
HAL Id: hal-04663452
https://hal.science/hal-04663452v1

Submitted on 10 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Secure Deployment with Ansible: A Focus on
Least Privilege and Automation for Linux

Eddie Billoir, Romain Laborde, Ahmad Samer Wazan, Yves Rutschle,
Abdelmalek Benzekri

To cite this version:
Eddie Billoir, Romain Laborde, Ahmad Samer Wazan, Yves Rutschle, Abdelmalek Benzekri. Enhanc-
ing Secure Deployment with Ansible: A Focus on Least Privilege and Automation for Linux. Workshop
on Advances in Secure Software Deployments (ASOD 2024) at the19th International Conference on
Availability, Reliability and Security, Jul 2024, Vienne, Austria. pp.56, �10.1145/3664476.3670929�.
�hal-04663452�

https://hal.science/hal-04663452v1
https://hal.archives-ouvertes.fr

Enhancing Secure Deployment with Ansible: A Focus on Least
Privilege and Automation for Linux

Eddie Billoir
IRIT, Université de Toulouse, CNRS,

Toulouse INP, UT3
Airbus Protect
Toulouse, France

eddie.billoir@airbus.com

Romain Laborde
IRIT, Université de Toulouse, CNRS,

Toulouse INP, UT3
Toulouse, France

romain.laborde@irit.fr

Ahmad Samer Wazan
Zayed University

Dubai, United Arab Emirates
ahmad.wazan@zu.ac.ae

Abdelmalek Benzekri
IRIT, Université de Toulouse, CNRS,

Toulouse INP, UT3
Toulouse, France

abdelmalek.benzekri@irit.fr

Yves Rütschlé
Airbus Protect
Blagnac, France

yves.rutschle@airbus.com

ABSTRACT
As organisations increasingly adopt Infrastructure as Code (IaC),
ensuring secure deployment practices becomes paramount. Ansible
is a well-known open-source and modular tool for automating IT
management tasks. However, Ansible is subject to supply-chain at-
tacks that can compromise all managed hosts. This article presents a
semi-automated process that improves Ansible-based deployments
to have fine-grained control on administrative privileges granted
to Ansible tasks. We describe the integration of the RootAsRole
framework to Ansible. Finally, we analyse the limit of the current
implementation.

CCS CONCEPTS
• Security and privacy→ Access control; Operating systems secu-
rity.

KEYWORDS
Principle of Least privilege, Ansible, Infrastructure as Code, Security
ACM Reference Format:
Eddie Billoir, Romain Laborde, Ahmad Samer Wazan, Abdelmalek Benzekri,
and Yves Rütschlé. 2024. Enhancing Secure Deployment with Ansible: A
Focus on Least Privilege and Automation for Linux. In The 19th International
Conference on Availability, Reliability and Security (ARES 2024), July 30–
August 02, 2024, Vienna, Austria. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3664476.3670929

1 INTRODUCTION
Infrastructure as Code (IaC) aims at automating infrastructure de-
ployment based on practices from software development [10]. This
approach makes the provision and change of IT infrastructures and
their configuration faster using automatic, consistent and reusable

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
Request permissions from owner/author(s).
ARES 2024, July 30–August 02, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3670929

procedures. In addition, IaC enhances transparency because the
code of the infrastructure can be reviewed and audited. IaC also
deeply modifies the IT administration processes since administra-
tors can now apply an Agile approach such as Continuous Integra-
tion/Continuous Delivery to quickly adapt their IT infrastructure
to new business requirements and recover from security incidents.
Having such a controlled and repeatable change management pro-
cess improves both speed and reliability.

Ansible is a well-known open-source, modular tool to automate
IT management tasks such as software provisioning, configuration
management, and application deployment functionality [4]. System
administrators can describe repeatable IT management tasks in
script files, called playbooks, that specify the sequence of actions
to be applied to the managed hosts. It supports a large range of op-
erating systems, cloud platforms, and network devices. it improves
the predictability of IT tasks, keeping an idempotent behaviour,
which means executing one time or multiple times a playbook will
always result in the same state for the target managed hosts.

Ansible provides a large collection of ready-to-use content (plu-
gins, modules, roles and playbooks) that simplifies the automation
of common server tasks such as installing packages, creating and
managing users, manipulating files and permissions, and managing
services. One of the main strengths of Ansible is the ease with
which these third-party features can be used to speed up deploy-
ment process implementation.

However, using third-party Ansible content implies that organ-
isations must entrust administrative responsibilities to external
entities. When administrative responsibilities are delegated to ex-
ternal entities, the security of the entire supply chain depends on
the robustness of these third-party systems. If these dependencies
are compromised through negligence or malice, the consequences
can potentially lead to data breaches, service interruptions or even
a complete infrastructure compromise. The recent supply chain
attack which installed a backdoor on the ‘xz’ Linux utility in March
2024 is a good example of how systems can be exploited through
a single dependency [7]. This backdoor was quietly implemented
during a minor update of the software. To address these risks, the
Zero-Trust Architecture [13] security model presents many security

https://orcid.org/0000-0001-5292-3008
https://doi.org/10.1145/3664476.3670929
https://doi.org/10.1145/3664476.3670929
https://doi.org/10.1145/3664476.3670929

ARES 2024, July 30–August 02, 2024, Vienna, Austria

practices and requirements to manage this supply chain effectively.
One of its core requirements is the principle of least privilege.

The principle of least privilege (POLP) is an engineering process
that involves understanding users’ responsibilities to grant them
only the minimum permissions required to accomplish their tasks
using computer systems [14]. This principle applies to all users,
especially those responsible for system administration, who often
possess critical administrative privileges.

However, Ansible does not respect POLP properly for adminis-
trative tasks. Ansible escalates to full administrative rights using
the sudo [16] command when a playbook requires some adminis-
trative privileges. Consequently, if a playbook which depends on
third-party artefacts requests administrative privileges, the third
party can have full administrative privileges on the managed hosts.
For example, this can have dramatic consequences if the third-party
artefact installs a backdoor. This issue is primarily due to design
decisions in the underlying operating systems [5].

This article presents a semi-automated process that improves
Ansible-based deployments to grant fine-grained administrative
privileges to Ansible tasks. This process allows an administrator to
know what administrative privileges are required by a playbook
and the third-party artefacts. We also implemented a module to use
RootAsRole [17] instead of sudo to execute Ansible tasks that re-
quire administrative privileges on the operating system. This helps
System administrators minimise their administrative privileges and
validate them at run time. Consequently, this limits the impact of a
potential supply chain attack.

The rest of this article is structured as follows. Section 2 intro-
duces the Ansible framework. It also gives a detailed example of a
supply chain attack that can affect systems managed by Ansible. In
section 3, we present the administrative privilege model of Linux
and how the RootAsRole project can improve the management of
Linux administrative privileges. Section 4 shows how the RootAs-
Role framework can be integrated with Ansible and discusses its
security benefits. We discuss the potential and limitations of the
presented work in section 5. Finally, we conclude this paper in
section 6.

2 DEPLOYING CONFIGURATIONS USING
ANSIBLE

In this section, we briefly introduce the main concepts of Ansible.
Then, we present a use case to illustrate the supply chain attack
problem.

2.1 Introduction to Ansible
An Ansible environment consists of one control node (the system
on which Ansible is installed) and a set of managed hosts (the
systems that are controlled by Ansible). An administrator writes
playbooks that describe the desired state of the controlled hosts
and every task to reach it. The administrator should also create an
inventory that describes the list of managed nodes in a logically
organized manner. Ansible doesn’t need to install specific agents on
the managed nodes. When the administrator executes a playbook,
the control host generally communicates with managed nodes via
SSH to transfer the configuration scripts to the managed hosts and

Target
infrastructure

deploy
through SSH

Ansible Control
host

playbook

Managed host

Managed host

Managed host

Target
Inventory

Figure 1: Example of an Ansible environment

execute them remotely. For example, in Figure 1, an Ansible control
host deploys a new configuration on three managed hosts.

Additionally, Ansible introduces the feature of Roles, which are
reusable, self-contained units of automation artefact that bundle
tasks, variables, templates, and configurations. Roles can be dis-
tributed directly or inside Ansible collections which are a distribu-
tion format for Ansible content that can include playbooks, roles,
modules, and plugins to address a set of related use cases. For in-
stance, a collection might automate the administration of a specific
database or a specific server. Collections can be shared with the
community and installed from distribution servers, such as Ansible
Galaxy.

2.2 The supply chain attack example
Let’s consider Alice, Dorine and Mallory. Alice is a system ad-
ministrator who is responsible for the deployment process of an
Apache2 webserver. Dorine is a web developer for the website con-
tent. Mallory is an Ansible Galaxy contributor; she created the role
‘mallory.net_intput’ to simplify the configuration of the firewall
policy on many Unix systems. To deploy the production infrastruc-
ture, Alice starts by writing a playbook presented in Figure 2. As
she doesn’t develop the website and isn’t a network administrator,
she decides to refer to Dorine to deploy the website content and to
Mallory’s community role to open the port on the firewall for the
webserver. The playbook is described below :

(1) In line 2, she starts by describing the title of the playbook.

Enhancing Secure Deployment with Ansible: A Focus on Least Privilege and Automation for Linux ARES 2024, July 30–August 02, 2024, Vienna, Austria

 1.|---
 2.|- name: Ansible Playbook to Install and Setup Apache on Ubuntu
 3.| hosts: webserver
 4.| become: true
 5.| roles:
 6.| - mallory.net_input
 7.| tasks:
 8.| - name: Install latest version of Apache
 9.| apt: name=apache2,iptables update_cache=yes state=latest
10.| - name: Create document root for domain configured in host variable
11.| file:
12.| path: "/var/www/{{ http_host }}"
13.| state: directory
14.| owner: www-data
15.| group: www-data
16.| mode: '0755'
17.| - name: Deploy website source code
18.| import_playbook:
19.| playbook: deploy-website.yml
20.| - name: Set up virtualHost
21.| template:
22.| src: "../templates/apache-template.conf.j2"
23.| dest: "/etc/apache2/sites-available/{{ http_conf }}"
24.| - name: Enable site
25.| command: a2ensite {{ http_conf }}
26.| notify: restart-apache
27.| - name: open port 80
28.| ansible.builtin.import_role:
29.| name: mallory.net_input
30.| vars:
31.| net_input_protocol: tcp
32.| net_input_port: 80
33.| net_input_state: accepting
34.| handlers:
35.| - name: restart-apache
36.| service:
37.| name: apache2
38.| state: restarted

Figure 2: Example of a playbook to install and configure an
Apache2 server

(2) In line 3, she declares to grant every task administrative
privileges on the managed hosts. By default, Ansible will use
‘sudo’ to elevate the privileges to root.

(3) In line 4, she defines on which managed hosts this playbook
is being run.

(4) In lines 5-6, she imports the (dummy) ‘mallory.net _input’
Ansible Galaxy community role in the playbook tasks.

(5) In lines 8-9, she mandates the ‘apt’ module to enforce the
‘apache2’ package to be installed and in the ‘latest’ state.

(6) In lines 10-16, shemandates the ‘file’ module that ‘/var/www/
http_host ’ path is a directory owned by ‘www-data’ with
specific discretionary permissions.

(7) In lines 11-19, she delegates the website implementation
deployment to the ‘deploy-website.yml’ playbook. In this ex-
ample, this playbook is written by Dorine who is an internal
web developer.

(8) In lines 20-23, she deploys the Apache2 configuration.
(9) In lines 24-26, she mandates that the Apache2 configuration

is enabled by the webserver and notifies the “restart-apache”
handler in line 41.

(10) In lines 27-33, she calls ‘mallory.net_input’ role in verifying
that the firewall accepts incoming HTTP requests

(11) In lines 35-38, she declares a handler that restarts the apache2
software daemon. It is called in line 26 if the calling task is
modifying the system state.

It is important to note in this example that Ansible will ex-
ecute the ‘mallory.net_input’ community role and the ‘deploy-
website.yml’ playbook on the managed host with all administrative
privileges. Although using the role simplifies Alice’s playbook im-
plementation, it hides many tasks that are not directly visible. How-
ever, Alice is security-aware and should have already checked every
task of every used dependency. Figure 3 presents the dependency
graph and who can write on each dependency.

Once the playbook has been successfully tested on Alice’s per-
sonal development infrastructure, let’s introduce her deployment

Figure 3: The playbook dependency graph

team: Bob and Charlie. Bob is responsible for testing the deploy-
ment process in a production-representative infrastructure. Charlie
is responsible for deploying playbooks in the real production infras-
tructure. Alice asks Bob to test it on a production-representative
infrastructure. If everything works properly, Bob tells Charlie that
the playbook is ready for production deployment, and Charlie per-
forms the deployment. This process is shown in Figure 4. Although
this deployment process can represent a heavy workload, it ensures
that the playbook process is maintained and knowledge is shared.

After multiple successful deployments on production, Mallory,
the maintainer of the ‘mallory.net_input’ Ansible role, decides to
perform a supply-chain attack by injecting a reverse shell into
her tasks, i.e., opening a new port on the firewall and binding a
full-privileged shell to it. As her current Ansible process is fully
privileged, the malicious process can silently suppress security
mechanisms, setting its own veiled monitoring system to avoid
external anomaly detection. This way, Mallory can attack the pro-
duction environment in the next deployments. The recent case of
the ‘xz’ supply-chain attack is similar to our example [2].

We believe enforcing the principle of least privilege more pre-
cisely to ensure that every Ansible task is only granted administra-
tive privileges for its objective will avoid such an attack.

3 ADMINISTRATIVE PRIVILEGE
MANAGEMENT ON LINUX

In this section, we present the administrative privileges manage-
ment on Linux systems. After introducing Linux capabilities, we
list available tools for managing administrative privileges.

ARES 2024, July 30–August 02, 2024, Vienna, Austria

Figure 4: Project process to deploy in production example

3.1 Linux capabilities
Historically, Linux administration was based on the existence of a
privileged user, the superuser or root, whose identifier value was 0.
Checking whether a user’s identifier was equal to zero was a basic
way of checking whether a process could bypass access restric-
tions or security features. This approach to managing privileges
on Linux is incorrect. It does not adhere to the principle of least
privilege, as administrative tasks may have different objectives,
such as managing network configuration or bypassing file access
controls.

In 1998, Linux implemented the Linux Capabilities feature, which
defines a set of privileges that can be independently granted to pro-
cesses. This granular approach allows administrators to limit the
scope of administrative powers. For example, CAP_SYS_TIME is a
capability that is needed to set the system clock, and CAP_DAC_

OVERRIDE allows bypassing the DAC file-system access control.
However, since this feature exists, its adoption in the Linux com-
munity was difficult. Indeed, the initial version prerequisites the
configuration of extended attributes in the file system to define
how privileges are granted and inherited between processes. This
prerequisite is unsuitable for many use cases because the file system
configuration is static, and processes can be instantiated dynami-
cally.

Since 2015, Linux has added the ‘Ambient’ feature to Linux Ca-
pabilities, which allows programs to define which privileges are
inherited by parent processes independently from the file system.
This new feature matches the dynamic behaviours of processes.
However, this new feature doesn’t significantly change its adoption
rate. Indeed, many other technical reasons still make the feature
unpractical, such as file-extended attributes drawbacks, its com-
plete but complex documentation or even its lack of tools [18]. One
major conceptual issue with Linux capabilities is that they are still
coarse-grained, regrouping multiple use cases for one privilege.

3.2 The sudo command
‘sudo’ is the main utility used to assign administrative privileges on
Linux. It is a command-line tool that allows a system administrator
to delegate authority to give certain users (or groups of users) the
ability to run some (or all) commands as root or another user while
providing an audit trail of the commands and their arguments [16].
By default, when there is ‘become: true’ instruction in an Ansible
playbook, Ansible uses the ‘sudo’ tool to switch from the current
unprivileged user to the superuser. However, the ‘sudo’ command
does not handle Linux capabilities, so when Ansible uses sudo,
the process executed on the managed host always gains all Linux
privileges for any task surrounded by the ‘become: true’ instruction.

3.3 SELinux
To apply the POLP even more fine-grained, SELinux is a security so-
lution integrated into Linux Kernel as a Linux Security Module [15].
This solution is designed to enforce mandatory access controls
(MAC) on processes and files, providing a robust mechanism for
access control that overrides traditional discretionary access con-
trols (DAC) [9, 12]. According to the implemented policy, SELinux
restricts the specific kernel actions that processes are allowed to
perform on system resources. Since SELinux controls kernel secu-
rity access control, every right of SELinux is kernel-level, making
it difficult to configure manually as it has many rights. To solve
it, RedHat company propose to combine the ‘auditd’ program to
automatically configure SELinux based on monitoring output [11].
Auditd is a Linux daemon that allows any administrator to audit
system events on a Linux system. It monitors activities such as file
accesses, logins, and other system-level behaviours. By integrating
‘auditd’ with SELinux, RedHat provides a powerful solution for
managing SELinux security policies effectively. However, SELinux
does not change the traditional Linux capabilities; it just adds fur-
ther constraints [1]. Furthermore, RedHat documentation shows
how to use privileged commands with the ‘sudo’ tool, which does
not manage the Linux capabilities feature [11].

One important notion with capabilities is that they often change
the behaviour of the kernel, so the second part of access control

Enhancing Secure Deployment with Ansible: A Focus on Least Privilege and Automation for Linux ARES 2024, July 30–August 02, 2024, Vienna, Austria

conditions accesses another part of the kernel. For example, when
executing ‘fork()’ with CAP_SYS_RESOURCE, the kernel bypasses
the subprocess limit set on the system. SELinux could manage this
behaviour by denying every CAP_SYS_RESOURCE capability re-
quest for the concerned process. As SELinux currently recommends
‘sudo’ in documentation, this approach is not the right way to man-
age the case, as it first grants the privilege with ‘sudo’ and then
denies it with SELinux [14]. The proper solution is to manage Linux
capabilities.

3.4 The RootAsRole project
The RootAsRole project provides new security mechanisms for
controlling Linux capabilities at the user level. Its main features
are similar to sudo, except it applies a Role-based access control
model [8] and manages Linux capabilities. It includes three utility
commands ‘sr’, ‘chsr’ and ‘capable’. The ‘sr’ command [6] (abbrevi-
ation for “Switch Role”) allows the execution of commands using
only the minimum required capabilities. With the ‘chsr’ (abbrevia-
tion for “CHange Switch Role”) tool, an administrator can specify in
RootAsRole policies administrative tasks which consist of a Linux
command, including constraints on the parameters, the set of Linux
capabilities granted for this specific task and optionally, the uid
and/or the gid to use when executing the command. The tasks are
associated with roles which are assigned to users. Unlike the sudo
command, changing the uid/gid is not necessary for executing a
command with administrative privileges. Determining which Linux
capabilities are required for a specific command line can be compli-
cated. To solve this issue, RootAsRole proposes the ‘capable’ tool,
which automatically identifies the Linux capabilities requested by
a program for a specific use case, simplifying its configuration.

4 MANAGING LINUX CAPABILITIES FOR
ANSIBLE TASKS

In this section, we outline a new method to enforce the principle
of least privilege by limiting the capabilities granted to Ansible
tasks using the RootAsRole framework. Our proposal involves two
aspects: 1) integrating RootAsRole in the Ansible framework, 2)
integrating the principle of least privilege in a devops process.

Firstly, we modified the Ansible dependency to ‘sudo’ for execut-
ing privilege operations on the managed host to the RootAsRole ‘sr’
command which allows us to precisely control the Linux capabili-
ties granted to the process. Fortunately, Ansible is highly modular
and allows the development of its own ‘become’ module to replace
the default one [3]. Therefore, we developed an extension to in-
clude ‘sr’ as a new method available in the Ansible playbook when
module ‘become’ is called. Based on this new module, we could
integrate RootAsRole in both the Ansible playbook specification
and verification process, as well as the Ansible playbook execution
process.

The source code of the proof-of-concept presented in this sec-
tion is available at this address: https://anonymous.4open.science/
r/RootAsAnsible-641F.

 1.|---
 2.|- name: Ansible Playbook to Install and Setup Apache on Ubuntu
 3.| hosts: webserver
 4.| become: true
 5.| become_method: sr
 6.| gather_facts: false
 7.| roles:
 8.| - mallory.net_input
 9.| tasks:
10.| - name: Install latest version of Apache
11.| become_flags: "-r deploy_apache -t install_apache2"
12.| apt: name=apache2,iptables update_cache=yes state=latest
13.| - name: Create document root for domain configured in host variable
14.| become_flags: "-r deploy_apache -t create_document_root"
15.| file:
16.| path: "/var/www/{{ http_host }}"
17.| state: directory
18.| owner: www-data
19.| group: www-data
20.| mode: '0755'
21.| - name: Deploy website source code
22.| become_flags: "-r deploy_apache -t deploy_website"
23.| import_playbook:
24.| playbook: deploy-website.yml
25.| - name: Set up virtualHost
26.| become_flags: "-r deploy_apache -t setup_virtualhost"
27.| template:
28.| src: "../templates/apache-template.conf.j2"
29.| dest: "/etc/apache2/sites-available/{{ http_conf }}"
30.| - name: Enable site
31.| become_flags: "-r deploy_apache -t enable_site"
32.| command: a2ensite {{ http_conf }}
33.| notify: restart-apache
34.| - name: open port 80
35.| become_flags: "-r deploy_apache -t open_port_80"
36.| ansible.builtin.import_role:
37.| name: mallory.net_input
38.| vars:
39.| net_input_protocol: tcp
40.| net_input_port: 80
41.| net_input_state: accepting
42.| handlers:
43.| - name: restart-apache
44.| become_flags: "-r deploy_apache -t restart_apache"
45.| service:
46.| name: apache2
47.| state: restarted

Figure 5: Modified playbook to add RootAsRole become
method, role and tasks per ansible task

4.1 Integrating RootAsRole and Ansible
Now that RootAsRole is integrated into Ansible, Alice can benefit
from the new features. Alice will slightly modify her playbook to
become the one in Figure 5. The additions are as follows:

(1) In line 5, the utility command used to escalate privileges is
changed to the RootAsRole ‘sr’ command. This module was
specially developed for this work.

(2) In line 6, Alice disables system information gathering. By de-
fault, Ansible gathers system information for every module.
However, it is not needed for the proof-of-concept purpose.

(3) In lines 11, 14, 22, 26, 31, 35, and 44, Alice mandates RootAs-
Role to use the ‘deploy_apache’ role and a specific RootAs-
Role task. There will be one RootAsRole task for each Ansible
task in the playbook.

Alice (or someone else) should also write the RootAsRole policy.
A RootAsRole policy specifies a set of roles. Each role consists of
the set of actors who can play this role and the set of tasks that can
be performed by these actors according to this role. Finally, a task
defines the set of commands and the granted Linux capabilities.
RootAsRole includes the utility ‘capable’ to help the RootAsRole
policy creator determine the Linux capabilities required by a com-
mand. Then, Alice can test every task in her playbook with the
‘capable’ module to write her RootAsRole policy.

Figure 6 is the sample of the RootAsRole policy dedicated to
the Mallory’s role usage. The full policy is available at https://
anonymous.4open.science/r/RootAsAnsible-641F. This policy sam-
ple should be interpreted as follows:

(1) Line 12 declares the “deploy_apache” role.

https://anonymous.4open.science/r/RootAsAnsible-641F
https://anonymous.4open.science/r/RootAsAnsible-641F
https://anonymous.4open.science/r/RootAsAnsible-641F
https://anonymous.4open.science/r/RootAsAnsible-641F

ARES 2024, July 30–August 02, 2024, Vienna, Austria

 1.|{
 2.| "version": "3.0.0-alpha.4",
 3.| "storage": {
 4.| "method": "json",
 5.| "settings": {
 6.| "immutable": false,
 7.| "path": "/etc/security/rootasrole.json"
 8.| }
 9.| },
10.| "roles": [
11.| {
12.| "name": "deploy_apache",
13.| "actors": [
14.| {
15.| "type": "group",
16.| "groups": [
17.| "ansible"
18.|]
19.| }
20.|],
21.| "tasks": [
22.| {
23.| "name": "open port 80",
24.| "purpose": "Open port 80 for Apache",
25.| "cred": {
26.| "capabilities": {
27.| "default": "none",
28.| "add": [
29.| "CAP_NET_ADMIN",
30.| "CAP_NET_RAW",
31.| "CAP_DAC_READ_SEARCH"
32.|]
33.| }
34.| },
35.| "commands": {
36.| "default": "all"
37.| }
38.| },
39.| // TRUNCATED FOR BREVITY
40.|]
41.| }
42.|]
43.|}

Figure 6: Sample RootAsRole policy associated with the play-
book

(2) Line 14-19 assign users who are members of the Linux group
“ansible” to the RootAsRole “deploy_apache” role.

(3) Line 22-38 defines a task named “open port 80” that allows
all commands with only required privileges for modifying
the firewall without changing the user, i.e. Linux capabilities
CAP_NET_ADMIN, CAP_NET_RAW, and CAP_DAC_READ
_SEARCH.

4.2 Security Benefits
With this new security measure enforced, Mallory’s supply chain
attack becomes more complex because she cannot access the full set
of administrative privileges, and OS security mechanisms remain
active to detect or avoid the attack. For instance, in her network
task, Mallory only needs CAP_NET_ADMIN, CAP_NET_RAW, and
CAP_DAC_READ_SEARCH privileges as a regular user. Even if
Mallory manages to create a reverse shell, she still does not elevate
to full root privileges. These privileges allow her to configure the
system network effectively. However, holding these privileges pre-
vents her from altering the entire configuration or controlling the
monitoring systems.

Consequently, she is compelled to seek alternative routes to
access the system, which remains under surveillance and provides

only limited access. Furthermore, Mallory cannot gain additional
privileges in her reverse shell due to a feature in Linux capabilities
used by RootAsRole called the Bounding set. This security feature is
the set that defines which privileges exist for the process. Removing
them from this set avoids privilege escalation, regardless of the
method used. Thus, RootAsRole prevents any sub-process from
acquiring more privileges than those specified in its Bounding set,
effectively blocking Mallory from escalating her privileges within
the shell.

However, Mallory’s supply-chain attack cannot be completely
avoided. Indeed, if its process is not containerized, she can still in-
tercept network-monitoring packets. To solve this, we recommend
creating a new policy module with SELinux only to allow firewall
rules to be inspected and an incoming HTTP network packet rule
to be added [11]. By combining RootAsRole and SELinux policies,
administrators can enforce POLP for administration tasks more ef-
ficiently using best practices and avoid most supply-chain attacks.

Alice can now transmit her playbook with the associated RootAs-
Role policy to Bob for testing. Bob integrates Alice’s playbook into
his testing playbook, which deploys the RootAsRole policy on the
testing infrastructure before importing her playbook. Once the de-
ployment is successful in many cases, Bob can send his playbook
to Charlie. Charlie verifies that the inventory matches well with
Bob’s one before deploying it.

Once these verifications and fixes are done and the playbook is
still functioning, Bob can send the final Alice’s playbook and its
fixed RootAsRole policy to Charlie for updating or deployment pur-
poses. Then Charlie deploys the new RootAsRole policy if needed
and executes Alice’s playbook.

5 DISCUSSION & FUTUREWORKS
We discuss in this section the limitations of the current solution
and present future works.

5.1 Automated generation of RootAsRole
policies based on Ansible playbooks

Alice can identify the required privileges for each playbook task
with the RootAsRole ‘capable’ utility. Currently, this process is
manual and time-consuming. To obtain all the required privileges
for a use case, Alice must start by executing ‘capable’ for the first
Ansible task in the playbook without any administrative privilege.
The ‘capable’ utility outputs a first set of privileges required by
the task, and then Alice needs to grant these privileges (or those
pertain) to the tested command and repeat the process until the
task succeeds. She needs to execute this process for each task in
her playbook.

This process could be automated with Ansible. Indeed, we could
imagine developing a new module that automates this process. This
module could execute Alice’s playbook, surrounding each task with
the ‘capable’ tool, and determining the required privileges based on
the execution in a testing environment. This module should create a
RootAsRole policy and a modified playbook per the generated role
in the policy. Of course, the generated policy has to be validated by
the administrator before being deployed.

Enhancing Secure Deployment with Ansible: A Focus on Least Privilege and Automation for Linux ARES 2024, July 30–August 02, 2024, Vienna, Austria

sr /bin/sh -c ".tmp/temporaryfile.sh"

Figure 7: Command-line executed by Ansible for a task

5.2 Adapting RootAsRole to Ansible specifities
The RootAsRole policy written in Figure 6 does not respect POLP
completely. Indeed, as specified in line 36, the task restricts the
Linux capabilities but it allows any commands for the task. This
issue is due to an Ansible limitation. Indeed, when deploying a
task, Ansible connects through SSH, copies some script files to a
temporary folder on the managed host, and executes them. These
files could be bash scripts, Python programs, or any executable
program. Then, Ansible prepares a command line to execute the
file; if the task requires it, Ansible calls a ‘become’module to escalate
privileges. For example, the final executed command is structured
with sr as shown in Figure 7.

As a potential solution, RootAsRole can check the integrity of the
program using a hash. However, in this case, the checked program
is the interpreter (here it is ‘/bin/sh’) but not the Ansible script. This
first issue requires a new RootAsRole plugin specifically designed
for Ansible deployments.

Another challenge with hash checking is that administrators
must compute the hash for each deployed Ansible script, covering
a wide range of usage scenarios, and then repeat the permission
deployment process for each update to Ansible. Since we aim at
avoiding supply-chain attacks, which typically foothold in a soft-
ware update, implementing a new RootAsRole policy every time
Ansible is updated proves inefficient. Furthermore, if the RootAs-
Role policy generation is automated, it could inadvertently grant
access to the supply-chain attack within the RootAsRole policy.
This challenge still needs to be addressed.

6 CONCLUSION
The adoption of Infrastructure as Code (IaC) is transforming IT
operations, streamlining deployment processes and strengthening
system resilience. While IaC accelerates provisioning and configura-
tion tasks with its automated, consistent, and auditable procedures,
Ansible empowers administrators with precise orchestration capa-
bilities across diverse environments.

However, the reliance on third-party Ansible content under-
scores the need to address supply-chain risks, particularly tasks
that require administrative privileges. In this article, we present a
first attempt to implementing the principle of least privileges in the

Ansible framework by integrating RootAsRole. Our work enables
security administrators to control administrative privileges granted
to Ansible tasks.

For future work, we need to automate the process for generating
RootAsRole policies to decrease the workload and apply POLPmore
finely in deployments, marking an ongoing evolution of robust
IT infrastructures. We will also investigate further RootAsRole
improvements to adapt to Ansible deployments

REFERENCES
[1] Anderson. 2021. Answer to "How to Add a Capability to SELinux Custom Role?".
[2] (@AndresFreundTec@mastodon.social) AndresFreundTec. 2024. I Accidentally

Found a Security IssueWhile Benchmarking Postgres Changes.If You Run Debian
Testing, Unstable or Some Other More "bleeding. . . .

[3] Ansible project. 2024. Become Plugins — Ansible Community Documen-
tation. https://docs.ansible.com/ansible/latest/plugins/become.html#become-
plugin-list.

[4] Ansible project. 2024. Homepage | Ansible Collaborative.
https://www.ansible.com/.

[5] Eddie Billoir, Romain Laborde, Ahmad Samer Wazan, Yves Rütschlé, and Ab-
delmalek Benzekri. 2023. Implementing the Principle of Least Privilege Us-
ing Linux Capabilities: Challenges and Perspectives. In 2023 7th Cyber Secu-
rity in Networking Conference (CSNet). IEEE, Montreal, QC, Canada, 130–136.
https://doi.org/10.1109/CSNet59123.2023.10339753

[6] Eddie Billoir, Ahmad Samer Wazan, Romain Laborde, and Benzekri Abdelmalek.
2024. LeChatP/RootAsRole.

[7] Evan Boehs. 2024. Everything I know about the XZ backdoor. Boehs, Evan.
https://boehs.org/node/everything-i-know-about-the-xz-backdoor

[8] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. 2001. Proposed NIST standard for role-based ac-
cess control. ACM Trans. Inf. Syst. Secur. 4, 3 (aug 2001), 224–274. https:
//doi.org/10.1145/501978.501980

[9] Carl E. Landwehr. 1981. Formal Models for Computer Security. Comput. Surveys
13, 3 (Sept. 1981), 247–278. https://doi.org/10.1145/356850.356852

[10] K Moris. 2021. Infrastructure as Code Dynamic Systems for the Cloud Age.
[11] Red Hat. 2024. Using SELinux Red Hat Enterprise Linux 8 | Red

Hat Customer Portal. https://access.redhat.com/documentation/fr-
fr/red_hat_enterprise_linux/8/html-single/using_selinux/index.

[12] Red Hat. 2024. What Is SELinux? https://www.redhat.com/en/topics/linux/what-
is-selinux.

[13] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. 2020. Zero Trust
Architecture. https://doi.org/10.6028/NIST.SP.800-207

[14] J.H. Saltzer and M.D. Schroeder. 1975. The Protection of Information in Computer
Systems. Proc. IEEE 63, 9 (Sept. 1975), 1278–1308. https://doi.org/10.1109/PROC.
1975.9939

[15] Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implementing SELinux
as a Linux security module. NAI Labs Report 1, 43 (2001), 139.

[16] Sudo. 2023. Sudo-Project/Sudo. Sudo Project.
[17] Ahmad Samer Wazan, David W Chadwick, Remi Venant, Eddie Billoir, Romain

Laborde, Liza Ahmad, andMustafa Kaiiali. 2022. RootAsRole: a security module to
manage the administrative privileges for Linux. Computers & Security pre-proof,
102983 (2022), 24.

[18] Ahmad Samer Wazan, David W. Chadwick, Remi Venant, Romain Laborde, and
Abdelmalek Benzekri. 2021. RootAsRole: Towards a Secure Alternative to Sudo/Su
Commands for Home Users and SME Administrators. In ICT Systems Security and
Privacy Protection, Audun Jøsang, Lynn Futcher, and Janne Hagen (Eds.). Vol. 625.
Springer International Publishing, Cham, 196–209. https://doi.org/10.1007/978-
3-030-78120-0_13

https://doi.org/10.1109/CSNet59123.2023.10339753
https://boehs.org/node/everything-i-know-about-the-xz-backdoor
https://doi.org/10.1145/501978.501980
https://doi.org/10.1145/501978.501980
https://doi.org/10.1145/356850.356852
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1007/978-3-030-78120-0_13
https://doi.org/10.1007/978-3-030-78120-0_13

	Abstract
	1 Introduction
	2 Deploying configurations using Ansible
	2.1 Introduction to Ansible
	2.2 The supply chain attack example

	3 Administrative Privilege Management on Linux
	3.1 Linux capabilities
	3.2 The sudo command
	3.3 SELinux
	3.4 The RootAsRole project

	4 Managing Linux capabilities for Ansible tasks
	4.1 Integrating RootAsRole and Ansible
	4.2 Security Benefits

	5 Discussion & future works
	5.1 Automated generation of RootAsRole policies based on Ansible playbooks
	5.2 Adapting RootAsRole to Ansible specifities

	6 Conclusion
	References

