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Abstract

In recent work, the multiplicity-induced-dominancy (MID) property for single delay time-delay systems
has been fully characterized in the over-order case, that is when the multiplicity of the spectral abscissa
exceeds the system's order. In this note, despite the fact that this assumption is not met, we provide an
analytical proof for the MID. The coexistence of real spectral values is the main ingredient. The obtained
result is illustrated through the stabilization of an unstable second-order plant by a delayed PD controller.
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1 Introduction

Systems with delays are often used in modeling transport, propagation, and communication. Such dynamical
systems belong to the class of in�nite-dimensional systems and a distinctive feature of such systems is that their
rate of evolution can be described by di�erential equations including information about the past history of the
system, see for instance [2, 7, 8, 9, 10, 12, 18] and references therein. While pole placement for �nite-dimensional
systems is a well-established method, for in�nite dimensional systems it is more complex and deserves more
attention. A series of recent work have highlighted the interest of multiplicity varieties in the characterization
of the exponential decay rate for the solution of linear dynamical systems represented by delayed di�erential
equations, see for instance [5, 17] and references therein.

By exploiting the Pólya-Szeg® bound (see, e.g., [14]) pertaining to the number of roots of exponential
polynomials in horizontal strips, [4] showed that the maximal admissible multiplicity of a characteristic root is
given by the degree of the corresponding quasipolynomial.

A recent pole placement analytical paradigm, called partial-pole-placement (PPP), has been introduced in
[11, 15]. It derives from two properties called respectively multiplicity-induced-dominancy (MID) and coexistent-
real-roots -inducing-dominancy (CRRID), see for instance [1, 16]. These works follow from an observation on
the e�ect of multiple spectral values on the stability of Delay Di�erential Equations (DDE). Indeed, a recent
work (see, for instance, [11], [3]) has shown that, for some classes of delay systems, a real root of maximal
multiplicity is necessarily the rightmost root, a property we call generic multiplicity-induced-dominancy, or
GMID for short. This link between maximal multiplicity and dominance has been suggested in [13] after the
study of some simple, low-order cases (scalar and second-order both retarded and neutral), but without any
attempt to address the general case.

The objective of the present note is to investigate the MID property when the multiplicity of a given spectral
value is not greater than the order of the DDE and, in particular, to explicitly determine conditions when such
a root de�nes the spectral abscissa of the corresponding dynamical system, i.e. the real part of the rightmost
(characteristic) root. This latter property is called lower-multiplicity-induced-dominancy (LMID), and, to the
best of the authors' knowledge, such a problem is still open.

The remaining paper is organized as follows. Section 2 presents some prerequisites on interpolation problem
in quasipolynomial settings. section 3, is dedicated to enunciating and proving the main results of this note.
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2 Preliminaries and prerequisites

Consider a controlled dynamical system represented by a general second-order linear di�erential equation

y′′(t) + a1y
′(t) + a0y(t) = u(t) (1)

with a closed-loop control in the form of a proportional-derivative-delay term given by

u(t) = −α1y
′(t− τ)− α0y(t− τ). (2)

The corresponding closed-loop system is described by

y′′(t) + a1y
′(t) + a0y(t) + α1y

′(t− τ) + α0y(t− τ) = 0, (3)

under appropriate initial conditions belonging to the Banach space of continuous functions C([−τ, 0],R). To
determine the asymptotic behavior of the solutions of equation (3), we investigate the characteristic quasipoly-
nomial function ∆ : C× R+∗ → C de�ned by:

∆(s, τ) = s2 + a1s+ a0 + e−τs (α1s+ α0) , (4)

where (a1, a0, α1, α0) ∈ R4. The degree of ∆, de�ned by the sum of the degrees of the involved polynomials
plus the number of delays, is four. Pólya�Szeg® result asserts that the maximal number of real roots counted
with multiplicity is four. A rightmost root, also called a dominant root, s∗ of ∆(·, τ) satis�es the condition:

∀ z ∈ C\{s∗}, ∆(z, τ) = 0 for some τ > 0 ⇒ ℜ(z) ≤ ℜ(s∗).

Namely, s∗ is a root with the largest real part, i.e. it is the spectral abscissa, and, when negative, it determines
the exponential decay rate of the solutions of (3). Several con�gurations of ∆ admitting four real roots have
been investigated: a single root of multiplicity four (MID) [11], four equidistributed roots (CRRID) [17], and a
root of multiplicity three along with another real root (over-order MID) [5]. The de�nitions of these properties
are given hereafter.

De�nition 1 (CRRID and MID Properties). We say that a general quasipolynomial ∆ of degree N satis�es
the Coexistence-Real-Root-Induced-Dominancy (CRRID) property if it admits N distinct real roots s1 > s2 >
. . . > sN , with s1 being a dominant root of ∆. If, instead, s1 = s2 = . . . = sN = s0 (hence s0 is a root of ∆ with
maximal multiplicity) and is dominant, then this property is referred to as the Multiplicity-Induced-Dominancy
(MID) property.

In all cases, the dominancy of the largest real root have been established. In this work, we explore a new
con�guration described by the following property:

De�nition 2. We say that the quasipolynomial ∆, given by (4), satis�es the Lower Multiplicity-Induced Dom-
inancy (LMID) property if ∆ has a double root at s0 that is dominant.

In fact, in single-delay case, the over-order MID property has been fully characterized in [5] thanks to an
integral representation introduced in [6]. It appears that such a representation is not valid in lower multiplicities
and consequently, there are no results in the literature certifying LMID. To explore the LMID property for
the quasipolynomial described in equation (4), we focus on the scenario where the number of real roots of
the quasipolynomial is the maximal1. This maximization is achieved by assuming that the polynomial has two
additional distinct real roots. This corresponds to the concomitance of the two properties MID and CRRID. This
combination leverages both properties, particularly demonstrating that the MID property can be preserved even
with a minimal multiplicity, i.e., two. It is worth noting that the novelty of this paper lies in the identi�cation
of s0 as a double root of multiplicity 2, inducing dominance.

To state our results, we will use some tools that have been investigated in the CRRID context by [17]; some
of their properties are revisited here. Denote R+∗ the positive real half line, i.e. R+∗ = (0,+∞). For any

distinct real numbers sn+1 < · · · < s1, let sn+1
∆
= (s1, · · · , sn+1). Let Tn = (tk)

n
k=1 and, for τ > 0 and n ≥ 0,

we de�ne the function Fτ,n : Rn+1 → R+∗ as:

Fτ,n(sn+1) =

1∫
0

· · ·
1∫

0︸ ︷︷ ︸
n times

l (Tn) .e−τh(sn+1,Tn)dtn · · · dt1,

1The maximal number of real roots of a given quasipolynomial corresponds to the degree of the quasipolynomial.
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where l (Tn) =
n−1∏
k=1

(1− tk)
n−k

,

h (sn+1, Tn) =
[
s1,

[
s2, · · · [sn, sn+1]tn · · ·

]
t2

]
t1
,

and [x, y]t = tx+ (1− t) y for t ∈ [0, 1]. The properties of the multivariate functions Fτ,n have been studied in
[1]. Let Gn be the multivariate function introduced in [17], namely,

Gn(sn+1, τ)
∆
= (−τ)nFτ,n (sn+1) . (5)

Notice that G0(sk, τ) = e−τsk . The multivariate functions Gn(·, τ) exhibit similar properties to those of Fτ,n,
particularly with respect to shifting:

(s1 − sn+1)Gn(sn+1, τ) = Gn−1(s2, . . . , sn+1, τ)−Gn−1(sn, τ). (6)

We can extend the de�nition of Fτ,n when all the si are equal (or partially equal), namely when [s0]n+1
∆
=

(s0, s0, · · · , s0︸ ︷︷ ︸
n+1 times

). Indeed, it su�ces to identify the convex combination h
(
[s0]n+1 , Tn

)
to the point s0. The

expression of Fτ,n+1

(
[s0]n+1

)
, undergoes simpli�cation, resulting in the identity:

Fτ,n

(
[s0]n+1

)
=

e−τs0

n!
.

The following proposition encapsulate several fundamental properties validated by Fτ,n, and consequently by
Gn(., τ), in addition to those delineated in [1].

Proposition 1. The following properties hold:

(i) If s1 ∈ C, we have:
|Fτ,n(sn+1)| ≤ Fτ,n(ℜ(s1), s2, · · · , sn+1) (7)

(ii) Let sn ∈ Rn be �xed. Fτ,n enjoys the decreasing property in the following sense: for any a > b,

Fτ,n(a, sn) < Fτ,n(b, sn). (8)

(iii) The mapping Gn(., τ) is continuous on Rn+1, in particular

lim
s→z

G1(s, z, τ) = G1([z]2, τ) = −τG0(z, τ). (9)

(iv) For every i = 0 · · ·n, the mapping τ 7→ Gi(si+1, τ) satis�es a �rst-order linear ordinary di�erential
equation,

Y ′ + si+1Y +Gi−1(si, τ) = 0, (10)

with the initial condition Y (0) = 1 if i = 0 and Y (0) = 0 if i ≥ 1, where the prime denotes the derivative
with respect to τ .

Proof. We proceed only with the proof of (10), as the other points essentially follow immediately from the
de�nition of Fτ,n, and the continuity and di�erentiability of the exponential function. To simplify calculations,
we will limit ourselves to the case where n = 3, namely

G′
3(s4, τ) = −s4G3(s4, τ)−G2(s1, s2, s3, τ)

However, the proof remains valid for any n. Indeed, if i = 0, then G0(0, τ) = e0 = 1. For i ∈ {1, · · · , 4},
the expression (5) of the multivariate function Gi implies that Gi(0, τ) = 0. To demonstrate (10), we use the
following decomposition:

G3(s4, τ) =

4∑
i=1

e−siτ
4∏

j=1
j ̸=i

d−1
ij ,

where dij = (si − sj), and di�erentiating with respect to τ , we get

G′
3(s4, τ) = −

4∑
i=1

siG0(si, τ)

4∏
j=1
j ̸=i

d−1
ij .
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Using the property
4∑

i=1

si
4∏

j=1
j ̸=i

d−1
ij = 0 and (6), one obtains

G′
3(s4, τ) = − s1

d12d13
G1(s1, s4, τ)−

s2
d21d23

G1(s2, s4, τ)−
s3

d31d32
G2(s3, s4, τ)

= − s1
d12

G2(s1, s3, s4, τ)−
s2
d21

G2(s2, s3, s4, τ)

= −
(
1 +

s2
d12

)
G2(s1, s3, s4, τ)−

s2
d12

G2(s2, s3, s4, τ)

= −s2G2(s4, τ)−G2(s1, s3, s4, τ).

Thus, G3 satis�es the di�erential equation (10). Similarly, it can be demonstrated that G1 and G2 also satisfy
a corresponding di�erential equation. The calculations for these cases are more straightforward and are thus
omitted. This concludes the proof of the proposition.

Remark 1. Using the shifting property, the following equivalent variants of (10) hold:

G′
3(s4, τ) = −s3G3(s4, τ)−G2(s1, s2, s4, τ),

= −s2G3(s4, τ)−G2(s1, s3, s4, τ),

= −s1G3(s4, τ)−G2(s2, s3, s4, τ).

Also, from (9), by denoting s = ([s0]2, s1, s2) with s0 > s1 > s2, we have

G′
3(s, τ) = −s2G3(s, τ)−G2([s0]2, s1, τ). (11)

The following lemma pertains to the invertibility of a structured functional Vandermonde-type matrix.

Lemma 1. Let s = (s0, s1, s2) be distinct real numbers, then the matrix

V (s, τ) =


1 s0 e−τs0 s0e

−τs0

0 1 −τe−τs0 e−τs0 − s0τe
−τs0

1 s1 e−τs1 s1e
−τs1

1 s2 e−τs2 s2e
−τs2


is invertible for any τ > 0.

Proof. The proof is based on the rewriting of V in terms of the multivariate functions Gi, as follows:

V (s, τ) =


1 s0 G0(s0, τ) −G′

0(s0, τ)
0 1 G1([s0]2, τ) −G′

1([s0]2, τ)
1 s1 G0(s1, τ) −G′

0(s1, τ)
1 s2 G0(s2, τ) −G′

0(s2, τ)

 .

Using the same procedure as in [17], we obtain the following factorization of the determinant of V :

v(s, τ)
∆
= detV (s, τ) = −d210d

2
20Q(s, τ), where

Q(s, τ) =

(
G2 ([s0]2, s2, τ)

G2 ([s0]2, s1, τ)

)′

G2
2 ([s0]2, s1, τ) . (12)

The conclusion regarding the invertibility of V is deduced using the same arguments as those in [17, Lemma 1].
The details are omitted.

3 Main result

In this section, we give our main contributions. First, we show that a quasipolynomial function given by (4)
admitting three distinct real roots s0, s1, s2, where s0 is a double root, is uniquely determined. Second, we show
that such a quasipolynomial admits a factorisation by its real roots. Finally, we prove that it satis�es the LMID
property, i.e. the largest real root is dominant.
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3.1 Assigning real roots of the characteristic function

Proposition 2 (Coexisting real roots). Given a delay τ > 0, the quasipolynomial (4) admits 3 distinct real
spectral values s0, s1, and s3, with s0 being a double root if and only if the real coe�cients a1, a0, α1, and α0

are expressed as functions of τ and s = ([s0]2 , s1, s2) according to the following relationships:

a1(s, τ) = −2s0 − α0(s, τ)G1([s0]2 , τ) + α1(s, τ)G
′
1([s0]2 , τ),

a0(s, τ) = −s20 − a1(s, τ)s0 − α0(s, τ)G0(s0, τ) + α1(s, τ)G
′
0(s0, τ),

and

α0(s, τ) = −d21
G′

3 (s, τ)

Q(s, τ)
and α1(s, τ) = −d21

G3 (s, τ)

Q(s, τ)
, (13)

where Q(s, τ) is given by (12).

Proof. Assume that ∆ admits 3 distinct real spectral values s0, s1, and s3, with s0 being a double root. This
means that the coe�cients a0, a1, α0 and α1 satisfy the linear system:{

∆(si, τ) = 0, i ∈ {0, 1, 2} ,
2s0 + a1 + e−τs0 ((1− s0τ)α1 − τα0) = 0.

Thanks to the invertibility of structured functional Vandermonde type matrix V (s, τ) as asserted previously,
one deals with a Cramer system with respect to the coe�cients a0, a1, α0 and α1. So that, one easily computes
these coe�cients using the property satis�ed by the multivariate Gi allowing to get (13).

Corollary 1. Under the conditions of Proposition 2, and in a speci�c context where d01 = d12 = d > 0, the
coe�cients of the quasipolynomial take the following form, under the notation y = eτd:

α0 (y, τ) = − dB(y)s0 − 2d2 (y − 1)2

(y − 1) (2y ln y − y2 + 1)
eτs0

α1 (y, τ) =
dB(y)eτs0

(y − 1) (2y ln y − y2 + 1)
a1 (y, τ) = −2s0 − dA(y)

(y−1)(2y ln y−y2+1)

a0 (y, τ) = s20 +
dA(y)s0 − 2d2 (y − 1)2

(y − 1) (2y ln y − y2 + 1)

(14)

where A(y) = 3 − y (4− 4 ln y) + y2 (1− 2 ln y), and B(y) = y2 − 4y + 3 + 2 ln (y). Furthermore, the spectral
value s0 is negative if, and only if, there exists τ∗ > 0 such that

a1 (y
∗, τ∗) + s0 = 0 (15)

with y∗ = eτ
∗d. The value of s0 is given by the following expression:

s0 = d
y∗2(2y∗ − 1) + 4y∗(1− ln(y∗))− 3

(y∗ − 1)(2y∗ ln(y∗)− y∗2 + 1)
. (16)

Proof. Assume that s0 < 0, thanks to the behavior at 0 and ∞ of the function τ 7→ a1(s0, τ) + s0:

a1 (s0, τ) + s0 ∼
{

− 4
τd +O (1) if τ ∼ 0
−s0 if τ ∼ ∞

we deduce that

lim
τ→∞

(a1 (s0, τ) + s0) = −s0 > 0

lim
τ→0

(a1 (s0, τ) + s0) = −∞.

The existence of a number τ∗ > 0 satisfying equation (15) is guaranteed by the continuity of a1 with respect to
τ and the Intermediate Value Theorem.

Conversely, if equation (15) is satis�ed, then the value of s0 is given by (16). It remains to examine the sign

of s0, which depends on the respective signs of the two factors f(y∗)
∆
= 2y∗2 ln y∗ − 4y∗ ln y∗ − y∗2 +4y∗ − 3 and

g(y∗)
∆
= 2y∗ ln y∗ + y∗2 − 1, for y∗ > 1. To do this, we observe that

f(y) = 4

∫ y

1

(x− 1) ln(x) dx

g(y) = −2y

∫ y

1

(x− 1)2

2x2
dx

for all y > 1. Hence, we have f(y) > 0 and g(y) < 0 and we conclude that s0 < 0. Note that s0 given by (16)
is negative regardless of τ , not just at τ∗.
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3.2 Factorization of the Quasipolynomial ∆

In this subsection, we explore a novel con�guration for the factorization of the quasipolynomial ∆, which admits
three distinct real roots: s0, a double root, and two simple roots, s1 and s2. This factorization involves the
multivariate function G3, its derivative, and the coe�cients given in (13).

Proposition 3. If the quasipolynomial ∆ admits three distinct real roots: s0, a double root, and two simple
roots, s1 and s2, then it can be expressed as:

∆(s, τ) = (s− s0)
2 (s− s1)R(s, s, τ) (17)

with

R(s, s, τ) = α0(s, τ)G3(s, [s0]2, s1, τ)− α1(s, τ)G
′
3(s, [s0]2, s1, τ).

Proof. Let δ
∆
= ∆(s,τ)

(s−s20)(s−s1)
, p0(s)

∆
= s2 + a1s + a0 and p1(s)

∆
= (α1s+ α0). By using the partial fraction

decomposition of p0(s)
(s−s20)(s−s1)

and p1(s)
(s−s20)(s−s1)

and the equations ∆(s0, τ) = ∆ (s1, τ) = d
ds∆(s, τ)

∣∣
s=s0

= 0

(and thus implicitly the values of a1, a0 and α0 as functions of α1 and τ), we have

δ =
− (α0 + α1s0) e

−s0τ

(s− s0)
2 (s0 − s1)

− (α0 + α1s1) e
−s1τ

(s0 − s1)
2 (s− s1)

+
(α0 + α1s0) e

−s0τ

(s0 − s1)
2 (s− s0)

+
(τ (α0 + s0α1)− α1) e

−s0τ

(s0 − s1) (s− s0)

+
(α0 + α1s0) e

−sτ

(s− s0)
2 (s0 − s1)

+
(α0 + α1s1) e

−sτ

(s0 − s1)
2 (s− s1)

− (α1s0 + α0)e
−sτ

(s0 − s1)
2 (s− s0)

+
α1e

−sτ

(s0 − s1) (s− s0)
.

Now, leveraging the relations:

(2s0 + a1) = τ (α0 + s0α1) e
−s0τ − α1e

−s0τ

= − (α0 + s0α1)G (s0, s0, τ)− α1G0 (s0, τ)

= −α0G1

(
[s0]2 , τ

)
+ α1G

′
1

(
[s0]2 , τ

)
and the shifting property, we derive:

δ =
(α0 + α1s0)G1(s, s0, τ)

(s− s0) (s0 − s1)
+

(α0 + α1s1)G1(s, s1, τ)

(s0 − s1)
2 − (α1s0 + α0)G1(s, s0, τ)

(s0 − s1)
2

−
(α0 + s0α1)G1([s0]2 , τ)

(s0 − s1) (s− s0)
+

α1G1(s, s0, τ)

(s0 − s1)
.

To handle the term
α1G1(s, s0, τ)

(s0 − s1)
, we employ the relation

(α0 + α1s1)

(s0 − s1)
= −α1 +

(α0 + s0α1)

(s0 − s1)

which leads to the following conclusive calculations:

δ =
(α0 + α1s0)G1(s, s0, τ)

(s− s0) (s0 − s1)
+

(α0 + α1s1)G1(s, s1, τ)

(s0 − s1)
2 − (α1s0 + α0)G1(s, s0, τ)

(s0 − s1)
2 − (α0 + s0α1)G1(s0, s0, τ)

(s0 − s1) (s− s0)

+
(α0 + s0α1)G1(s, s0, τ)

(s0 − s1)
2 − (α0 + s1α1)G1(s, s0, τ)

(s0 − s1)
2

=
(α0 + α1s0)G1(s, s0, τ)

(s− s0) (s0 − s1)
− (α0 + s0α1)G1(s0, s0, τ)

(s0 − s1) (s− s0)
+

(α0 + α1s1)G1(s, s1, τ)

(s0 − s1)
2 − (α0 + s1α1)G1(s, s0, τ)

(s0 − s1)
2 .

By combining pairwise the compatible terms, we obtain the following expression:

δ =
(α0 + α1s1) [G1(s, s1, τ)−G1(s, s0, τ)]

(s0 − s1)
2 +

(α0 + s0α1) [G1(s, s0, τ)−G1([s0]2, τ)]

(s0 − s1) (s− s0)
.

By applying the shifting property again, we deduce

δ =
− (α0 + α1s1)G2(s, s0, s1, τ)

(s0 − s1)
+

(α0 + s0α1)G2(s, [s0]2, τ)

(s0 − s1)
.

By exploiting the relationship between α0+α1s1 and α0+ s0α1, along with the shifting property, we obtain
the following expression:

δ =

(
α1 −

(α0 + s0α1)

(s0 − s1)

)
G2(s, s0, s1, τ) +

(α0 + s0α1)G2(s, [s0]2, τ)

(s0 − s1)

= α1 [G2(s, s0, s1, τ) + s0G3(s, [s0]2, s1, τ)] + α0G3(s, [s0]2, s1, τ).
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Finally, in view of (10) and (11), the following expression is derived

∆(s, τ) = (s− s0)
2 (s− s1)R(s, s, τ)

with

R(s, s, τ) = α0(s, τ)G3(s, [s0]2, s1, τ)− α1(s, τ)G
′
3(s, [s0]2, s1, τ).

Thus, the proposition is proven.

3.3 LMID property

Theorem 1. If the quasipolynomial ∆ given by (4) has real roots s0, s1, and s2, with s0 being a double root
and s2 < s1 < s0, then s0 is necessarily the corresponding spectral abscissa.

The proof is based on the factorization of ∆, giving (17), where the expressions of the coe�cients α1 and
α0 are derived from (13), and (10) and (11).

Proof. Suppose there exists z∗ = η + iζ ∈ C, with η > s0, such that ∆(z∗, τ) = 0, for any τ > 0. This implies:

α0(s, τ)G3 ([s0]2 , s1, z
∗, τ)− α1(s, τ)G

′
3 ([s0]2 , s1, z

∗, τ) = 0, ∀τ > 0.

Using the expression of α0(s, τ) and α1(s, τ) leads to

det

[
G′

3([s0]2 , s1, s2, τ) G′
3 ([s0]2 , s1, z

∗, τ)
G3([s0]2 , s1, s2, τ) G3 ([s0]2 , s1, z

∗, τ)

]
= 0,

for all τ > 0. Using the fact that Fτ,3([s0]2 , s1, s2) > 0, after dividing on F 2
τ,3([s0]2 , s1, s2) > 0, we deduce that

d

dτ

(
Fτ,3([s0]2 , s1, z

∗)

Fτ,3([s0]2 , s1, s2)

)
= 0, ∀τ > 0.

Thus,
Fτ,3([s0]2 , s1, z

∗)

Fτ,3([s0]2 , s1, s2)
= M, ∀τ > 0,

where M is some constant depending only on (si). By continuity, taking τ → 0 yields that M = 1. Thanks to
the property (7) and (8), the following estimates hold:

Fτ,3([s0]2 , s1, s2) = |Fτ,3([s0]2 , s1, s2)|
= |Fτ,3([s0]2 , s1, z

∗)|
≤ Fτ,3([s0]2 , s1,ℜ(z

∗))

< Fτ,3([s0]2 , s1, s0) < Fτ,3([s0]2 , s1, s2).

This leads to a contradiction, proving the dominance of the double root s0.

4 Stabilization of second-order plant

In this section, we consider the application of Theorem 1 in the control of an unstable second-order plant
in the form of (1) controlled via a delayed proportional derivative action given by (2). For a comprehensive
control design, we exploit the placement of equidistributed real spectral values, i.e. we assign s0, s1= s0 − d
and s2= s0 − 2d, with d > 0. The parameters a1 and a0 of the plant, as well as the delay τ , are de�ned by the
model and the control gains α1 and α0 are to be determined as functions of the distance d and the double root
s0. As a matter of fact, consider the case of an unstable second-order plant by taking a1 = −2 and a0 = 5,
moreover the delay is �xed to τ = 2/3. Next, using ∆(s0) = ∆′(s0) = 0, we obtain

α1 = −2

3
e2s0/3

(
s20 + s0 + 2

)
and α0 =

2

3
e2s0/3

(
2s30 − s20 + 10s0 − 15

)
.

Inserting these values in ∆(s1) = ∆(s2) = 0 we obtain two equations for s0 and d, which yield s0 ≈ −0.93 and
d ≈ 1.64. Hence, we have the following value for the controller gains α1 ≈ −0.69 and α0 ≈ −4.8.

Figure 1 shows that the roots of the unstable open-loop system (given by 1±2i) are located in the right-half
of the complex plane, whereas the in�nite number of roots of the closed loop system are located in the left-half
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plane and are dominated by the double root s0 ≈ −0.93, which, therefore, determines the exponential decay
rate of the solutions of (3). This numerical example illustrates the partial-pole-placement strategy. Indeed,
we observe that by assigning a few number of real roots (four) we are able to guarantee that the rest of the
spectrum (a countable in�nite set) is located in the left-half plane (actually it is located left to the real part of
the largest real root).

Note that the delay τ needs not be �xed by the model, it can also be a control parameter. In that case, we
can arbitrarily choose the value of s0 < 0 (namely, we decide the decay rate of the solutions) and we �nd d > 0
and τ > 0 such that (16) is satis�ed.

−6 −5 −4 −3 −2 −1 0 1
−40

−30

−20

−10

0

10

20

30

40

s0

−d−d

ℜ(s)

ℑ
(s
)

Closed loop roots
Open loop roots

Figure 1: Spectrum distribution of the characteristic function (4) corresponding to the closed-loop system of a
second order unstable plant with a delayed proportional-derivative controller.

5 Conclusion

Our study provide a novel analytical proof for the multiplicity-induced-dominancy (MID) property in single-
delay time-delay systems. Contrarily to previous research, which primarily focused on the over-order case, the
originality of our work is to address scenarios where this assumption is not met. By leveraging the properties of
a speci�c multivariate function, we demonstrate the achievement of MID even in such cases, where real spectral
values coexistance is the main ingredient. Our �ndings emphasize the e�ciency of analytical techniques in
understanding complex dynamical systems and suggested new prospects of partial poles placement for system
stability and control.
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