 1c.

More precisely, EARLYBIRD leverages static analysis of the
program binary to automatically compute the energy required
to resume execution from a given location in the program.
It then selects the minimum (yet safe) wake-up voltage ac-
cordingly. This analysis also provides valuable feedback for
the developer as it indicates if the chosen capacitor is large
enough to execute the program, or if additional checkpoints
are required to divide the program into smaller segments.
EARLYBIRD is agnostic about the strategy used for the static
selection of checkpoint locations.

At runtime, EARLYBIRD enforces the selected wake-up
voltages thanks to a custom checkpoint and restore routine. To
avoid any additional burden for the developer, those routines
come in a library, as a drop-in replacement for existing
checkpointing libraries such as the MEMENTOS library [1].

This paper makes the following contributions:
• We introduce EARLYBIRD, the first technique to address

the problem of wake-up voltage selection in intermittent
systems based on static-checkpointing. In contrast to
manually selected wake-up voltage, EARLYBIRD adapts
the wake-up voltage for each checkpoint location. It does
so automatically, relieving the developer from this burden.

• We conduct experiments to analyze how the wake-up
voltage impacts program execution. We then evaluate
EARLYBIRD performance for basic checkpoint place-
ment strategies, and its ability to improve performance
of existing state-of-the-art techniques. All experiments
are conducted on a real board using a msp430fr5969
microcontroller, using RF energy harvesting.

The remainder of this paper is organized as follows. First,
we present in Section II a preliminary study on the impact of
the wake-up voltage on program execution. Then, we discuss
related works in Section III. Section IV introduces EARLY-
BIRD. Then, we compare EARLYBIRD to existing wake-up
voltage selection strategies and present those results in Section
V. Finally, we conclude in Section VI.

II. PRELIMINARY STUDY: IMPACT OF THE WAKE-UP
VOLTAGE ON INTERMITTENT PROGRAMS

This preliminary study investigates how the selection of
a wake-up voltage affects energy consumption (P1), forward
progress (P2), and regularity of progress (P3).

A. Impact of the Operating Voltage on Energy Consumption

As expressed in P1, the energy consumption of a microcon-
troller depends on its input voltage, higher voltages resulting
in greater energy consumption. In this section, we verify
this statement, and quantify the energy savings achievable
with a lower input voltage. To accomplish this, we measured
the instantaneous power consumption of a TI msp430fr5969
microcontroller over its supply voltage range (from 1.8 V to
3.6 V) with a N6705A power analyzer [2]. The msp430fr5969
(“msp430” for short) is directly powered from the power

2

analyzer, and executes an infinite loop of NOP instructions.
The results are displayed on Figure 2.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Po
w

e
r

(i
n
 µ

W
)

Voltage (in V)

Fig. 2: Evolution of the power consumption over the
msp430fr5969 operating voltage range at 1 MHz

We observe that power consumption increases roughly lin-
early with the operating voltage up to 3.3 V, after which it
increases faster. Notably, there is a more than fourfold increase
in power consumption between the lowest and highest recom-
mended voltages of the msp430 microcontroller. If we consider
only the linear portion, the power consumption experiences a
twofold increase between 1.8 V and 3.3 V.

Based on these results, it is evident that substantial energy
savings could be obtained by operating the microcontroller at
a lower voltage. This motivates us to explore in greater detail
the impact of wake-up voltage on program execution.

B. Impact of the Wake-Up Voltage on Intermittent Programs

The wake-up voltage dictates the quantity of energy avail-
able for an execution cycle as well as the amount of time that
will be spent off, recovering this energy. Hence, the choice
of a wake-up voltage has significant effects on the program
behavior, notably its ability to ensure forward progress (P2)
and its progress regularity (P3). In this section, we study the
impact of two commonly used wake-up voltages strategies on
the program behavior.

The first strategy, named V-HIGH, monitors the capacitor
voltage and resumes execution when the capacitor is almost
full (e.g., 3.3 V). Several works rely on this hypothesis to
guarantee forward progress [3–5].

The V-LOW strategy, on the other hand, relies on the
voltage hysteresis between the power-on voltage (1.88 V) and
power-off voltage (1.8 V) of the msp430. This hysteresis,
implemented in hardware, aims at preventing oscillations in
the chip power supply. In intermittent execution, it becomes
a simple way to ensure some energy has been harvested
before restarting after a power failure. This enforces a wake-
up voltage of 1.88 V. As it does not require any monitoring
of the capacitor voltage on the software-side, the strategy is
the easiest to set up, and is used in several works such as Van
Der Woude and Hicks, or Yıldırım et al., [6, 7].

We first explore qualitatively how the V-HIGH and V-LOW
wake-up strategies impact the program execution by looking
at execution traces. Then, we analyze how these observations
translate into quantitative results. The experimental setup used
in the study is the same as the one presented in Section V-A.

(a) Execution profile with strategy V-HIGH

(b) Execution profile with strategy V-LOW

Fig. 3: Execution profile for strategies V-HIGH and V-LOW.
The VCC curve represents the voltage across the capacitor; the
Benchmark Completed signal is raised when the benchmark
was successfully terminated; the Reexecution signal is raised
when the platform starts re-executing code.

1) Influence of Wake-up Voltage on Execution Profiles: To
evaluate the effect of the wake-up voltage on the execution
profile, we ran the aes benchmark iteratively using both V-
HIGH and V-LOW strategies. The benchmark is taken from
the Mibench2 benchmark suite and is instrumented with call to
checkpointing routines inserted before function returns. Using
a signal analyzer, we monitored the evolution of the voltage
across the capacitor, as well as a signal raised every time the
benchmark was successfully executed.

Before conducting any quantitative analysis, the observation
of Figure 3 gives us an overview of the impact of wake-
up strategies on the program execution. What immediately
strikes is the difference in scale of the duration of intermittency
cycles between the two strategies: execution phases for the V-
HIGH strategy last around 1 second, while they only last 50 ms
with V-LOW. As a consequence, we observe that benchmark
completions are evenly distributed in time with the V-LOW
strategy while they are clustered with the V-HIGH strategy.
Moreover, the long harvesting phases in V-HIGH reduce the
system’s progress regularity (P3). Nonetheless, as the V-LOW
strategy experiences more frequent power failures, it spends a
significant amount of time re-executing portions of code whose
progress could not be saved.

2) Influence on Program Performance: In this section, we
quantitatively compare the V-HIGH and V-LOW strategies.
First of all, we assess the ability of the strategy to enforce
forward progress, visible in Table I. While the V-HIGH
strategy consistently ensures program progress across all three
benchmarks, the V-LOW strategy fails to do so with aes and
rc4 when checkpoint routines are far apart.

To investigate the amount of useful work achieved with each
strategy, we monitored how many time the aes benchmark
could be executed in two minutes. We observed a significant
throughput difference, with an average of 190 executions
completed for V-HIGH and 295 for V-LOW.

To explain this difference, we dive into the activity of the de-

3

TABLE I: Ability of the V-LOW and V-HIGH strategies to en-
sure forward progress. For more details, checkpoint placement
methods (LL/FR) and (S-10%/S-100%) are described in Section V.

Frequent checkpointing Occasional checkpointing
(LL/FR) (S-10%/S-100%)

aes crc rc4 aes crc rc4

V-LOW ✓ ✓ ✓ ✗ ✓ ✗
V-HIGH ✓ ✓ ✓ ✓ ✓ ✓

vice during the experiment. Figure 4 displays, for the V-HIGH
and V-LOW strategies, the proportion of time spent executing
code and saving checkpoint (Execute), sleeping waiting for the
capacitor to replenish (Sleep), restarting and loading previous
checkpoint (Restore) and reexecuting portions of code whose
progress could not be saved (Reexecute).

First of all, the V-LOW strategy spends about twice as much
time executing, which explains the throughput increase. We
can also see that, because of its higher power consumption, the
V-HIGH strategy spend around 76.7 % of its time harvesting
energy, whereas the V-LOW strategy only 44.9 %. However,
as the V-LOW strategy encounters frequent power failures,
it spends a significant portion of time restarting the msp430
and restoring the previous checkpoint. Reexecution time is
marginal here, as the program state is saved frequently, but
this is not always the case, as we will see in the experimental
evaluation of EARLYBIRD.

V-High V-Low

Execute Reexecute Sleep Restore

22.8%

0.1%

76.7%

0.4%

39.9%

0.9%

44.9%

14.3%

Fig. 4: Device activity during the experiment executing aes,
with the V-HIGH and V-LOW wake-up strategies.

Overall, this study confirms the wake-up voltage is a crucial
parameter for battery-less devices, as it deeply impacts the
program behavior and its performance.

III. RELATED WORKS

A. Intermittent Computing Strategies

Running a program on battery-less devices requires mech-
anisms to persist the program state across power failures.
While some research work has focused on designing spe-
cialized hardware for this task [8, 9], commercial off-the-
shelf microcontrollers currently lack support for intermittent
computing. Consequently, significant effort has been directed
towards software-based solutions. We distinguish three main
families of techniques: dynamic checkpointing, task-based and
static checkpointing.

Dynamic checkpointing is the most user-friendly technique,
as it does not require any modification of the program to be
used. Instead, it relies on voltage- or time-based triggers to
halt program execution and start the checkpointing process.
However, as the developer does not specify where in the code
the checkpoint should be performed, it becomes impossible to
define portions of code that must execute atomically, known
as atomic sections. Atomic sections are crucial for peripheral
handling, as one cannot simply resume peripheral operation
after a power failure.

In contrast, task-based techniques require the developer to
organize their code as atomic tasks, and only save checkpoints
on transition between tasks. This approach often requires
developers to explicitly define the data shared between tasks,
resulting in reduced checkpoint sizes and low overhead. How-
ever, the process of separating a program into tasks can be
burdensome for developers.

Finally, static checkpointing offers a balance between the
ease of programming of dynamic checkpointing and the ef-
ficiency of task-based checkpointing. It consists in inserting
checkpointing routines in the program, as shown in the code
Figure 1. It supports atomic sections and can benefit from
checkpoint size optimization thanks to compile-time analyses.
Moreover, in contrast to task-based checkpointing, it allows
to define checkpoint locations at a fine grain (inside a loop, a
function). Table II summarizes the pros and cons of each class
of techniques. In this paper, we focus on static checkpointing
techniques.

TABLE II: Pros and cons of families of technique to support
intermittent execution

Criterion Dynamic Task-based Static checkpointing

Support atomic sections No Yes Yes
Ease of utilization +++ - +
Checkpointing overhead High Very Low Low
Granularity Instruction Function Instruction
Examples [10–13] [7, 14–18] [1, 5, 19, 20]

B. Existing Works on Application-Tailored Wake-Up Voltage

Works that investigate application-tailored wake-up volt-
age primarily revolves around task-based checkpointing tech-
niques. Most scheduling techniques indirectly implement such
mechanism, as they make sure that a task is scheduled only
when enough energy is available in the capacitor [21–23].

An interesting approach to adapt the energy available at
wake-up has been proposed by Colin et al., [24]. Instead
of adapting the wake-up voltage, it selects a single wake-up
voltage but adjusts the capacitor size for each task. To do
so, the authors designed a reconfigurable array of capacitors,
which is parameterized with user annotations in the code.

Some studies directly incorporate capacitor voltage into task
execution scheduling, either by defining a per-task minimum
voltage requirement [18] or by proposing voltage interrupts
that trigger task execution [7]. However, in both cases, this
voltage must be selected manually, which can be complex and
error-prone for developers.

4

To our knowledge, no research in static checkpointing has
explored tailoring wake-up voltage to the application’s needs
at the granularity of the checkpoint. In most papers, the wake-
up voltage is either unspecified or corresponds to a full buffer.

C. Related Works on Static Checkpointing Techniques

While no work in static checkpointing techniques focuses
on checkpoint-tailored wake-up voltage, several works take an
energy-aware approach.

Several studies focus on the checkpoint placement guided by
the capacitor size. They modify the program binary and insert
checkpoint to partition the program into regions immune to
power failures, using worst-case execution time data [5, 25] or
worst-case energy consumption data [3, 26].

Some techniques take a energy-aware approach at runtime,
such as the authors of MEMENTOS [1] or Zhao et al., [19],
who skip the checkpointing process if the capacitor voltage is
above a given threshold.

While many studies have focused on energy awareness,
none have specifically addressed when the device needs to
wake up, despite the significant impact of the wake-up voltage
on device execution. EARLYBIRD aims to fill this gap by
investigating the optimal wake-up voltage for intermittent
computing devices.

IV. EARLYBIRD: AUTOMATIC SELECTION AND
ENFORCEMENT OF WAKE-UP VOLTAGE

EARLYBIRD automatically selects the wake-up voltage
adapted for each location in the program where the execution
can be resumed from (i.e., after checkpoint() routines).
Our goal is to wake the system as soon as possible after
a power failure, to improve progress regularity, and benefit
from energy reduction due to low-voltage execution. However,
EARLYBIRD must also ensure that the wake-up voltage is
sufficiently high to reach the next checkpointing routine(s),
in order to enforce forward progress.

To do so, EARLYBIRD relies on two components: a static
analysis operating on a program’s binary, that selects the
minimal wake-up voltage for each checkpoint location, and
a library to enforce the selected wake-up voltages at runtime.

A. Determination of Wake-up Voltage using Static Analysis

EARLYBIRD takes as input a static placement of check-
points in the code of the application, through for example
calling a checkpoint() routine. Determining the wake-up
voltage is performed for each checkpoint location, using static
analysis of the program binary code. The analysis, for a given
checkpoint location, determines the largest amount of energy
required to reach the next checkpoint location(s). Additionally,
an alert is raised if the selected capacitor size is insufficient
to reach the next checkpoint, and highlights the critical path
that may require additional checkpoints.

The analysis operates on the control flow graph of the pro-
gram (a control flow graph, or CFG, is a graph in which nodes
represent basic blocks – sequences of instructions without
internal branching – and edges represent control flow between

1

2

3
4

5

6

7
8

(a) main CFG

1

2

3

4

5

6

7

8

estart
✗

✗ ✗

Basic block

Call to
checkpoint

(b) Analysis from basic block 3

Fig. 5: Control flow graph of a function main (a), and
representation of an analysis when resuming execution from
basic block 3 (b).

them). Specific basic blocks are dedicated to function calls
and only contain the function call instruction.

Figure 5a depicts a CFG. Hatched basic blocks represent
function calls, in this simple example calls to the checkpoint-
ing routine checkpoint(). The static analysis of EARLY-
BIRD, for each checkpoint location c (for example basic block
2) aims at finding the maximum energy consumption among
all paths p such that:

• p starts directly after the given checkpoint location c (in
our example basic block 3);

• p ends with a checkpoint location that is reachable from
c (in our example basic blocks 5 or 7);

• the basic blocks from p do not contain any checkpoint
location except its last basic block.

Enumerating all paths to identify which one is the most
energy consuming may lead to combinatorial explosion as
in general the number of paths in a program is exponen-
tial. Therefore, the static analysis of EARLYBIRD leverages
IPET (Implicit Path Enumeration Technique) [27], originally
designed for Worst-Case Execution Time (WCET) estimation,
to identify the worst-case energy consumption required from
one checkpoint to reach the subsequent ones.

1) Original Implicit Path Enumeration Technique (IPET):
IPET implicitly explores all possible execution paths within a
program to determine its worst case execution time or energy
consumption. IPET proceeds by solving an Integer Linear
Programming (ILP) problem. The variables in the ILP problem
are the execution counts of basic blocks (ni) and edges (ei→j)
in the CFG. The ILP problem constrains the values of these
variables to model:

1) The control flow between basic blocks:

ni =
∑

j∈pred(i)

ej→i =
∑

j∈succ(i)

ei→j (1)

expressing that the number of execution of a node ni is
equal to the number of times its incoming and outgoing
edges are executed;

5

2) Function calls, for every call site of a function:

ncall site = ncallee entry point (2)

3) Loop bounds, for every basic block i in a loop body:

ni ≤ M ×
∑
j

ej→k (3)

with M the maximum number of iterations of the loop
and j → k the entry edges of the loop;

4) Entry point. The execution count of the first basic block
s of the function whose WCET/WCEC is computed is
set to 1:

ns = 1 (4)

ILP solvers then maximize the objective function
∑

ni ×
Ci, with Ci the constant representing the WCET (respectively
Worst Case Energy Consumption - WCEC) of basic block i.

2) EARLYBIRD’s modifications to IPET: The IPET formu-
lation was designed to determine the WCET/WCEC of an en-
tire function (usually main()), and (implicitly) explores paths,
with no constraint besides flow constraints. In EARLYBIRD,
the paths to be explored are constrained as follows:
C1 Considered paths start after a call to routine

checkpoint() and end with a call to routine
checkpoint(), but must not contain any other call to
checkpoint();

C2 The entry point of the analysis (following a call to routine
checkpoint(), for example basic block 3) may be at
any location in the code (inside a function, inside a loop),
and is not necessarily the first basic block of a function.

Constraint C1 is accounted by (virtually) pruning the CFG
(i.e., not generating any IPET constraint) for the nodes and
edges that violate constraint C1. Let us call s the entry point
for the analysis (basic block following the first call to routine
checkpoint(). A Breadth-First Search (BFS) algorithm
starting from s explores the CFG (following regular edges and
function returns); all traversed nodes and edges are added to
a reachable set R. The search stops when a call to routine
checkpoint() is found. Constraints are generated only
for the nodes/edges in set R. Figure 5b represents the CFG
considered in the analysis, after pruning (pruned nodes/edges
are shaded).

Accounting for constraint C2 is more tricky, due to the
arbitrary location of the start basic block s in the CFG.

To account for the case where s is located inside a function
g (i.e., the path starts in a function body), the function call
constraint of the original IPET (Equation 2) must be modified,
as the existing constraint only links the execution of the basic
block calling the function g and the entry point of g, without
any constraint to model function returns. Virtual inlining is
used to manage function calls. Equation 2 is replaced by
constraints on the virtual edges that represent the function
entry (from calling basic block to function entry) and return
(from function return to basic block following the function
call). This is depicted in Figure 6, where basic block 3 that
calls function g is replaced by the body of g.

6
7 8

9

Function g Function f

1

2
3

4

5

Basic block
Call to g

Call to checkpoint

(a)

Resume from 9

6

7 8

9

2

1

4

5

✗
estart

g

(b)

Fig. 6: Control flow graph of two functions f and g, where
f calls g in basic block 3 (a). The analysis when resuming
execution from basic block 9 is displayed in (b).

It may also happen that the start basic block s is located
within a loop. In this case, the entry point might be executed
multiple time (e.g., basic block 9 in Figure 6b). This is in-
compatible with the current entry point constraint formulation
(ns = 1), so we introduce a new fictitious edge denoted
as estart that points to the entry point nstart, and set the
execution count of this edge to 1.

Moreover, since the entry of the loop is now nstart and not
the original loop entry, the IPET constraint on loop bounds
(Equation 3) has to be modified, and is now ni ≤ M×(estart+
ej→k) for all basic blocks i in the loop.

B. Enforcing a wake-up voltage at runtime

Enforcing a wake-up voltage raises two challenges. First,
re-compiling a program to account for the wake-up voltages
computed off-line might change the program binary, and
thus its energy consumption, which is not desirable. Second,
an energy-efficient way to monitor the capacitor voltage is
required.

These two challenges are addressed through the provision
of a checkpointing library with two simple checkpointing
routines: checkpoint(VOLTAGE) and checkpoint().
The first routine allows to manually select a wake-up voltage
for the given checkpoint. It lets the user stay in control of
the wake-up voltage and bypass EARLYBIRD if needed. For
example, this can be used to ensure that a peripheral executes
in its recommended voltage range.

With the second routine, checkpoint(), the user dele-
gates the burden of selecting a wake-up voltage to EARLY-
BIRD. At compile time, the checkpoint() routine is re-
placed by a checkpoint(<PLACEHOLDER>). This place-
holder is later replaced in the final binary by the value of the
computed wake-up voltage. This operation is automated and
transparent for the user.

Then, at runtime, when a checkpoint location is reached, the
wake-up voltage is given as a parameter of the checkpointing
routine, and saved alongside the checkpoint. On restart, the

6

Fig. 7: Experimental setup. The msp430 (in red) is powered
by the P2110 RF harvester (in green), with the RF emitter
visible on the right (the distance between the transmitter and
the harvester is not to scale here). The msp430 is monitored
by an Arduino RP2040, and is connected to a laptop to flash
new programs via several relays (in blue). Those relays isolate
the msp430 when running an experiment.

wake-up voltage is read from the saved checkpoint, and it
is the responsibility of the restore routine to make sure
enough energy has been harvested before resuming program
execution. To do so, we provide two mechanisms: a software-
assisted and a hardware-only solution.

The software-assisted is designed to be compatible with
most boards, as it only requires the board to be equipped with
an analog-to-digital converter (ADC) and a timer. The timer
periodically wakes-up the processor, which triggers a measure
of the voltage across the capacitor, and checks if it is above
the selected threshold.

The hardware-only requires an ADC that is able to perform
a measure triggered by a timer, and that is equipped with a
window comparator, that raises an interrupt when a software-
defined threshold has been reached. This mechanism does not
requires any CPU computation, as everything can be done in
hardware: a timer is set up to tick at the chosen rate, and
trigger the measure of the capacitor voltage. This voltage is
compared to the threshold inside the ADC, and the CPU is
only woken-up when this threshold has been reached.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluated EARLYBIRD on the msp430fr5969 micro-
controller (“msp430” for short). The msp430 is popular in
the battery-free community as it features an energy-efficient
non-volatile ferromagnetic RAM (FRAM) that enables low-
overhead checkpointing. In our experiments, the device is
powered using a Powercast P2110 RF energy harvester, sim-
ilarly to previous works [5, 7, 28]. The RF source is a 3 W
RF emitter positioned 1 meter away from the harvester. A
capacitor of 100µF is used as energy buffer. Figure 7 depicts
the experimental setup.

We implemented EARLYBIRD as two main tools. The binary
analysis of EARLYBIRD is implemented as an extension to
the open-source worst-case execution time estimation tool
HEPTANE [29]. The EARLYBIRD’s runtime is developed as

a C library for the msp430 microcontroller. All sources are
available online1.

We evaluated the techniques on three benchmarks from the
Mibench2 benchmark suite [30]: aes, crc and rc4. Checkpoint-
ing routines were inserted in the code of benchmarks using
four checkpoint placement heuristics:

• The first two heuristics place checkpoints based on
the code structure and represent checkpointing schemes
where the program state is saved frequently. These heuris-
tics, borrowed from MEMENTOS [1], are called LL (for
Loop Latch) and FR (for Function Return). They insert
calls to the checkpointing routine respectively inside each
loop (at each basic block source of a back-edge, termed
Loop Latch) and before each function return.

• The two other checkpoint placement heuristics take as
input the capacitor size. Placement is such that execution
from one checkpoint location can reach the next check-
point(s) with the energy contained in the capacitor. Using
the checkpoint placement technique of SCHEMATIC [26],
we generated two checkpoint placements: one for the
actual capacitor size and another one assuming that the
capacitor is 10 times smaller than it actually is. We refer
to them as S-100% (full capacitor) and S-10% (10 % of
the capacitor).

The worst-case energy model used in our experiment es-
timates the worst-case energy consumption of a basic block
based on its execution time and the microcontroller current
consumption data documented in its datasheet [31]. It is
computed using the following formula:

E = V × I × T (5)

with

• V=3.3 V the microcontroller operating voltage;
• I=1620µA the microcontroller maximum current con-

sumption executing instructions in sequence at 16 MHz;
• T the basic block worst-case execution time.

The experimental protocol consists in executing a bench-
mark as many times as possible, during two minutes, using har-
vested energy. The number of times the benchmark completes
is used as the main metric to evaluate performance. To monitor
the execution status, the runtime library is instrumented to
signal the execution states such as sleeping, re-execution or
checkpointing. In all experiments, all the program data except
the code are stored in volatile memory.

A word about capacitor voltage monitoring: Before diving
into the actual evaluation of EARLYBIRD, we first evaluated
the software-assisted and hardware-only voltage monitoring
mechanisms. For each mechanism, we measured the time
required to replenish the capacitor from 1.8 V to 3 V. With
both strategies, the capacitor voltage is sampled at a fixed rate,
defined by its period T. We ran experiments with T varying
from 5 ms to 100 ms.

1https://gitlab.inria.fr/early-wake-up/early-wake-up-experimental-setup/

7

https://gitlab.inria.fr/early-wake-up/early-wake-up-experimental-setup/

Surprisingly, the software-assisted technique proved to be
the most efficient, with a time to replenish the capacitor
shorter by 40 % on average compared to the hardware-only
technique (1.2 s, against 1.7 s on average for the hardware-only
technique). Indeed, despite having to regularly wake up the
CPU to measure the voltage, the software-assisted technique
allows for shutting down the ADC when not in use. In contrast,
the hardware-only technique requires the ADC to be always
active. Overall, the energy savings achieved by shutting down
the ADC during idle periods outweighs the additional energy
consumption associated with regularly waking up the CPU.
For the following experiments, the software-assisted technique
is used, with sampling period T of 40 ms.

B. Impact of EARLYBIRD on Performance

We evaluate EARLYBIRD against two wake-up voltage
strategies, named in the following V-HIGH and V-LOW. As
introduced in Section II, both strategies select a unique wake-
up voltage for the program: 3.3 V for V-HIGH and 1.88 V,
the msp430 built-in wake-up voltage, for V-LOW. Figure 8
displays the overall throughput improvement of V-LOW and
EARLYBIRD strategies relative to the V-HIGH strategy. This
improvement is computed as the ratio r =

Nstrategy

NV-HIGH
, with NX

the number of benchmarks completed when using strategy X .
The raw number of benchmark executed for each technique is
available in Table III.

TABLE III: Number of benchmarks executed with the V-
HIGH, V-LOW and EARLYBIRD wake-up strategies.

Checkpoint Benchmark Number of benchmarks executed
Placement V-HIGH V-LOW EARLYBIRD

LL
aes 15 24 34
crc 10 12 21
rc4 21 27 46

FR
aes 190 295 415
crc 3934 6000 8035
rc4 44 53 92

S-10%
aes 344 0 524
crc 1426 1389 2122
rc4 12 13 20

S-100%
aes 372 0 440
crc 1580 1308 2303
rc4 848 0 1266

The V-LOW strategy allows for a performance improvement
as compared to V-HIGH in some cases, but fails at executing
some benchmarks under some checkpoint placements. More-
over, the improvement obtained with V-LOW is limited, as
considerable time is spent re-executing portions of code whose
progress could not be saved. In contrast, the EARLYBIRD
strategy outperforms both V-HIGH and V-LOW. EARLYBIRD
demonstrates significant performance improvements across all
benchmarks compared to V-HIGH, with a geometric mean
improvement of 1.76×. When compared to V-LOW in settings
where it ensure forward progress, it provides a geometric mean
improvement of 1.57×.

The performance improvement of EARLYBIRD can be
explained by looking at how the experiment time is split
across sleeping time, computation time, re-execution time and

checkpointing, as displayed in Figure 9. While EARLYBIRD
is agnostic to the checkpoint placement method, the choice
of a checkpoint placement deeply impacts the execution of an
intermittent program. With frequent checkpointing techniques
(LL and FR), a significant portion of time is spent check-
pointing. It becomes extreme with LL, where computations are
nearly not visible on the Figure. In occasional checkpointing
techniques, much less time is spent checkpointing at the cost
of an increased time spent re-executing code. Nonetheless,
regardless of the checkpointing technique, a significant portion
of time is dedicated to replenishing the capacitor (sleeping).
V-HIGH spends most of its time sleeping because its power
consumption is higher due to the msp430 operating at a
higher voltage on average. In contrast to V-HIGH, V-LOW
and EARLYBIRD benefit from being active a larger portion of
the time. However, due to its low wake-up voltage, V-LOW
encounters power failures more frequently, and thus spends an
important portion of time restoring the saved program state,
and re-executing code that was not committed.

Overall, the experiments show that, by tailoring the wake-up
voltage to each checkpoint, EARLYBIRD:

• ensures the progress of the program in all benchmarks,
with all checkpoint placement heuristics;

• reduces the sleep time, as the execution at low voltage
reduces the device energy consumption;

• increases the amount of time spent executing, which leads
to a significant increase in the number of benchmarks it is
able to execute compared to a strategy that fully replenish
the capacitor (V-HIGH).

As detailed in the introduction, the wake-up voltage also
impacts the length of sleeping phases. Long sleeping phases
may lead to the device being unaware of its environment for
long periods of time. This is illustrated by measuring the time
between two benchmark completions, as displayed in Table
IV. When looking at the median value, we observe that for a
benchmark like crc, having a short execution time, most of the
times the interval between benchmark completions is 40 ms,
which is the benchmark duration. Indeed, the benchmark can
be executed several times in a computation burst, even with
a capacitor that is not full. In this case, the intervals between
benchmark completions that are above the 99 % quantile
correspond to the sleep time. For crc, the V-HIGH strategy
shows an important sleep time compared to the benchmark
execution time, and V-LOW demonstrates the more regular
benchmark execution. The other benchmarks (aes and rc4)
have a longer execution time and cannot execute entirely
with a full capacitor. In both case, EARLYBIRD keeps a low
time between each benchmark completion, demonstrating its
reactivity.

C. Ability of EARLYBIRD to Improve Existing Checkpointing
Techniques

In this section, we evaluate how EARLYBIRD can improve
two existing checkpointing techniques, namely MEMENTOS
and SCHEMATIC. Compared to the checkpointing strategies
used in Section V-B, that were clearly already inspired from

8

aes crc rc4 aes crc rc4 aes crc rc4 aes crc rc4
0

1

2
1.58×

1.29× 1.24×
1.56× 1.53×

1.21×

7

0.97× 1.01×

7

0.83×

7

2.28× 2.21× 2.15× 2.2×
2.04× 2.11×

1.52× 1.49× 1.53×

1.18×
1.46× 1.49×

T
hr

ou
gh

pu
t

im
pr

ov
em

en
t

re
la

tiv
e

to
V

-H
ig

h

V-High V-Low EarlyBird
Loop Latch Function Return S-10% S-100%

Fig. 8: Throughput improvement relative to V-HIGH (ratio of number of benchmarks executed). A red cross (✗) indicates that
execution could not complete. Note that bars from different checkpointing strategies cannot be directly compared due to the
normalization with respect to V-HIGH. For detailed data on the number of benchmark completions, refer to Table III.

V-High
V-Low

EarlyBird

V-High
V-Low

EarlyBird

V-High
V-Low

EarlyBird

V-High
V-Low

EarlyBird

Compute Reexecute Checkpoint Restore Sleep

S-100%

S-10%

Function
Return

Loop
Latch

Fig. 9: Distribution of time on the aes benchmark.

TABLE IV: Interval between two benchmark completions in
milliseconds (Median, 95 % quantile and 99 % quantile). The
checkpoint placement is S-10%.

Benchmark Wake-Up Median 95 % 99 %

aes
V-HIGH 117 1020 1064
V-LOW Could not complete

EARLYBIRD 208 318 327

crc
V-HIGH 40 40 927
V-LOW 40 91 92

EARLYBIRD 40 40 139

rc4
V-HIGH 9240 9533 9662
V-LOW 9062 9327 9375

EARLYBIRD 6115 6251 6337

MEMENTOS and SCHEMATIC, here we use all optimizations
implemented in MEMENTOS and SCHEMATIC, for example
the ability of MEMENTOS to skip checkpoints at run-time.

MEMENTOS [1] inserts checkpointing routines on Loop
Latches (LL) or Function Returns (FR) at compile-time. Then,
at runtime, energy is saved by skipping unnecessary check-
points, i.e., checkpoints are saved only when a low-voltage
threshold has been reached (here 2 V). We extended MEMEN-
TOS with EARLYBIRD capabilities: we resume program exe-
cution as soon as enough energy has been harvested (originally

MEMENTOS was waiting for full capacitor replenishment).
Moreover, we adapt the skip decision: instead of testing if
the current energy is above a given threshold, we test that
there is enough energy to reach the next checkpoint(s).

SCHEMATIC [26] is a technique that places checkpoints
in a program given the size of the device capacitor, using
static analysis together with a worst-case energy consumption
model. It also performs memory allocation of the program
variables (in volatile and non-volatile memory, facility that was
not evaluated here). In contrast to techniques presented before,
SCHEMATIC makes sure that the capacitor is fully replenished
after each checkpoint, and that checkpoints are close enough
to be reached with a full capacitor. Checkpoint placement in
SCHEMATIC is constrained by the code structure, potentially
leading to conservative placement decisions (e.g., if multiple
iterations of a loop can execute with a full capacitor but not
the entire loop, a checkpoint is still inserted in the loop). We
extended SCHEMATIC with EARLYBIRD: instead of waiting
for the capacitor to be full, we wait until it has enough energy
to reach the next checkpoint(s).

The results for MEMENTOS are visible in Table V. When
augmented with EARLYBIRD, MEMENTOS experiences a im-
portant throughput improvement with all benchmarks and
checkpoint placement, with on average 1.74× more bench-
marks executed. The results for SCHEMATIC are visible in
Table VI. Augmenting SCHEMATIC with EARLYBIRD allows
a performance improvement greater than four (geometric mean
of ×4.63).

TABLE V: Number of benchmarks executed with MEMENTOS
and MEMENTOS augmented with EARLYBIRD.

Benchmarks Executed

Benchmark Checkpoint MEMENTOS
MEMENTOS ImprovementPlacement +EARLYBIRD

aes LL 21 38 ×1.78
FR 137 228 ×1.66

crc LL 19 34 ×1.79
FR 992 1773 ×1.79

rc4 LL 45 71 ×1.79
FR 81 131 ×1.62

9

TABLE VI: Number of benchmarks executed with
SCHEMATIC and SCHEMATIC augmented with EARLYBIRD,
with S-100% checkpoint placement.

Benchmarks Executed

Benchmark SCHEMATIC
SCHEMATIC Improvement

+EARLYBIRD ratio

aes 142 549 ×3.87
crc 407 2299 ×5.65
rc4 296 1351 ×4.56

VI. CONCLUSION

This paper has presented EARLYBIRD, a novel technique for
improving checkpointing techniques in battery-less devices.
By automatically computing a wake-up voltage tailored to
each checkpoint, EARLYBIRD offers a promising approach for
improving the performance of existing techniques. Experimen-
tal results demonstrated the effectiveness of EARLYBIRD in
increasing throughput, highlighting its potential to enhance the
efficiency of IoT devices operating in energy-constrained envi-
ronments. While EARLYBIRD already significantly improves
the performance of existing techniques, we believe further
enhancements are possible. Future research could explore
incorporating execution context, such as loop iterations, to
fine-tune the wake-up voltage at runtime. Additionally, en-
hancing capacitor monitoring techniques, by predicting when
the capacitor voltage will meet the required level, could re-
duce unnecessary voltage measurements and further optimize
energy consumption.

ACKNOWLEDGMENT

This work has received a French government support
granted to the Labex CominLabs excellence laboratory and
managed by the National Research Agency in the Investing
for the Future program under reference ANR-10-LABX-07-
01.

REFERENCES

[1] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-
running computation on RFID-scale devices,” in ASPLOS XVI, 2011.
DOI: 10.1145/1950365.1950386

[2] KEYSIGHT, “N6705a DC Power Analyzer.”
[3] B. Yarahmadi and E. Rohou, “Compiler optimizations for safe insertion

of checkpoints in intermittently powered systems,” in SAMOS, 2020.
DOI: 10.1007/978-3-030-60939-9 12

[4] S. Ahmed, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mottola,
“Efficient intermittent computing with differential checkpointing,” in
LCTES, 2019. DOI: 10.1145/3316482.3326357

[5] J. Choi, L. Kittinger, Q. Liu, and C. Jung, “Compiler-Directed High-
Performance Intermittent Computation with Power Failure Immunity,”
in RTAS, 2022. DOI: 10.1109/RTAS54340.2022.00012

[6] V. D. Woude, Joel and M. Hicks, “Intermittent Computation without
Hardware Support or Programmer Intervention,” in OSDI, 2016. ISBN
978-1-931971-33-1

[7] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak,
and J. Hester, “InK: Reactive Kernel for Tiny Batteryless Sensors,” in
SenSys ’18, 2018. DOI: 10.1145/3274783.3274837

[8] M. Hicks, “Clank: Architectural Support for Intermittent Computation,”
in Proceedings of the 44th Annual International Symposium on Com-
puter Architecture, 2017. DOI: 10.1145/3079856.3080238

[9] D. Pala, I. Miro-Panades, and O. Sentieys, “Freezer: A Specialized
NVM Backup Controller for Intermittently Powered Systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2021. DOI: 10.1109/TCAD.2020.3025063

[10] H. Jayakumar, A. Raha, and V. Raghunathan, “QuickRecall: A Low
Overhead HW/SW Approach for Enabling Computations across Power
Cycles in Transiently Powered Computers,” in 27th International Con-
ference on VLSI Design and 13th International Conference on Embedded
Systems, 2014. DOI: 10.1109/VLSID.2014.63

[11] D. Balsamo, A. Weddell, G. Merrett, B. Al-Hashimi, D. Brunelli,
and L. Benini, “Hibernus: Sustaining Computation During Intermittent
Supply for Energy-Harvesting Systems,” Embedded Systems Letters,
IEEE, 2015. DOI: 10.1109/LES.2014.2371494

[12] G. Berthou, T. Delizy, K. Marquet, T. Risset, and G. Salagnac,
“Sytare: A Lightweight Kernel for NVRAM-Based Transiently-
Powered Systems,” IEEE Transactions on Computers, 2019. DOI:
10.1109/TC.2018.2889080

[13] A. J. Neto, A. Caulfield, C. Alvares, and I. De Oliveira Nunes,
“DiCA: A hardware-software co-design for differential check-pointing
in intermittently powered devices,” in ICCAD, 2023. DOI: 10.1109/IC-
CAD57390.2023.10323895

[14] M. Buettner, B. Greenstein, and D. Wetherall, “Dewdrop: An energy-
aware runtime for computational RFID,” in NSDI’11, 2011.

[15] B. Lucia and B. Ransford, “”Dino:” A simpler, safer programming
and execution model for intermittent systems,” ACM SIGPLAN Notices,
2015. DOI: 10.1145/2813885.2737978

[16] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable inter-
mittent programs,” in OOPSLA, 2016. DOI: 10.1145/2983990.2983995
pp. 514–530.

[17] A. Y. Majid, C. D. Donne, K. Maeng, A. Colin, K. S. Yildirim, B. Lucia,
and P. Pawełczak, “Coala: Dynamic Task-based Intermittent Execution
for Energy-harvesting Devices,” ACM Transactions on Sensor Networks,
2020. DOI: 10.1145/3360285

[18] A. Sabovic, A. K. Sultania, C. Delgado, L. D. Roeck, and J. Famaey,
“An Energy-Aware Task Scheduler for Energy Harvesting Battery-
Less IoT Devices,” IEEE Internet of Things Journal, 2022. DOI:
10.1109/JIOT.2022.3185321

[19] M. Zhao, C. Fu, Z. Li, Q. Li, M. Xie, Y. Liu, J. Hu, Z. Jia,
and C. J. Xue, “Stack-Size Sensitive On-Chip Memory Backup
for Self-Powered Nonvolatile Processors,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2017. DOI:
10.1109/TCAD.2017.2666606

[20] V. Kortbeek, S. Ghosh, J. Hester, S. Campanoni, and P. Pawełczak,
“WARio: Efficient code generation for intermittent computing,” in PLDI,
2022. DOI: 10.1145/3519939.3523454

[21] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Lazy Scheduling for
Energy Harvesting Sensor Nodes,” in IFIP, 2006. DOI: 10.1007/978-0-
387-39362-9 14

[22] B. Islam and S. Nirjon, “Scheduling Computational and Energy Har-
vesting Tasks in Deadline-Aware Intermittent Systems,” in RTAS, 2020.
DOI: 10.1109/RTAS48715.2020.00-14

[23] F. Yang, A. S. Thangarajan, G. S. Ramachandran, W. Joosen, and
D. Hughes, “AsTAR: Sustainable Energy Harvesting for the Internet
of Things through Adaptive Task Scheduling,” ACM Transactions on
Sensor Networks, 2021. DOI: 10.1145/3467894

[24] A. Colin, E. Ruppel, and B. Lucia, “A Reconfigurable Energy Storage
Architecture for Energy-harvesting Devices,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018.

[25] N. A. Bhatti and L. Mottola, “HarvOS: Efficient Code Instrumentation
for Transiently-Powered Embedded Sensing,” in IPSN, 2017.

[26] H. Reymond, J.-L. Béchennec, M. Briday, S. Faucou, I. Puaut, and
E. Rohou, “SCHEMATIC: Compile-Time Checkpoint Placement and
Memory Allocation for Intermittent Systems,” in CGO, 2024. DOI:
10.1109/CGO57630.2024.10444789

[27] Y.-T. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 1997.

[28] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution with-
out checkpoints,” Proceedings of the ACM on Programming Languages,
no. OOPSLA, 2017.

[29] D. Hardy, B. Rouxel, and I. Puaut, “The Heptane Static Worst-Case
Execution Time Estimation Tool,” in 17th International Workshop
on Worst-Case Execution Time Analysis (WCET 2017), 2017. DOI:
10.4230/OASIcs.WCET.2017.8

[30] Matthew Hicks, “Mibench2: MiBench benchmark suite ported
for IoT devices.” 2016. [Online]. Available: https://github.com/
impedimentToProgress/MiBench2

[31] Texas Instruments, “MSP430FR5969 datasheet,” Tech. Rep., 2012.

10

https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1007/978-3-030-60939-9_12
https://doi.org/10.1145/3316482.3326357
https://doi.org/10.1109/RTAS54340.2022.00012
https://doi.org/10.1145/3274783.3274837
https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1109/TCAD.2020.3025063
https://doi.org/10.1109/VLSID.2014.63
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1109/TC.2018.2889080
https://doi.org/10.1109/ICCAD57390.2023.10323895
https://doi.org/10.1109/ICCAD57390.2023.10323895
https://doi.org/10.1145/2813885.2737978
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1145/3360285
https://doi.org/10.1109/JIOT.2022.3185321
https://doi.org/10.1109/TCAD.2017.2666606
https://doi.org/10.1145/3519939.3523454
https://doi.org/10.1007/978-0-387-39362-9_14
https://doi.org/10.1007/978-0-387-39362-9_14
https://doi.org/10.1109/RTAS48715.2020.00-14
https://doi.org/10.1145/3467894
https://doi.org/10.1109/CGO57630.2024.10444789
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/MiBench2

	Introduction
	Preliminary study: Impact of the Wake-up Voltage on Intermittent Programs
	Impact of the Operating Voltage on Energy Consumption
	Impact of the Wake-Up Voltage on Intermittent Programs
	Influence of Wake-up Voltage on Execution Profiles
	Influence on Program Performance

	Related Works
	Intermittent Computing Strategies
	Existing Works on Application-Tailored Wake-Up Voltage
	Related Works on Static Checkpointing Techniques

	EarlyBird: automatic selection and enforcement of wake-up voltage
	Determination of Wake-up Voltage using Static Analysis
	Original Implicit Path Enumeration Technique (IPET)
	EarlyBird's modifications to IPET

	Enforcing a wake-up voltage at runtime

	Experimental Evaluation
	Experimental Setup
	Impact of EarlyBird on Performance
	Ability of EarlyBird to Improve Existing Checkpointing Techniques

	Conclusion
	References

