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PHM development in railways: key enablers and challenges 

 
Asma Ladj 

Railenium Research and Technology Institute, 59540 Valenciennes, France. E-mail: asma.ladj@railenium.eu 

 

In recent years, railways play a vital role in freight and passenger transport. As safety-critical systems, it is crucial 

to accurately detect and predict, as early as possible, any faults that may affect their operation. In this context, 

prognostic and health management (PHM) offers promising opportunities for the design and implementation of 

effective predictive maintenance strategy. To allow successful development of PHM in railway industry, it is 

important to study its key enabling technologies. Hence, we provide in this paper an overview of fundamental pillars 

for PHM deployment. This includes condition monitoring technologies, namely sensing and networking techniques. 

Besides, powerful methods for robust and accurate data processing based on artificial intelligence are presented. 

Moreover, we highlight barriers in railway PHM development, which should be addressed by both the research 

community and the industry. 
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1. Introduction 

In transportation domain, the rapid growth in rail- 

road traffic has prompted both researchers and 

managers to investigate promoting service quality 

(trains punctuality, travel comfort), maintenance 

cost-effectiveness, as well as avoidance of safety 

hazards. In this field, the reliability, availabil- 

ity, and maintainability (RAM) of critical rail- 

way components were extensively addressed in 

the literature. Indeed, any failure of such safety- 

critical systems can cause delays or potentially 

disastrous consequences (injuries, deaths) if no 

action is taken, such as the devasting Potters Bar 

accident (due to poorly maintained point machine 

at turnout) a. This reinforce and justify the crucial 

need for the development of more reliable and 

more cost-effective maintenance strategies. The 

main prominent advancement was the shift from 

“find and fix” to “predict and prevent”. Thus, 

corrective and time-based maintenance are suc- 

cessfully replaced (or potentially completed) by 

condition-based maintenance (CBM). In this field, 

predictive maintenance, as a special form of CBM, 

has emerged as a part of the prognostics and health 

management (PHM) (Dersin et al., 2018). 

The expansion of PHM in railway domain is 

 
aRail accident report: Derailment at grayrigg, 23 february 

2007 

tightly related to the proliferation of several en- 

abling technologies. Leveraging low-cost sens- 

ing solutions and maturity of Information and 

Communication Technologies (ICTs) have led to 

the emergence of internet of things (IoT) (Fraga- 

Lamas et al., 2017; Gbadamosi et al., 2021). In 

railway applications, condition monitoring sys- 

tems (CMS), built using connected and smart 

devices, enable continuous and automated con- 

dition monitoring (CM) of critical components 

(Vinberg et al., 2018). CM covers, for example, 

dynamic impact load and wheel/rail defect mon- 

itoring, track superstructure and sub-grade mon- 

itoring, etc. Some successful industrial solution 

are developed, such as Vossloh Cogifer’s SUR- 

VAIG NG for switches monitoring and Alstom’s 

“TrackTracer” fitted on service trains providing 

infrastructure monitoring. 

CMSs are capable of measuring, among oth- 

ers key parameters, strain, displacement, acceler- 

ation, temperature, etc. As huge amount of data 

is currently easy to collect, conventional storage 

and computation capabilities overflow needs to 

be avoided through Big Data approaches. Big 

data provides powerful computing architectures 

(e.g., cloud computing) to manager voluminous 

data with no saturation neither response delays 

issues (McMahon et al., 2020). To derive useful 

insights from the raw data, Big Data Analytic 
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uses advanced analytic techniques to make better 

understanding of the system and provide faster 

and better decisions (Thaduri et al., 2015). In this 

field, artificial intelligence (AI) technologies are 

gaining more attention from both researchers and 

infrastructure managers to exploit real-time mon- 

itoring data in decision-making support regard- 

ing predictive maintenance (Chenariyan Nakhaee 

et al., 2019). This is mainly achieved through 

development of advanced and efficient algorithms 

for failure diagnosis and prognosis, which provide 

opportunities to solve important challenges in re- 

liability and maintenance engineering. 

In this paper, the synergy between recent ad- 

vances in both CM and AI tools and PHM devel- 

opment is investigated. The objective is to high- 

light the opportunities offered by exponentially 

growing technologies such as sensing, network- 

ing, IoT and AI for successful deployment of 

PHM in railway domain. This study allows also 

to rise challenging aspects which still need to be 

addressed. 

The remainder of this paper is structured as 

follows: in section 2, key enablers for PHM in 

railway industry are outlined. First, CM develop- 

ment is discussed by presenting recent advances 

in sensing, networking, IoT technologies and ex- 

isting CM applications. Next, we give insights 

into promising application of AI-based technolo- 

gies for PHM tasks, mainly in fault diagnosis and 

prognosis. Section 3 highlights some challenges 

arising in deploying PHM solutions for railway 

systems. Finally, concluding remarks are drawn in 

Section 4. 

2. Key enablers of railway PHM 

development 

PHM steps involve data acquisition, data pre- 

processing, detection, diagnostics and prognos- 

tics, decision making and finally human-machine 

interface (Atamuradov et al., 2017). Exponentially 

growing technologies are one of the fundamental 

pillars for PHM development. Such technologies, 

including ICTs, IoT, etc., are considerably helping 

to sharply increase PHM efficiency. In this sec- 

tion, the most important key enablers for PHM 

development, with focus on railway applications, 

 

 

are presented. 

 

2.1. Condition Monitoring 

Railway inspection operations are most often per- 

formed manually or visually by qualified person- 

nel (Liu et al., 2019). These superficial checks 

may not be reliable to accurately diagnose and 

predict assets faults. Hence, this traditional pol- 

icy should be replaced (or completed) by a more 

sophisticated and intelligent monitoring strategy. 

Thus, condition monitoring (CM) is recognized 

to be primordial for the effective management 

of railway systems. Indeed, real-time and au- 

tonomous monitoring is adopted as a powerful 

tool to improves railway systems safety and relia- 

bility by detecting and predicting deterioration of 

assets before causing failures, which reduces hu- 

man inspection requirements and prevents costly 

and inopportune interventions Dersin et al. (2018). 

In the following sections we will briefly review 

recent advances in this field. 

2.1.1. Sensing technologies 

Data acquisition is the first step in any PHM pro- 

cess, which deals with data collection from the 

target system. Two types of data can be collected: 

CM or sensory data, which are measurements 

tracked via sensors installed on the system un- 

der investigation, and event data, which includes 

information of maintenance actions taken on the 

events (e.g. failure, breakdown, installation etc.). 

Sensor technologies have undergone extensive 

developments. Different sensing techniques exist, 

ranging from simple transducers, converting the 

quantity to be sensed into an electrical signal that 

can be directly measured and processed, cheap 

and efficient micro electro mechanical systems 

(MEMS), combining electrical and mechanical 

components produced at relatively low cost, to 

innovative fiber optic sensors (FOS), with light 

weight, immunity to electromagnetic interference 

and corrosion, and high embedding capability. 

Depending on the measurement principle, sen- 

sors can be categorized to: mechanical sensors 

relying on direct physical contact, magnetic and 

electromagnetic sensors which do not require di- 

rect physical contact and are useful for detecting 
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proximity effects, optical Transducer converting 

light to various quantities, acoustic sensors using 

sound as a sensing medium, etc. A detailed review 

of these types can be found in (Lewis et al., 2004). 

A variety of sensors are used in railway CM 

to measure key parameters of the assets. Mea- 

surements can be classified into: measurement 

of electrical parameters (current, voltage), mea- 

surement of motion properties (velocity, acceler- 

ation), measurement of contact properties (strain, 

force, vibration), measurement of presence (prox- 

imity, displacement, position), measurement of 

structural deformation (inclination), measurement 

of thermal parameters and environmental effects 

(temperature, moisture), sound and optical mea- 

surement. For example, we can use acoustic emis- 

sion sensors for structural damage detection like 

crack and fatigue, accelerometers for infrastruc- 

ture dynamic loads analysis as trains pass, strain 

gauges for static loads and stresses, inclinometers 

for structure distortion detection, etc. Since asset 

behavior is usually affected by external factors, 

it is crucial to take ambient measurements (e.g. 

temperature, humidity, wind speed and direction, 

train speed, etc.) into account when analyzing 

and interpreting CM data. The reader can refer to 

(Hodge et al., 2014; Ngamkhanong et al., 2018) 

for more details on sensors used in railway CM. 

 
2.1.2. Networking technologies 

In simple CM, sensors monitor the system health 

condition and generate alarms if the locally col- 

lected readings reach a predetermined fault thresh- 

old. To overcome this limitation, it is important 

to build an overall picture of the system condition 

by connecting the whole sensors deployed on the 

system and collectively analyze their data. In this 

context, ICT tools allow data transmission, stor- 

ing, processing, interpretation and presentation. 

Two options are available for data transmission: 

wired and wireless networking. In conventional 

wired technique, sensors are directly attached to 

the structure and cables connect them to the ac- 

quisition units. Communication protocols such as 

Ethernet and EtherCAT can be used. Although 

the results obtained with wired technique are ac- 

curate, this approach requires costly maintenance 

interventions, as cables are vulnerable to damage 

(e.g., corrosion), weather conditions and nature 

elements, especially in harsh and exposed railway 

environment. Moreover, the wired system can be- 

come significantly complex when sensors number 

increases and inflexible when changes are needed. 

These shortcomings have led to the adoption of 

wireless networking as an alternative approach. 

The wireless techniques becomes more com- 

petitive with increasing popularity (Hodge et al., 

2014). In fact, this strategy can reduce the number 

of sensors, time for deployment, installation and 

maintenance costs and requires no special care to 

ensure safe placement of wires on the structure. 

Their biggest drawback is that, in general, the 

results obtained do not present the same level of 

accuracy when compared to those provided by 

wired techniques. 

Several wireless communication technologies 

can be used: (i) Peer-to-Peer technologies such 

as Bluetooth Classic, (ii) low-power / short- 

range / low-data Mesh technologies such as Blue- 

tooth LE (Low-Energy), ZigBee, (iii) Local Area 

Network (LAN) technologies such as WiFi, (iv) 

long-distance cellular technologies such as GSM 

(Global System for Mobile Communications), 

LTE (Long Term Evolution), and (v) low-power 

Long-distance technologies such as LoRa (Long 

Range), NB-IOT (Narrowband Internet of things). 

The wireless communication strategy is used 

to build what we called wireless sensor networks 

(WSNs) (Hodge et al., 2014). WSNs can be 

used for monitoring the railway infrastructures 

such as bridges, rail tracks, track beds, and track 

equipment as well as rolling stock components 

health monitoring such as chassis, bogies, wheels, 

and wagons. WSN offers interesting opportuni- 

ties compared with traditional inspection policy. It 

ensures continuous and high frequency monitor- 

ing (near real-time) where no supervision or hu- 

man intervention is needed. Thanks to networking 

technologies, data accessibility and management 

are enhanced, and thus outcomes from the cen- 

tralized processing of the whole integrated data 

of all sensor nodes are optimized. Indeed, smart 

nowcasting and forcasting algorithms, aiming to 

detect, diagnose and predict asset faults, since 
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the early stage, can be developed based on the 

efficient exploitation of collected data. 

 

 

 
2.1.3. IoT technologies 

With advancement in communication and com- 

puting technologies, as well as power and memory 

management, several civil applications have been 

digitized. In such innovative context, Internet of 

Things (IoT) has emerged as the combination of 

physical and digital components which connect 

and exchange data within the existing internet 

infrastructure (Fraga-Lamas et al., 2017). 

One crucial objective of an effective railway 

maintenance is the ability to acquire useful and 

reliable information about asset health state. In- 

deed, such objective can be achieved using IoT 

paradigm. IoT offers opportunity for real-time 

CM of railway assets by ensuring the connectivity 

of IoT sensors Gbadamosi et al. (2021). 

IoT sensors are mounted on boards combin- 

ing a sensing module, a data processing module, 

a wireless module (e.g., NB-IoT), a power sup- 

ply module, and eventually a GPS module (Zhao 

et al., 2020). An IoT sensor used for monitor- 

ing rail under excitation of wheels during trains 

passage using acceleration data was provided by 

Zhao et al. (2020). This sensor consists of a 

lithium battery, a power management, a micropro- 

cessor chip, a MEMS accelerometer, and a NB- 

IoT wireless transmission module. Low sampling 

rate, embedded data processing algorithms makes 

IoT sensors capable of efficiently realize real-time 

data analysis. However, for frequent sampling, the 

constrained resources of IoT sensors in term of 

microcontroller capabilities, power and memory 

fail. In this case, tools provided by big data an- 

alytics deployed using cloud computing allow to 

leverage the huge amount of data collected by IoT 

sensors by extracting useful information (Thaduri 

et al., 2015; McMahon et al., 2020). 

One of the promising applications of IoT-based 

CM in railway domain is the Dynamic Mainte- 

nance Management System (DMMS) developed 

by Trenitalia in collaboration with SAP SE (Sys- 

temanalyse Programmentwicklung Societas Eu- 

 

 

ropaea) b. Hundreds of sensors collect data in real 

time and upload them into SAP cloud, where they 

are analyzed and used to build predictive mod- 

els using machine learning techniques and also 

trigger actions. Another example is represented 

by the Finnish state-owned railway company. In 

order to improve its competitiveness, it started to 

embed sensors into its systems to monitor possible 

failures related to the weather conditions c. 

2.1.4. Railway applications of condition 

monitoring 

Structural health monitoring (SHM) has been 

widely applied for detecting and predicting dam- 

age in railway infrastructures (Barke and Chiu, 

2005). SHM goal is to reduce maintenance costs 

by the early detection of structures deteriora- 

tion. Railway track structures often experience 

complex impact loading which cannot be rea- 

sonably calculated through mathematical mod- 

els. Hence, monitoring of dynamic impact loads 

and wheel/rail irregularities is crucial to avoid 

hazardous derailments and dangerous accidents. 

Using dynamic load signals, wheel/rail defects 

(wheel flats, out-of-round wheels, wheel corruga- 

tion, etc.) can be detected (Ekberg et al., 2014). 

Besides CM of track superstructure, the track-bed 

(ballast and sub-ballast) and subgrade layer also 

need to be monitored as they play important roles 

in providing track stability and a smooth train ride 

(Ngamkhanong et al., 2017). 

Apart from railway infrastructures monitoring, 

an interesting application of CM is vehicle pa- 

rameters identification (Krcˇ et al., 2020). Actually, 

monitoring systems can be used to identify train 

type, axles count, train position and speed, etc 

(Krcˇ et al., 2020). 

Regarding the data acquisition policy, CM can 

be either continuous or periodic. While contin- 

uous monitoring offers the possibility to timely 

detect abnormal events, high computing capabil- 

ities are needed to process sensor data for accu- 

rate fault diagnosis. On the other side, periodic 

monitoring is cheaper and requires less energy, but 

 
bTrenitalia Dynamic Maintenance Management System 
cThe Internet of Trains 

https://blogs.sap.com/2016/04/02/trenitalia-goes-from-things-to-outcomes-with-dynamic-maintenance-with-sap-solutions-for-the-internet-of-things/
https://assets.teradata.com/resourceCenter/downloads/CaseStudies/EB8903.pdf?processed=1%20
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fault are not detected on time. Hence, regarding 

the targeted situation to be monitored, one or other 

strategy can be adopted. For example, in the case 

of long term and slowly developing degradation 

(e.g. railway structures cracks), periodic CM may 

be acceptable. Whereas, for time critical scenarios 

(e.g. obstruction in railway crossing), continuous 

monitoring becomes primordial. 

Regarding the mobility of the sensor nodes, 

we can distinguish fixed and movable monitoring 

(Hodge et al., 2014). Fixed or trackside monitor- 

ing is built using sensor nodes mounted in fixed 

locations of railway infrastructures, to measure 

the whole train as it passes but only at points 

where the nodes are mounted. Movable or on- 

board monitoring relates to sensor nodes attached 

to the trains (Li et al., 2017). On-board sensors can 

monitor the sections of the train where the sensor 

nodes are attached (e.g. train engines, wagons, 

axles, wheels, etc.) (Kundu et al., 2018) as well 

as the whole track length travelled by the train 

(Dertimanis et al., 2020). 

Several reviews on CMSs for railways are 

available. Hodge et al. (2014) reviewed the ex- 

isting CM solutions from the perspective of 

fixed and movable monitoring, where systems are 

grouped according to the asset being monitored. 

Li et al. (2017) provide an overview of existing 

on-board monitoring techniques used for suspen- 

sion and wheel–rail health monitoring. Vinberg 

et al. (2018) investigate and evaluate methods for 

CM in railway applications, with focus on the CM 

of vehicle running gear and track condition. 

2.2. AI for railway PHM 

Despite its huge volume, it is obvious that data 

collected through CM, on its own and without 

analysis, has no significant value regarding the 

health state of the asset under investigation. In 

fact, monitoring data usefulness is tightly related 

to the meaningful insights derived using data and 

big data analytics. Thus, railways raw monitoring 

data are transformed into smart data within the 

PHM process. 

PHM assist decision making regarding predic- 

tive maintenance based on two tasks, namely fault 

diagnosis and prognosis. Diagnosis aims to detect, 

isolate, and identify faults. On the other side, 

prognosis is the estimation of time to failure, 

known as the Remaining Useful Life (RUL) and 

risk for one or more existing and future failure 

modes (ISO, 2015). Prognosis is considered su- 

perior to diagnosis as it reduces costs by enabling 

faults or failures preventing and/or scheduling ap- 

propriate maintenance intervention in the right 

time (Niu, 2017). However, due to the unpre- 

dictable nature of some faults/failures, prognostics 

and diagnosis must be complementary. 

Diagnosis and prognosis are developed us- 

ing mainly three approaches: model-based, data- 

based and hybrid methods. Contrary to the model- 

based approaches where a priori knowledge about 

the system is needed, data-driven approaches re- 

quire only a large amount of historical data. 

They use historical system measurements to as- 

sess degradation, detect possible faults and pre- 

dict their evolution. With increasing complexity 

of civil engineering systems, it becomes crucial to 

develop new reliability analysis techniques which 

meet the industry increasing demand for precision 

and accuracy (Dersin et al., 2018). In this con- 

text, data-driven approaches are gaining a great 

attention and popularity due to the continuous 

development of reliable machine learning (ML) 

and deep learning (DL) solutions in the field of 

Artificial Intelligence (AI). 

Studies dealing with data driven diagnosis and 

prognosis for predictive maintenance of railway 

assets are progressively receiving more attention. 

Xie et al. (2020) and Davari et al. (2021) provide 

extensive reviews on existing data-based tech- 

niques for handling railway predictive mainte- 

nance. From perspectives of the investigated rail- 

way system, most of studies focus on rail tracks, 

as one of critical railway components (Falamarzi 

et al., 2019; Chenariyan Nakhaee et al., 2019). 

Other railway infrastructures are also addressed, 

such as switch and crossings (Hamadache et al., 

2019), track circuits (De Bruin et al., 2016), 

ballast (Ngamkhanong and Kaewunruen, 2022), 

bridges (Wedel and Marx, 2022), as well as trains 

components (Krummenacher et al., 2017). 

Both ML and DL techniques techniques are 

successfully applied to railway systems PHM 
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(Davari et al., 2021). Based on the availability 

of data and respective labels, ML methods can 

be classified into supervised learning, in which 

labeled training data sets, mapping predictor vari- 

ables values to a correct target variable, are avail- 

able, unsupervised learning, in which machine 

learns from data sets with no target variable, and 

semi-supervised learning, where only a subset of 

examples is labeled ( Ç  ınar et al., 2020). ML tech- 

niques such as support vector machines (SVM) 

and random forest (RF) are widely used for di- 

agnosis (Go´mez et al., 2020; Guo et al., 2021) 

and prognosis purposes (Atamuradov et al., 2018; 

Wang, 2021) in railway domain. 

For voluminous and high dimensional data, 

ML-based algorithms show poor performance as 

they rely on domain knowledge and manual fea- 

ture engineering. In this context, deep learning 

becomes more advantageous (Alom et al., 2019). 

DL can automatically learn hierarchical represen- 

tations of large-scale data via deep neural net- 

works, which makes it an effective tool for PHM 

applications (Rezaeianjouybari and Shang, 2020). 

Relatively less deep learning methods are used 

for railway assets PHM, we can quote the use 

of deep neural networks (DNN) (Zhao et al., 

2017), convolutional neural network (CNN) (Peng 

and Jin, 2018), recurrent neural networks (RNN) 

(De Bruin et al., 2016), generative adversarial net- 

work (GAN) (Yao et al., 2020), etc. 

 

3. Challenges in railways PHM 

development 

As safety-critical systems, railways infrastruc- 

tures require a predictive maintenance strategy 

with very high reliability due to potential catas- 

trophic failure consequences. Despite the recent 

advances in key enablers technologies, many chal- 

lenges are faced in railways PHM. 

Challenges with sensors selection for CM. 

Selecting the appropriate sensor types to be used 

has a great importance. Indeed, identifying the 

key parameters of the targeted system to be mea- 

sured, which allows efficient representation and 

assessment of system health state, is a major issue. 

Moreover, finding the optimal emplacement and 

 

 

carefully located sensors for accurate data acqui- 

sition is crucial. Powering solutions also need to 

be considered as sensors are often installed away 

from energy supplies. 

Challenges with communication technolo- 

gies selection. As multiple networking technolo- 

gies exist, it becomes important to carefully select 

the best choice regarding the situation to be mon- 

itored. Some factors must be considered, such as 

network robustness in harsh railway environment, 

real-time performance, range, bandwidth, network 

scalability, cost, security, reliability, and power 

consumption (Fraga-Lamas et al., 2017). 

Challenges with data for AI tools develop- 

ment. The design of AI-based algorithms for 

PHM depends on the level of performance de- 

sired, data availability, quantity, dimension, bal- 

ancing, and labelling, as well as the noise pre- 

sented in the data. For instance, supervised ma- 

chine learning techniques require availability and 

quality of a sufficiently large and labeled dataset. 

The labeling process of real-time data stream col- 

lected from sensors can be labor-intensive, expen- 

sive and requires a high level of expertise and 

domain knowledge (Chenariyan Nakhaee et al., 

2019). Moreover, in most railway applications, 

only small number of abnormal (faulty) samples 

is available, which creates highly skewed distribu- 

tion (Chenariyan Nakhaee et al., 2019). With such 

imbalanced classes, ML performance is affected. 

Another key issue is uncertainty presence, which 

influences accuracy of PHM outputs and may lead 

to false alarms or faults missing. 

Safety issues. From the safety point of view, it 

is complicated to consider external sensors inte- 

gration (either in railway infrastructures or rolling 

stocks), without performing a rigorous risk assess- 

ment process. In fact, sensors deployment may 

affect the nominal operation of railway assets (for 

example, trains components and signaling systems 

can be compromised by electronic devices due to 

electromagnetic compatibility issues). Moreover, 

wireless connectivity of CMS is vulnerable to 

outside interference, intrusion and cyber-attacks. 
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Challenges with wide scale monitoring. De- 

spite the existence of some IoT-related technolo- 

gies in the rail industry, there is still a lack of holis- 

tic implementation strategy for IoT (Gbadamosi 

et al., 2021), which must deal with communication 

technologies interoperability and integration into 

the information management system. 

 

4. Conclusion 

This paper deals with PHM development in rail- 

way industry. First of all, enabling technologies 

from IoT, ICTs, and AI domains are discussed. 

Condition monitoring plays a major role in build- 

ing effective predictive maintenance strategy. Key 

factors of the recent and rapid expansion in CM 

are the advances in sensing and networking tech- 

nologies. In this field, WSNs based on Iot sen- 

sors are gaining a great importance due to their 

capabilities to provide continuous, autonomous, 

and near real-time data acquisition as well as to 

improve data accessibility and management. To 

efficiently exploit data generated through CM, AI- 

based methods for fault diagnosis and prognosis, 

as vital tasks for PHM, are applied. An overview 

of ML and DL approaches for predictive main- 

tenance in multiple railway applications was pro- 

vided. The current state of the art on PHM appli- 

cation in railway domain faces some challenges, 

which were briefly outlined. Future work can be 

considered to conduct more extensive study in 

this domain by means of morphological analysis 

to highlight more and less explored areas in this 

field. 
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