
HAL Id: hal-04663537
https://hal.science/hal-04663537v1

Submitted on 28 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reduced Order Model for Nonlinear Dynamics of
Mistuned Bladed Disks With Shroud Friction Contacts

S. Mehrdad Pourkiaee, Stefano Zucca

To cite this version:
S. Mehrdad Pourkiaee, Stefano Zucca. A Reduced Order Model for Nonlinear Dynamics of Mistuned
Bladed Disks With Shroud Friction Contacts. Journal of Engineering for Gas Turbines and Power,
2019, 141 (1), pp.1-13. �10.1115/1.4041653�. �hal-04663537�

https://hal.science/hal-04663537v1
https://hal.archives-ouvertes.fr


GTP - 18 - 1596 Pourkiaee 1 

A reduced order model for nonlinear dynamics of mistuned bladed disks with 

shroud friction contacts 

S. Mehrdad Pourkiaee1*, Stefano Zucca1 

1Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli 

Abruzzi 24, Torino 10129, Italy 

Abstract 

A new reduced order modeling technique for nonlinear vibration analysis of mistuned bladed disks 

with shrouds is presented. The developed reduction technique employs two component mode 

synthesis methods, namely, the Craig-Bampton (CB) method followed by a modal synthesis based on 

loaded interface modeshapes (Benfield and Hruda). In the new formulation the fundamental sector is 

divided into blade and disk components. The CB method is applied to the blade, where nodes lying on 

shroud contact surfaces and blade-disk interfaces are retained as master nodes, while modal 

reductions is performed on the disk sector with loaded interfaces. The use of loaded interface 

component modes allows removing the blade-disk interface nodes from the set of master nodes 

retained in the reduced model. The result is a much more reduced order model with no need to apply 

any secondary reduction. In the paper it is shown that the reduced order model of the mistuned 

bladed disk can be obtained with only single-sector calculation, so that the full finite element model 

of the entire bladed disk is not necessary. Furthermore, with the described approach it is possible to 

introduce the blade frequency mistuning directly into the reduced model. The nonlinear forced 

response is computed using the harmonic balance method (HBM) and alternating frequency/time 

domain (AFT) approach. Numerical simulations revealed the accuracy, efficiency and reliability of the 

new developed technique for nonlinear vibration analysis of mistuned bladed disks with shroud 

friction contacts. 
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1 Introduction 

Bladed disks are critical turbomachinery components, subjected to oscillating forces arisen from 

different sources (e.g. unbalancing, fluctuating fluid pressures), which can cause their failure due to 

high cycle fatigue [1]. Bladed disk design requires forced response analysis to be performed in the 

frequency range where resonance conditions are expected, according to preliminary modal 

analysis [2]. Due to the presence of contact interfaces (such as shrouds, blade-disk joints, bolted 

flanges, friction dampers) the dynamic behavior of bladed disks is nonlinear and in order to correctly 

assess the damping level provided by the interfaces, which limits the vibration amplitude and the 

related stresses, nonlinear calculations are necessary [3]. In the last three decades, nonlinear 

methods [4] based on harmonic balance method (HBM) have established themselves as highly 

accurate and numerically efficient methods to compute the steady-state response of assemblies with 

contact interfaces, such as bladed disks [5]. Despite the huge time savings achievable by using the 

HBM with respect to Time Domain Analysis (TDA), the typical size of industrial finite element (FE) 

models of bladed disks (i.e. millions of degrees of freedom per sector) makes the analysis unfeasible 

for design purposes, unless reduced order models (ROMs) are implemented to shorten the 

computational time. 

The above describes scenario, which applies to any structure with contact interfaces, becomes even 

more challenging for bladed disks, because of the unavoidable mistuning, which characterizes them. 

In the literature, with the word mistuning [6] researchers mean the small differences, which exist 

between the blades due to geometrical tolerances, material inhomogeneity, assembly process, wear 

phenomena, etc. 

The random nature of mistuning and its extreme effects on the bladed disk response require statistical 

analysis of the dynamic behavior of the bladed disks [7]. In the literature, a large number of papers 

are available describing efficient ROMs for the linear forced response of mistuned bladed disks in case 
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of small mistuning [8]-[13]. The basic idea; the available ROMs are based on; is that the modeshapes 

of the tuned system (i.e. bladed disk with identical blades) can be used as a basis for reduction of the 

corresponding full mistuned system. In other words, the mistuned vibration modes can be projected 

to the normal modes of the corresponding tuned system. This hypothesis implies that one can 

compute the reduction basis (i.e. the modeshapes of the tuned system) only once at the beginning of 

the forced response analysis, by performing single sector (called fundamental sector) computations, 

with the appropriate cyclic symmetry boundary conditions, without any need to develop the FE model 

of the full system.  

One cannot naturally extend the ROMs developed for linear systems to the nonlinear case, since: 

1. There is no proof that any set of modeshapes of the tuned system are a suitable basis for 

nonlinear forced response. 

2. The equivalent stiffness provided by the contact interfaces depends on the vibration 

amplitude and therefore there is not a single tuned linear system suitable as a projection basis 

for the governing equations of the nonlinear mistuned system. 

The literature about nonlinear mistuned bladed disks is much smaller, compared to the literature on 

linear mistuned systems [6] and nonlinear tuned systems [5], the reasons for that being the difficulties 

either in performing nonlinear analyses of full systems or in developing effective ROMs for the 

mistuned system. In [14] the nonlinear forced response of mistuned bladed disks was investigated for 

the first time, by updating the FRF matrix of the linear system with the Woodbury-Sherman-Morrison 

formula [11], while in [15] the approach was applied to investigate high-mode vibrations. In [16] an 

updated FRF matrix formulation is used with the Woodbury-Sherman-Morrison formula to generate 

a reduced set of governing equations of the nonlinear forced response of bladed disks. In both cases, 

at each frequency, the FRF matrix used in the governing equations of the system is updated in order 

to introduce mistuning in the bladed disk model at specific locations by means of mistuning elements. 

In reference [17] it is shown that sets of modeshapes (Adaptive Microslip Projections) computed from 
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multiple linear systems can be efficiently used as a reduction basis for mistuned bladed disks with 

contact interfaces in order to investigate the system dynamics [18]. 

In this paper, a ROM for the nonlinear analysis of mistuned bladed disks is presented. In its 

development, the following requirements are taken into account: 

1. The ROM must be obtained by performing only single-sector calculations. 

2. Mistuning is modelled as blade frequency mistuning (i.e. by perturbing the blades Young’s 

modulus). 

3. It is preferable that the whole reduction is performed once, and then blade frequency 

mistuning is introduced directly in the ROM. 

4. If requirement 3 is not fulfilled, then any numerical operation (i.e. those performed per 

each mistuning pattern) must be cheap enough to justify the adoption of the ROM. 

5. The ROM must allow for physical degrees of freedom (DOFs) to be retained only at the 

contact interfaces for the purpose of nonlinear forced response analysis. 

A Component Mode Synthesis (CMS) approach is used and the bladed disk is divided into its 

components: the disk and a set of N blades. It is well known in the literature that any time a CMS 

approach is used, the interface degrees of freedom (DOFs) of the components may become the largest 

portion of the ROM, although their contribution to the dynamics of the system may be marginal. In 

order to overcome this problem, interface reduction methods have been developed [19]-[23] to 

reduce the size of the interface DOFs. 

In this paper a novel approach is applied to the mistuned bladed disks with friction contacts with the 

objective of eliminating the blade-disk interfaces from the final ROM. The developed approach results 

in further reduced ROMs with no need of secondary reduction techniques. The adopted logic implies 

that in the presence of friction contacts such as shrouds and underplatform dampers, the friction 

damping at the blade root joints is negligible and one can model the blade-disk joint as perfectly 

linearly elastic. 
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In detail, the blades are reduced with the Craig-Bampton (CB-CMS) approach [24], retaining as master 

DOFs, shroud contact DOFs and interface DOFs between blades and the disk. Then, after performing 

the so-called primal assembly between the reduced blades and the full disk; at the interface DOFs; the 

loaded interface modeshapes of the disk are used to approximate the dynamics of the disk and 

interfaces. Here, loaded interface modeshapes refer to normal modes of the disk component where 

blades are statically condensed (loaded) on blade-disk interfaces [25]. The resulting ROM only retains 

as master DOFs the contact DOFs and, if deemed necessary by the analyst, additional auxiliary DOFs 

on the blades. 

Finally, it is shown that, the CB-CMS reduction matrix of the blades is invariant with respect to the 

blade frequency mistuning. Accordingly, in the case of small mistuning, a general formulation is 

derived which enables analysts and designers to obtain the mistuned ROM of the full system based 

on sector level calculations. 

In the paper, the method is described by using as a reference a mock-up bladed disk with shrouded 

blades. Contact interfaces are modeled by imposing a 3D contact element (comprised of two 

perpendicular Jenkins contact elements with variable normal loads), at each retained contact node. 

Nonlinear forced response is computed using the HBM method and the alternating frequency/time 

domain (AFT) approach [26]. Numerical simulations revealed the accuracy and the reliability of the 

new developed technique in predicting the nonlinear response levels of mistuned shrouded bladed 

disks with friction interfaces. 

2 Reduced order modeling technique 

In order to better clarify the mathematical formulation of the reduced order model, the method is 

firstly applied to a single sector (i.e. disk fundamental sector + 1 blade) and only afterwards it is shown 

how to extend the sector reduced matrices to the full system and how to introduce blade mistuning 

into the final reduced system. 
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2.1 Methodology 

In the newly developed reduction technique, the fundamental sector of a tuned bladed disk is divided 

into blade and disk components. First, the CB-CMS reduction is applied to the blade component. Then 

the modal reduction is performed to project the physical interface and disk DOFs onto the modal 

coordinates of the disk loaded interface modeshapes. As a preliminary step, the blade and the disk 

sector DOFs and their corresponding stiffness matrices are partitioned as follows: 
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(1) 

where 𝑥𝛾𝑏 and 𝑥𝛾𝑑 correspond to interface DOFs of the blade and the disk, respectively, 𝑥𝑁 represents 

contact nonlinear DOFs of the blade (e.g. contact nodes at shrouds), 𝑥𝐼 represents remaining interior 

DOFs of the blade and 𝑥𝑂 corresponds to other DOFs of the disk except interface DOFs. Note that in 

more general context, 𝑥𝑁 could represent any group of active DOFs that are retained during CB-CMS 

reduction. Throughout this study, all mass matrices are partitioned exactly in the same way as their 

corresponding stiffness matrices. 

2.2 Blade component reduction (Based on CB-CMS) 

In order to apply CB-CMS on the blade component, blade DOFs are grouped into 𝑥𝑚 and 𝑥𝑠 vectors to 

separate master (physical retained) and slave DOFs. Master DOFs include interface DOFs 𝑥𝛾𝑏, necessary 

to enforce CMS primal assembly and nonlinear DOFs 𝑥𝑁, retained for the nonlinear forced response 

computations. The partitioned blade displacement vector and the corresponding stiffness matrix, take 

the following form: 
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(2) 

The blade DOFs can now be reduced using the CB-CMS transformation matrix 𝑅𝑐𝑏, as follows: 
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(3) 

where Φ𝑓 are fixed-interface modeshapes of the blade constrained at its master DOFs and 

1
c ss smk k

     are static constraint modes. Projecting the blade structural matrices onto the CB-CMS 

coordinates, yields: 
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(4) 

where 𝐾𝐶𝐵 and 𝑀𝐶𝐵 are blade CB-CMS reduced stiffness and mass matrices, respectively. Different 

partitions of 𝐾𝐶𝐵 and 𝑀𝐶𝐵 are given below: 
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(5) 

Note that the lower right partition of 𝐾𝐶𝐵 represents the blade CB-CMS reduced stiffness matrix 

corresponding to retained physical DOFs (i.e. blade nonlinear and interface DOFs) and is expanded as 

follows: 
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(6) 

Different partitions of 𝑀𝐶𝐵 are presented in Appendix B. 

2.3 Interface and disk reduction (Based on loaded interface modeshapes) 

The proposed modal reduction operates on the disk DOFs plus the interface DOFs retained during the 

blade CB-CMS reduction, by projecting them to a set of generalized coordinates. Loaded interface 

modeshapes of the disk are obtained by statically condensing the blade interior DOFs on blade-disk 

interface DOFs 𝑥𝛾𝑏 and then solving the eigenvalue problem of the loaded disk system. Static 

condensation of interior blade DOFs on interface DOFs can be obtained by: 
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(7) 

where 𝑥𝑖𝑏 are interior DOFs of the blade and 𝜓𝑐𝑏 are static constraint modes, given by: 
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(8) 

Note that, in contrast to the blade CB-CMS reduction where both 𝑥𝑁 and 𝑥𝛾𝑏 DOFs are retained as 

master DOFs, here, the blade DOFs are statically condensed only on interface DOFs 𝑥𝛾𝑏 and thus the 𝜓𝑐𝑏 matrix includes the constraint modes of the cantilevered blade. The Guyan reduced mass and 

stiffness matrices of the blade can be obtained by: 
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(9) 

As a final step, the mass and stiffness matrices of the loaded disk are obtained: 
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(10) 

Solving the following eigenvalue problem: 
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gives the disk loaded interface modeshapes 𝜑̃ and eigenvalues Λ𝐿𝐼. Prior to applying the interface-disk 

modal reduction, one should perform a CMS assembly to cast the partially reduced blisk structural 

matrices. Enforcing interface compatibility between the CB-CMS reduced blade and the disk 

component, yields: 
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(12) 

where the dashed rectangles highlight the blade-disk interface portion. Now, the further reduction 

can be achieved by expressing the interface and disk DOFs of the displacement vector in terms of 

loaded interface modal coordinates: 
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(13) 

where RLI denotes the LI reduction matrix. The final reduced mass and stiffness matrices of the 

fundamental sector is obtained by implementing the following projections: 
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Final reduced stiffness matrix and its different partitions take the following form: 
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(16) 

The evolution of the original set of DOFs of the fundamental sector during the reduction is depicted 

in Fig. 1. 
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Fig. 1 Evolution of DOFs during the reduction 

2.4 Full bladed disk ROM 

Without losing any generality of the presented formulation for the single sector, this reduction 

approach can be easily extended to the full system. In this case, each partition of matrices in Eqn. (1) 

should be replaced by a block diagonal matrix, representing the contribution of all sectors in the 
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structural matrices. Accordingly, the blade and the disk stiffness matrices of the full structure can be 

expressed as follows: 
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where I is an identity matrix of size N (number of blades) and ⨂ denotes the Kronecker product. In 

Eqn. (17), 𝑘̅𝑂𝑂𝑑  is the partition of the full disk component corresponding to 𝑥𝑂 DOFs. Note that 𝑘̅𝑂𝑂𝑑  is 

not a pure block diagonal partition, due to the presence of internal interfaces between disk sectors. 

Since the blades are uncoupled to each other, the CB-CMS transformation matrix of N-blades 

structure, can be obtained from the single blade transformation matrix, as follows: 

0

f c
cb

I I
R

I

  
  
 

 

(18) 

Note that, no mistuning is introduced yet and blades are identical. The CB-CMS reduced stiffness 

matrix of the full set of blades, can be described as: 

, ,

, ,

0 0

0

0

b
i

b b
CB cb NN cb N

b b
cb N cb

I

K I k I k

I k I k



 

 
 
   
 
   

 

(19) 

Enforcing the interface compatibility over the interface DOFs, yields an assembly composed of CB-

CMS reduced blades attached to the full disk at the blade-disk interfaces. The stiffness matrix of this 

partially reduced system is expressed as: 
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, ,

,

0 0 0

0 0

0

0 0

b
i

b b
cb NN cb N

I b rom d
cb N O

d d
O OO

I

I k I k
K

I k I k I k

I k k



  



 
 
  
 
   
 
  

 

(20) 

where ,
rom b d

cbk k k     denotes the interface stiffness partition, made of the CB-CMS reduced 

stiffness of the blade interface added to the interface stiffness of the disk component. The KI matrix 

must be now further reduced by means of loaded interface modeshapes of the full disk (i.e. Φ̃). Due 

to the cyclic symmetry of the system, modeshapes of the full disk can be obtained by expanding 

modeshapes of the loaded fundamental sector computed with cyclic symmetry boundary 

conditions [28]. The final reduced stiffness matrix of the tuned bladed disk is: 

 
 

,,

,

00

0

ˆ0 [ ]

b
i

bb
cb Ncb NNROM

T b
cb N

I

I kI kK

I k K

 

 

 
 

  
 
  
 

 

(21) 

with  

 

1..

[ ]
ˆ

n

n N

rom dT
O

d dO O
O OO

Bdiag k I k

K

I k k

  





                    

 

(22) 

where 
 

1..

[ ]
n

n N

rom rom
Bdiag k I k 



  . 

Note that, the same discussion and methodology is used to obtain the reduced mass matrix of the full 

system i.e. MROM (a detailed description is given in Appendix B). 

2.5 Mistuning Modeling 

The presented novel reduction technique is tailored for small blade mistuning. Accordingly, the disk is 

treated as a tuned cyclic structure and mistuning is introduced as variations in Young’s modulus of 

blades (blade frequency mistuning). In order to introduce mistuning to the final reduced model; in 

terms of Young’s modulus variation of blades; it is beneficial to recall that based on the Hooke’s law 
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for isotropic materials, the element stiffness matrix 𝑘𝑒 which relates nodal forces to nodal 

displacements, is linearly dependent to Young’s modulus as follows: 

e e
k E k    

(23) 

As described before, the CB-CMS method is used to reduce the blades. Therefore, the effect of blade 

Young’s modulus variation on the CB-CMS reduction matrix Rcb, defined by Eqn. (3), is investigated. It 

turns out that for a single component of nominal Young’s modulus E, the corresponding CB-CMS 

transformation matrix is invariant of Young’s modulus, and the resultant CB-CMS reduced stiffness 

matrix is linearly dependent to E as follows: 

 1

0

0

b
i

CB

mm ms ss sm

E
K

E k k k k


 
 
     
 

 

(24) 

In the case of mistuned systems, the random Young’s modulus can be defined as: 

 1n nE E     

(25) 

where 𝐸𝑛 is the Young’s modulus of the nth blade, E is the nominal Young’s modulus and 𝛿𝑛 is a non-

dimensional mistuning parameter used to perturb E. Accordingly, one may obtain the final reduced 

form of the mistuned stiffness matrix as follows: 

0(1 ) 0

1..

(1 ) ,0 (1 ) , 1..
1..

ˆ0 (1 ) [ ],
1..

b
diag n i

n N
b

diag kb n cb Ndiag kn cb NNK n NROM n N

T b
diag k Kn cb N

n N



  

 

   
  

           
          

 

(26) 

with 

 

1..

*
[ ]

ˆ

n

n N

rom dT
O

d dO O
O OO

Bdiag k I k

K

I k k

  





                    

 

(27) 

where 
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  ( ) ( )
* *

[ ] [ ] [ ] (1 ), ,
1.. 1.. 1.. 1..

n n n
rom b d b d

Bdiag k Bdiag k Bdiag k diag k I kcb n cb
n N n N n N n N

          
   

. 

(28) 

Note that superscript (. )∗; first introduced in Eqn. (27); will be used to denote a mistuned partition. 

For ROMs to be useful in stochastic nonlinear analysis, necessary to assess statistically the effect of 

mistuning on the response level of the blades, direct introduction of mistuning in the final ROM is 

necessary to prevent multiple reductions, one per each analyzed mistuning pattern. 𝐾𝑅𝑂𝑀 as 

formulated in Eqn. (26), allows for direct introduction of mistuning in all its blocks except for 𝐾̂, which 

depends on all random variables 𝛿𝑛 and needs to be recomputed for each mistuning pattern. In order 

to overcome this issue, one option is to assume that the blade mistuning has a negligible effect on this 

partition and 𝐾̂ remains constant regardless of the mistuning pattern. It is worth mentioning that, the 

interface portion of the blade CB-CMS stiffness matrix (i.e. 
( )

*
,

n
b

cbk  ) is the only source of mistuning 

introduced in 𝐾̂, as a byproduct of CMS assembly. From physical point of view, assuming a constant 𝐾̂ 

matrix is equivalent to neglect the effect of mistuning on a portion of constraint modes corresponding 

to interface DOFs of the blades. The validity of this assumption is discussed in the result section. 

Another option is to efficiently compute 𝐾̂ without neglecting the effect of mistuning on this partition. 

This alternative solution requires a special treatment. To this end, an exact solution is developed based 

on sector level computations and modeshapes that have already been computed during the reduction 

steps. The alternative method is illustrated in the next section. 

It is worth mentioning that the interface-disk reduction approach is based on loaded interface 

modeshapes of the disk. As discussed in Interface-Disk reduction section, loaded interface 

modeshapes are obtained by adding Guyan reduced matrices of the tuned blades to the interface 

partition of the disk matrices and solving the eigenvalue problem of the loaded disk system. In fact 

the loaded interface modeshapes obtained in the reduction approach are calculated by statically 

condensing the tuned blades onto the blade-disk interfaces. However, in the reduction process of a 

mistuned system, one may consider the effect of blade mistuning on the loaded interface modeshapes 



GTP - 18 - 1596 Pourkiaee 15 

of the disk. In this context, mistuned loaded interface modeshapes refer to those modeshapes that 

are calculated by condensing the mistuned blades onto the blade-disk interfaces. Note that, neglecting 

the effect of mistuning on loaded interface modeshapes of the disk could be a valid assumption. Since, 

the dominant portion of 𝐾̃ is composed of the tuned disk stiffness matrix, the added mistuned portion 

(i.e. Guyan stiffness of mistuned blades 
( )

1.. 1..

*
[ ] (1 )

n

n N n N

b b
Guyan n GuyanBdiag k diag k

 

   ) to the interface DOFs 

could not considerably change the modeshapes of the full disk. Therefore, it is predictable that 

neglecting the effects of mistuning only on Guyan stiffness of the blades, provides acceptable 

accuracy. The validity of this assumption is discussed later in the result section. 

2.6 Sector level computations (requisites) 

As it is seen in Eqn. (26) all partitions of 𝐾𝑅𝑂𝑀 are linearly dependent to mistuning parameters except 

for its extreme lower right partition 𝐾̂, which is dependent to all random parameters 𝛿𝑛. Thus, to take 

into account the effect of mistuning on this partition, one should compute 𝐾̂ for each mistuning 

pattern. This would be cumbersome for statistical analyses. Moreover, all other partitions of 𝐾𝑅𝑂𝑀 

are constructed from a single sector stiffness matrix and cyclic loaded interface modes of the disk. 

However, in industrial applications, projecting the full disk matrix onto the cyclic loaded interface 

modeshapes seems impractical or even impossible. Therefore, an alternative way for computation of 𝐾̂ based on sector level computations is needed. For simplicity of notation the following operator is 

defined as: 

1..

1..

[.] 0 0

0 0 0[.] [.] 0

0 0 0

n N

n N

k

k k

Bdiag

blkdg Bdiag







 
 
              

 

(29) 

where 0𝑘 denotes additive identity in k (k by k null matrix) and ⊕ denotes direct sum of matrices 

which is defined in Appendix A. This operator will be used to denote; in a compact way; a block 

diagonal matrix of size equal to the total number of disk DOFs with all entries equal to zero except for 
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the partition corresponding to the blade-disk interface DOFs. By introducing Eqn. (29) into the loaded 

disk stiffness matrix which is composed of the disk stiffness matrix 𝐾𝐷 (defined by Eqn. (17)) and the 

Guyan-reduced stiffness matrices of the blades added to the blade-disk interfaces, it can be 

represented in the following compact way: 

 
[ ]

[ ]1..

n
d b d

I k Bdiag k I kGuyan O b
K K blkdg kn N D Guyan

d d
I k kO OO

 



 
   
    
 
 

 

(30) 

By substituting Eqn. (17) into Eqn. (27) and using the compact notation defined by Eqn. (29), 𝐾̂ can be 

written as: 

 

 

( )

1..1..

**
,

*
,

[ ][ ]
ˆ

[ ]

n n

n Nn N

b d drom d
cb OO

T T

d dd d
O OOO OO

T b
D cb

Bdiag K I k I kBdiag k I k

K

I k kI k k

K blkdg k

   







                
      

   

 

(31) 

As previously stated, 𝐾̂ is composed of tuned disk stiffness matrix and mistuned CB-CMS stiffness of 

blade interfaces. By adding and subtracting the Guyan stiffness matrix of the tuned blades to the 

interface DOFs of the 𝐾̂ central core and using Eqn. (30), one may cast 𝐾̂ as follows: 

 

 
 

[ ] [ ]
*ˆ [ ] [ ],*

[ ],

[ ]

1..

( )
*

[ ],
1..

b b
K blkdg k blkdg kD Guyan GuyanT T b b

K K blkdg k blkdg kGuyan cbb
blkdg kcb

n
T b

diag Bdiag kLI Guyan
n N

n
T b

Bdiag kcb
n N




 

  

           
 
 

 
   
   
 
  

 

 

(32) 

Now, based on the derived formulation, 𝐾̂ can be computed using sector level calculations. According 

to Eqn. (32), 𝐾̂ is mainly constructed from the terms that are independent to mistuning (i.e. the first 

two terms of Eqn. (32)) and are just computed for once. In addition, the mistuning is introduced (i.e. 

the third term of Eqn. (32)) by projecting a sparse matrix onto the interface portion of loaded interface 
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modeshapes. All those mentioned above, make the alternative formulation computationally cheap 

and suitable for statistical analyses. 

3 Numerical Solution 

The reduced equations of motion of the system can be written as: 

( ) ( ) ( ) ( ( ), ( )) ( )M x t C x t K x t F x t x t F trom r rom r rom r nl r r ex     

(33) 

where xr(t) is the displacement vector of the final reduced system comprised of nonlinear contact 

DOFs and CB and LI generalized coordinates. Mrom, Crom and Krom are mass, damping and stiffness 

matrices of the final reduced system, respectively. Fnl is the vector of nonlinear contact forces and it 

depends on relative displacements of contact nodes. Fex is the vector of the external forces applied on 

the system. Note that, the reduced damping matrix Crom can be computed in a systematic manner 

using the proposed reduction technique. However, by assuming a proportional damping for the ROM, 

Crom matrix can be simply constructed from reduced mass and stiffness matrices. Based on the multi-

harmonic balance method [4], one may approximate the displacements and the forces as follows: 

0 ( )

1..

( )0

1..

( )0

1..

( ) Re

( ) Re

( ) Re

h ih t
r r r

h H

h ih t
nl nl N

h H

h ih t
ex ex E

h H

x t x X e

F t F F e

F t F F e













 
    

 
 

    
 
 

    
 







 

(34) 

where 𝑥𝑟0, 𝐹𝑛𝑙0  and 𝐹𝑒𝑥0  represent static equilibrium solutions, static external forces (e.g. centrifugal 

forces) and static contact forces, respectively. H denotes the number of considered harmonics and ω 

is the frequency of the excitation force. Also, Re indicates the real part of complex valued functions. 

Substituting Eqn. (34) into Eqn. (33) yields the following algebraic balance equations for each harmonic 

h: 
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 2 ( ) ( )( )
[ ] 0

h hh
rom rom rom N Eh M ih C K F F        

(35) 

An iterative approach based on AFT logic [26] is used to solve the nonlinear equations of Eqn. (35), 

where the nonlinear contact forces are modeled by means of node-to-node state-of-the-art contact 

elements ([27]).  

3.1 FE model 

The considered test case in this study is a simplified turbine bladed disk with 12 blades developed in 

ANSYS. The single sector model contains 429 elements and 460 nodes and the full model comprises 

11429 nodes and 34,287 DOFs in total. The FE model of the academic bladed disk and a single sector 

model are depicted in Fig. 2. 

 

Fig. 2 FE model of the academic bladed disk and the single 

sector model  

The bladed disk is fixed at two circular rows of node lying on the outer faces of the disk. In the 

fundamental sector, each contact surface at the shroud comprises 4 nonlinear contact nodes and also 

the blade-disk interface contains 6 nodes. All the linear analyses (e.g. natural frequencies, 

modeshapes and etc.) are performed on a blisk in fully stick condition, in order to have boundary 

conditions at shroud interfaces more similar to microslip condition, which are typical operating 

conditions for shrouds. Fully stick condition is modeled by merging contact node pairs at adjacent 

shrouds. 
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Natural frequencies versus the number of nodal diameters (NDs) for the tuned bladed disk in stick 

condition is depicted in Fig. 3. 

 

Fig. 3 Natural frequency versus nodal diameters for the 

tuned bladed disk in fully stick condition  

This plot reveals underlying characteristics of system dynamics such as frequency veerings and 

disk/blade dominated modeshapes. In frequency veering regions blade and disk dominated 

modeshapes veer from each other by further increasing the ND. Note that, since the adjacent blades 

are coupled at the shrouds, blade dominated modes are not pure horizontal lines and a slight 

softening/stiffening behavior is seen for blade mode families. In fact, in some frequency ranges, the 

vibrational motion of the coupled shrouds (which resemble a ring component attached to the blade 

tips) has a dominant out of plane component along axial direction. This will introduce an additional 

compliance to the system. In contrary, increasing the ND in some other ranges, results in a 

circumferential mode of the coupled shrouds (in tangential direction), which will decrease the system 

compliance. In Fig. 3, slanted lines could also be representative of inter-blade couplings which makes 

it more difficult to distinguish them from disk dominated modes. 

3.2 Results for linear tuned bladed disk 

In order to evaluate the accuracy of the proposed reduction technique, eigenvalues of the final 

reduced system are compared with the exact eigenvalues of the full FE model, obtained in ANSYS. The 
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eigenvalue deviation is defined as (𝜆𝑅𝑂𝑀 − 𝜆𝐹𝑢𝑙𝑙) 𝜆𝐹𝑢𝑙𝑙⁄  where 𝜆𝑅𝑂𝑀 denotes eigenvalues of the 

reduced system and 𝜆𝐹𝑢𝑙𝑙 denotes exact eigenvalues of the full model. Here, the first 100 natural 

frequencies of the tuned system are compared. Since, the reduction is based on two distinct sets of 

component modes, the number of retained modes of each set, defines the accuracy of the final ROM. 

Here, number of retained modes is selected based on the convergence analysis. This is a preliminary 

step, especially for nonlinear analyses, since, the contribution of higher modes or the presence of 

modal interaction in the system, are not known a priori.  In addition, “the frequency range of interest” 

should be taken into account. For instance, near the blade dominated modeshapes, increasing the 

number of retained loaded interface modeshapes (which are representative of disk dynamics) beyond 

a certain limit, does not enhance the accuracy of the ROM. In all results, the indicated number of CB 

modes, refers to the full system and not the retained modes per blade. 

 

Fig. 4 The influence of loaded interface (LI) modeshapes on 

the eigenvalue deviation between ROM and ANSYS results 

(tuned blisk in stick) 

The effect of retained loaded interface modeshapes in the ROM on the accuracy of the computed 

eigenvalues is shown in Fig. 4. As it is seen, increasing the number of loaded interface modes in the 

ROM, increases the accuracy up to a certain level. From a certain level, adding extra modeshapes 

(corresponding to higher frequencies) does not contribute to the accuracy of the results in the studied 

range (first 100 modes). 
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Fig. 5 The influence of CB modes on the eigenvalue 

deviation between ROM and ANSYS results (tuned 

blisk in stick)  

Figure 5 shows the influence of the CB modes used in the ROM, on the accuracy of the computed 

eigenvalues. The number of CB modes used in the ROM can considerably affect the accuracy of the 

results. It should be noted that the real boundary conditions at the shrouds are different with the CB-

CMS boundary conditions where blades are clamped at interface and nonlinear contact nodes. Thus, 

increasing the number of retained CB modes, will increase the accuracy more significantly. These 

results, reveal the capability of proposed reduction technique in accurately predicting the natural 

frequencies of the system. 

3.3 Results for linear mistuned bladed disk 

The performance of the proposed ROM in predicting the eigenvalues of a mistuned blisk is assessed 

here. The mistuned bladed disk model is obtained by varying the blades Young’s modulus (3%) from 

its nominal value. The random mistuning pattern considered for the test case is listed in Table. 1. 

The influence of the number of LI and CB modes used in the ROM on the eigenvalue deviations is 

illustrated in Figs. 6 and 7, respectively. 
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Table 1. Blade frequency mistuning 

pattern 

Blade Number Mistuning 

Parameter 𝜹𝒏 

1 0 

2 0.0114 

3 0.0149 

4 -0.0030 

5 -0.0250 

6 -0.0163 

7 0.0248 

8 -0.0209 

9 0.0195 

10 0.0023 

11 0.0298 

12 -0.0253 

 

As can be observed, similar to the case of tuned blisk, increasing the number of retained modes 

enhances the results by decreasing the deviation from the exact eigenvalues obtained in ANSYS. 

 

Fig. 6 The influence of loaded interface (LI) modeshapes 

on the eigenvalue deviation between ROM and ANSYS 

results (mistuned blisk in stick) 

Figures 6 and 7, demonstrate the high accuracy of the reduction approach in predicting the 

eigenvalues of the mistuned model. Note that sufficient number of LI and CB modes should be 

retained in the ROM to achieve acceptable accuracy. For instance, the maximum error for predicted 

eigenvalue of the mistuned system; obtained from a ROM containing 300 CB and 180 loaded interface 

modes; is about 0.137 %. 
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Fig. 7 The influence of CB modes on the eigenvalue 

deviation between ROM and ANSYS results (mistuned 

blisk in stick) 

3.4 Results based on mistuned loaded interface modeshapes 

The effect of mistuned loaded interface modeshapes on the performance of the ROM is investigated. 

Figure 8 shows the accuracy of two ROMs (based on tuned and mistuned loaded interface 

modeshapes), in predicting the natural frequencies of the mistuned bladed disk. 

 

Fig. 8 The effect of mistuned loaded interface (LI) 

modeshapes on the accuracy of the predicted 

eigenvalues by the ROM 

As can be seen results coincide well for both ROMs. In other words, considering mistuned loaded 

interface modeshapes as the reduction basis does not improve the accuracy of the ROM. The 

demonstrated results are of great importance, especially for statistical analyses, since, changing and 

computing the reduction basis for each mistuning pattern is not practical. In addition the tuned and 
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mistuned loaded interface modeshapes are compared with each other using the modal assurance 

criterion (MAC). 

 

Fig. 9 Modal correlation between tuned and mistuned 

loaded interface (LI) modeshapes 

Figure 9 shows a comparison between the tuned and the mistuned loaded interface modeshapes. As 

it is seen, most part of the MAC diagonal is almost unity indicating that the modeshapes are similar. 

However, a weak correlation is seen between two dozen modes (i.e. 13-24 and 25-36). Note that the 

MAC matrix has a block diagonal structure in this range. So, any modeshape chosen from either of 

these two sets, has modal properties similar to that of modes lying in the same set and is orthogonal 

to all other modes. For instance, the mistuned loaded interface modeshape number 15 can be 

represented as a linear combination of tuned loaded interface modeshapes 13 to 24. In this sense, 

negligible modal property is missed while using tuned loaded interface modeshape. 

Another comparison is made between the eigenvectors corresponding to the nonlinear DOFs, 

obtained from the final ROM. In one of which, mistuned loaded interface modeshapes are used as one 

of the reduction basis. The diagonal MAC of the final ROM eigenvectors corresponding to the retained 

nonlinear DOFs is shown in Fig. 10. Note that, modeshapes of ROMs corresponding to Fig. 8 are used 

in computation of the diagonal MAC. As can be seen, modeshape are in an excellent correlation 

(higher than 0.99) with each other. Thus, the ROMs obtained based on either mistuned or tuned 

loaded interface modeshapes, give practically identical eigenvectors. 
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Fig. 10 Modal correlation between ROM eigenvectors based 

on tuned and mistuned loaded interface (LI) modes  

3.5 Results based on tuned 𝑲̂ partition 

As discussed in the mistuning modeling section, one assumption to simplify the mistuning introduction 

into the final reduced stiffness matrix is to neglect the effect of mistuning on the constraint modes 

corresponding to interface DOFs (i.e. considering a tuned 𝐾̂ partition in the 𝐾𝑅𝑂𝑀). The validity of this 

assumption is investigated here. 

 

Fig. 11 The influence of neglecting the mistuning in 𝐾 

partition on the accuracy of predicted eigenvalues by the 

ROM 

Figure 11 shows the difference between exact natural frequencies of a mistuned bladed disk (obtained 

from full FE in ANSYS) and those obtained from two different ROMs. The red curve shows the results 

obtained from the ROM with a tuned 𝐾̂ partition while the black curve represents the ROM results 

with a mistuned 𝐾̂ partition. As it is seen, results of the ROM with tuned 𝐾̂ are in good accordance 
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with results of the ROM with mistuned 𝐾̂. In fact, due to the minimal contribution of interface DOFs 

to system dynamics, neglecting the effect of mistuning on them is a valid assumption. 

3.6 Localized modeshapes 

The presence of mistuning can result in localization of vibration modes. This confines the vibration 

energy around few number of blades and increases their vibration amplitude, significantly. The 

capability of the proposed reduction technique in accurately predicting the mode localization is 

assessed here. To this end, a localized vibration mode, namely 107th mistuned mode with 

corresponding natural frequency of 372 Hz, is studied. It is worth mentioning that the ROM predicted 

the mistuned eigenvalue by 0.0096% error. Figure 12 shows a comparison between localized 

modeshapes obtained by ROM and FE model, for the 107th mistuned modeshape. Only axial 

component of modal displacements of an identical contact node on each blade, is used to plot the 

modeshapes. As can be seen, the proposed ROM can accurately model the localized modeshape and 

its results coincide with exact FE result. 

 

Fig. 12 Localized modeshapes obtained from ROM and 

FE model 

3.7 Results for forced response analysis 

For the nonlinear forced case, it is assumed that the global tangential and normal contact stiffnesses 

(i.e. ktx, kty and kn, respectively) have same values, and, the global tangential stiffness is uniformly 



GTP - 18 - 1596 Pourkiaee 27 

distributed among all local contact nodes. Here, the considered nominal values of the global contact 

stiffnesses are ktx=kty=kn=1e4 N/µm. The effect of static loads, are modeled by applying a constant 

normal preload (i.e. N0) on each contact node pair. Also, periodic external forces are modeled by a 

travelling wave type excitation of amplitude F0. Note that, two extra master nodes on each blade 

(located at the blade-shroud tip) are retained as the response and forcing nodes. The amplitude of the 

periodic response is computed based on a mono-harmonic balance procedure (only including the first 

harmonic). The tangential component of the periodic solution (calculated at the response node 

located on blade #1) is used to plot the forced response levels.  In all forced cases, a viscous damping 

with damping ratio 0.001   (similar for all modes) is considered. A ROM comprised of 240 CB and 

180 loaded interface modes, is used to carry out forced response computations. 

 

Fig. 13 Comparison of nonlinear forced response levels of 

mistuned ROMs and FE model (EO = 5) 

The accuracy of the ROMs (one with tuned 𝐾̂ and the other with mistuned 𝐾̂) in predicting the 

nonlinear forced response levels of a mistuned turbine bladed disk under EO excitation 5 is depicted 

in Fig. 13. As the reference, a CB-CMS reduced FE model; by retaining a large number of CB modes 

(namely 1200 modes) and retaining the same master DOFs as in the ROMs; is considered. This system 

is referred to as the Ref FE and in the case of nonlinear forced response analyses, all ROM results are 

compared with the results of the so-called Ref FE. As it is seen in Fig. 13, forced response results of 
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the ROM with tuned 𝐾̂ is in an excellent accordance with the results of the ROM with mistuned 𝐾̂ 

partition. This indicates that the effect of blade frequency mistuning on interface DOFs are negligible. 

Moreover, the results of both ROMs are in a very good agreement with Ref FE results. The predicted 

peaks around the resonance are in excellent match with the Ref FE for different values of preload-to-

excitation ratio (i.e. N0/F0). A very slight frequency shift (about 0.04 Hz or 0.025% error) is observed 

in the response levels predicted by ROMs, which is typical of reduced order models. It is evident from 

the figure, that decreasing the N0/F0 ratio will change the contact state from fully stick condition 

towards the gross slip. As a result, the increased damping introduced from the shrouds in microslip, 

decreases the response amplitudes. 

 
A 

 
B 

 
C 

D 

Fig. 14 Nonlinear forced response levels of the mistuned rom versus ref FE. a) N0/F0 = 5. b) 

N0/F0 = 2. c) N0/F0 = 1. d) N0/F0 = 0.5. 

Nonlinear forced response levels for EO 5 excitation within a high modal density region are shown in 

Fig. 14. Results of the ROM with tuned 𝐾̂ is presented and compared with Ref FE results. It is expected 

that the ROM with mistuned 𝐾̂ partition will give results of the same/higher accuracy. The investigated 
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frequency range is selected near a softening region of Fig. 3 and it comprises multiple blade dominated 

modes. As discussed before (in Fig. 3), blades and shrouds within this frequency range experience 

complex dynamic motions, blades undergo a torsional motion which results in a wavy motion (with a 

dominant component along axial direction) in the coupled shrouds. In the mistuned system, other ND 

modeshapes besides ND 5, are also present in the selected range. The accuracy of the ROM in 

predicting the nonlinear forced response levels is evaluated in this frequency range. As it is seen, the 

forced response levels predicted by the ROM are in an excellent accordance with the Ref FE results. 

In Fig. 14(A), the response levels of the tuned bladed disk, both in fully stuck and microslip conditions, 

are shown. It is seen that the response level of the fully stuck tuned system is higher than that of the 

mistuned one (for this specific considered blade), and that, despite the engine order excitation, 

multiple peaks are present within the frequency range. Moreover, for the considered blade (namely 

blade #1) the mistuned nonlinear response level is higher than that of the tuned one. It is an 

interesting result, that in microslip conditions, the mistuning can increase the nonlinear damped 

response levels. It should be noted that, the investigated frequency range is far from blade-disk 

veering regions and in this frequency range, disk does not contribute to the system dynamics, 

significantly. The effect of preload-to-excitation ratio on the damping performance is evident in Figs. 

14(A) to (D). For relatively higher values of N0/F0, it is seen that the contacts are in stick near low 

amplitude peaks and they behave like linear springs with no damping effects, while near high 

amplitude peaks, due to the higher relative displacements at contact nodes, the contacts are in 

microslip and the damping provided by the slip, decreases the periodic response amplitude. Further 

decreasing of N0/F0 values, increases the slip levels and as a result, the amplitude of the vibration is 

damped within the full frequency range. 
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Fig. 15 Nonlinear response amplification of the 

mistuned bladed disk (EO =5 and N0/F0 =5) 

Figure 15 demonstrates the response amplification phenomenon for a mistuned bladed disk in 

microslip condition. The system is under EO 5 excitation and N0/F0 is equal to 5. It is well known that, 

for linear systems, mistuning could increase the response levels. Here, the maximum nonlinear 

response of all blades is computed at each frequency. The depicted nonlinear response curve, is in 

fact the envelope of the maximum response of all blades. As it is seen the ROM (with tuned 𝐾̂) results 

are in excellent accordance with the Ref FE results. It is evident that, even in the presence of friction 

damping, the damped response of the mistuned system is increased by the amplification factor of 79% 

(with respect to the maximum response of the tuned system). It can be concluded that, since in the 

presence of friction damping, mistuning can increase the damped response levels by localizing the 

response around few number of blades, for an optimum design, the effect of mistuning and friction 

damping must be modeled simultaneously. 

4 Conclusion 

A new reduced order model for nonlinear dynamics of mistuned turbine bladed disks with shroud 

friction contacts was developed in this study. The novel reduction technique is based on small 

mistuning assumption (blade frequency mistuning). As a preliminary step, a single sector composed 

of one blade and the fundamental sector of the cyclic symmetry disk was considered. Based on the 

proposed reduction approach, a CB-CMS reduction was applied to the blade component, where 
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shroud contact DOFs and blade-disk interface DOFs were retained as master DOFs, and a modal 

reduction based on loaded interface modeshapes of the disk applied to the interface and disk 

components. Finally, it was shown how to extend the single sector results to the full structure. Based 

on the developed formulation, the reduced stiffness matrix of the mistuned system is computed by 

sector level calculations. Both linear analyses and nonlinear forced response results revealed the 

accuracy of the new reduction technique in predicting the dynamics of the mistuned system especially 

in high modal density regions. It was revealed that the mistuning can increase the damped response 

levels. It was shown that the effect of blade frequency mistuning on interface DOFs can be neglected 

without losing accuracy. This assumption, inevitably, results in a cheaper computational cost for 

statistical analyses. However, if deemed necessary by the analyst to take into account the effect of 

mistuning on interface DOFs, an exact formulation, based on sector level calculations, is provided with 

minimal computational cost, suitable for statistical analyses. In this research, the method was 

successfully applied to a mock-up bladed disk with shrouded blades, although the entire process can 

be applied to bladed disks with underplatform dampers. In that context, master DOFs during the CB-

CMS blade reduction should comprise both the blade-disk and the blade-damper interface DOFs. 
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Appendix A: Direct Sum of Matrices 
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The direct sum of two matrices of arbitrary size is defined as: 
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Appendix B: Reduced mass matrix construction 

Mass matrices in each reduction step are partitioned exactly in the same way as their corresponding 

reduced stiffness matrices. A more detailed description for mass matrices are given here. Accordingly, 

different partitions of 𝑀𝐶𝐵 are: 
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Implementing the same procedure as for stiffness matrix, final reduced mass matrix of a single sector 

yields: 
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One may obtain the final reduced stiffness matrix of the full system, as follows: 
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     . Finally, the alternative formulation for 𝑀̂ is 

expressed below. Using the operator introduced by Eqn. (29), the compact notation for 𝑀̂ takes the 

following form: 
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By adding and subtracting the Guyan mass matrix of the tuned blades to the interface DOFs of the 𝑀̂ 

central core and using Eqn. (B6), one may cast 𝑀̂ as follows: 
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Note this alternative formulation enables constructing the final reduced mass matrix by sector level 

calculations. 


