
HAL Id: hal-04663574
https://hal.science/hal-04663574

Preprint submitted on 29 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Metaheuristic Enhanced with Feature-Based Guidance
and Diversity Management for Solving the Capacitated

Vehicle Routing Problem
Bachtiar Herdianto, Romain Billot, Flavien Lucas, Marc Sevaux

To cite this version:
Bachtiar Herdianto, Romain Billot, Flavien Lucas, Marc Sevaux. Metaheuristic Enhanced with
Feature-Based Guidance and Diversity Management for Solving the Capacitated Vehicle Routing
Problem. 2024. �hal-04663574�

https://hal.science/hal-04663574
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr


Metaheuristic Enhanced with Feature-Based Guidance and

Diversity Management for Solving the Capacitated Vehicle

Routing Problem

Bachtiar Herdianto∗1, Romain Billot1, Flavien Lucas2, and Marc Sevaux3

1IMT Atlantique, Lab-STICC (UMR 6285, CNRS), Brest, France
2IMT Nord Europe, CERI Systèmes Numériques, Douai, France

3Université Bretagne Sud, Lab-STICC (UMR 6285, CNRS), Lorient, France

bachtiar.herdianto@imt-atlantique.fr∗1

romain.billot@imt-atlantique.fr1

flavien.lucas@imt-nord-europe.fr2

marc.sevaux@univ-ubs.fr3

Abstract

We propose a metaheuristic algorithm enhanced with feature-based guidance that is designed to
solve the Capacitated Vehicle Routing Problem (CVRP). To formulate the proposed guidance, we
developed and explained a supervised Machine Learning (ML) model, that is used to formulate the
guidance and control the diversity of the solution during the optimization process. We propose a
metaheuristic algorithm combining neighborhood search and a novel mechanism of hybrid split and
path relinking to implement the proposed guidance. The proposed guidance has proven to give
a statistically significant improvement to the proposed metaheuristic algorithm when solving CVRP.
Moreover, the proposed guided metaheuristic is also capable of producing competitive solutions among
state-of-the-art metaheuristic algorithms.

Keywords— Metaheuristic Algorithm, Supervised Machine Learning, Explainable Artificial Intelligence (XAI),
Capacitated Vehicle Routing Problem

1 Introduction

Routing represents a significant activity in logistics and supply chains, involving the movement of products or
goods, from one location to another. This process is crucial for driving economic and social activities, impacting
various aspects of daily lives (Arnold and Sörensen, 2019b). The main challenge arises from the increasing delivery
costs, that may directly influence the pricing of goods. Optimizing the delivery routes becomes one significant
solution for mitigating this problem (Simchi-Levi, Kaminsky, and Simchi-Levi, 2002). Various routing problems
exist, with one of the most studied being the Capacitated Vehicle Routing Problem (CVRP) (Toth and Vigo, 2014;
Sörensen and Schittekat, 2013; Prodhon and Prins, 2016; Arnold and Sörensen, 2019a; Accorsi and Vigo, 2021).
The first research that attempted to solve the CVRP was performed by Dantzig, Fulkerson, and Johnson, 1954.
Yet, despite decades of study, the CVRP remains a challenging problem in laboratory and industrial applications
(Prins, 2004; Laporte, 2009).

∗Corresponding Author

1



Recently, there has been a growing interest in using Machine Learning (ML) to enhance optimization algorithms
(Bengio, Lodi, and Prouvost, 2021). However, many optimization algorithms start from scratch for similar problem
types, ignoring valuable insights from previous solutions. Utilizing historical data could offer efficient and effective
ways to improve optimization algorithms Arnold and Sörensen, 2019b. Furthermore, the optimization algorithm
can learn from its own decisions, adapting its behavior for improved performance. In parallel, Explainable Artificial
intelligence (XAI) offers techniques that can identify the strongest features, as well as investigate how these features
behave for making a decision (Lundberg and Lee, 2017; Arrieta et al., 2020; Lundberg et al., 2020).

In this research, we aim to solve CVRP by developing a hybrid ML and metaheuristic algorithm. Our approach
involves developing a learning model that can learn how to achieve an optimal quality solution, based on the
problem features. Subsequently, we try to interpret the developed learning model and use these insights to
formulate a guidance able to boost the performance of the metaheuristic algorithm.

1.1 Related Work

The CVRP can be characterized as an undirected graph G = (V,E). The set of nodes V is composed of a depot
D and a collection of customer nodes C, where C = c1, c2, ..., cN and N = V − 1 represents the set of customers
(excluding the depot). Then, the set of customers neighboring ci can be referred to as the neighborhood of ci,
denoted as N (ci) (Prodhon and Prins, 2016). The CVRP is an extended version of the Vehicle Routing Problem
(VRP). In CVRP, a set of valid routes R is defined as a collection of routes, where a route can be defined as a
sequence of nodes, with the first and last nodes being the depot D and the remaining nodes representing customers
ck, in which the total demand of customer nodes does not exceed the capacity Q of identical vehicles in the fleet.
Therefore, a CVRP solution is considered feasible when it consists of valid routes, ensuring each customer is visited
exactly once. The CVRP aims to determine a feasible solution that minimizes the sum of route costs for all routes
in the solution (Laporte, 2009).

Metaheuristics for solving the CVRP Heuristics and local search mechanisms are the main components
of metaheuristics (Prodhon and Prins, 2016). In Glover, 1997, a tabu search heuristic was proposed, allowing
the algorithm to escape local optima by preventing cyclic evaluation. Following this, Granular Neighborhoods
mechanism (GNs), proposed by Toth and Vigo, 2003, defines a heuristic filtering of less promising neighbors. This
mechanism, when combined with the tabu search, has empirically demonstrated an excellent trade-off between
computation time and solution quality (Toth and Vigo, 2003), even with very large scale problems, up to 30,000
customers (Accorsi and Vigo, 2021). Another way for enhancing tabu search involves bolstering the intensification
mechanism while preserving solution diversity through the integration of the path relinking (Glover, 1997; Glover,
Laguna, and Marti, 2000) procedure. In parallel, Prins, 2004 introduced a new representation of the solution, called
the giant tour, and a splitting mechanism to transform it into a VRP solution. In Prins, 2004, this was implemented
alongside population-based metaheuristic, and further refined and applied to solve a broad range of VRP variants
(Vidal et al., 2014), and has particularly proven to effectively solve the CVRP (Vidal, 2022) up to 1,000 customers.
Path relinking, as proposed by Glover, 1997, has been proven to enhance the intensification strategy of tabu search
(Laguna, Martí, and Campos, 1999; Ho and Gendreau, 2006). In Sörensen and Schittekat, 2013, a metaheuristic
algorithm is proposed to hybridize path relinking with GRASP (Greedy Randomized Adaptive Search Procedure)
and VND (Variable Neighborhood Descent). However this study highlights a limited contribution of path relinking
compared with the simple hybridization of GRASP and VND.

Hybridizing machine learning with metaheuristic for solving CVRP The integration of machine
learning (ML) and optimization algorithms can be classified into three strategies, as outlined by Bengio, Lodi,
and Prouvost, 2021: (1) end-to-end learning, (2) learning based on problem properties, and (3) learning repeated
decisions. The concept of learning based on problem properties entails utilizing ML to formulate a configuration
(in a broad sense) for the optimization algorithm. Meanwhile, the mechanism of learning repeated decisions is
applied by constructing an in-loop ML-assisted optimization algorithm to allow the algorithm to learn from its
own decisions and adapt its behavior. Recent studies have aimed to enhance the performance of metaheuristics
by hybridizing them with ML when solving the CVRP.

2



The hybridizing mechanism may initially involves by analyzing the structure of the parent problem of the CVRP,
that is the VRP, through statistic analysis and classification model (Arnold and Sörensen, 2019b). Arnold and
Sörensen, 2019b, and then further analyzed in more depth by Lucas, Billot, and Sevaux, 2019, propose a clas-
sification model to classify between near-optimal and non-optimal solutions by extracting useful features, which
could be used to reduce search space to potentially good solutions. The method the employ not only uses the
structure of the instances (i.e., instance feature) but also respects the structure of the resulting solution (i.e.,
solution features). Later on, Arnold and Sörensen, 2019a leveraged the extracted knowledge to improve their
proposed algorithm for solving the CVRP and even extend it to solve large-scale CVRP (Arnold, Gendreau, and
Sörensen, 2019). However, Arnold and Sörensen, 2019a did not provide a statistical analysis of the contribution
of application guidance to the proposed algorithm. Apart from that, Li, Yan, and Wu, 2021 and Xin et al., 2021
attempted to accelerate and improve the Lin-Kernighan heuristic (LKH-3) (Helsgaun, 2017) by hybridizing with
ML model. The proposed hybrid model is able to accelerate and improve the baseline algorithm. However, they
did not provide a statistical confirmation of the significant improvement between algorithms, most of the proposed
learning models use instance-based features. Nonetheless, according to Arnold and Sörensen, 2019b and Lucas,
Billot, and Sevaux, 2019, the solution-based features tend to be stronger than the instance feature for making the
prediction, indicating a future opportunity for enhancing the proposed hybrid ML model.

1.2 Research Questions and Contributions

In Arnold and Sörensen, 2019a, the authors have shown that clearly defining the preferred structural properties
of an optimal VRP solution is highly valuable for designing an efficient heuristic. Furthermore, with more in-
terpretation by using an explainable learning model, we can change our way of solving VRP (Lucas, Billot, and
Sevaux, 2019). An ML model, through the learning phase, builds predictive models that can map data features
into a class (Guidotti et al., 2018). Then, the explanation of these models gives insights into how the models
utilize features to make decisions. As Guidotti et al., 2018 describes, the ranking of the relative importance of the
problem attributes can be incorporated into guidance rules. Inspired by those advances, in this research, our main
questions are:

1. How can we extract the most important features of a good solution and use them to guide a heuristic?

2. To what extent does the developed heuristic bring a significant improvement for solving the CVRP?

To address these questions, we propose a simple mechanism of hybridization between ML and metaheuristics by
adopting the concept of "learning to configure algorithms". Here, we introduce an explainable learning framework
for classifying the quality of the VRP solution. This is done by generating a dataset of VRP features and developing
a classification model that can identify the features that have the most significant influence, then explaining the
developed model to study the feature that influences the quality of the solution. Furthermore, we introduce a
metaheuristic for solving the CVRP that consists of neighborhood search and path relinking. In our proposed
metaheuristic, we also present a novel mechanism of path relinking for solving CVRP that hybridizes with the split
algorithm. Ultimately, we present a feature-based guidance applied to the proposed metaheuristic. In summary,
the main design steps and contributions of this research are the following:

1. We generate a dataset of features related to the instances and solutions of VRP. This dataset contains
optimal solutions and near-optimal solutions. This dataset is generated by solving all 10,000 XML100
instances, introduced in Queiroga et al., 2021.

2. We develop and explain a machine learning model that classifies a solution as good or not based on its
features. By explaining this model, the most important features are identified.

3. Based on this knowledge, we formulate a guidance for managing the diversity of the solution during the
optimization processes whenever the metaheuristic algorithm solves a problem.

4. For implementing our proposed guidance, we develop a new metaheuristic algorithm for solving CVRP. Our
proposed algorithm is composed of neighborhood improvement and path relinking.

3



5. In our proposed metaheuristic, we propose a novel mechanism of path relinking for solving the CVRP. Our
proposed path relinking mechanism compromises with the giant tour concatenation and hybridizes with the
split algorithm. We show that our proposed path relinking mechanism can contribute statistically signifi-
cantly to the proposed algorithm’s overall mechanism but also compete with state-of-the-art algorithms.

6. Based on a computational experiment, we also show that our proposed guidance can significantly improve
our proposed algorithm.

Lastly, the rest of this paper is structured as follows: In Section 2, we provide a detailed learning framework and
explain how the model can classify between optimal and near-optimal solutions. In Section 3, we describe our
proposed metaheuristic algorithm for solving the CVRP. Moving forward, Section 4 focuses on how we hybridize our
proposed metaheuristic algorithm with our guidance, resulting from our explained learning model. Lastly, section 5
shows our experimentation to evaluate our hybridization mechanism. We also measure the performance of the
proposed hybridized algorithm with the state-of-the-art metaheuristic algorithm for solving the CVRP.

2 Learning From Solutions

Here, let assume X as the set training samples, with size N , that consist of a set of problem features x(i) and
its label y(i), such that: x(i), y(i) ∈ X (i), where i ∈ N . For every x ∈ X , we have a set of pfeatures, such that
x = [x1, . . . , xp]. Here, the label y ∈ X represents the quality of the solution as a binary variable, such as:

y =

1 if it corresponds to an optimal solution

0 if it correspond to a near-optimal solution
(1)

Then, the aim of the learning model f(x) is to classify between optimal and near-optimal solutions, such as:

f(x) =

1 if it corresponds to an optimal solution

0 if it corresponds to a near-optimal solution
(2)

In this paper, our proposed methodology to develop a learning model is composed of three main steps: (1) generat-
ing a dataset, (2) performing classification using several learning models, and (3) explaining the developed learning
model by using SHAP values (as shown in Figure 1). The dataset alongside the source code and the documentation
for performing the analysis can be downloaded at https://github.com/bachtiarherdianto/MS-Feature.

Figure 1: Outline of the learning framework

2.1 Data Generations and Feature Extractions

The CVRP has a great variety of instances according to the following attributes (Uchoa et al., 2017): (1) the
positioning and number of customers, (2) the positioning of the depot, (3) the distribution of demand, and (4) the
average route size or the number of routes. In this research, we use the 10,000 XML100 instances1 from Queiroga
et al., 2021 to generate a dataset that is used to develop a learning model f(x).

1Detailed information related to the problem instances is available at http://vrp.galgos.inf.puc-rio.br/index.php/en/

4

https://github.com/bachtiarherdianto/MS-Feature
http://vrp.galgos.inf.puc-rio.br/index.php/en/


Figure 2: The summary of solutions obtained from the MNS-TS algorithm with a maximum time limit
of Tmax = 10 seconds. It reveals that the majority of instances were solved with a gap to the optimal
solution ranging from 0% to 5%. Furthermore, three instances were solved with a gap to the optimal
solution exceeding 45%.

In parallel, for near-optimal solution, we use MNS-TS algorithm (Soto et al., 2017; Lucas et al., 2020) for solving
all XML100 instances. The MNS-TS, which is a short term for Multiple Neighborhood Search with Tabu Search,
has already demonstrated good capabilities to solve the Open Vehicle Routing Problem (OVRP) Soto et al., 2017
and large size instances of CVRP Lucas et al., 2020 up to 30,000 customer nodes. For obtaining a near-optimal
solution, we set Tmax = 10 seconds, meaning that the MNS-TS algorithm solved every XML100 instance with a
time limit of 10 seconds in five runs. The relative difference between the solution obtained by the MNS-TS with
Tmax = 10 seconds and the objective value from the optimal solution is represented as the gap-to-optimal solution.
The gap-to-optimal value is calculated as follows:

Gap-to-Optimal =
Obtained Solution − Optimal Solution

Optimal Solution
× 100% (3)

As shown in Figure 2, the dataset used for developing the learning model consists of 20,000 data points, where
50% of them are optimal solutions, and the remaining are near-optimal solutions.

Feature Extractions We organize the features into two groups for developing the proposed learning model:
(1) instances features and solution features. The instance features are utilized from Arnold and Sörensen, 2019b
and Lucas et al., 2020. The solution features are mainly inspired by Arnold and Sörensen, 2019b and Lucas et al.,
2020 (from Equation (20) to Equation (37)). Here, we propose two new solutions feature for the analysis, that
is, Equation (38) and Equation (39). A detailed explanation of features is described in Appendix A.1. Then, a
detailed preliminary statistical analysis of these features is described in Appendix A.2.

2.2 Learning Model: Binary Classification

Several supervised classification algorithms have been developed, such as K-Nearest Neighbors (Fix, 1985; Cover
and Hart, 1967), Decision Tree Classifier (Breiman et al., 2017), and Random Forest (Breiman, 2001). Some
boosting algorithms for classification, such as the Gradient Boosting classifier (Friedman, 2001), Extreme-Gradient
Boosting (X-Gradient Boosting) (Chen and Guestrin, 2016), and Light Gradient Boosting (Ke et al., 2017) have
also been tested. Those algorithms were fed using our dataset of VRP features, implemented in Python, and
performed on a 64-bit mini-computer with an AMD Ryzen 7 PRO 5850U processor and 16 GB RAM running on
Ubuntu 22.04.1 operating system. Based on a classical train/test procedure, the performances are compared to the
F1-score. As described by Sokolova, Japkowicz, and Szpakowicz, 2006, the F1-score can be calculated as:

F1-score =
2 · precision · recall
precision + recall

(4)

5



The full results of the comparison supervised classification algorithm are shown in Table 1, where the precision
and recall are complementary metrics used to measure the performance of the classification model, in particular
the binary classification model (Sokolova, Japkowicz, and Szpakowicz, 2006).

Table 1: F1-scores from various classification algorithms used in this proposed model

Algorithm Precision Recall F1-score

K-Nearest Neighbors Classifier 0.476 0.351 0.404
Decision Tree Classifier 0.537 0.538 0.538
Random Forest Classifier 0.523 0.500 0.511
Gradient Boosting Classifier 0.672 0.661 0.666
X-Gradient Boosting Classifier 0.632 0.621 0.627
Light Gradient Boosting Classifier 0.652 0.652 0.652

From Table 1, we can see that the Gradient Boosting classifier resulted in the highest F1-score, 0.666. This value
is quite low but the prediction performance is not the objectify of our approach that aims at identifying some
strategic features. Thus, in the following section, we will explain how the Gradient Boosting classifier makes
predictions, particularly focusing on identifying the behavior of the features.

2.3 Explaining The Learning Model

Explainable AI offers necessary insights into how a developed AI system learns, makes decisions, and represents
information (Arrieta et al., 2020). Various approaches exist to achieve model explainability, as described in Arrieta
et al., 2020. One notable approach is the SHAP model (SHapley Additive exPlanations) (Lundberg and Lee, 2017;
Lundberg et al., 2020; Baptista, Goebel, and Henriques, 2022). The SHAP calculates the impact of each feature
on the predictions made by the trained model Lundberg and Lee, 2017. As shown in Table 1, here we will calculate
the SHAP value of the Gradient Boosting classifier. The distribution of the SHAP values for each feature from
the Gradient Boosting classifier is illustrated in Figure 3.

Figure 3: The global feature importance plot (left) and the local explanation summary plot (right) from
the learning model

6



As the order of the displayed features is the order of the highest SHAP value, from Figure 3, we can conclude that
S19 (the average capacity utilization of obtained solution) and S20 (the standard deviation of capacity utilization
of obtained solution) have stronger influence among all other features. Here, the horizontal axis represents the
SHAP value. The larger the SHAP value in the positive direction (resp. negative), the larger the contribution
of the feature in the positive direction (resp. negative), and vice versa. The color represents the largeness of a
feature value. The color becomes red as the value of the feature increases and turns blue as the value decreases.
Concerning feature S19, the higher the value of the feature, the larger the SHAP value in the positive direction.
This can be interpreted as the higher the average capacity utilization of a solution, the higher the quality of the
solution. Meanwhile, the lower values of S20 have negative SHAP values, and higher values of S20 have positive
SHAP. However, it also shows that, in particular, lower SHAP values of S20 have positive SHAP values. It also
shows that lower S20 extend further towards the negative side of SHAP values, suggesting high S20 has a stronger
negative impact on the quality of solution than the positive impact of high S20 on the quality of solution. From
this information, we can define that the larger capacity utilization of every route in the obtained solution is a sign
of better quality of the resulting solution.

2.4 Integration into the Metaheuristic

Guidotti et al., 2018 describes that the ranking of the relative importance of the problem attributes can be
incorporated into rules. As shown in Figure 3, S19 and S20 have a higher magnitude in their corresponding SHAP
value than other features. Thus, based on our explanation related to the features, particularly about features S19
and S20 in Section 2.3, we define a hypothesis about how to control the diversity of solution in the pool of elite
solutions when solving the CVRP, based on the most important features.

Hypothesis: features related to capacity utilization can be used to control the diversity of a pool of elite set of
solutions

To test our hypothesis, we first develop a metaheuristic algorithm to solve the CVRP, and then we will enhance
the proposed metaheuristic algorithm using guidance from our previous explanation of the learning model. In
Section 5.2, we will perform a computational experiment to investigate our hypothesis.

3 Development of the Metaheuristic Algorithm

This section proposes a new metaheuristic algorithm for solving the CVRP named the Multiple Search (MS)
algorithm. The general overview of the MS algorithm is shown in Algorithm 1. The MS algorithm consists of a
construction phase (line 2) and a further improvement phase that comprises neighborhood search improvement
and path relinking. Moreover, to enhance diversity and intensification mechanism, we introduce a new hybrid
split and path relinking mechanism into our proposed metaheuristic. Subsequent paragraphs provide a detailed
description of the proposed algorithm, including the novel hybrid split and path relinking.

Algorithm 1 MS for solving CVRP
input: CVRP instance I

1: procedure MS-CVRP(I)
2: E← GeneratingInitialSolutions(I) ▷ pool of elite solutions
3: Sbest ← argmins∈E Cost(s)
4: ϑ← 0 ▷ non-improving iteration counter
5: repeat
6: (E, Sbest)← NeighborhoodSearch(E, Sbest)

7: (E, Sbest)← Split-PathRelinking(E, Sbest)

8: (E, Sbest)← EliteSetManagement(E, Sbest, S0, ϑ, I) ▷ control member of the elite Set
9: until Tmax

10: return Sbest

11: end procedure

7



3.1 Generating Initial Solutions

The initial solution is constructed using a savings algorithm proposed by Clarke and Wright, 1964. As demonstrated
by several authors (Arnold and Sörensen, 2019a; Accorsi and Vigo, 2021), the algorithm can be accelerated by
only considering a pruned number ncw of neighbors j in Ncw(C) for each customer i in C when computing the
saving value. The number of neighborhoods for the Clarke and Wright algorithm, Ncw, is set to 100, summarized
in Table 3. As in the proposed algorithm, the minimum number of generated initial solutions is Emin. Thus, after
the algorithm generates an initial solution by using the Clarke and Wright algorithm, another solution is generated
by performing tour perturbations. The main idea of tour perturbation is to destroy two random routes from the
solution, resulting from the Clarke and Wright algorithm, and insert all customers into their best position in the
remaining routes. If we do not find any sufficient position for insertion, we construct a new route for that customer
node with 50% chance. The solution will be accepted whenever it is a feasible solution with a total cost smaller
than the solution generated by the Clarke and Wright algorithm or has the same/smaller number of routes as the
estimated number of routes Restimated. The Restimated is a lower bound of the number of routes needed for the
current instance and is calculated as follows.

Restimated =

∑
j∈N q(cj)

Q
(5)

3.2 Pool of the Elite Set Solutions

The pool of the elite set of solutions is a collection of a small number of solutions found during the search process.
The size of the pool is described in Table 3, consisting of its minimum size Emin, and its maximum size Emax.
The pool of elite set solutions starts empty. If the pool is not yet full, the candidate is simply added to the pool,
provided it differs from all existing elite set members. Once the pool is full, if the new candidate is better than
the current members, it replaces the worst member. The detailed process is shown in Algorithm 2.

Algorithm 2 Accepting a new solution for the elite set
input: new solution S, current elite set E

1: procedure UpdateEliteSet(S, E)
2: if S /∈ E then ▷ should contain unique solutions
3: if Size(E) < Emax then
4: E← E ∪ S

5: else
6: Sworst ← argmaxs∈E Cost(s) ▷ worst solution in elite set
7: if Cost(S) < Cost(Sworst) then
8: E← E \ Sworst

9: E← E ∪ S

10: else if (Cost(S)−Cost(Sworst))/Cost(Sworst) < 0.2 then ▷ proximity allowance
11: Sbest ← argmins∈E Cost(s) ▷ best solution in elite set
12: δnew ← ProximityMeasurement(Sbest, S)

13: δold ← ProximityMeasurement(Sbest, Sworst)

14: if δnew > δold then
15: E← E \ Sworst

16: E← E ∪ S

17: end if
18: end if
19: end if
20: end if
21: return E
22: end procedure

In Algorithm 2, we introduce the proximity allowance (line 10). This mechanism is used whenever the new solution
is worse than the worst solution member of the pool, but the solution interval between them is less than 20%.
Then, the proximity allowance, measured by using Algorithm 3, means that the pool will accept the solution to
enhance the diversity by measuring its distance toward the best solution in the pool.

8



Algorithm 3 Proximity distance between two solutions
input: solution Si, solution Sj

1: procedure ProximityMeasurement(Si, Sj)
2: δ ← 0

3: for c ∈ C do ▷ iterate for all customer
4: if Next(Si, c) ̸= Next(Sj , c) ∧Next(Si, c) ̸= Prev(Sj , c) then
5: δ ← δ + 1

6: end if
7: if Prev(Si, c) = D ∧Prev(Sj , c) ̸= D ∧Next(Sj , c) ̸= D then
8: δ ← δ + 1

9: end if
10: end for
11: return δ

12: end procedure

3.2.1 Diversity Control Mechanism

The diversity control mechanism controls the level of diversity of the small number of solutions in the pool while
maintaining the quality of solutions (Sörensen and Sevaux, 2006). Martí, Resende, and Ribeiro, 2013 proposed a
multi-start mechanism where the algorithm will be restarted and construct a new initial solution whenever it finds
a local optimum that is unlikely changed.

Build upon by these studies, we try to manage the solutions in the pool by measuring its non-improving iterations.
The detailed mechanism used in the proposed algorithm is shown in Algorithm 4. The algorithm will re-generate
solutions whenever ϑ exceeds the maximum limit of non-improving iterations, ΘE.

Algorithm 4 Diversity control mechanism
input: elite set E, current best solution Sbest, best solution before S0

improvement iteration counter ϑ, CVRP instance I

1: procedure EliteSetManagement(E, Sbest, S0, ϑ, I)
2: ΘE ← 4000 ▷ maximum non-improving iteration
3: if Sbest < S0 then
4: ϑ← 0

5: return E
6: else
7: ϑ← ϑ+ 1

8: if ϑ > ΘE then
9: E← ∅ ▷ re-start elite set

10: E← GeneratingInitialSolutions(I) ▷ re-generate initial solutions
11: ϑ← 0

12: return E
13: end if
14: end if
15: end procedure

3.3 Neighborhood Improvement

In the proposed algorithm, the neighborhood improvement processes are composed of two major steps: pertur-
bation and local search improvement. The full mechanism of neighborhood search is shown in Algorithm 5. The
perturbation mechanism is done by destroying and reconstructing a set of tours in the solution. The local search
improvement is implemented through various local search operators, which are categorized into two groups. Within
each group, the local search operators are randomly ordered.

9



3.3.1 Perturbation Mechanism

The perturbation mechanism prevents the algorithm from becoming trapped in local optima during optimization
processes. The proposed perturbation mechanism used for this metaheuristic can be seen in Algorithm 6. In
summary, the algorithm attempts to change the structure of solutions by randomly destroying a set of routes
and inserting the customer nodes (from the destroyed route) around their neighbor nodes. If there is no suitable
location for relocating the node, then a new route is created for that customer node.

Algorithm 5 Neighborhood Search mechanism
input: elite set E, current best solution Sbest

1: procedure NeighborhoodSearch(E, Sbest)
2: for n← 1 to Emin do
3: S ← argmins∈E Cost(s) ▷ best solution in current elite set
4: E← E \ S
5: S′ ← DestroyRepairTour(S, Sbest)

6: S′′ ← LocalSearchImprovement(S′, Sbest)

7: E← UpdateEliteSet(S′′,E)
8: end for
9: return E, Sbest

10: end procedure

Perturbation mechanism according to Estimated Route Sizes In the proposed metaheuristic, we
apply a perturbation strategy based on the estimation of the number of customers in a route. This estimation is
calculated using Equation (6). We categorize the perturbation strategy as destroy strategy and rebuilding strategy.
For example, if an instance is categorized as a short route, we will destroy a random pair of routes. However, if an
instance is categorized as a long route, we will only destroy one random route. This mechanism based on kestimated

value is also applied whenever we perform parameter setting in the beginning of the algorithm, summarized in
Table 3.

kestimated =
Q(∑

j∈N q(cj)

N + 1

)
long routes: if kestimated > 20

short routes: otherwise
(6)

Apart from that, there are three strategies for rebuilding a set of routes in the solution that have been destroyed,
i.e., FullInsertion, FullGranularInsertion, and GranularInsertion. The FullInsertion means that
the algorithm searches for the best insertion position in all the remaining routes of the solution. Meanwhile,
the FullGranularInsertion means the algorithm searches the best insertion position around its maximum
granular neighborhood Γmax. Then, the GranularInsertion means that the algorithm searches the best insertion
position around its currently granular neighborhood. We also referred to its value of kestimated for applying these
strategies. For example, if the instance is categorized as a short route, we will apply the FullInsertion for
the base perturbation mechanism. However, if there is no improvement of the best solution when the pool E is
already generated three times, then the FullGranularInsertion is applied. If there is still no improvement,
then the GranularInsertion is applied until the new best solution found / algorithm is terminated. The
FullInsertion is applied again if a new best solution is found. Meanwhile, if instances are categorized as long
routes, the FullInsertion is applied until no best solution is found even though the pool E is already generated
twice. Then, if it happens, the GranularInsertion is applied until the new best solution found / algorithm is
terminated. Similarly, if a new best solution is found, the FullInsertion is applied again.

3.3.2 Local Search Improvement

In metaheuristics, local search is known as a strong tool for improving a solution (Arnold and Sörensen, 2019a).
The basic idea underlying local search is that high-quality solutions to an optimization problem can be found by
iteratively improving a solution using small (local) modifications called moves.

10



Algorithm 6 Perturbation mechanism by destroying and rebuilding a set of routes
input: solution S, current best solution Sbest

1: procedure DestroyRepairTour(S, Sbest)
2: sdestroy ← DefineStrategyForDestroyingRoutes(S)
3: sbuild ← DefineStrategyForBuildingRoutes(S)
4: Lfree ← EraseRoutes(sdestroy , S) ▷ destroy customers according to sdestroy

5: L′
free ← ReOrderingCustomerList(Lfree)

6: for c ∈ L′
free do

7: nc ← GetListNeighborsOf(c)
8: pc ← GetBestPositionInsertion(sbuild, c, nc) ▷ insertion according to sbuild

9: if ∃pc ∈ S then ▷ has the insertion position been found?
10: S ← InsertCustomerAt(c, pc, S)
11: else
12: S ← BuildOneCustomerRoute(c, S)
13: end if
14: end for
15: if S < Sbest then ▷ in case found an improved solution
16: Sbest ← S

17: end if
18: return S

19: end procedure

In this proposed algorithm, we utilized several intra-route local and inter-route local searches. Intra-route local
search means that local search is applied to improve nodes within a route. Inter-route local search means that
local search is applied between, at least, two different routes. These local searches are described below:

Figure 4: The mechanism of path-move (left) and CROSS-Exchange (right). On far right we detailed the
mechanism of CROSS-Exchange

• Relocate and Swap: Relocate operation involves inserting an existing customer node into a new position,
while the Swap operation involves exchanging two different customer nodes. Both operations are employed
for improvement, within a route and between two different routes.

• 2-Opt and 2-Opt*: The main concept behind the 2-Opt move is to eliminate two edges from the current
route and substitute them with two new edges, thereby creating a new route. Originally designed for the
Traveling Salesman Problem by Jünger, Reinelt, and Rinaldi, 1995. A variant of this move involves by
exchanging sub-sequences at the terminations of two tours, which we denoted as 2-Opt*.

• CROSS-Exchange: CROSS-Exchange, introduced by Taillard et al., 1997, is a local search operator de-
signed to remove four edges from two different routes and replace them with four new edges. The mechanism
of CROSS-Exchange is shown in Figure 4 (right), where on the far right is shown its detailed mechanism.

• Path-Move: Path-move is a mechanism involving the relocation of a path comprising two consecutive
customers. This movement happens either within a route or between two routes, as described by Soto et al.,
2017. Additionally, we introduce another variant, named Double Path-move. Here, instead of only moving
a path, we also tried to move 2 consecutive paths, consisting 3 consecutive customers. The basic mechanism
of the single-path move is shown in Figure 4 (left).

11



• Chain-Move: During a local search, we sometimes encounter movements that, although interesting, violate
certain constraints. Because of the potential solution improvement, there may be a temptation to execute
these moves. One approach to deal with this case is to employ ejection chains, introduced by Glover, 1996
and first formalized for solving VRP by Rego, 2001. These chains represent a sequence of movements, where
the initial one is not feasible. Subsequent movements are intended to repair the violated constraint. The
detailed mechanism of chain-move, performed by relocate chain move, is shown in Figure 5.

Algorithm 7 Local search improvement phase
input: solution S, current best solution Sbest

1: procedure LocalSearchImprovement(S, Sbest)
2: p← 0

3: repeat
4: Seval ← RandomNeighborhoodSearch(p, S, Sbest)

5: if Cost(Seval) < Cost(S) then
6: S ← Seval

7: p← 0 ▷ repeat the improvement
8: if Cost(Seval) < Cost(Sbest) then
9: Sbest ← Seval

10: end if
11: else
12: p← p+ 1 ▷ move to next level of local search group
13: end if
14: until p < 2

15: return S

16: end procedure

The list of local searches used in the proposed algorithm is summarized in Table 2. Algorithm 7 and Algorithm 8
show how we applied these local search operators to improve the solution. As shown in Algorithm 8, we catego-
rized the local search operators into two levels: the first level contains intra-route and inter-route local searches.
The second level contains inter-route chain-move operators. For executing the local search operator, as shown
Algorithm 8, we define R as the currently used pointer and L as the last used pointer, and the search will stop
whenever a better solution Seval is found or there is no improvement Seval after all operators are evaluated.

Table 2: Various local search operators
Intra-Route Inter-Route Inter-Route Chain-Move

Relocate Relocate Ejection-Chain: Relocate
Swap Swap Ejection Chain: Single-Path move
2-Opt move 2-Opt* move

Single-Path move
Double-Path move
Cross-Exchange

Figure 5: The mechanism of inter-route ejection-chain move. As shown in the right, this mechanism is
composed of several relocate moves. The chain moves are stimulated when encountering a move that,
although interesting, violates certain constraints.

12



Algorithm 8 Randomized-order local search operators mechanism in every level
input: pointer level p, solution S, current best solution Sbest

1: procedure RandomNeighborhoodSearch(p, S, Sbest)
2: LLS ← GetListLocalSearchOperatorForLevel(p)
3: L′

LS ← RandomReOrdering(LLS)

4: R← 0 ▷ define the current pointer
5: L← 0 ▷ define the last pointer
6: repeat
7: LS← GetOperator(L′

LS ,L) ▷ calling the local search operator
8: Seval ← LocalSearchExecution(LS, S)
9: if Seval < S then

10: R← L ▷ update the current pointer
11: S ← Seval

12: if S < Sbest then
13: Sbest ← S

14: end if
15: end if
16: L← (L+ 1) · mod (Size(LLS)) ▷ update the last pointer
17: until R = L

18: return S

19: end procedure

Tabu Search Heuristic and Growing Neighborhood Size Tabu search is utilized by tracking recent
moves in a tabu list Ltabu Soto et al., 2017. The move is banned whenever the algorithm attempts to perform
a move recorded in the tabu list. This rule prevents cycling and forces other solutions to be explored (shown
in Algorithm 9). In the proposed algorithm, for compressing computational resources while maintaining the
performance of the algorithm, we utilized a growing granular concept. Hence, in this research, we initialize
granular size at the beginning of iterations as Γ0. If any better solution is not found during the search process, the
Γ0 will increase by γ, until Γmax is reached. If the algorithm finds a new best solution, the granular size is reset
again as Γ0. The description of all granular parameters used in the proposed algorithm is shown in Table 3.

Figure 6: Mechanism of pruned neighborhood improvement, compromise of (a) perturbation by destroying
a set of routes in the solution, (b) the destroyed customer nodes are inserted to the remaining routes or
build new routes, (c) local search improvement that only focused to the last moved customer nodes, and
(d) resulting new solution

Mechanism of Pruned Neighborhood Improvement To efficiently perform the search process, the
local search improvement mechanism only focused in the area already perturbed (i.e., around customer nodes that
were just inserted into routes). As shown in Algorithm 9, we utilized the concept of selective vertex caching and
vertex-wise granular management (Accorsi and Vigo, 2021) to limit the search area. We denoted the coverage area
(the green area in Figure 6 (c)) as Nc, and the maximum coverage area is summarized in Table 3.

13



Algorithm 9 Move evaluation processes
input: local search operator LS, solution S

1: procedure LocalSearchExecution(LS, S)
2: Ltabu ← ∅ ▷ initialize tabu list
3: for ci ∈ Nc do
4: Ln ← GetListNeighborhoodOf(ci)
5: cj ← GetBestPossiblePositionMovingFrom(Ln)

6: if ∃cj ∈ S ∧ (ci, cj) /∈ Ltabu ∧CostMoveOf(LS, ci, cj) < Cost(S) then
7: S ← PerformMove(LS, ci, cj)
8: Ltabu ← Ltabu ∪ (ci, cj) ▷ update tabu list
9: end if

10: end for
11: return S

12: end procedure

3.4 Path Relinking

In path relinking, the initial solution should be improved toward guiding solution (Ho and Gendreau, 2006).
However, in the VRP solution, the number of routes (strings of solution) is mostly more than one, so it is a
challenge to ensure that the initial solution perfectly transforms toward the guiding solution. Apart from that,
Prins, 2004 introduces an approach in VRP that represents the solution as a permutation of visits, a string,
called as Giant Tour (GT), and transforming the GT into VRP solution using the split algorithm (described in
Algorithm 14).

Algorithm 10 A Novel Hybrid Split and Path Relinking mechanism
input: elite set E, current best solution Sbest

1: procedure Split-PathRelinking(E, Sbest)
2: (Si, Sg)← GetRandomParents(E, Sbest)

3: Ti ← RandomConcatenation(Si) ▷ transform into giant tour
4: Tg ← RandomConcatenation(Sg) ▷ transform into giant tour
5: (∆pr, Lpr)← GetRestrictedNeighborhood(Ti, Tg)

6: L′
pr ← ReOrderingCustomerList(Lpr)

7: Npr ← ∆pr/2 · ηpr
8: (E, Sbest)← EvaluateNeighborhood(Ti, Tg , Npr, L′

pr,E, Sbest)

9: return E, Sbest

10: end procedure

In this research, we proposed a hybrid split and path relinking. This mechanism aims to transform initial and
guiding solutions into GT solutions. Then, we perform path relinking between them and transform the intermediate
solution, resulting during path relinking processes, with the split algorithm. After the intermediate solution is
transformed with the split algorithm, it is evaluated to become or not a new member of the pool E. Using
this approach, we can transform the initial solution into guiding solutions and generate several intermediate (new)
solutions during the process. By using these intermediate solutions, we can improve the quality of the solution and
increase the diversity of the pool E. The proposed hybrid split and path relinking steps are shown in Algorithm 10.
The first step of the algorithm for performing path relinking is to identify the restricted neighborhood. The Lpr

represents the list of restricted neighborhoods, and ∆pr represents the proximity distance between initial solution
Ti and guiding solution Tg. Then, the process is continued with neighborhood search processes among the restricted
neighborhood Lpr.

For more details about neighborhood search processes during path relinking, in Algorithm 10, line 7 is described
in Appendix A.4. Furthermore, the truncated mechanism for path relinking (Glover, Laguna, and Marti, 2000)
has been combined in the proposed mechanism to accelerate the search processes while maintaining the diversity
of solutions explored.

14



Truncated Path Relinking Resende and Ribeiro, 2005 demonstrated that there tends to be a higher con-
centration of better solutions close to the initial solutions explored by path relinking. Additionally, we may reduce
the computational time while still possible to obtain good solutions by adapting this mechanism. As described by
Glover, Laguna, and Marti, 2000, adapting the truncated path relinking mechanism when exploring the restricted
neighborhood can be done by introducing ηpr as the index defining the portion of the path to be explored, where
0 < ηpr ≤ 1, which the best value is shown in Table 3. As we utilized ηpr, instead of evaluating all ∆pr restricted
neighborhoods, we will use Npr as the main loop for evaluating the restricted neighborhood.

4 Hybridizing Metaheuristics with Feature-Based Guidance

As outlined in our hypothesis in Section 2.4, we aim to use the most important feature to formulate rules for
enhancing the performance of our proposed metaheuristic algorithm. In this section, we detail how we construct a
rule based on our explainability learning model to boost the performance of our proposed metaheuristic algorithm,
which has been described before in Section 3.

4.1 Guidance for Diversity Control

In Section 3.2.1, we simply rely on the number of non-improving iterations ϑ to determine whether the pool E is
still worth to improve or should the algorithm re-generate the pool E. Hence, through Section 2.3, we understand
that the quality of the solution can be measured by its capacity utilization.

Algorithm 11 Guided diversity control mechanism
input: elite set E, current best solution Sbest, best solution before S0

feature threshold W, improvement iteration counter ϑ, CVRP instance I

1: procedure GuidedEliteSetManagement(E, Sbest, S0, W, ϑ, I)
2: C ← ⌈W ×M⌉ ▷ threshold non-improving iteration
3: if Sbest < S0 then
4: ϑ← 0

5: return E
6: else
7: ϑ← ϑ+ 1

8: if ϑ > C then
9: E← ∅ ▷ re-start elite set

10: (E, α, β)← GeneratingInitialSolutions(I) ▷ re-generate initial solutions

11: W←
(W + α+ β)

2
▷ updating threshold

12: ϑ← 0

13: return E
14: end if
15: end if
16: end procedure

Then, besides only using non-improving solution φ, it attempts to incorporate the value of its capacity utilization
to decide whether the pool E is still worth improving or not. The detailed calculation for S19(s) and S20(s) for
every solution S is described in Equation (38) and Equation (39), as:

ĉ1 =

E∑
s=1

S19(s) ĉ2 =

E∑
s=1

S20(s) (7)

Then, assume in pool E is contains ε member of solutions, where Emin ≤ ε ≤ Emax. Then, for measuring the
average value of S19(s) and S20(s) in pool E, denoted as α and β respectively, we calculated as:

α =

ε∑
κ=1

ĉ1 β =

ε∑
κ=1

ĉ2 (8)

As shown in Figure 3, we conclude that higher average capacity utilization and lower standard deviation of capacity
utilization mean a sign that better the quality of the obtained solution.

15



Thus, by assuming that α is a representation of the average capacity utilization of obtained solutions in the pool
E (S19), and β is a representation of the standard deviation of capacity utilization of obtained solutions in the
pool E (S20), we formulated a threshold for determining whether the pool E still worth to improve as:

C := ⌈W ·M⌉ = ⌈(α− β) ·M⌉ :=

⌈(
K∑

κ=1

ĉ1 −
K∑

κ=1

ĉ2

)
·M

⌉
(9)

In Equation (9), the M is dented as a big constant value, where M = 4000. Hence, the guidance version of how
the algorithm controls the diversity of the pool E is shown in Algorithm 11.

4.2 Metaheuristic with Guidance for Diversity Control

As shown in Equation (9), we denoted the guidance as W, where it can be applied as shown in Algorithm 11.
Then, the full mechanism of the guided version of Algorithm 1 can be written as follows: In the following section,

Algorithm 12 Guided MS for solving CVRP
input: CVRP instance I

1: procedure Guided-MS-CVRP(I)
2: (W,E)← GeneratingInitialSolutions(I)
3: Sbest ← argmins∈E Cost(s)
4: ϑ← 0 ▷ non-improving iteration counter
5: repeat
6: (E, Sbest)← NeighborhoodSearch(E, Sbest)

7: (E, Sbest)← Split-PathRelinking(E, Sbest)

8: (W,E, Sbest)← GuidedEliteSetManagement(E, Sbest, S0,W, ϑ, I) ▷ control member of the elite Set
9: until Tmax

10: return Sbest

11: end procedure

we will perform a computational experiment to measure the performance of the guided version of the proposed
algorithm, shown in Algorithm 12, compared with Algorithm 1. This experiment investigates whether we can
improve the performance of our proposed algorithm by utilizing Equation (9) as well as to test our hypothesis in
Section 2.4.

5 Experiment and Analysis

The algorithm was implemented in C++ and compiled using g++ 8.3.0. For all algorithms tested in this paper,
the experiment was performed on a 64-bit mini-computer with an AMD Ryzen 7 PRO 5850U processor and 16
GB RAM, running on Ubuntu 22.04.1 operating system. As the randomized processes of the algorithm, we follow
an experiment procedure from Accorsi and Vigo, 2021 where each experiment involved a set number of five runs
for every instance, with the seed of the pseudo-random engine defined as the run counter minus one. Throughout
the experimentation, we refer to the following:

• BKS: the total cost value of the best-known solutions. All the information related to the instances and
best-known solutions are available at http://vrp.galgos.inf.puc-rio.br/index.php/en/.

• Gap: the difference between the obtained solution and the best-known solution of the problem. The gap
value is calculated as follows:

Gap =
Obtained Solution − BKS

BKS
× 100% (10)

The source code of the proposed algorithm and all the detailed computational results both for the proposed algo-
rithm and the baseline algorithm for every run can be downloaded from https://github.com/bachtiarherdianto/MS-
CVRP alongside the instruction for replicating the experiment of the proposed algorithm.

16

http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://github.com/bachtiarherdianto/MS-CVRP
https://github.com/bachtiarherdianto/MS-CVRP


Table 3: Parameters of the proposed algorithm
Parameter Value Described in

Ncw Size of saving table 100 Section 3.1

Emax Maximum size of pool elite solution
3 (long routes)

Section 3.2
2 (short routes)

Emin Minimum size of pool elite solution 2 Section 3.2
Size(Nc) Maximum coverage area 50 Section 3.3.2

Γ0 Initial granular size
10 (long routes)

Section 3.3.2
5 (short routes)

γ Granular’s growth 5 Section 3.3.2
Γmax Maximum granular size 25 Section 3.3.2
T Size of the tabu list 50 Section 3.3.2
ηpr Truncated index 0.4 Section 3.4

5.1 Parameter Tuning

The parameters used consist of parameters for pruning the Clarke and Wright when constructing a solution,
parameters to control the size of the pool of elite set solution, and the search intensification. Furthermore, we also
vary several parameters based on the estimated number of customers for every route. The variation mechanism
is similar to that described in Section 3.3.1 and defined using Equation (6). The details for these values are
summarized in Table 3.

5.2 Computational Experiment with XML100 Instances

To investigate whether our proposed guided metaheuristic in Algorithm 12 can outperform our proposed meta-
heuristic in Algorithm 1, we will perform a computation experiment using XML100 instances, from Queiroga et al.,
2021. The computational experiment was performed by using 100 randomly sampled XML100 instances. In this
experiment, we use the MNS-TS algorithm as a baseline for comparing our proposed algorithms, as it was also
already used for generating near-optimal data, described in Section 2.1. In this experiment, the baseline algo-
rithms and all proposed algorithms are given a 60-second time budget to solve each sampled XML100 instances.
Computational results of the baseline algorithm, all proposed proposed algorithms on sampled XML100 instances,
are summarized in Table 4.

Table 4: Summary of the experiment to investigate the contribution of the proposed guidance to the
proposed algorithm on XML100 instances (Queiroga et al., 2021) with Tmax = 60 seconds in 5 runs.
The experiment aimed to assess the performance of all our proposed algorithms compared to the baseline
algorithm. The MNS-TS algorithm (Soto et al., 2017; Lucas et al., 2020) is used as the baseline algorithm.

Measurement
MNS-TS MS Guided-MS

Avg Best Avg Best Avg Best

Minimum Gap 0.08 0.02 0.00 0.00 0.00 0.00
Average Gap 2.06 1.87 0.83 0.59 0.78 0.53
Median Gap 2.05 1.84 0.74 0.35 0.66 0.27
Maximum Gap 5.89 5.80 3.64 3.61 3.28 2.68

The comparison between the baseline algorithm and all proposed algorithms is shown Figure 7 (left). We can see
that all proposed algorithms can perform better than the baseline algorithm. Then, the comparison of proposed
algorithms, between without guidance and with guidance, is shown on the left side of Figure 7. Further statistical
analysis is performed to measure the effectiveness of the proposed guidance.

17



Figure 7: Summary of the computational results between baseline algorithm and all the proposed algo-
rithms from Table 4.

Statistical Analysis of Feature-Based Guidance Further statistical analysis is performed to assess
whether a significant difference exists between the MS algorithm and the Guided-MS algorithm, summarized in
Table 4. This analysis measures the effect of the proposed feature-based guidance. Following the recommenda-
tion of Demšar, 2006; Accorsi, Lodi, and Vigo, 2022, non-parametric tests are preferred over parametric tests.
Therefore, the one-tailed Wilcoxon signed-rank test is performed. In this test, we formulate Hypothesis H0 and
Hypothesis H1, as follows:

Hypothesis H0 AvgCost(Guided-MS) ≡ AvgCost(MS)

Hypothesis H1 AvgCost(Guided-MS) < AvgCost(MS)

As recommended by Accorsi, Lodi, and Vigo, 2022, for comparing two algorithms through the one-tailed Wilcoxon
signed-rank test, we set α = 0.025/2 = 0.0125, meaning that if p-value > α, then we failed to reject Hypothesis H0

meaning that the average results of the two methods are not statistically different. However, if p-value ≤ α,
then Hypothesis H0 is rejected. Here, we can conclude that the average results are statistically different, and the
alternative Hypothesis H1 can be accepted. It means that the Guided-MS performs better than the MS. Here, the
one-tailed Wilcoxon signed-rank test results in p-value = 2.26 · 10−10 (< 0.0125), meaning that the guidance gives
a significant improvement of the proposed metaheuristic algorithm.

Path Relinking Contributions An additional statistical analysis is performed to measure the contribution
of the proposed path relinking to all the proposed algorithms. Following the previous analysis through the one-
tailed Wilcoxon signed-rank test, we set α = 0.025/2 = 0.0125, so that if p-value ≤ α, then Hypothesis H0 is
rejected, which refers to a statistically significant contribution of the proposed mechanism of path relinking to the
guided metaheuristics. The summary of the computational results on 50 sampled XML100 instances is described
in Table 5, while the detailed results are described in Appendix A.6. Here, for MS algorithm, the one-tailed
Wilcoxon signed-rank test results into p-value = 1.64 · 10−8 (< 0.0125), while for Guided-MS algorithm, the one-
tailed Wilcoxon signed-rank test results into p-value = 4.98 · 10−8 (< 0.0125). Then, we can conclude that our
proposed path relinking mechanism can give a statistically significant contribution to the overall mechanism of
the proposed algorithm

18



Table 5: Summary of the experiment to measure the contribution of the proposed mechanism of the
path relinking with Tmax = 60 seconds in 5 runs. The experiment was performed for both proposed
metaheuristic algorithms, MS and Guided-MS.

Instance
MS Guided-MS

with PR without PR with PR without PR

Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap)

Minimum Gap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average Gap 0.74 0.49 0.85 0.58 0.70 0.44 0.82 0.56
Median Gap 0.75 0.25 0.86 0.49 0.66 0.23 0.82 0.46
Maximum Gap 2.33 2.29 2.45 2.36 2.37 2.33 2.43 2.29

Figure 8: Summary the computational results 50 sampled XML100 instances to show the contribution of
the proposed mechanism path relinking

5.3 Testing the Guided Metaheuristic on X Instances

The detailed result on the X instances (Uchoa et al., 2017) for the Guided-MS algorithm is presented in Table 6.
We compared the performance of the Guided-MS with several state-of-the-art metaheuristic algorithms for solving
the CVRP, such as: LKH-32 (Helsgaun, 2017), HGS3 (Vidal, 2022), and FILO4 Accorsi and Vigo, 2021. As all
the source codes are available, we execute our proposed algorithm and all the state-of-the-art algorithms under
similar conditions using a similar mini-computer.

We follow experiments from Vidal, 2022, where we set the termination criteria for all algorithms is the maximum
computation time, Tmax = N × 240/100 seconds, in which N represents the number of customer nodes. As also
described in Section 5, here we execute all the baseline algorithms five times with five different random seeds, where
each seed was executing one algorithm run. From table Table 6, although the proposed guided metaheuristic cannot
outperform all the state-of-the-art metaheuristic algorithms, it can still outperform the LKH-3. Also, for some
small instances, the proposed guided metaheuristic can perform similarly with the HGS and FILO. Hence, we can
conclude that the proposed guided metaheuristic is competitive with the state-of-the-art metaheuristics tested in
the Table 6.

2We refer to the LKH-3.0.9 solver at: http://webhotel4.ruc.dk/ keld/research/LKH-3/
3We refer to the HGS solver at: https://github.com/vidalt/HGS-CVRP
4We refer to the FILO solver at: https://github.com/acco93/filo

19

http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://github.com/vidalt/HGS-CVRP
https://github.com/acco93/filo


Table 6: Comparison of solution quality with Tmax = N × 240/100 seconds in 5 runs. The table shows
the computational results on the X instances Uchoa et al., 2017 of the Guided-MS with state-of-the-art
methods, such as LKH-3 (Helsgaun, 2017), HGS (Vidal, 2022), and FILO (Accorsi and Vigo, 2021)

Instance
HGS FILO LKH-3 Guided-MS

BKS
Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap)

X-n101-k25 27591 (0) 27591 (0) 27592.2 (0) 27591 (0) 27618.2 (0.1) 27591 (0) 27630.4 (0.14) 27591 (0) 27591
X-n106-k14 26412.2 (0.19) 26399 (0.14) 26379.2 (0.07) 26362 (0) 26384 (0.08) 26381 (0.07) 26477.8 (0.44) 26389 (0.1) 26362
X-n110-k13 14971 (0) 14971 (0) 14971 (0) 14971 (0) 14986.8 (0.11) 14971 (0) 15053 (0.55) 14971 (0) 14971
X-n115-k10 12747 (0) 12747 (0) 12747 (0) 12747 (0) 12754.6 (0.06) 12747 (0) 12747 (0) 12747 (0) 12747
X-n120-k6 13332 (0) 13332 (0) 13332 (0) 13332 (0) 13339.8 (0.06) 13332 (0) 13364.2 (0.24) 13332 (0) 13332
X-n125-k30 55539 (0) 55539 (0) 55899.2 (0.65) 55692 (0.28) 55965.6 (0.77) 55679 (0.25) 56044.8 (0.91) 55716 (0.32) 55539
X-n129-k18 28940 (0) 28940 (0) 28962 (0.08) 28948 (0.03) 28996.2 (0.19) 28948 (0.03) 29065.8 (0.43) 28972 (0.11) 28940
X-n134-k13 10916 (0) 10916 (0) 10935.4 (0.18) 10933 (0.16) 10973.8 (0.53) 10937 (0.19) 10954 (0.35) 10916 (0) 10916
X-n139-k10 13590 (0) 13590 (0) 13590 (0) 13590 (0) 13639.4 (0.36) 13602 (0.09) 13628.8 (0.29) 13590 (0) 13590
X-n143-k7 15700 (0) 15700 (0) 15726.6 (0.17) 15726 (0.17) 15789.8 (0.57) 15726 (0.17) 15829 (0.82) 15726 (0.17) 15700
X-n148-k46 43448 (0) 43448 (0) 43580.4 (0.3) 43474 (0.06) 43562.2 (0.26) 43448 (0) 43531 (0.19) 43448 (0) 43448
X-n153-k22 21225 (0.02) 21225 (0.02) 21273.2 (0.25) 21225 (0.02) 21247.8 (0.13) 21228 (0.04) 21276.4 (0.27) 21231 (0.05) 21220
X-n157-k13 16876 (0) 16876 (0) 16876 (0) 16876 (0) 16881 (0.03) 16876 (0) 16884.6 (0.05) 16876 (0) 16876
X-n162-k11 14138 (0) 14138 (0) 14164.4 (0.19) 14153 (0.11) 14194.2 (0.4) 14171 (0.23) 14185.6 (0.34) 14171 (0.23) 14138
X-n167-k10 20557 (0) 20557 (0) 20567.4 (0.05) 20557 (0) 20713.2 (0.76) 20601 (0.21) 20743 (0.9) 20617 (0.29) 20557
X-n172-k51 45607 (0) 45607 (0) 45624 (0.04) 45607 (0) 45941.4 (0.73) 45715 (0.24) 45737.6 (0.29) 45730 (0.27) 45607
X-n176-k26 47812 (0) 47812 (0) 47990.4 (0.37) 47825 (0.03) 48113.4 (0.63) 47951 (0.29) 48545.8 (1.53) 48105 (0.61) 47812
X-n181-k23 25569 (0) 25569 (0) 25574.4 (0.02) 25569 (0) 25635.8 (0.26) 25601 (0.13) 25602.6 (0.13) 25577 (0.03) 25569
X-n186-k15 24145 (0) 24145 (0) 24161.2 (0.07) 24149 (0.02) 24256.6 (0.46) 24189 (0.18) 24310.4 (0.69) 24182 (0.15) 24145
X-n190-k8 16999 (0.11) 16987 (0.04) 16993.6 (0.08) 16987 (0.04) 17097.4 (0.69) 17008 (0.16) 17178.6 (1.17) 17055 (0.44) 16980
X-n195-k51 44225 (0) 44225 (0) 44361 (0.31) 44270 (0.1) 44518.6 (0.66) 44295 (0.16) 44458.4 (0.53) 44386 (0.36) 44225
X-n200-k36 58605.6 (0.05) 58578 (0) 59072.4 (0.84) 58659 (0.14) 58864.8 (0.49) 58754 (0.3) 59350 (1.32) 59166 (1) 58578
X-n204-k19 19565 (0) 19565 (0) 19584.6 (0.1) 19570 (0.03) 19759 (0.99) 19700 (0.69) 19759 (0.99) 19682 (0.6) 19565
X-n209-k16 30662.2 (0.02) 30656 (0) 30699.4 (0.14) 30685 (0.09) 31023.8 (1.2) 30993 (1.1) 30976.4 (1.05) 30809 (0.5) 30656
X-n214-k11 10870.4 (0.13) 10865 (0.08) 10908.4 (0.48) 10870 (0.13) 11131.2 (2.54) 11036 (1.66) 11075.6 (2.02) 10968 (1.03) 10856
X-n219-k73 117597.2 (0) 117595 (0) 117604 (0.01) 117595 (0) 117688 (0.08) 117622 (0.02) 117612.2 (0.01) 117606 (0.01) 117595
X-n223-k34 40465 (0.07) 40437 (0) 40530.2 (0.23) 40505 (0.17) 40757.6 (0.79) 40576 (0.34) 40710.8 (0.68) 40645 (0.51) 40437
X-n228-k23 25743 (0) 25743 (0) 25786.8 (0.17) 25743 (0) 25936.8 (0.76) 25816 (0.29) 25831 (0.35) 25810 (0.26) 25742
X-n233-k16 19247 (0.09) 19230 (0) 19334 (0.54) 19324 (0.49) 19405.4 (0.91) 19321 (0.47) 19393 (0.85) 19337 (0.56) 19230
X-n237-k14 27042 (0) 27042 (0) 27043.8 (0.01) 27042 (0) 27164.2 (0.45) 27056 (0.05) 27294.4 (0.93) 27187 (0.54) 27042
X-n242-k48 82893.4 (0.17) 82780 (0.04) 82956.8 (0.25) 82825 (0.09) 83318.4 (0.69) 83217 (0.56) 83247.4 (0.6) 83078 (0.4) 82751
X-n247-k50 37374.4 (0.27) 37286 (0.03) 37552.2 (0.75) 37481 (0.56) 37386.8 (0.3) 37320 (0.12) 37632.4 (0.96) 37568 (0.79) 37274
X-n251-k28 38767 (0.21) 38684 (0) 38811.2 (0.33) 38699 (0.04) 39033.6 (0.9) 38909 (0.58) 38994.8 (0.8) 38953 (0.7) 38684
X-n256-k16 18874.2 (0.19) 18851 (0.06) 18880 (0.22) 18880 (0.22) 19098.2 (1.38) 18939 (0.53) 18927.4 (0.47) 18911 (0.38) 18839
X-n261-k13 26586.4 (0.11) 26577 (0.07) 26685.4 (0.48) 26633 (0.28) 26983 (1.6) 26826 (1.01) 27241 (2.57) 27011 (1.71) 26558
X-n266-k58 75734.8 (0.34) 75692 (0.28) 75856 (0.5) 75642 (0.22) 76081.6 (0.8) 75916 (0.58) 76467.2 (1.31) 76231 (1) 75478
X-n270-k35 35304.4 (0.04) 35303 (0.03) 35372.4 (0.23) 35324 (0.09) 35486.6 (0.55) 35436 (0.41) 35522.2 (0.66) 35445 (0.44) 35291
X-n275-k28 21245 (0) 21245 (0) 21267.8 (0.11) 21245 (0) 21375.4 (0.61) 21273 (0.13) 21378.6 (0.63) 21245 (0) 21245
X-n280-k17 33592.4 (0.27) 33584 (0.24) 33642 (0.41) 33601 (0.29) 33849.6 (1.03) 33717 (0.64) 34044.4 (1.62) 33913 (1.22) 33503
X-n284-k15 20267 (0.26) 20244 (0.14) 20323.6 (0.54) 20290 (0.37) 20492.6 (1.37) 20291 (0.38) 20514.6 (1.48) 20412 (0.97) 20215
X-n289-k60 95394.2 (0.26) 95332 (0.19) 95718 (0.6) 95586 (0.46) 96259.4 (1.16) 96012 (0.9) 96261.6 (1.17) 96101 (1) 95151
X-n294-k50 47212.8 (0.11) 47191 (0.06) 47304.2 (0.3) 47266 (0.22) 47530.4 (0.78) 47402 (0.51) 47456.8 (0.63) 47384 (0.47) 47161
X-n298-k31 34246.2 (0.04) 34231 (0) 34317.6 (0.25) 34276 (0.13) 34497.4 (0.78) 34368 (0.4) 34539 (0.9) 34458 (0.66) 34231
X-n303-k21 21784.8 (0.22) 21760 (0.11) 21858.4 (0.56) 21819 (0.38) 21992.8 (1.18) 21910 (0.8) 21972.4 (1.09) 21909 (0.8) 21736
X-n308-k13 25897.8 (0.15) 25876 (0.07) 25902.2 (0.17) 25868 (0.03) 26181.2 (1.25) 26050 (0.74) 26237.4 (1.46) 26113 (0.98) 25859
X-n313-k71 94193.2 (0.16) 94157 (0.12) 94649 (0.64) 94365 (0.34) 95097.2 (1.12) 95017 (1.04) 95147 (1.17) 94933 (0.95) 94043
X-n317-k53 78362 (0.01) 78355 (0) 78395.8 (0.05) 78379 (0.03) 78556.2 (0.26) 78405 (0.06) 78731.6 (0.48) 78420 (0.08) 78355
X-n322-k28 29888 (0.18) 29869 (0.12) 29970.6 (0.46) 29909 (0.25) 30310.2 (1.6) 30083 (0.83) 30128.4 (0.99) 30079 (0.82) 29834
X-n327-k20 27584 (0.19) 27571 (0.14) 27638.2 (0.39) 27588 (0.2) 27984 (1.64) 27894 (1.31) 27958.6 (1.55) 27830 (1.08) 27532
X-n331-k15 31133.2 (0.1) 31105 (0.01) 31131.2 (0.09) 31103 (0) 31377.4 (0.89) 31230 (0.41) 31368.8 (0.86) 31242 (0.45) 31102
X-n336-k84 139731.4 (0.45) 139647 (0.39) 139989.6 (0.63) 139848 (0.53) 140453.6 (0.97) 140248 (0.82) 140724.4 (1.16) 140648 (1.1) 139111
X-n344-k43 42145.8 (0.23) 42092 (0.1) 42271 (0.53) 42194 (0.34) 42528.4 (1.14) 42418 (0.88) 42530.4 (1.14) 42475 (1.01) 42050
X-n351-k40 25971.6 (0.29) 25940 (0.17) 26036.6 (0.54) 25992 (0.37) 26295.4 (1.54) 26167 (1.05) 26262 (1.41) 26193 (1.15) 25896
X-n359-k29 51735.8 (0.45) 51623 (0.23) 51763.8 (0.5) 51659 (0.3) 52171.4 (1.29) 52088 (1.13) 52244.8 (1.44) 52103 (1.16) 51505
X-n367-k17 22814 (0) 22814 (0) 22844.4 (0.13) 22814 (0) 23084 (1.18) 22899 (0.37) 23220.8 (1.78) 23098 (1.24) 22814
X-n376-k94 147736 (0.02) 147718 (0) 147748 (0.02) 147726 (0.01) 147860.4 (0.1) 147758 (0.03) 147891.4 (0.12) 147837 (0.08) 147713
X-n384-k52 66158.4 (0.35) 66088 (0.24) 66208.8 (0.43) 66163 (0.36) 66634.4 (1.07) 66370 (0.67) 66646.8 (1.09) 66435 (0.77) 65940
X-n393-k38 38276.8 (0.04) 38260 (0) 38384 (0.32) 38323 (0.16) 38703.4 (1.16) 38567 (0.8) 38598.4 (0.88) 38462 (0.53) 38260
X-n401-k29 66330 (0.27) 66255 (0.15) 66321.6 (0.25) 66306 (0.23) 66879.6 (1.1) 66693 (0.81) 66685.2 (0.8) 66509 (0.54) 66163

20



Table 7: Comparison of solution quality with Tmax = N × 240/100 seconds in 5 runs. The table shows
the computational results on the X instances Uchoa et al., 2017 of the Guided-MS with state-of-the-
art methods, such as LKH-3 (Helsgaun, 2017), HGS (Vidal, 2022), and FILO (Accorsi and Vigo, 2021)
(continued)

Instance
HGS FILO LKH-3 Guided-MS

BKS
Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap)

X-n411-k19 19744.4 (0.16) 19731 (0.1) 19807.6 (0.48) 19765 (0.27) 20016.4 (1.54) 19959 (1.25) 20153.4 (2.24) 20027 (1.6) 19712
X-n420-k130 107900.2 (0.09) 107831 (0.03) 108068 (0.25) 107948 (0.14) 108462.2 (0.62) 108383 (0.54) 108427.6 (0.58) 108333 (0.5) 107798
X-n429-k61 65514.2 (0.1) 65483 (0.05) 65722.8 (0.42) 65630 (0.28) 66263 (1.24) 66105 (1) 66265.2 (1.25) 66151 (1.07) 65449
X-n439-k37 36404.4 (0.04) 36395 (0.01) 36421.6 (0.08) 36395 (0.01) 36670 (0.77) 36593 (0.56) 36543.6 (0.42) 36467 (0.21) 36391
X-n449-k29 55582.4 (0.63) 55435 (0.37) 55582.8 (0.63) 55531 (0.54) 56613.4 (2.5) 56506 (2.3) 56230.8 (1.81) 56087 (1.55) 55233
X-n459-k26 24182.8 (0.18) 24165 (0.11) 24222.8 (0.35) 24219 (0.33) 24595.2 (1.89) 24522 (1.59) 24555.4 (1.73) 24498 (1.49) 24139
X-n469-k138 222928.4 (0.5) 222702 (0.4) 224538.8 (1.22) 224360 (1.14) 223803 (0.89) 223072 (0.56) 226318.8 (2.03) 225764 (1.78) 221824
X-n480-k70 89600 (0.17) 89479 (0.03) 89838 (0.43) 89782 (0.37) 90181.2 (0.82) 89999 (0.61) 90075.4 (0.7) 89958 (0.57) 89449
X-n491-k59 66775 (0.44) 66690 (0.31) 66828.4 (0.52) 66670 (0.28) 67713.6 (1.85) 67516 (1.55) 67392.4 (1.37) 67245 (1.15) 66487
X-n502-k39 69274.2 (0.07) 69263 (0.05) 69263.2 (0.05) 69243 (0.02) 69400 (0.25) 69320 (0.14) 69355.2 (0.19) 69328 (0.15) 69226
X-n513-k21 24248.6 (0.2) 24236 (0.14) 24273.8 (0.3) 24247 (0.19) 24546 (1.43) 24464 (1.09) 24589.2 (1.6) 24512 (1.29) 24201
X-n524-k153 154904.8 (0.2) 154796 (0.13) 155332.4 (0.48) 155259 (0.43) 154820.2 (0.15) 154723 (0.08) 156370.4 (1.15) 156146 (1) 154593
X-n536-k96 95203.4 (0.38) 95061 (0.23) 95696.2 (0.9) 95656 (0.85) 96938 (2.21) 96316 (1.55) 96296.4 (1.53) 95982 (1.2) 94868
X-n548-k50 86905.2 (0.24) 86856 (0.18) 86807.4 (0.12) 86748 (0.06) 87070.2 (0.43) 86997 (0.34) 87168.6 (0.54) 87123 (0.49) 86700
X-n561-k42 42792.8 (0.18) 42777 (0.14) 42904 (0.44) 42828 (0.26) 43157.8 (1.03) 43085 (0.86) 43255.4 (1.26) 43071 (0.83) 42717
X-n573-k30 50911.8 (0.47) 50873 (0.39) 50846.8 (0.34) 50796 (0.24) 51222 (1.08) 51060 (0.76) 51265 (1.17) 51164 (0.97) 50673
X-n586-k159 191005.4 (0.36) 190889 (0.3) 191604.6 (0.68) 191369 (0.55) 191772 (0.77) 191445 (0.59) 193338.4 (1.59) 192882 (1.35) 190316
X-n599-k92 108794.4 (0.32) 108738 (0.26) 109081.2 (0.58) 109014 (0.52) 110087.8 (1.51) 109971 (1.4) 110018.8 (1.45) 109903 (1.34) 108451
X-n613-k62 59821.2 (0.48) 59789 (0.43) 59881 (0.58) 59773 (0.4) 60529.4 (1.67) 60406 (1.46) 60439.6 (1.52) 60352 (1.37) 59535
X-n627-k43 62613.2 (0.72) 62534 (0.6) 62384.8 (0.36) 62299 (0.22) 63284 (1.8) 63010 (1.36) 63176.2 (1.63) 62944 (1.25) 62164
X-n641-k35 64085 (0.63) 64029 (0.54) 63929.6 (0.39) 63845 (0.26) 64734.8 (1.65) 64632 (1.49) 64724.2 (1.64) 64526 (1.33) 63694
X-n655-k131 106842.4 (0.06) 106805 (0.02) 106819.6 (0.04) 106807 (0.03) 107050.4 (0.25) 107016 (0.22) 107035 (0.24) 107001 (0.21) 106780
X-n670-k130 147198.2 (0.59) 146991 (0.45) 147847.8 (1.04) 147286 (0.65) 147606.6 (0.87) 147240 (0.62) 149282 (2.02) 148293 (1.34) 146332
X-n685-k75 68513 (0.45) 68467 (0.38) 68616.6 (0.6) 68543 (0.5) 69374.8 (1.72) 69137 (1.37) 69417.6 (1.78) 69296 (1.6) 68205
X-n701-k44 82636.8 (0.87) 82501 (0.71) 82348.8 (0.52) 82326 (0.49) 83173.6 (1.53) 82536 (0.75) 83254.2 (1.62) 83139 (1.48) 81923
X-n716-k35 43617.8 (0.56) 43559 (0.43) 43673.8 (0.69) 43635 (0.6) 44308.8 (2.16) 44068 (1.6) 44593.2 (2.81) 44320 (2.18) 43387
X-n733-k159 136564 (0.28) 136529 (0.25) 136770.4 (0.43) 136537 (0.26) 137210.2 (0.75) 137125 (0.69) 137483.8 (0.95) 137363 (0.86) 136190
X-n749-k98 78010.6 (0.96) 77922 (0.85) 77883.6 (0.8) 77832 (0.73) 78815.6 (2) 78635 (1.77) 78285.2 (1.32) 78167 (1.16) 77314
X-n766-k71 114842.2 (0.37) 114783 (0.32) 115138.2 (0.63) 114913 (0.43) 116322.8 (1.67) 116063 (1.44) 116109.4 (1.48) 115961 (1.35) 114454
X-n783-k48 73207.2 (1.13) 73093 (0.98) 72878.8 (0.68) 72674 (0.4) 73933.4 (2.14) 73826 (1.99) 73754.6 (1.89) 73558 (1.62) 72394
X-n801-k40 73738.4 (0.59) 73575 (0.37) 73446.8 (0.19) 73378 (0.1) 73988 (0.93) 73748 (0.6) 73950.4 (0.88) 73807 (0.68) 73305
X-n819-k171 158703.2 (0.37) 158651 (0.34) 159434 (0.83) 159235 (0.7) 160358.8 (1.42) 159978 (1.17) 160809.2 (1.7) 160521 (1.52) 158121
X-n837-k142 195311 (0.81) 194955 (0.63) 194759.6 (0.53) 194652 (0.47) 195682.6 (1) 195484 (0.9) 196300.6 (1.32) 195957 (1.15) 193737
X-n856-k95 89088.6 (0.14) 89055 (0.1) 89133.2 (0.19) 89082 (0.13) 89551 (0.66) 89413 (0.5) 89535.6 (0.64) 89359 (0.44) 88965
X-n876-k59 100160.8 (0.87) 100059 (0.77) 99736 (0.44) 99713 (0.42) 100799.8 (1.51) 100544 (1.25) 100706.8 (1.42) 100502 (1.21) 99299
X-n895-k37 54344.8 (0.9) 54249 (0.72) 54303.2 (0.82) 54208 (0.65) 56757.4 (5.38) 55974 (3.92) 55578.2 (3.19) 55426 (2.91) 53860
X-n916-k207 331787.4 (0.79) 331606 (0.74) 331461.8 (0.69) 331011 (0.56) 331701.2 (0.77) 331121 (0.59) 334212.8 (1.53) 333520 (1.32) 329179
X-n936-k151 133656.6 (0.71) 133288 (0.43) 133854.8 (0.86) 133627 (0.69) 134221.6 (1.14) 134036 (1) 135267.4 (1.92) 134847 (1.61) 132725
X-n957-k87 85707.6 (0.28) 85697 (0.27) 85595.6 (0.15) 85570 (0.12) 86145.4 (0.8) 85953 (0.57) 86022.6 (0.65) 85818 (0.41) 85465
X-n979-k58 120073.2 (0.92) 119838 (0.72) 119607.4 (0.53) 119348 (0.31) 121858.6 (2.42) 121395 (2.03) 120384.6 (1.18) 119950 (0.82) 118987
X-n1001-k43 73419.4 (1.47) 73322 (1.34) 72887.4 (0.74) 72808 (0.63) 74141.4 (2.47) 73867 (2.09) 74688.6 (3.23) 74462 (2.91) 72359

Minimum Gap 0 0 0 0 0.03 0 0 0
Average Gap 0.26 0.19 0.37 0.25 1.03 0.72 1.09 0.8
Median Gap 0.18 0.09 0.36 0.22 0.9 0.59 1.07 0.78
Maximum Gap 1.47 1.34 1.22 1.14 5.38 3.92 3.23 2.91

21



6 Conclusion

In this paper, we have presented a method to enhance a metaheuristic algorithm for solving CVRP by formulating
a feature-based guidance. To formulate the proposed feature-based guidance, we have developed and explained
the solution learning model that can classify whether the resulting solution is good or not based on both instances
and solutions features inputs.

Furthermore, to implement our proposed guidance, we have developed a new metaheuristic algorithm composed of
neighborhood improvements and path relinking. As our proposed algorithm utilizes path relinking, we have also
proposed a novel mechanism of path relinking that compromises with the giant tour concatenation and hybridizes
with the split algorithm. Here, we also show that our proposed path relinking mechanism can make a statistically
significant contribution to the overall mechanism of the proposed algorithm. Finally, the resulting proposed
guidance can statistically improve the performance of our proposed metaheuristic algorithm. Furthermore, we have
also shown that our proposed guided metaheuristic competes with other state-of-the-art algorithms for solving the
CVRP.

From a more general perspective, we understand that by only utilizing simple feature-based guidance, we are still
not unlocking the full performance of ML to improve the metaheuristic algorithm. For future work, we will try
to enhance the influence of the ML on the proposed hybrid algorithm. Thus, we plan to adapt the mechanism of
learning repeated decisions. In the next proposed hybrid algorithm, our objective is to develop a hybrid algorithm
that will adjust its decision and its behavior automatically.

22



A Appendix

A.1 Feature of VRP

Mathematical notations for features of VRP In the context of VRP features, let R represents the
set of all routes in a solution. A route, denoted as rk = c1, c2, ..., ck ∈ R, comprises a sequence of nodes. The
rank of the neighborhood between nodes ci and cj is denoted as Rij . We define Rk as the average rank of the
neighborhood for each member of route k, calculated as Rk = (

∑
i,j∈kRij)/k. Each route k ∈ {r1, r2, . . . , rk} ∈ R

consists of edges (D, c1), (c1, c2), . . . , (ck, D) ∈ E, where D represents the depot. The Euclidean distance between
nodes cj and ck is denoted as d(cj , ck). Additionally, x(ck) and y(ck) represent the x and y-coordinates of node
ck respectively, with |x| indicating the absolute value of x. The demand of node cj is denoted as q(cj). The
x-coordinate of the center of gravity Gk of route k is given by x(Gk) = (

∑
x(ck)+x(D))/k+1, and the y-coordinate

is computed as y(Gk) = (
∑

y(ck)+y(D))/k+1 (Arnold and Sörensen, 2019b). Additionally, we define LGk as the line
passing through D and Gk, and d(LGk , ci) as the distance between line LGk and customer ci. The distance is
positive when the customer is on the right side of the line and negative otherwise. We also introduce rad(cj , ck) to
denote the difference in radians between nodes cj and ck concerning the depot D, representing the angle spanned
between the lines connecting each node with the depot. Finally, I(r1, r2) denotes the number of intersections
between routes r1 and r2

Instance Features Here are the specific details about features that depend on the respective instance. These
features are drawn from the research of Arnold and Sörensen, 2019b and Lucas et al., 2020.

I01: Number of customers
I01(S) = N = V − 1 (11)

I02: Number of vehicles
I02(S) = R (12)

I03: Degree of capacity utilization

I03(S) =

∑
j∈N q(cj)

Q ·R (13)

I04: Average distance between each pair of customers

I04(S) =

∑
i,j∈N\i=j d(ci, cj)

N
(14)

I05: Standard deviation of the pairwise distance between customers

I05(S) =

√∑
i,j∈N\i=j(d(ci, cj)− I04)2

N
(15)

I06: Average distance from customers to the depot

I06(S) =
∑

i∈N d(ci, D)

N
(16)

I07: Standard deviation of the distance from customers to the depot

I07(S) =

√∑
i∈N (d(ci, D)− I06)2

N
(17)

I08: Average radians of customers towards the depot

I08(S) =
∑

i∈N rad(ci, D)

N
(18)

I09: Standard deviation of the radians of customers towards the depot

I09(S) =

√∑
i∈N (rad(ci, D)− I08)2

N
(19)

23



Solution Features This provides detailed information about features that rely on the outcomes of solutions.
Most of these features are drawn from Arnold and Sörensen, 2019b and Lucas et al., 2020. Additionally, we
propose several additional features related to the capacity utilization in the resulting solutions. Moreover, we
also introduce additional features associated with its longest distance, depicted in Figure 9. In total, there are 22
solution features that capture the structure and attributes of the resulting solution.

Figure 9: Illustration of longest-relatedness distance in a route of a solution

S01: Average width of each route

S01(S) =
1

R
·
∑
k∈R

(
max
j∈k

d(LGk , cj)−min
j∈k

d(LGk , cj)

)
(20)

S02: Standard deviation of the width of each route

S02(S) =

√∑
k∈R((maxj∈k d(LGk , cj)−minj∈k d(LGk , cj))− S01)2

R
(21)

S03: Average span of each route
S03(S) =

1

R
·
∑
k∈R

max
i,j∈k

rad(ci, cj) (22)

S04: Standard deviation of the span of each route

S04(S) =

√∑
k∈R(maxi,j∈k rad(ci, cj)− S03)2

R
(23)

S05: Average depth of each route
S05(S) =

1

R
·
∑
k∈R

max
j∈k

d(cj , D) (24)

S06: Standard deviation of the depth of each route

S06(S) =

√∑
k∈R(maxj∈j d(cj , D)− S05)2

R
(25)

S07: Average of the distance of the first and last edge of each route divided by the total length of the route

S07(S) =
1

2 ·R ·
∑
k∈R

d(D, c1) + d(ck, D)∑
i,j∈k d(ci, cj)

(26)

S08: Mean length of the longest edge of each route

S08(S) =
1

R
·
∑
k∈R

max
i,j∈k

d(ci, cj) (27)

S09: Length of the longest edge of all each route, divided by the average of the length of each route

S09(S) =
maxk∈R maxi,j∈k d(cj , ck)

(
∑

k∈R

∑
i,j∈k d(ci,cj))/R

(28)

S10: Length of the longest interior edge of each route divided by mean of the length of each route

S10(S) =
maxk∈R maxi,j∈k−1 d(ci+1, ck)∑

k∈R

∑
i,j∈k d(ci, cj)/R

(29)

24



S11: Mean length of the first and last edges of each route

S11(S) =
1

2 ·R ·
∑
k∈R

(d(D, c1) + d(ck, D)) (30)

S12: Average of demand of the first and last customer of each route

S12(S) =
1

2 ·R ·
∑
k∈R

(q(c1) + q(ck)) (31)

S13: Average of demand of the farthest customer

S13(S) =
1

R
·
∑
k∈R

max
j∈k

q(cj) (32)

S14: Standard deviation of the demand of the farthest customer

S14(S) =

√∑
k∈R maxj∈k q(cj)− S13)2

R
(33)

S15: Standard deviation of the length of each route

S15(S) =

√∑
k∈R(

∑
i,j∈k d(ci, cj)− (

∑
k∈R

∑
i,j∈k

d(ci,cj)/R))2

R
(34)

S16: Mean distance between each route from their centre of gravity

S16(S) =
1

R · (R− 1)
·
∑
r1∈R

∑
r2∈R\r1

d(Gr1 , Gr2) (35)

S17: Standard deviation of the number of customers of each route

S17(S) =

√√√√∑k∈R(k − V

R
)2

R
(36)

S18: Average of the degree of the neighborhood for every route

S18(S) = S18 =
1

R
·
∑
k∈R

Rk (37)

S19: The average of the capacity utilization for every route

S19(S) =
1

R
·
∑
k∈R

∑
j∈k

q(cj)/Q (38)

S20: Standard deviation of the capacity utilization for every route

S20(S) =

√√√√∑k∈R

(∑
j∈k q(cj)/Q−

(∑
k∈R

∑
j∈k q(cj)/Q

))2
R

(39)

S21: Average length of the longest distance-relatedness

S21(S) =
1

R
·
∑
k∈R

1

maxi,j∈k d(ci, cj)
(40)

S22: Standard deviation of the length of the longest distance-relatedness

S22(S) =

√∑
k∈R

(
1/maxi,j∈k d(ci,cj) −

(∑
k∈R

1/maxi,j∈k d(ci,cj)/R
))2

R
(41)

25



A.2 Feature Engineering

Feature engineering, also known as feature discovery, involves extracting characteristics, properties, or attributes
from raw data to facilitate the training of downstream statistical models (Hastie et al., 2009). As outlined in
Section 2.1, the dataset generated for this research is divided into two groups: optimal and near-optimal solutions.
Both optimal and near-optimal solutions are obtained by solving all 10,000 XML100 instances (Queiroga et al.,
2021). These instances consist of a similar number of customer nodes, totaling 100 nodes each. However, they vary
across different categories, such as the position of their depots, the distribution of customers, the distribution of
demands, and the average size of the routes in their optimal solutions. In total, there are 378 groups of instances.
The first 172 groups contain 27 instances each, while the remaining 206 groups contain 26 instances respectively.
Furthermore, the dataset comprises 20,000 data points, with an equal distribution of optimal and near-optimal
solutions. The features utilized for classification in the proposed learning model are categorized into two groups:
instance features and solution features, which are comprehensively described in Appendix A.1.

Figure 10: Illustration between the optimal and near-optimal solution in the simplified 3D features space

A scatter chart illustrating the distribution between optimal and near-optimal solutions concerning features S06,
S08, and S18 is presented in Figure 10. From the scatter chart, it is obvious that the optimal and near-optimal
solutions exhibit proximity, making it challenging to distinguish between the two groups.

Figure 11: Order of ANOVA F-value concerning its label (left) and the order of impurity feature impor-
tance (right)

26



By quickly analyzing how these features correlated with the quality of solutions using ANOVA F-values, shown in
Figure 11 (left), we can see that the higher F-value suggests that the feature is statistically significant concerning the
target variable. According to ANOVA F-value, S18 is the most statistically significant to the target variable.

Figure 12: Dependency plot between S07 and S19 (left) and S20 and S18 (right). In dependency plot
between S07 and S19 (left), it is shown that S19 has a strong interaction with S07, meaning the average
distance of the first and last edge of each route has a strong interaction with capacity utilization for
every route. Meanwhile, the dependency plot between S20 and S18 (right) shows that S19 has a strong
interaction with S07, meaning the average distance of the first and last edge of each route has a strong
interaction with capacity utilization for every route.

However, as it does not capture the full range of relationships between features and the target variable, we cannot
conclude that S18 is the most important feature of the target variable. Thus, by testing several classification
algorithms, shown in Table 1, according to the resulted F1-scores, we can conclude that the Gradient Boosting
algorithm resulted from the best prediction. We can find its feature importance value by performing further based
on the impurity reduction criteria used during tree constructions, shown in Figure 11 (right). This approach
assumes that features that lead to the largest decrease in impurity are considered more important. However, the
disadvantage of these feature importance, compared with the order of features in the global feature importance plot
in Figure 3 (left), is that these values ignore the interaction between features. Meanwhile, the order of features in
the global feature importance plot in Figure 3 captures interactions between features, as the SHAP value provides
a more comprehensive understanding of feature importance by showing how these features behave for making a
decision (Lundberg and Lee, 2017; Lundberg et al., 2020). The interaction between features can be depicted by
using a dependency plot. Here Figure 12 shows the dependency plot between strongly correlated features.

27



A.3 Concatenation Method and Split Algorithm

Prins, 2004 shows an innovative approach for solving CVRP, called "route-first cluster-second" paradigm. The
approach is started by forming a giant tour (refer to Figure 13).

Figure 13: Example of giant tour of VRP

In this research, the giant tour T of solution S is formed by using a simple randomized concatenation. The
concatenation process starts by identifying the head customer of every route r ∈ R. Thus, the process is continued
by randomized concate the route, as shown in Algorithm 13.

Algorithm 13 Randomized concatenation mechanism
input: solution S

1: procedure Concatenation(S)
2: Lhead ← ∅ ▷ list of first customer
3: for r ∈ R do
4: Lhead[r]← GetFirstCustomerOfRoute(r)
5: end for
6: Lhead ← RandomReOrdering(Lhead)

7: T ← ∅ ▷ initialize a giant tour
8: for c ∈ Lhead do
9: r ← GetCustomerListFrom(c) ▷ get the route

10: T ← T ∪ r ▷ append route in to the giant tour
11: end for
12: return T

13: end procedure

In forming a giant tour T , we then process the solution T to perform path relinking (see Section 3.4). Subsequently,
during the path relinking, we will produce several intermediate solutions Teval (described in Appendix A.4). If
the intermediate solution is sufficient (see Algorithm 15), it will transform into a VRP solution (see Figure 15),
through Figure 14, using a split algorithm, described in Algorithm 14.

Figure 14: Example of an acyclic graph of a giant tour Figure 13

28



Figure 15: CVRP solution after performing split algorithm to the giant tour Figure 13 through Figure 14

The shortest path, shown in Figure 14, can be calculated using Bellman algorithm for solving a directed acyclic
graph (Bellman, 1958). In detail, let’s construct an auxiliary graph H = (X,U). Here, X consists of V + 1 nodes
labeled from D = 0 to V , and U includes edges (i − 1, j) for each customer subsequence (ci, ci+1, . . . , cj) that a
vehicle can visit. The optimal splitting is determined by finding the shortest path from node D to node V in H,
as shown in Algorithm 14.

Algorithm 14 Split and mechanism of constructing a CVRP solution
input: giant tour solution T

1: procedure Split(T )
2: Lsplit[0]← 0 ▷ initialization split label
3: Psplit[0]← 0 ▷ predecessor nodes
4: for i← 1 to V do
5: Lsplit[i]←∞
6: end for
7: for i← 1 to V do ▷ start splitting processes
8: j ← i,

∑
q ← 0

9: repeat
10: if i = j then
11:

∑
d← d(D, ci) + c(ci, D) ▷ initialize a route that only served one customer ci

12: else
13:

∑
d←

∑
d+ d(cj−1, D) + d(cj−1, cj) + d(cj , D) ▷ adding customers in the route

14: end if
15: if

∑
q ≤ Q ∧ Lsplit[i− 1] +

∑
d < Lsplit[j] then

16: Lsplit[j]← Lsplit[i− 1] +
∑

d

17: Psplit[j]← i− 1

18: end if
19: j ← j + 1

20: until j > V ∨
∑

q > Q

21: end for
22: S ← ∅ ▷ initialization CVRP solution
23: repeat
24: r ← ∅ ▷ initialize an empty route
25: for k ← Psplit[j] + 1 to j do ▷ forming a route
26: r ← PushBack(ck) ▷ add customer ck at the end of the route
27: end for
28: S ← S ∪ r ▷ append a route to the VRP solution
29: j ← Psplit[j]

30: until j = 0
31: return S

32: end procedure

Since the split algorithm assesses each subsequence in a constant time, given the incremental updates to total
demand,

∑
q, and cost the total cost,

∑
d, of the corresponding route as j advances, instead of re-calculating

them through a loop from i to j. As a result, the complexity is directly proportional to the number of edges in
H, which is at worst O(n2).

29



A.4 Neighborhood Search for Path Relinking

To generate intermediate solutions for investigating potential improvements, we need to explore the solution space
between the initial and guiding solutions. To explore this solution space, we perform a neighborhood search between
the initial solution and the guiding solution, as shown in Algorithm 10, line 7. This neighborhood search process
involves systematically examining neighboring solutions by making small modifications to the current solutions.
An overview of the neighborhood search in the proposed path relinking is shown in Algorithm 15.

Algorithm 15 Iteratively neighborhood evaluation processes
input: initial solution Ti, guiding solution Tg , number of loop Npr

list of restricted neighborhood Lpr, elite set E, current best solution Sbest

1: procedure EvaluateNeighborhood(Ti, Tg , Npr, Lpr, E, Sbest)
2: T ← Ti

3: Ltabu ← ∅ ▷ initialize tabu list
4: for move← 1 to Npr do
5: (cswap, pi, pj)← GetPositionSwap(T, Tg , Lpr, Ltabu)

6: Teval ← Swap(T, pi, pj) ▷ intermediate solution
7: if Cost(Teval) < Cost(T ) then
8: Seval ← Split(Teval) ▷ transform into VRP solution
9: E← UpdateEliteSet(Seval,E)

10: if Cost(Seval) < Cost(Sbest) then
11: Sbest ← Seval

12: end if
13: end if
14: Ltabu ← Ltabu ∪ cswap ▷ update tabu list
15: end for
16: return E, Sbest

17: end procedure

As depicted in Algorithm 15, line 6, these neighborhood searches involve swapping the customer nodes towards
the guiding solution. The aim is to identify solutions that closely resemble the initial solutions but may potentially
yield better objective function values. Moreover, the search in path relinking will automatically terminate whenever
the intermediate solution is better than the guiding solution, Cost(Teval) ≤ Cost(Tg)

Figure 16: Illustrated of neighborhood evaluation in proposed path relinking. The process to get the best
swap position is also described in Algorithm 16. As also shown in Algorithm 15 line 7, the intermediate
solution Teval will continue to split processes only when Cost(Teval) ≤ Cost(T ).

30



In our proposed path relinking, we implement the concept of truncated path relinking. Therefore, as illustrated
in Algorithm 15, the number of search moves, denoted as Npr, can be assumed to be less than or equal to the
size of Lpr. Additionally, when instances are categorized as having long routes (determined using Equation (6)),
after constructing Seval (Algorithm 15, line 8), we conduct an additional local search improvement using only level
1 local search operators (as described in Section 3.3.2), i.e., only considering intra- and inter-route local search
operators, and without utilizing inter-route chain-move operators.

Algorithm 16 Get best swap position for transforming T toward Tg

input: current initial solution T , guiding solution Tg

list of restricted neighborhood Lpr, tabu list Ltabu

1: procedure GetPositionSwap(T , Tg , Lpr, Ltabu)
2: cswap ← −1, pi ← −1, pj ← −1, fbest ←∞ ▷ initialization
3: for node ∈ Lpr do
4: if node /∈ Ltabu then
5: posi ← GetPositionNode(T, node) ▷ position of node in T

6: posg ← GetPositionNode(Tg , node) ▷ position of node in Tg

7: ε← PossibilitySwap(pi, pg)
8: if ⊤ε then
9: if CostSwapOn(posi, posg) < fbest then

10: fbest ← CostSwapOn(posi, posg)
11: cswap ← node
12: pi ← posi

13: pj ← posg

14: end if
15: end if
16: end if
17: end for
18: return cswap, pi, pj
19: end procedure

31



A.5 Result on Randomly 100 Sampled XML100 Instances

Table 8: Comparison of solution quality with Tmax = 60 seconds in 5 runs

Instance
MNS-TS MS Guided-MS

Optimal
Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap)

XML100_1111_2 38434.6 (0.16) 38410 (0.09) 38459 (0.22) 38459 (0.22) 38459 (0.22) 38459 (0.22) 38374
XML100_1113_20 18462.4 (1.44) 18426 (1.24) 18200 (0) 18200 (0) 18200 (0) 18200 (0) 18200
XML100_1121_3 31812.4 (1.3) 31798 (1.25) 31512 (0.34) 31471 (0.21) 31509.8 (0.33) 31471 (0.21) 31405
XML100_1124_23 11277.8 (1.69) 11220 (1.17) 11093.6 (0.03) 11090 (0) 11090 (0) 11090 (0) 11090
XML100_1145_22 11747 (2.61) 11747 (2.61) 11457.4 (0.08) 11457 (0.08) 11457 (0.08) 11457 (0.08) 11448
XML100_1151_3 33600.4 (1.87) 33592 (1.85) 33123 (0.42) 33058 (0.23) 33070.8 (0.27) 32983 (0) 32983
XML100_1151_7 52154.8 (2.26) 51847 (1.65) 51437.8 (0.85) 51261 (0.5) 51401.4 (0.78) 51283 (0.55) 51004
XML100_1151_19 28491.8 (1.67) 28443 (1.5) 28218.8 (0.7) 28184 (0.57) 28131.6 (0.39) 28074 (0.18) 28023
XML100_1155_20 10311.2 (0.46) 10276 (0.12) 10274 (0.1) 10264 (0) 10270.6 (0.06) 10264 (0) 10264
XML100_1215_5 8771.2 (1.91) 8730 (1.43) 8607 (0) 8607 (0) 8607 (0) 8607 (0) 8607
XML100_1231_5 34083 (4.02) 34039 (3.88) 33018.2 (0.77) 32925 (0.48) 33004.2 (0.72) 32825 (0.18) 32767
XML100_1231_24 42513.8 (2.86) 42475 (2.77) 42293.8 (2.33) 42275 (2.29) 42308.6 (2.37) 42295 (2.33) 41330
XML100_1251_4 40355.8 (2.56) 40264 (2.33) 39738.8 (0.99) 39521 (0.44) 39728 (0.96) 39498 (0.38) 39349
XML100_1251_7 35173.8 (2.05) 35102 (1.85) 34677 (0.61) 34553 (0.25) 34656.8 (0.55) 34553 (0.25) 34466
XML100_1251_8 33242.8 (2.94) 33166 (2.7) 32843.8 (1.7) 32715 (1.3) 32753.6 (1.42) 32647 (1.09) 32294
XML100_1251_9 33978.4 (3.7) 33886 (3.42) 33031.8 (0.81) 32897 (0.4) 33033.6 (0.81) 32836 (0.21) 32767
XML100_1251_10 34009 (1.84) 33968 (1.72) 33678 (0.85) 33561 (0.5) 33670 (0.83) 33561 (0.5) 33394
XML100_1251_12 49466.6 (2.74) 49449 (2.71) 48991.8 (1.76) 48229 (0.17) 48762.8 (1.28) 48372 (0.47) 48146
XML100_1251_13 43110.2 (1.54) 43007 (1.29) 42500.8 (0.1) 42488 (0.07) 42497 (0.09) 42458 (0) 42458
XML100_1251_14 24982.2 (1.67) 24920 (1.41) 24691 (0.48) 24581 (0.03) 24646 (0.3) 24581 (0.03) 24573
XML100_1251_15 49226 (2.68) 49226 (2.68) 48549.6 (1.27) 48548 (1.27) 48503.2 (1.17) 48290 (0.73) 47940
XML100_1251_16 37127 (2.81) 37115 (2.78) 36573.2 (1.28) 36275 (0.45) 36526 (1.15) 36202 (0.25) 36111
XML100_1251_17 39646.2 (1.86) 39632 (1.82) 39153.2 (0.59) 39147 (0.58) 39147.8 (0.58) 39145 (0.57) 38923
XML100_1251_19 33962.2 (2.64) 33854 (2.32) 33378.8 (0.88) 33206 (0.36) 33335.2 (0.75) 33206 (0.36) 33088
XML100_1252_15 28145.6 (2.04) 28103 (1.89) 27939.2 (1.29) 27627 (0.16) 27939.2 (1.29) 27627 (0.16) 27583
XML100_1252_16 24703.8 (4.04) 24694 (4) 24608.2 (3.64) 24602 (3.61) 24523.8 (3.28) 24381 (2.68) 23744
XML100_1261_7 22279 (2.82) 22258 (2.73) 22137.8 (2.17) 22071 (1.86) 22139.2 (2.18) 22092 (1.96) 21667
XML100_1313_1 17023.8 (0.66) 16978 (0.39) 16943 (0.18) 16912 (0) 16943 (0.18) 16912 (0) 16912
XML100_1315_6 10799.4 (0.37) 10770 (0.09) 10803.6 (0.41) 10760 (0) 10803.6 (0.41) 10760 (0) 10760
XML100_1322_7 20873 (0.94) 20872 (0.93) 20684.4 (0.03) 20679 (0) 20679 (0) 20679 (0) 20679
XML100_1334_10 13220.6 (0.64) 13170 (0.25) 13184.2 (0.36) 13170 (0.25) 13184.2 (0.36) 13170 (0.25) 13137
XML100_1351_2 35501.8 (2.59) 35470 (2.5) 34640 (0.1) 34605 (0) 34640 (0.1) 34605 (0) 34605
XML100_1351_16 32497 (2.12) 32487 (2.09) 31969 (0.46) 31858 (0.11) 31969 (0.46) 31858 (0.11) 31822
XML100_1353_22 17729 (1.51) 17705 (1.37) 17568.2 (0.59) 17534 (0.4) 17557.2 (0.53) 17555 (0.52) 17465
XML100_2112_1 17853.8 (0.7) 17845 (0.65) 17730 (0) 17730 (0) 17730 (0) 17730 (0) 17730
XML100_2143_25 12681.4 (0.73) 12654 (0.51) 12590 (0) 12590 (0) 12590 (0) 12590 (0) 12590
XML100_2151_13 26520 (0.08) 26520 (0.08) 26569.4 (0.27) 26552 (0.2) 26565.2 (0.25) 26543 (0.17) 26499
XML100_2151_19 28718.6 (1.82) 28716 (1.81) 28259 (0.19) 28206 (0) 28244.6 (0.14) 28206 (0) 28206
XML100_2231_1 27441.8 (2.56) 27423 (2.49) 27053.8 (1.11) 27046 (1.08) 27054.2 (1.11) 27046 (1.08) 26756
XML100_2231_20 26693.2 (1.61) 26680 (1.56) 26486.6 (0.82) 26476 (0.78) 26475.2 (0.78) 26435 (0.62) 26271
XML100_2231_22 23820.2 (2.65) 23793 (2.53) 23246.4 (0.18) 23215 (0.04) 23247 (0.18) 23215 (0.04) 23205
XML100_2233_14 9270.2 (1.74) 9130 (0.2) 9112 (0) 9112 (0) 9112 (0) 9112 (0) 9112
XML100_2234_9 8335.6 (0.37) 8309 (0.05) 8305.8 (0.01) 8305 (0) 8305.8 (0.01) 8305 (0) 8305
XML100_2235_22 6760.2 (1.03) 6742 (0.76) 6691 (0) 6691 (0) 6691 (0) 6691 (0) 6691
XML100_2251_13 33608.2 (3.28) 33507 (2.97) 33236.8 (2.14) 32725 (0.57) 33236.8 (2.14) 32725 (0.57) 32540
XML100_2251_15 26146.8 (2.46) 26096 (2.26) 25728.8 (0.82) 25568 (0.19) 25727.6 (0.82) 25568 (0.19) 25519
XML100_2251_21 23007.6 (2.74) 22861 (2.08) 22411.8 (0.08) 22395 (0) 22411.4 (0.07) 22395 (0) 22395
XML100_2252_5 15190.2 (0.59) 15171 (0.46) 15161 (0.4) 15161 (0.4) 15161 (0.4) 15161 (0.4) 15101
XML100_2316_3 8095 (0.65) 8045 (0.02) 8043 (0) 8043 (0) 8043 (0) 8043 (0) 8043
XML100_2322_16 16544 (1.16) 16529 (1.07) 16419.4 (0.4) 16354 (0) 16418.8 (0.4) 16354 (0) 16354
XML100_2331_25 29033.2 (0.85) 28958 (0.59) 28911 (0.42) 28873 (0.29) 28909.6 (0.42) 28848 (0.2) 28789
XML100_2351_26 33957.6 (2.97) 33913 (2.84) 33074.8 (0.29) 32978 (0) 33033.6 (0.17) 32978 (0) 32978
XML100_3112_2 25942.8 (1.01) 25936 (0.99) 25777.2 (0.37) 25701 (0.07) 25770.8 (0.34) 25701 (0.07) 25683

32



Table 9: Comparison of solution quality with Tmax = 60 seconds in 5 runs (continued)

Instance
MNS-TS MS Guided-MS

Optimal
Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap)

XML100_3113_9 21602.6 (1.03) 21482 (0.46) 21392.4 (0.04) 21383 (0) 21392.4 (0.04) 21383 (0) 21383
XML100_3113_18 22206 (0.91) 22180 (0.79) 22023.4 (0.08) 22006 (0) 22023.4 (0.08) 22006 (0) 22006
XML100_3151_5 39806.4 (1.54) 39762 (1.43) 39397 (0.5) 39331 (0.33) 39383.4 (0.46) 39331 (0.33) 39202
XML100_3151_7 49299.4 (1.6) 49221 (1.44) 48875.2 (0.73) 48784 (0.54) 48886.6 (0.75) 48653 (0.27) 48523
ML100_3151_15 44679.8 (1.07) 44616 (0.93) 44539.6 (0.75) 44487 (0.63) 44545.4 (0.77) 44516 (0.7) 44207
XML100_3151_17 46290.6 (1.49) 46250 (1.41) 45963 (0.78) 45725 (0.25) 45936.8 (0.72) 45725 (0.25) 45609
XML100_3151_21 38630 (2.08) 38630 (2.08) 38334.6 (1.3) 38315 (1.25) 38328.6 (1.28) 38315 (1.25) 37843
XML100_3151_24 58362.8 (2.17) 58115 (1.74) 57507.6 (0.68) 57482 (0.63) 57514 (0.69) 57514 (0.69) 57121
XML100_3154_6 15639.2 (1.4) 15627 (1.32) 15472.2 (0.32) 15453 (0.19) 15472.2 (0.32) 15453 (0.19) 15423
XML100_3154_25 16125.4 (1.23) 16107 (1.12) 16038 (0.68) 15939 (0.06) 16038 (0.68) 15939 (0.06) 15929
XML100_3163_10 21404 (0.69) 21398 (0.66) 21333.4 (0.36) 21257 (0) 21328.4 (0.34) 21271 (0.07) 21257
XML100_3164_20 15148 (2.23) 15148 (2.23) 14918.8 (0.69) 14817 (0) 14908.6 (0.62) 14817 (0) 14817
XML100_3165_17 14145.4 (0.21) 14144 (0.2) 14199 (0.59) 14124 (0.06) 14199 (0.59) 14124 (0.06) 14116
XML100_3231_6 49053.8 (2.84) 49042 (2.82) 47982.6 (0.59) 47917 (0.46) 47944 (0.51) 47917 (0.46) 47699
XML100_3231_9 58118.4 (2.64) 58066 (2.54) 57443 (1.44) 57303 (1.2) 57430.6 (1.42) 57273 (1.14) 56625
XML100_3231_11 64613 (2.4) 64549 (2.29) 64217.6 (1.77) 64135 (1.64) 64214 (1.76) 64092 (1.57) 63101
XML100_3231_12 50992.4 (1.9) 50944 (1.81) 50880.4 (1.68) 50862 (1.64) 50880.4 (1.68) 50862 (1.64) 50040
XML100_3231_17 42865.4 (2.2) 42482 (1.29) 42401 (1.09) 42356 (0.99) 42367.2 (1.01) 42319 (0.9) 41942
XML100_3231_25 57689 (2.05) 57666 (2.01) 57514.6 (1.74) 57463 (1.65) 57518.2 (1.75) 57483 (1.68) 56531
XML100_3251_1 45411.2 (1.6) 45396 (1.56) 45349.8 (1.46) 45287 (1.32) 45338.6 (1.44) 45290 (1.33) 44697
XML100_3251_3 38713.4 (1.39) 38690 (1.33) 38492.8 (0.81) 38472 (0.76) 38498 (0.82) 38498 (0.82) 38183
XML100_3251_4 34705.6 (1.59) 34648 (1.42) 34603 (1.29) 34588 (1.24) 34531.4 (1.08) 34297 (0.39) 34163
XML100_3251_5 49007.4 (3.58) 48950 (3.46) 48164.4 (1.8) 48162 (1.8) 48167.6 (1.81) 48162 (1.8) 47312
XML100_3251_6 46754.2 (2.87) 46700 (2.75) 46029.4 (1.27) 45879 (0.94) 45983.6 (1.17) 45869 (0.92) 45450
XML100_3251_9 42020.2 (2.07) 41996 (2.01) 41725.4 (1.36) 41643 (1.16) 41676.8 (1.24) 41550 (0.93) 41167
XML100_3251_15 63555.6 (4.95) 63495 (4.85) 61839.6 (2.11) 61830 (2.1) 61861.2 (2.15) 61786 (2.03) 60559
XML100_3251_16 58940.4 (3.12) 58856 (2.97) 57658.2 (0.88) 57208 (0.09) 57324.8 (0.29) 57221 (0.11) 57158
XML100_3251_18 37141.6 (3.38) 37080 (3.21) 36430.4 (1.4) 36235 (0.86) 36423.6 (1.38) 36229 (0.84) 35927
XML100_3251_19 57357 (3.45) 57275 (3.3) 56276 (1.5) 56040 (1.08) 56211 (1.39) 56040 (1.08) 55443
XML100_3251_21 46288.6 (3.49) 46233 (3.37) 45960.6 (2.76) 45935 (2.7) 45945.2 (2.73) 45921 (2.67) 44726
XML100_3251_24 55898.6 (2.97) 55725 (2.65) 54438.2 (0.28) 54397 (0.2) 54429.4 (0.26) 54379 (0.17) 54286
XML100_3251_25 40614.8 (2.84) 40542 (2.65) 40044.4 (1.39) 39888 (1) 40028.4 (1.35) 39945 (1.14) 39495
XML100_3252_7 31995.6 (3.54) 31976 (3.48) 31047.8 (0.48) 30996 (0.31) 31047.8 (0.48) 30996 (0.31) 30901
XML100_3252_10 27628.8 (2.03) 27546 (1.73) 27505 (1.58) 27485 (1.5) 27495.6 (1.54) 27485 (1.5) 27078
XML100_3252_26 27748 (2.67) 27720 (2.57) 27639.8 (2.27) 27633 (2.25) 27639.4 (2.27) 27631 (2.24) 27026
XML100_3271_2 39713.4 (5.89) 39680 (5.8) 37792.8 (0.77) 37503 (0) 37741.2 (0.64) 37503 (0) 37503
XML100_3331_5 53502.2 (3.84) 53143 (3.14) 51677.8 (0.29) 51599 (0.14) 51666 (0.27) 51527 (0) 51526
XML100_3351_3 41516.8 (1.71) 41502 (1.68) 41395.2 (1.42) 41214 (0.97) 41379.4 (1.38) 41214 (0.97) 40817
XML100_3351_6 33191.6 (1.91) 33182 (1.88) 32860.6 (0.9) 32805 (0.72) 32851.2 (0.87) 32805 (0.72) 32569
XML100_3351_8 58244.8 (2.88) 58042 (2.52) 57058.4 (0.79) 56973 (0.64) 57031.4 (0.74) 56973 (0.64) 56613
XML100_3351_12 65912.8 (1.38) 65735 (1.1) 65509.8 (0.76) 65157 (0.21) 65425.4 (0.63) 65191 (0.27) 65018
XML100_3351_14 57390.6 (2.39) 57351 (2.32) 56634.2 (1.04) 56495 (0.79) 56520 (0.83) 56393 (0.61) 56053
XML100_3351_16 56980.2 (1.45) 56889 (1.29) 56351.4 (0.33) 56318 (0.27) 56334 (0.3) 56318 (0.27) 56165
XML100_3351_18 45080.6 (2.82) 44941 (2.5) 44500 (1.5) 44428 (1.33) 44464.4 (1.42) 44292 (1.02) 43843
XML100_3351_19 48983 (2.34) 48910 (2.19) 48379.6 (1.08) 48201 (0.71) 48271.2 (0.86) 48069 (0.43) 47861
XML100_3351_23 58812.6 (2.16) 58749 (2.05) 58119.2 (0.95) 57955 (0.67) 58027.8 (0.79) 57838 (0.46) 57571
XML100_3352_11 30698 (2.21) 30698 (2.21) 30339.2 (1.01) 30307 (0.91) 30346.2 (1.04) 30307 (0.91) 30035

Minimum Gap 0.08 0.02 0.00 0.00 0.00 0.00
Average Gap 2.06 1.87 0.83 0.59 0.78 0.53
Median Gap 2.05 1.84 0.74 0.35 0.66 0.27
Maximum Gap 5.89 5.80 3.64 3.61 3.28 2.68

33



A.6 Path Relinking Contributions on 50 Sampled XML100 Instances

Table 10: Comparison of solution quality with Tmax = 60 seconds in 5 runs

Instance
MS Guided-MS

Optimalwith PR without PR with PR without PR

Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap) Avg (Gap) Best (Gap)

XML100_1113_20 18200 (0) 18200 (0) 18200 (0) 18200 (0) 18200 (0) 18200 (0) 18200 (0) 18200 (0) 18200
XML100_1145_22 11457.4 (0.08) 11457 (0.08) 11459 (0.1) 11457 (0.08) 11457 (0.08) 11457 (0.08) 11457 (0.08) 11457 (0.08) 11448
XML100_1151_3 33123 (0.42) 33058 (0.23) 33209 (0.69) 33072 (0.27) 33070.8 (0.27) 32983 (0) 33194.6 (0.64) 33075 (0.28) 32983
XML100_1215_5 8607 (0) 8607 (0) 8607 (0) 8607 (0) 8607 (0) 8607 (0) 8607 (0) 8607 (0) 8607
XML100_1231_24 42293.8 (2.33) 42275 (2.29) 42342.6 (2.45) 42306 (2.36) 42308.6 (2.37) 42295 (2.33) 42332.4 (2.43) 42275 (2.29) 41330
XML100_1251_4 39738.8 (0.99) 39521 (0.44) 39765.4 (1.06) 39662 (0.8) 39728 (0.96) 39498 (0.38) 39807.4 (1.16) 39796 (1.14) 39349
XML100_1251_7 34677 (0.61) 34553 (0.25) 34708.8 (0.7) 34568 (0.3) 34656.8 (0.55) 34553 (0.25) 34648 (0.53) 34556 (0.26) 34466
XML100_1251_9 33031.8 (0.81) 32897 (0.4) 33067.8 (0.92) 32897 (0.4) 33033.6 (0.81) 32836 (0.21) 33069.6 (0.92) 32922 (0.47) 32767
XML100_1251_10 33678 (0.85) 33561 (0.5) 33724 (0.99) 33656 (0.78) 33670 (0.83) 33561 (0.5) 33713.4 (0.96) 33442 (0.14) 33394
XML100_1251_15 48549.6 (1.27) 48548 (1.27) 48556.2 (1.29) 48509 (1.19) 48503.2 (1.17) 48290 (0.73) 48563.8 (1.3) 48505 (1.18) 47940
XML100_1251_16 36573.2 (1.28) 36275 (0.45) 36573.6 (1.28) 36177 (0.18) 36526 (1.15) 36202 (0.25) 36643.2 (1.47) 36195 (0.23) 36111
XML100_1251_17 39153.2 (0.59) 39147 (0.58) 39158.6 (0.61) 39131 (0.53) 39147.8 (0.58) 39145 (0.57) 39145.4 (0.57) 39131 (0.53) 38923
XML100_1252_15 27939.2 (1.29) 27627 (0.16) 27958.8 (1.36) 27653 (0.25) 27939.2 (1.29) 27627 (0.16) 27966.6 (1.39) 27693 (0.4) 27583
XML100_1261_7 22137.8 (2.17) 22071 (1.86) 22164 (2.29) 22021 (1.63) 22139.2 (2.18) 22092 (1.96) 22150.4 (2.23) 21998 (1.53) 21667
XML100_1313_1 16943 (0.18) 16912 (0) 16949.8 (0.22) 16912 (0) 16943 (0.18) 16912 (0) 16948.4 (0.22) 16912 (0) 16912
XML100_1315_6 10803.6 (0.41) 10760 (0) 10822 (0.58) 10774 (0.13) 10803.6 (0.41) 10760 (0) 10822 (0.58) 10774 (0.13) 10760
XML100_1322_7 20684.4 (0.03) 20679 (0) 20807 (0.62) 20686 (0.03) 20679 (0) 20679 (0) 20788 (0.53) 20687 (0.04) 20679
XML100_1351_2 34640 (0.1) 34605 (0) 34666.8 (0.18) 34605 (0) 34640 (0.1) 34605 (0) 34659.2 (0.16) 34605 (0) 34605
XML100_2112_1 17730 (0) 17730 (0) 17730 (0) 17730 (0) 17730 (0) 17730 (0) 17730 (0) 17730 (0) 17730
XML100_2143_25 12590 (0) 12590 (0) 12590 (0) 12590 (0) 12590 (0) 12590 (0) 12590 (0) 12590 (0) 12590
XML100_2231_20 26486.6 (0.82) 26476 (0.78) 26531 (0.99) 26486 (0.82) 26475.2 (0.78) 26435 (0.62) 26525.2 (0.97) 26486 (0.82) 26271
XML100_2231_22 23246.4 (0.18) 23215 (0.04) 23277 (0.31) 23205 (0) 23247 (0.18) 23215 (0.04) 23259.8 (0.24) 23215 (0.04) 23205
XML100_2233_14 9112 (0) 9112 (0) 9112 (0) 9112 (0) 9112 (0) 9112 (0) 9112 (0) 9112 (0) 9112
XML100_2235_22 6691 (0) 6691 (0) 6691 (0) 6691 (0) 6691 (0) 6691 (0) 6691 (0) 6691 (0) 6691
XML100_2251_15 25728.8 (0.82) 25568 (0.19) 25836 (1.24) 25777 (1.01) 25727.6 (0.82) 25568 (0.19) 25780.2 (1.02) 25658 (0.54) 25519
XML100_2251_21 22411.8 (0.08) 22395 (0) 22441.2 (0.21) 22415 (0.09) 22411.4 (0.07) 22395 (0) 22415.2 (0.09) 22415 (0.09) 22395
XML100_2316_3 8043 (0) 8043 (0) 8055.6 (0.16) 8043 (0) 8043 (0) 8043 (0) 8055.6 (0.16) 8043 (0) 8043
XML100_3151_5 39397 (0.5) 39331 (0.33) 39442.4 (0.61) 39392 (0.48) 39383.4 (0.46) 39331 (0.33) 39453.8 (0.64) 39379 (0.45) 39202
XML100_3151_7 48875.2 (0.73) 48784 (0.54) 48914.2 (0.81) 48778 (0.53) 48886.6 (0.75) 48653 (0.27) 48864.6 (0.7) 48777 (0.52) 48523
XML100_3151_17 45963 (0.78) 45725 (0.25) 45968.8 (0.79) 45889 (0.61) 45936.8 (0.72) 45725 (0.25) 45978.4 (0.81) 45926 (0.7) 45609
XML100_3151_21 38334.6 (1.3) 38315 (1.25) 38374.6 (1.4) 38327 (1.28) 38328.6 (1.28) 38315 (1.25) 38347.4 (1.33) 38304 (1.22) 37843
XML100_3154_25 16038 (0.68) 15939 (0.06) 16089.2 (1.01) 16047 (0.74) 16038 (0.68) 15939 (0.06) 16089.2 (1.01) 16047 (0.74) 15929
XML100_3163_10 21333.4 (0.36) 21257 (0) 21335 (0.37) 21273 (0.08) 21328.4 (0.34) 21271 (0.07) 21335 (0.37) 21273 (0.08) 21257
XML100_3164_20 14918.8 (0.69) 14817 (0) 14950.2 (0.9) 14907 (0.61) 14908.6 (0.62) 14817 (0) 14938.2 (0.82) 14907 (0.61) 14817
XML100_3165_17 14199 (0.59) 14124 (0.06) 14227.4 (0.79) 14145 (0.21) 14199 (0.59) 14124 (0.06) 14226 (0.78) 14138 (0.16) 14116
XML100_3231_6 47982.6 (0.59) 47917 (0.46) 48080.4 (0.8) 47934 (0.49) 47944 (0.51) 47917 (0.46) 48002.6 (0.64) 47924 (0.47) 47699
XML100_3231_11 64217.6 (1.77) 64135 (1.64) 64259.2 (1.84) 64141 (1.65) 64214 (1.76) 64092 (1.57) 64209.4 (1.76) 64135 (1.64) 63101
XML100_3231_17 42401 (1.09) 42356 (0.99) 42443.8 (1.2) 42356 (0.99) 42367.2 (1.01) 42319 (0.9) 42395.4 (1.08) 42356 (0.99) 41942
XML100_3251_3 38492.8 (0.81) 38472 (0.76) 38497.2 (0.82) 38472 (0.76) 38498 (0.82) 38498 (0.82) 38507 (0.85) 38498 (0.82) 38183
XML100_3251_4 34603 (1.29) 34588 (1.24) 34607.2 (1.3) 34582 (1.23) 34531.4 (1.08) 34297 (0.39) 34588.8 (1.25) 34574 (1.2) 34163
XML100_3251_16 57658.2 (0.88) 57208 (0.09) 57717.4 (0.98) 57328 (0.3) 57324.8 (0.29) 57221 (0.11) 57754.8 (1.04) 57315 (0.27) 57158
XML100_3251_24 54438.2 (0.28) 54397 (0.2) 54450.4 (0.3) 54411 (0.23) 54429.4 (0.26) 54379 (0.17) 54738.4 (0.83) 54382 (0.18) 54286
XML100_3251_25 40044.4 (1.39) 39888 (1) 40064.2 (1.44) 39991 (1.26) 40028.4 (1.35) 39945 (1.14) 40044.6 (1.39) 39942 (1.13) 39495
XML100_3252_26 27639.8 (2.27) 27633 (2.25) 27646.4 (2.3) 27633 (2.25) 27639.4 (2.27) 27631 (2.24) 27650.4 (2.31) 27633 (2.25) 27026
XML100_3271_2 37792.8 (0.77) 37503 (0) 37921 (1.11) 37503 (0) 37741.2 (0.64) 37503 (0) 37762.4 (0.69) 37503 (0) 37503
XML100_3351_3 41395.2 (1.42) 41214 (0.97) 41440.4 (1.53) 41381 (1.38) 41379.4 (1.38) 41214 (0.97) 41415 (1.47) 41381 (1.38) 40817
XML100_3351_6 32860.6 (0.9) 32805 (0.72) 32878.4 (0.95) 32803 (0.72) 32851.2 (0.87) 32805 (0.72) 32887.2 (0.98) 32847 (0.85) 32569
XML100_3351_8 57058.4 (0.79) 56973 (0.64) 57115.4 (0.89) 56973 (0.64) 57031.4 (0.74) 56973 (0.64) 57076.8 (0.82) 56973 (0.64) 56613
XML100_3351_14 56634.2 (1.04) 56495 (0.79) 56637.4 (1.04) 56532 (0.85) 56520 (0.83) 56393 (0.61) 56569.6 (0.92) 56512 (0.82) 56053
XML100_3351_23 58119.2 (0.95) 57955 (0.67) 58156.8 (1.02) 58063 (0.85) 58027.8 (0.79) 57838 (0.46) 58112.8 (0.94) 57945 (0.65) 57571

Minimum Gap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average Gap 0.74 0.49 0.85 0.58 0.70 0.44 0.82 0.56
Median Gap 0.75 0.25 0.86 0.49 0.66 0.23 0.82 0.46
Maximum Gap 2.33 2.29 2.45 2.36 2.37 2.33 2.43 2.29

34



References
[1] Luca Accorsi, Andrea Lodi, and Daniele Vigo. “Guidelines for the computational testing of ma-

chine learning approaches to vehicle routing problems”. In: Operations Research Letters 50.2 (2022),
pp. 229–234.

[2] Luca Accorsi and Daniele Vigo. “A fast and scalable heuristic for the solution of large-scale capaci-
tated vehicle routing problems”. In: Transportation Science 55.4 (2021), pp. 832–856.

[3] Florian Arnold, Michel Gendreau, and Kenneth Sörensen. “Efficiently solving very large-scale routing
problems”. In: Computers & Operations Research 107 (2019), pp. 32–42. issn: 0305-0548.

[4] Florian Arnold and Kenneth Sörensen. “Knowledge-guided local search for the vehicle routing prob-
lem”. In: Computers & Operations Research 105 (2019), pp. 32–46.

[5] Florian Arnold and Kenneth Sörensen. “What makes a VRP solution good? The generation of
problem-specific knowledge for heuristics”. In: Computers & Operations Research 106 (2019), pp. 280–
288.

[6] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI”. In: Information fusion 58 (2020), pp. 82–115.

[7] Marcia L Baptista, Kai Goebel, and Elsa MP Henriques. “Relation between prognostics predictor
evaluation metrics and local interpretability SHAP values”. In: Artificial Intelligence 306 (2022),
p. 103667.

[8] Richard Bellman. “On a routing problem”. In: Quarterly of applied mathematics 16.1 (1958), pp. 87–
90.

[9] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon”. In: European Journal of Operational Research 290.2 (2021),
pp. 405–421.

[10] Leo Breiman. “Random forests”. In: Machine Learning 45.1 (2001), 5–32. issn: 0885-6125.

[11] Leo Breiman et al. Classification And Regression Trees. Routledge, 2017. isbn: 9781315139470.

[12] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In: Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining. 2016, pp. 785–
794.

[13] Geoff Clarke and John W Wright. “Scheduling of vehicles from a central depot to a number of
delivery points”. In: Operations research 12.4 (1964), pp. 568–581.

[14] Thomas Cover and Peter Hart. “Nearest neighbor pattern classification”. In: IEEE transactions on
information theory 13.1 (1967), pp. 21–27.

[15] George Dantzig, Ray Fulkerson, and Selmer Johnson. “Solution of a large-scale traveling-salesman
problem”. In: Journal of the operations research society of America 2.4 (1954), pp. 393–410.

[16] Janez Demšar. “Statistical Comparisons of Classifiers over Multiple Data Sets”. In: Journal of Ma-
chine Learning Research 7.1 (2006), pp. 1–30.

[17] Evelyn Fix. Discriminatory analysis: nonparametric discrimination, consistency properties. Vol. 1.
USAF school of Aviation Medicine, 1985.

[18] Jerome H Friedman. “Greedy function approximation: a gradient boosting machine”. In: Annals of
statistics (2001), pp. 1189–1232.

[19] F. Glover, M. Laguna, and R. Marti. “Fundamentals of scatter search and path relinking”. English.
In: Control and Cybernetics Vol. 29, no 3 (2000), pp. 653–684.

35



[20] Fred Glover. “Ejection chains, reference structures and alternating path methods for traveling sales-
man problems”. In: Discrete Applied Mathematics 65.1-3 (1996), pp. 223–253.

[21] Fred Glover. “Tabu search and adaptive memory programming—advances, applications and chal-
lenges”. In: Interfaces in Computer Science and Operations Research: Advances in Metaheuristics,
Optimization, and Stochastic Modeling Technologies (1997), pp. 1–75.

[22] Riccardo Guidotti et al. “A survey of methods for explaining black box models”. In: ACM computing
surveys (CSUR) 51.5 (2018), pp. 1–42.

[23] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and prediction.
Vol. 2. Springer, 2009.

[24] Keld Helsgaun. “An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems”. In: Roskilde: Roskilde University 12 (2017).

[25] Sin C Ho and Michel Gendreau. “Path relinking for the vehicle routing problem”. In: Journal of
heuristics 12 (2006), pp. 55–72.

[26] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. “Chapter 4 The traveling salesman prob-
lem”. In: Network Models. Vol. 7. Handbooks in Operations Research and Management Science.
Elsevier, 1995, pp. 225–330.

[27] Guolin Ke et al. “Lightgbm: A highly efficient gradient boosting decision tree”. In: Advances in
neural information processing systems 30 (2017).

[28] Manuel Laguna, Rafael Martí, and Vicente Campos. “Intensification and diversification with elite
tabu search solutions for the linear ordering problem”. In: Computers & Operations Research 26.12
(1999), pp. 1217–1230.

[29] Gilbert Laporte. “Fifty years of vehicle routing”. In: Transportation science 43.4 (2009), pp. 408–416.

[30] Sirui Li, Zhongxia Yan, and Cathy Wu. “Learning to delegate for large-scale vehicle routing”. In:
Advances in Neural Information Processing Systems 34 (2021), pp. 26198–26211.

[31] Flavien Lucas, Romain Billot, and Marc Sevaux. “A comment on “what makes a VRP solution good?
The generation of problem-specific knowledge for heuristics””. In: Computers & Operations Research
110 (2019), pp. 130–134.

[32] Flavien Lucas et al. “Reducing space search in combinatorial optimization using machine learning
tools”. In: Learning and Intelligent Optimization: 14th International Conference, LION 14, Athens,
Greece, May 24–28, 2020, Revised Selected Papers 14. Springer. 2020, pp. 143–150.

[33] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model predictions”. In: Ad-
vances in neural information processing systems 30 (2017).

[34] Scott M Lundberg et al. “From local explanations to global understanding with explainable AI for
trees”. In: Nature machine intelligence 2.1 (2020), pp. 56–67.

[35] Rafael Martí, Mauricio GC Resende, and Celso C Ribeiro. “Multi-start methods for combinatorial
optimization”. In: European Journal of Operational Research 226.1 (2013), pp. 1–8.

[36] Christian Prins. “A simple and effective evolutionary algorithm for the vehicle routing problem”. In:
Computers & operations research 31.12 (2004), pp. 1985–2002.

[37] Caroline Prodhon and Christian Prins. “Metaheuristics for Vehicle Routing Problems”. In: Meta-
heuristics. Cham: Springer International Publishing, 2016, pp. 407–437.

[38] Eduardo Queiroga et al. “10,000 optimal CVRP solutions for testing machine learning based heuris-
tics”. In: AAAI-22 Workshop on Machine Learning for Operations Research (ML4OR) (2021).

36



[39] César Rego. “Node-ejection chains for the vehicle routing problem: Sequential and parallel algo-
rithms”. In: Parallel Computing 27.3 (2001), pp. 201–222.

[40] Mauricio G.C. Resende and Celso C. Ribeiro. “GRASP with Path-Relinking: Recent Advances and
Applications”. In: Metaheuristics: Progress as Real Problem Solvers. Boston, MA: Springer US, 2005,
pp. 29–63.

[41] David Simchi-Levi, Philip Kaminsky, and Edith Simchi-Levi. Designing and managing the supply
chain: Concepts, strategies, and case studies. Irwin/McGraw-Hill series in operations and decision
sciences. McGraw-Hill/Irwin, 2002. isbn: 9780072845532.

[42] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. “Beyond accuracy, F-score and ROC:
a family of discriminant measures for performance evaluation”. In: Australasian joint conference on
artificial intelligence. Springer. 2006, pp. 1015–1021.

[43] Kenneth Sörensen and Marc Sevaux. “MA| PM: memetic algorithms with population management”.
In: Computers & Operations Research 33.5 (2006), pp. 1214–1225.

[44] María Soto et al. “Multiple neighborhood search, tabu search and ejection chains for the multi-depot
open vehicle routing problem”. In: Computers & Industrial Engineering 107 (2017), pp. 211–222.

[45] Kenneth Sörensen and Patrick Schittekat. “Statistical analysis of distance-based path relinking
for the capacitated vehicle routing problem”. In: Computers & Operations Research 40.12 (2013),
pp. 3197–3205. issn: 0305-0548.

[46] Éric Taillard et al. “A tabu search heuristic for the vehicle routing problem with soft time windows”.
In: Transportation science 31.2 (1997), pp. 170–186.

[47] Paolo Toth and Daniele Vigo. “The granular tabu search and its application to the vehicle-routing
problem”. In: Informs Journal on computing 15.4 (2003), pp. 333–346.

[48] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

[49] Eduardo Uchoa et al. “New benchmark instances for the Capacitated Vehicle Routing Problem”. In:
European Journal of Operational Research 257.3 (2017), pp. 845–858. issn: 0377-2217.

[50] Thibaut Vidal. “Hybrid genetic search for the CVRP: Open-source implementation and SWAP*
neighborhood”. In: Computers & Operations Research 140 (2022), p. 105643.

[51] Thibaut Vidal et al. “A unified solution framework for multi-attribute vehicle routing problems”.
In: European Journal of Operational Research 234.3 (2014), pp. 658–673. issn: 0377-2217.

[52] Liang Xin et al. “Neurolkh: Combining deep learning model with lin-kernighan-helsgaun heuristic
for solving the traveling salesman problem”. In: Advances in Neural Information Processing Systems
34 (2021), pp. 7472–7483.

37


	Introduction
	Related Work
	Research Questions and Contributions

	Learning From Solutions
	Data Generations and Feature Extractions
	Learning Model: Binary Classification
	Explaining The Learning Model
	Integration into the Metaheuristic

	Development of the Metaheuristic Algorithm
	Generating Initial Solutions
	Pool of the Elite Set Solutions
	Diversity Control Mechanism

	Neighborhood Improvement
	Perturbation Mechanism
	Local Search Improvement

	Path Relinking

	Hybridizing Metaheuristics with Feature-Based Guidance
	Guidance for Diversity Control
	Metaheuristic with Guidance for Diversity Control

	Experiment and Analysis
	Parameter Tuning
	Computational Experiment with XML100 Instances
	Testing the Guided Metaheuristic on X Instances

	Conclusion
	Appendix
	Feature of VRP
	Feature Engineering
	Concatenation Method and Split Algorithm
	Neighborhood Search for Path Relinking
	Result on Randomly 100 Sampled XML100 Instances
	Path Relinking Contributions on 50 Sampled XML100 Instances


