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Towards an asymptotic analysis of the anisotropic
Ginzburg-Landaumodel

Dmitry Golovaty, Petru Mironescu and Peter Sternberg

July 27, 2024

To the memory of Haïm Brezis, a friend and amentor

Abstract

We develop a set of tools for the asymptotic analysis of minimizers of the anisotropic
Ginzburg-Landau functional among the admissible competitors with Dirichlet boundary
datum of negative degree−D. As a byproduct of our analysis, we prove that the energy of
a minimizer isK ln(1/ε) + o(ln(1/ε)), whereK depends only onD and on the physical
constants occurring in the functional.

1 Introduction

Minimizing the Ginzburg-Landau energy in a 2D domain subject to Dirichlet boundary
conditions has been well understood since the seminal contribution of Bethuel, Brezis, and
Hélein [2]. In particular, there is no distinction between the analysis ofminimizers for bound-
ary datumofpositive andnegative degree as the two cases are related by conjugation. However,
somewhat surprisingly, when theDirichlet integral is broken into the sumof the squares of the
divergence and curl with arbitrary positive weights, the distinction arises. Such a decomposi-
tion of the gradient is notmerely an academic exercise as it arises inmodeling of nematic liquid
crystals, in particular within the context of the Oseen-Frank model for uniaxial nematics, see
[22].

Thecaseofpositivedegree, consideredbyColbert-Kelly andPhillips in [5], is reducible to the
standard treatment, following the ideas of [2]. This reduction relies on existence of degree one
singularities with bounded energy that are purely divergence or purely curl, and there do not
exist analogous vector fields of negative degree. Other interesting cases include extreme situa-
tions of high anisotropy when the ratio of the elastic constants is vanishingly small. For exam-
ple, Golovaty, Sternberg, and Venkatraman [10] show that limiting configurations may exhibit
line singularities accommodating high deformation cost associated with divergence through
the emergence of jumps in the tangential component. In a related work, Kowalczyk, Lamy,
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and Smyrnelis [13] construct entire solutions of the Euler-Lagrange equations having negative
degree and possessing equivariant symmetry.

In this paper, we develop some tools that we believe should be helpful in completing the
asymptotic analysis of the minimization problem for the anisotropic Ginzburg-Landau func-
tional, subject to boundary datum of negative degree. We begin by providing the precise state-
ment of the problem and establishing some necessary notation.

1.1 The problem
We letΩ ⊂ R2 ∼ C be a smooth bounded domain that we assume to be simply connected. For
technical reasons, we occasionally also assume thatΩ is strictly star-shaped. ForK1, K3 > 0,
ω ⊂ Ω and u : ω → C, we consider the energies

E0(u) = E0(u, ω) :=
K1

2

ˆ
ω

(div u)2 +
K3

2

ˆ
ω

(curlu)2

and

Eε(u) = Eε(u, ω) := E0(u) +
1

4ε2

ˆ
ω

(1− |u|2)2,

where ε > 0. With no loss of generality, we assume thatK1 +K3 = 2. Noting that

K1

2
(div u)2 +

K3

2
(curlu)2 =

K3

2
(div ıu)2 +

K1

2
(curl ıu)2,

wemay assume in the analysis below thatK1 ≥ K3, so that we can write

K1 = 1 + δ, K3 = 1− δ, with 0 ≤ δ < 1. (1.1)

For u : ω → C, we denote by

G0(u) = G0(u, ω) :=
1

2

ˆ
ω

|∇u|2,

and

Gε(u) = Gε(u, ω) := G0(u) +
1

4ε2

ˆ
ω

(1− |u|2)2,

the standard Dirichlet and Ginzburg-Landau energies, respectively. When δ = 0, the func-
tional E0 reduces to G0 while the functional Eε reduces to Gε (after integration by parts and
modulo a fixed boundary term; see the proof of Lemma 2.1). In what follows, we denote by
lower case letters the energy densities, e.g.,

e0(u) :=
K1

2
(div u)2 +

K3

2
(curlu)2,

and

gε(u) :=
1

2
|∇u|2 + 1

4ε2
(1− |u|2)2,

forE0 andGε, respectively.
Given g : ∂Ω → S1 a smooth map of degree −D < 0, we let uε denote a minimizer of

Eε in the classH1
g (Ω;C) := {u ∈ H1(Ω;C); tru = g}. We are interested in the asymptotic

properties ofuε as ε→ 0, andourmainpurpose is to extend toEε someof the analysis achieved
forGε in [2] .
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1.2 Themain results
Although our results are far from being as complete as those in [2], we feel that they may have
some interest and give impetus for subsequent research. Most of the techniques that we use
have roots in [2] and subsequent works. In particular, several proofs are in the spirit of Struwe
[20, 21] or Sandier and Serfaty [19, Chapter 5] (see also Han and Shafrir [11], Jerrard [12], and
Sandier [18]). Part of the analysis consists of establishing a priori estimates. Such estimates are
also obtained for critical points of Eε, either under energy bounds assumptions or when Ω is
strictly star-shaped.

A significant part of our analysis is valid for everyK1 andK3. For example, we prove that
minimizers uε ofEε satisfy, for small ε, the bounds |uε| ≤ C1, |∇uε| ≤ C2/ε (Lemma 4.7). In
the case of the standard Ginzburg-Landau equation, this follows from a maximum principle
that does not seem to be available in our case. This is derived via various Pohozaev identities
(see, e.g., Lemma 4.1) and elliptic estimates (see, e.g., Lemma 2.4).

Weestablishanη-ellipticity result (Lemma3.1) similar to theone for the standardGinzburg-
Landau equation, asserting, roughly speaking, that if the energy of a minimizer uε is small
when compared to ln(1/ε), then uε has no vortices. We also prove that critical points of Eε
satisfying a logarithmic energy bound (and, in particular, minimizers) display a controlled bad
discs structure (Lemma 5.1). These bad discs are far away from the boundary (Corollary 7.2).
We also prove the existence of bounded entire local minimizers of negative degree (Corollary
8.1).

Sharper results are established under the assumption thatK1 andK3 are “close”, i.e., for
sufficiently small |δ|. For example, wwe prove that, when |δ| is small, the local minimizers in
Corollary 8.1 have degree−1 (Corollary 8.5). Moreover, when |δ| and ε are small, we prove that
the bad discs structure associated with aminimizer ofEε with respect to a boundary datum of
degree−D < 0 consists of exactlyD bad discs, each of degree−1 (Theorem 9.1).

When |δ| and ε are small and 0 < α < 1, in Section 10 we prove that the bad discs are at
distance≥ εα from each other and from the boundary (Theorem 10.1). We complement these
results in Section 12, where we are also able to show that the energy density concentrates on
bad disks as ε→ 0 (Theorem 12.4).

Another series of results concerns the energy of minimizers of Eε with boundary datum
of degree −D. For arbitrary δ, we introduce the concept of giant bad discs, that allows us
to obtain the asymptotic expansion of this energy up to an o (ln(1/ε)) term (Theorem 13.2).
When |δ| is sufficiently small, we prove that the leading term in the expansion of the energy is
DCδ ln(1/ε). It is well-known that, for the standardGinzburg-Landau functional investigated
in [2] andwhich corresponds to δ = 0, we haveC0 = π, and the above term is the leading term
for both positive D (as in our work) and negative D. When δ ̸= 0 and D is negative, it was
proved in [5] that the leading order isD(1− |δ|)π ln(1/ε). We prove that, when δ ̸= 0 is small,
the cost of negative degrees is different from the one of positive degrees. More specifically, we
prove that, when |δ| is small, we haveCδ > (1− |δ|)π (Lemma 11.1 andTheorem 13.1).

Acknowlegments. D.G. acknowledges support by an NSF grant DMS 2106551. The research of
P.S. was supported by a Simons Collaboration grant 585520 and an NSF grant DMS 2106516.

2 Preliminaries
Wewill repeatedly use the following observations.

3



Lemma 2.1. Let ω be a bounded Lipschitz domain and u = v + ıw ∈ H1(ω;C). Then

E0(u, ω) =
K1

2

ˆ
ω

([vx]
2 + [wy]

2) +
K3

2

ˆ
ω

([vy]
2 + [wx]

2)

+ (K1 −K3)

ˆ
ω

vxwy +K3

ˆ
ω

(vxwy − vywx)

=
K1

2

ˆ
ω

([vx]
2 + [wy]

2) +
K3

2

ˆ
ω

([vy]
2 + [wx]

2)

+ (K1 −K3)

ˆ
ω

vxwy +
K3

2

ˆ
∂ω

u ∧ ∂u

∂τ
,

(2.1)

and

E0(u, ω) =
K1

2

ˆ
ω

([vx]
2 + [wy]

2) +
K3

2

ˆ
ω

([vy]
2 + [wx]

2)

+ (K1 −K3)

ˆ
ω

vywx +K1

ˆ
ω

(vxwy − vywx)

=
K1

2

ˆ
ω

([vx]
2 + [wy]

2) +
K3

2

ˆ
ω

([vy]
2 + [wx]

2)

+ (K1 −K3)

ˆ
ω

vywx +
K1

2

ˆ
∂ω

u ∧ ∂u

∂τ
.

(2.2)

Moreover,

(1− δ)G0(u, ω)−
1− δ

2

∣∣∣∣ ˆ
∂ω

u ∧ ∂u

∂τ

∣∣∣∣ ≤E0(u, ω)

≤(1 + δ)G0(u, ω) +
1 + δ

2

∣∣∣∣ˆ
∂ω

u ∧ ∂u

∂τ

∣∣∣∣. (2.3)

Proof. Identities (2.1) and (2.2) are straightforward consequences of
ˆ
ω

(vxwy − vywx) =
1

2

ˆ
∂ω

u ∧ ∂u

∂τ
. (2.4)

The first and the second inequality in (2.3) follow from the second identity in (2.1) and (2.2),
respectively, once we observe that

(K1 −K3)

ˆ
ω

vxwy ≥ −δ
ˆ
ω

([vx]
2 + [wy]

2)

and

(K1 −K3)

ˆ
ω

vywx ≤ δ

ˆ
ω

([vy]
2 + [wx]

2).

Next, recalling that deg g = −D < 0,we prove the following lemma.

Lemma 2.2. For small ε, we have the δ-independent bound

min{Eε(u); u ∈ H1
g (Ω;C)} ≤ πD ln

1

ε
+ C(g). (2.5)
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Proof. Using the standard construction of competitors for theGinzburg-Landau energy, it suf-
fices to prove the result whenΩ is the unit disc,D = 1, and g(z) = z. Consider, for 0 < ε < 1,
the competitor

u(z) =

{
z/|z|, if |z| ≥ ε

z/ε, if |z| ≤ ε
.

Then

Eε(u) = π ln
1

ε
+
π

2

ˆ 1

0

r(1− r2)2 dr.

The following is straightforward.

Lemma 2.3. A critical point uε = vε + ıwε ofEε inH1
g (Ω;C) satisfies{

L1(vε, wε) := −K1(vε,x + wε,y)x −K3(vε,y − wε,x)y = ε−2vε(1− |uε|2),
L2(vε, wε) := −K1(vε,x + wε,y)y +K3(vε,y − wε,x)x = ε−2wε(1− |uε|2).

(2.6)

Here and in what follows, we use a subscript notation for partial or directional derivatives:

wx =
∂w

∂x
, uτ :=

∂u

∂τ
, etc.

We next note that the second order constant coefficients linear system L := (L1,L2) is
elliptic, in the sense that it satisfies the strong Legendre-Hadamard ellipticity condition (see,
e.g., [8, Chapter I, (1.9)]). To justify this observation, we note that L arises from the energy
functionalE0(u). Writing (only in this paragraph)

u = (u1, u2), pi = (pi1, p
i
2) = ∇tui, i = 1, 2,

the energy density e0(u)may be identified with the following function of (p1, p2):

e0(p
1, p2) =

K1

2
(p11 + p22)

2 +
K3

2
(p21 − p12)

2,

and thus, for every ξ = (ξ1, ξ2) and λ = (λ1, λ2), we have∑
1≤i,j,α,β≤2

∂2e0

∂piα∂p
j
β

ξαξβλ
iλj =K1(ξ1λ

1 + ξ2λ
2)2 +K3(ξ1λ

2 − ξ2λ
1)2

≥K3[(ξ1λ
1 + ξ2λ

2)2 + (ξ1λ
2 − ξ2λ

1)2] = K3|ξ|2|λ|2,
(2.7)

which shows that, indeed,L is elliptic.
An alternative route to ellipticity consists of identifying uwith the 1-form ζ = v dx+w dy,

noting that

E0(u) =
K1

2

ˆ
Ω

|d∗ζ|2 + K3

2

ˆ
Ω

|dζ|2,

and then using the ellipticity of the Hodge system

{
dζ = f,

d∗ζ = f ∗.
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This observation allows us to apply toL the regularity theory for elliptic systems as in [1, 7].
However, since we will rely on estimates in variable domains and with variable operators, we
present here the statements instrumental for our purposes, with elements of proofs.

We first quantify the uniform ellipticity of the operatorL, by introducing the assumption

0 ≤ δ ≤ δ1 < 1, (2.8)

where δ1 is a fixed constant.
We fix a smooth bounded domain Ω and a boundary datum g ∈ C∞(∂Ω;C). A ball B =

Br(x) is admissible if eitherB ⊂ Ω, or the center ofB is on ∂Ω. We set

B∗ := Br/2(x). (2.9)

Consider a solution u of{
Lu = f inB ∩ Ω

u = g onB ∩ ∂Ω
(2.10)

(the last condition being empty if B ⊂ Ω). Note that, for small r, if the ball B is centered at
some x ∈ ∂Ω, then B ∩ Ω is a Lipchitz open set and B ∩ ∂Ω is a Lipschitz portion of ∂(B ∩
Ω). Therefore, the second condition in (2.10) makes sense provided, say, u ∈ H1(B ∩ Ω). In
what follows, we always make the implicit assumption that r is sufficiently small so that these
considerations apply. Note that this smallness assumption does not depend on ε or δ.

Lemma 2.4. Assume (2.8). Let 0 < α < 1 and set q = q(α) :=
2

2− α
∈ (1, 2). Let p > 2. Let

B = Br(x) be an admissible ball and consider a solution u ∈ H1(B ∩ Ω) of (2.10).

1. (Interior estimates) IfB ⊂ Ω, then (for some absolute constantsCα,δ1 andCp,δ1 )

rα
|u(y)− u(z)|

|y − z|α
≤ Cα,δ1(||∇u||L2(B) + rα||f ||Lq(B)), ∀ y, z ∈ B∗, (2.11)

rα
|u(y)− u(z)|

|y − z|α
≤ Cα,δ1(||∇u||L2(B) + r||f ||L2(B)), ∀ y, z ∈ B∗, (2.12)

r|∇u(y)| ≤ Cp,δ1(||∇u||L2(B) + r2−2/p||f ||Lp(B)), ∀ y ∈ B∗. (2.13)

2. (Boundary estimates) There exists some finite r0 > 0 such that, if r ≤ r0 and x ∈ ∂Ω,
then (for some constantsCα,δ1,Ω andCp,δ1,Ω)

rα
|u(y)− u(z)|

|y − z|α
≤ Cα,δ1,Ω(||∇u||L2(B∩Ω)+r

α||f ||Lq(B∩Ω) + r|g|Lip(B∩∂Ω)),

∀ y, z ∈ B∗,

(2.14)

rα
|u(y)− u(z)|

|y − z|α
≤ Cα,δ1,Ω(||∇u||L2(B∩Ω)+r||f ||L2(B∩Ω) + r|g|Lip(B∩∂Ω)),

∀ y, z ∈ B∗,

(2.15)

r|∇u(y)| ≤ Cp,δ1,Ω(||∇u||L2(B∩Ω)+r
2−2/p||f ||Lp(B∩Ω) + r|g|Lip(B∩∂Ω)

+r2|∂g/∂τ |Lip(B∩∂Ω)), ∀ y ∈ B∗.
(2.16)

Note the scaling (in the radius r) of the estimates, which comes from the fact that we work
in two dimensions and thatL is a homogeneous second order system.
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Idea of proof of Lemma 2.4. After scaling, item 1 is a special case of the interior estimates for el-
liptic systems [7], [8, Chapter 3, Theorem 2.2], combined with the embedding H2

loc ↪→ Cα,
0 < α < 1. Note that here the scaling argument relies on the homogeneity of L. Again af-
ter scaling and (for small r) flattening of the boundary, item 2 follows from the model case
B ∩ Ω = {(x, y) ∈ B1(0); y > 0}. Some care is needed since the flattening depends on x and
r, and one has to make sure that one can choose constants independent of x, r, and δ1 in the
method of freezing of the coefficients. This is indeed possible for sufficiently small r (see, e.g.,
the detailed proofs in [4, Cap. III] or [9, proof ofTheorem 9.13]).

Iterating the proof of Lemma 2.4 for our specific system (2.6) and taking r = ε, we obtain
the following result, that we state here without proof.

Lemma2.5. Assume (2.8). Fix g ∈ C∞(∂Ω;S1). Let u = uε, 0 < ε ≤ 1, be critical points ofEε
inH1

g (Ω) satisfying the a priori bound

|u(x)| ≤M <∞, ∀ ε, ∀x ∈ Ω. (2.17)

Then there exist finite constantsCk depending onM , δ1,Ω, and g such that

|Dku(x)| ≤ Ckε
−k, ∀x ∈ Ω, ∀ k ∈ N. (2.18)

Moreover, with finite constants C̃k depending onM and δ1 (but not onΩ or g), we have

|Dku(x)| ≤ C̃kε
−k, ∀x ∈ Ω s.t. dist(x, ∂Ω) ≥ ε, ∀ k ∈ N. (2.19)

Next, we note an important consequence of the ellipticity of L. The system (2.6) is of the
form

Lu = F (u), with F (u) = ε−2u(1− |u|)2. (2.20)

Noting that F is analytic, we have the following result, essentially established by Morrey
[15] (see also Petrowsky [16]).

Lemma 2.6. Let U ⊂ R2 be an open set. If u ∈ H1
loc(U) is a weak solution of (2.20), then u is

analytic.

Proof. Let us note that, by standard regularity theory [7], the 2D-embedding H1
loc ↪→ Lploc,

∀ p < ∞, and the fact that our F has polynomial growth, we have u ∈ C∞. We next note that
the Legendre-Hadamard ellipticity condition checked in (2.7) implies the ellipticity in the sense
of Douglis and Nirenberg [7, Section 1]. This is a general fact, but we illustrate it in our special
case. For a second order 2D-variational systemwith energy density e0(p1, p2), the ellipticity in
the sense of [7] requires that the following determinant

D(ξ) := det

( ∑
1≤α,β≤2

∂2e0

∂piα∂p
j
β

ξαξβ

)
1≤i,j≤2

(2.21)

does not vanish when ξ = (ξ1, ξ2) ∈ R2 \ {0}.
Considering the left-hand side of (2.7) as a quadratic form in λ with ξ-depending coeffi-

cients, the determinant in (2.21) is nothing but the determinant of this quadratic form. Thus,
by (2.7), D(ξ) > 0, ∀ ξ ̸= 0, as claimed. (Of course, one could check (2.21) directly by noting
thatD(ξ) = K1K3|ξ|2.)

Finally, the main result in Morrey [15] asserts that smooth solutions of analytic elliptic sys-
tems are analytic, implying the conclusion of the lemma.
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3 η-ellipticity
Throughout this section, we assume (2.8). LetΩ and the boundary datum g ∈ C∞(∂Ω;S1) be fixed.
Let uε be a minimizer of Eε in H1

g (Ω;C). We will establish conditional a priori estimates on
uε, with constants depending on δ1, but not on δ satisfying (2.8). These constants will possibly
depend on Ω or g and the estimates will be valid for ε ≤ ε0, with ε0 possibly depending on Ω
and g.

Themain result of this section is the following.

Lemma 3.1. Let 0 < α < 1 and λ > 0 be fixed. Then there exist absolute constants η > 0 and
M <∞ (depending only on δ1, α, λ) and a constant ε0 > 0 depending on g andΩ such that:

[0 < ε ≤ ε0, Bεα(x) admissible, Eε(uε, Bεα(x) ∩ Ω) ≤ η| ln ε|]
=⇒ [||uε(x)| − 1| ≤ λ, |∇uε(x)| ≤M/ε].

(3.1)

Moreover, wemay chooseM independent of 0 < λ < 1.

We next state some intermediate results (to be proved later) that will be needed in the proof
of Lemma 3.1. The first result is well-known in the Ginzburg-Landau literature.

Lemma 3.2. 1. Let µ > 0 be fixed. Then there exists an absolute finite positive constant ν
(depending only on µ) such that:[

Br(x) ⊂ Ω, 0 < ε ≤ r, f : Cr(x) → C, r
ˆ
Cr(x)

|fτ |2 +
r

ε2

ˆ
Cr(x)

(1− |f |2)2 ≤ ν

]
=⇒

[∣∣∣∣ˆ
Cr(x)

f ∧ fτ
∣∣∣∣ ≤ µ& ∃h ∈ H1

f (Br(x)) s.t.Gε(h,Br(x)) ≤ µ

]
.

(3.2)

2. Letµ > 0 be fixed. Then there exists a finite positive absolute constant ν (depending only
on µ) and a constant r0 depending on µ,Ω, and g, such that:[

x ∈ ∂Ω, 0 < ε ≤ r ≤ r0, f ∈ H1(∂(Br(x) ∩ Ω);C), f = g onBr(x) ∩ ∂Ω,

r

ˆ
Cr(x)∩Ω

|fτ |2 +
r

ε2

ˆ
Cr(x)∩Ω

(1− |f |2)2 ≤ ν

]
=⇒[∣∣∣∣ˆ

Cr(x)∩Ω
f ∧ fτ

∣∣∣∣ ≤ µ& ∃h ∈ H1
f (Br(x) ∩ Ω) s.t.Gε(h,Br(x) ∩ Ω) ≤ µ

]
.

(3.3)

The proof of Lemma 3.2 also leads to Lemmas 3.3 and 3.4, that we note, without proof, for
further use.

Lemma3.3. LetB = Br(x). Fix some s > 0. Then there exists a finite constant t > 0 (depend-
ing only on s) and a finite constant r1 > 0 depending on s,Ω, and g such that[

r ≤ r1, B admissible, v ∈ H1(∂(B ∩ Ω);C), v = g onB ∩ ∂Ω,

r

ˆ
∂B∩Ω

|vτ |2 +
1

r

ˆ
∂B∩Ω

(1− |v|2)2 ≤ t

]
=⇒

∣∣∣∣ˆ
∂B∩Ω

v ∧ vτ
∣∣∣∣ ≤ s.

(3.4)
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Lemma3.4. LetB = Br(x). Fix some t > 0. Then there exists a finite constant s > 0 (depend-
ing only on t) and a finite constant r1 > 0 depending on t,Ω, and g such that[

r ≤ r1, B admissible, v ∈ H1(∂(B ∩ Ω);C), v = g onB ∩ ∂Ω,

r

ˆ
∂(B∩Ω)

|vτ |2 +
1

r

ˆ
∂(B∩Ω)

(1− |v|2)2 ≤ t

]
=⇒

∣∣∣∣ˆ
∂(B∩Ω)

v ∧ vτ
∣∣∣∣ ≤ s.

(3.5)

Note that, in Lemma 3.3 we prove existence of t, given s, while the opposite is shown in
Lemma 3.4, where t is given and existence of s follows.

The final auxiliary result used in the proof of Lemma 3.1 relies on Lemma 2.4.

Lemma 3.5. Let B = Br(x). Let u = uε be a minimizer of Eε inH1
g (Ω;C). Let 0 < s ≤ 1.

Then there exists some finite constant t > 0 (depending only on s) and a finite constant r1 > 0
depending on s,Ω, and g such that[

0 < 4ε ≤ r ≤ r1, B admissible, Eε(u,B ∩ Ω) ≤ s,

r

ˆ
∂B∩Ω

|uτ |2 +
1

r

ˆ
∂B∩Ω

(1− |u|2)2 ≤ s

]
=⇒ |1− |u(z)|| ≤ t, ∀ z ∈ B∗.

(3.6)

Moreover, wemay choose t = t(s) such that lims→0 t(s) = 0.

(Recall thatB∗ := Br/2(x).)
We now return to the proof of Lemma 3.1. In what follows, Cj is a generic constant inde-

pendent of ε or the center of the ball.

Proof of Lemma 3.1, using Lemmas 2.1, 3.2–3.5. Fix some constant α1 such that 0 < α < α1 <
1. We distinguish the cases Bεα1 (x) ⊂ Ω, respectively Bεα1 (x) ̸⊂ Ω. In what follows, ε is
sufficiently small and not fixed, while η and s > 0 are constants that we will select at the end
of the proof.
Case 1. Bεα1 (x) ⊂ Ω. Clearly, we have Eε(uε,Ω) ≤ C1| ln ε| and thus, by Lemma 2.1 applied
with ω = Ω, we have

Gε(uε,Ω) ≤ C2| ln ε|. (3.7)

Fix α1 < β < γ < 1. By (3.7) and the mean value theorem, there exists some εβ < r1 < εα1

such that

r1

ˆ
Cr1 (x)

|uε,τ |2 +
r1
ε2

ˆ
Cr1 (x)

(1− |uε|2)2 ≤ C3. (3.8)

By Lemmas 2.1 and 3.4, this implies, for sufficiently small ε,

Gε(uε, Br1(x)) ≤
1

1− δ1
Eε(uε, Br1(x)) + C4 ≤

1

1− δ1
Eε(uε, Bεα(x)) + C4

≤C5η| ln ε|.
(3.9)

Note the important fact that, while C1, C2, C3, C4 depend on g, C5 and the constant C6 below
areuniversal constants, dependingonly on δ1,α,α1,β, γ. By (3.9) and themean value theorem,
there exists some εγ < r2 < εβ such that

r2

ˆ
Cr2 (x)

|uε,τ |2 +
r2
ε2

ˆ
Cr2 (x)

(1− |uε|2)2 ≤ C6η. (3.10)

9



By (3.10), and Lemmas 3.3 and 3.2, for sufficiently small η (depending on s) we have (with h
the competitor given by Lemma 3.2)

Eε(uε, Br2(x)) ≤ Eε(h,Br2(x)) ≤ C7s. (3.11)

The first conclusion in (3.1) follows from (3.10), (3.11) (with sufficiently small s), and Lemma
3.5.

The second part of (3.1) follows from the first part of (3.1) and estimate (2.13) in Lemma 2.4
item 1 (applied with r = ε).
Case 2.Bεα1 (x) ̸⊂ Ω.The idea is similar, but this time we rely on estimate (2.16) in Lemma 3.2
item 2. Let α < α2 < α1. Let y be the nearest point projection of x on ∂Ω. Clearly, for small
ε, the admissible ballBεα2 (y) is contained inBεα(x) and containsBε(x). We proceed as in the
proof of (3.11) and find thatEε(uε, Bεα2 (y)∩Ω) ≤ C7s, which is the analogue of (3.11) adapted
to Case 2. We conclude as above.

We now proceed to the proofs of the auxiliary results.

Proof of Lemma 3.2 item 1. SetD := B1(0). By scaling, we have to prove the following, for a suf-
ficiently small ν, and with t := ε/r ≤ 1:[

0 < t ≤ 1, f : S1 → C,
ˆ
S1
|fτ |2 +

1

t2

ˆ
S1
(1− |f |2)2 ≤ ν

]
=⇒

[∣∣∣∣ ˆ
S1
f ∧ fτ

∣∣∣∣ ≤ µ& ∃h ∈ H1
f (D;C) s.t.Gt(h,D) ≤ µ

]
.

(3.12)

We first note that

|f |2 =(|f |2 − 1) + 1 ≤ 1

2
(1− |f |2)2 + 1

2
+ 1 ≤ 1

2t2
(1− |f |2)2 + 3

2
. (3.13)

Combining (3.13) with Cauchy-Schwarz, we find that∣∣∣∣ ˆ
S1
f ∧ fτ

∣∣∣∣2 ≤ ( 1

2t2

ˆ
S1
(1− |f |2)2 + 3π

)ˆ
S1
|fτ |2 ≤ (ν/2 + 3π)ν,

whence the first part of (3.12) if (ν/2 + 3π)ν ≤ µ2.
Concerning the second part of (3.12), we first note that, for small ν independent of t ≤ 1,

under the assumption of (3.12) we have

1/2 ≤ |f | ≤ 3/2. (3.14)

A cheap way to establish this fact consists of noting that, if a sequence satisfies
ˆ
S1
|fj,τ |2 +

ˆ
S1
(1− |fj|2)2 → 0 as j → ∞,

then |fj| → 1 uniformly as j → ∞. Alternatively, one may use the inequality

|f(eıθ)− f(eıφ)|2 ≤ |θ − φ|
ˆ
S1
|fτ |2, ∀ θ − π ≤ φ ≤ θ + π,

and check that (3.14) holds, e.g., when ν ≤ 7
√
2/64.
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Consider ν such that (3.14) holds for every f satisfying the assumption of (3.12). Writing,
locally, f = ρeıψ, we have

1

4

ˆ
S1
|ψτ |2 ≤

ˆ
S1
|fτ |2 ≤ ν,

and thusˆ
S1
|ψτ | < 2π,

provided ν < π/2. Therefore, for small ν, f/|f | has zero degree and ψ is globally defined.
We now define our competitor

h(reıθ) := F (reıθ)eıL(re
ıθ), 0 ≤ r ≤ 1, θ ∈ R,

where

F (reıθ) := (1− r) + rρ(eıθ) = (1− r) + r|f |(eıθ),

L(reıθ) := (1− r)a+ rψ(eıθ), with a :=

 
ψ.

Clearly, thanks to (3.14), we have

(1− |F (reıθ)|2)2 ≤ (1− |f(eıθ)|2)2, (3.15)

|∇F (reıθ)|2 = (1− |f(eıθ)|)2 +
∣∣∣∣d|f(eıθ)|dθ

∣∣∣∣2 ≤ (1− |f(eıθ)|2)2 +
∣∣∣∣df(eıθ)dθ

∣∣∣∣2 , (3.16)

|∇L(reıθ)|2 = (a− ψ(eıθ))2 +

∣∣∣∣dψ(eıθ)dθ

∣∣∣∣2 ,
and thus, using the definition of a and Poincaré’s inequality,

ˆ
D
|∇L|2 ≤ 2

ˆ
S1

∣∣∣∣dψdθ
∣∣∣∣2 . (3.17)

For small ν (depending on µ), the second part of (3.12) follows from the estimates (3.15)–
(3.17).

Proof of Lemma 3.2 item 2. The first part of (3.3) is proved exactly as the first part of (3.2).
We will reduce the second part of (3.3) to the situation considered in item 1. Let r0 be suf-

ficiently small (depending onΩ) andC0 be a sufficiently large universal constant such that, for
x ∈ ∂Ω and 0 < r ≤ r0, there exists a bi-Lipschitz homeomorphismΦ = Φx,r : Br(x) ∩ Ω →
Br(0) such that ∥DΦ∥∞ ≤ C0, ∥DΦ−1∥∞ ≤ C0, andΦ(Br(x)∩ ∂Ω) = {x+ ıy ∈ Cr(0); y ≤
0}. After composing with Φ−1 and using scale invariance, the second part of (3.3) amounts to
proving (3.18) below. Set S1

+ := {x + ıy ∈ D; y ≥ 0}, and define similarly S1
−. Then, for a

sufficiently small ν1 (depending only on µ) and a sufficiently small r1 (depending on µ and on
a fixed given constantM ), we have[

0 < t ≤ 1, f ∈ H1(S1;C), |f | = 1 and |fτ | ≤Mr1 on S1
−,

ˆ
S1+

|fτ |2 +
1

t2

ˆ
S1+
(1− |f |2)2 ≤ ν1

]
=⇒ ∃h ∈ H1

f (D;C) s.t.Gt(h,D) ≤ µ.

(3.18)
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(In our case, the constantM itself depends only onC0 and on the Lipschitz constant of g.)
In order to prove the existence of ν1 and r1 (and thus to complete the proof of the lemma),

we note that, if ν is as in item 1, then (3.18) holds provided ν1 + π(Mr1)
2 < ν. It then suffices

to let ν1 < ν/2 and r1 <
√
2πν/M .

Proof of Lemma 3.5. We consider only the case where B ⊂ Ω. As explained in the proof of
Lemma 3.2 item 2, the other case is similar.

By estimate (2.3) in Lemma 2.1 and Lemma 3.4, there exists some finite constant C1 > 0
independent of s ≤ 1 such that, if the assumptions of (3.6) hold for such s, then

Gε(B) =
1

2

ˆ
B

|∇u|2 + 1

4ε2

ˆ
B

(1− |u|2)2 ≤ C1s ≤ C1. (3.19)

We next note that, for some appropriate constantC2, we have

|w(1− |w|2)|4/3 ≤ C2((1− |w|2)2 + 1), ∀w ∈ C. (3.20)

Let B′ be a ball of size 2ε contained in B. Applying (3.20) with z = u(x), integrating over
B′, and using (3.19), we find that∣∣∣∣ε−2u(1− |u|2)

∣∣∣∣4/3
L4/3(B′)

≤ C2ε
−8/3

ˆ
B′
((1− |u|2)2 + 1) ≤ C3ε

−2/3. (3.21)

Combining estimate (2.11) (applied, in B′, with α = 1/2 and thus q = 4/3), (3.19), and
(3.21), we find that

ε1/2
|u(y)− u(z)|
|y − z|1/2

≤ C4, ∀ y, z ∈ (B′)∗, (3.22)

and thus, in particular,

|u(y)− u(z)| ≤ C5, ∀ y, z ∈ (B′)∗, (3.23)

whereC5 is independent of s ≤ 1.
Combining now (3.23) with (3.19), we find that

|u(y)| ≤ C6, ∀ y ∈ (B′)∗, (3.24)

again withC6 independent of s ≤ 1.
We next note that, for smallw, (3.20) can be improved as follows :

|w| ≤ C6 =⇒ |w(1− |w|2)|2 ≤ (C6)
2(1− |w|2)2. (3.25)

Arguing as above and using the first inequality in (3.19), (3.25) (instead of (3.20)), (3.24), and
(2.12) (instead of (2.11)), we find that

|u(y)− u(z)| ≤ C7

√
s, ∀ y, z ∈ (B′)∗, (3.26)

withC7 independent of 0 < s ≤ 1.
Finally, (3.26) and (3.19) imply (3.6), with t(s) → 0 as s→ 0.
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4 Pohozaev type identities and a priori estimates
In this section, we derive the Pohozaev identity corresponding to the operator L in (2.6). As
for the Dirichlet integral, the identity is obtained by multiplying (2.6) with (x − x0)ux + (y −
y0)uy. For simplicity, we perform our calculations when x0 = y0 = 0, but in subsequent
results we may take other values of x0 and y0. Remarkably, the Pohozaev identity implies a
priori estimates merely under the δ-independent assumption that Ω is star-shaped. The idea
of using the Pohozaev identity is natural in this context. For the standard Ginzburg-Landau
equation, it was successfully used in [2] and subsequently [20], [19]. For our specific system
and in a disc, it appears in Kowalczyk, Lamy, and Smyrnelis [13, Section 5].

Lemma 4.1. (General Pohozaev identity) Let ω be a Lipschitz bounded domain. LetX = (x, y)
denote the ’generic’ point inR2. Let ν, respectively τ , denote the unit outward normal, respec-
tively the unit directly oriented tangent vector to ∂ω.

Set

V := xvx + yvy, W := xwx + ywy, Z = (V,W ) ∼ xux + yuy.

Let u ∈ C3(ω;C) be a critical point ofEε. Then

1

ε2

ˆ
ω

(1− |u|2)2 = 1

2ε2

ˆ
∂ω

(1− |u|2)2(X · ν)

− 2K1

ˆ
∂ω

(div u)(Z · ν)− 2K3

ˆ
∂ω

(curlu)(Z · τ)

+K1

ˆ
∂ω

(div u)2(X · ν) +K3

ˆ
∂ω

(curlu)2(X · ν).

(4.1)

Proof. Wemimic the proof of Pohozaev’s identity. We rewrite (2.6) as{
−K1(div u)x +K3(curlu)y = ε−2v(1− |v|2)
−K1(div u)y −K3(curlu)x = ε−2w(1− |u|2)

. (4.2)

We letBj denote a boundary term that we will make explicit at the end of the proof.
Multiplying the first equation in (4.2) with V and the second one withW , integrating once

by parts and summing up the results, we find that

−B1 +K1

ˆ
ω

(div u)(divZ) +K3

ˆ
ω

(curlu)(curlZ) = −B2 +
1

2ε2

ˆ
ω

(1− |u|2)2. (4.3)

We next note the 2D-identities

(div u)(divZ) =
1

2
div[(div u)2X], (curlu)(curlZ) =

1

2
div[(curlu)2X]. (4.4)

Inserting (4.4) into (4.3) and integrating, we find that

−B1 +K1B3 +K3B4 = −B2 +
1

2ε2

ˆ
ω

(1− |u|2)2.

We obtain the conclusion of the lemma by noting that

B1 = K1

ˆ
∂ω

(div u)(Z · ν) +K3

ˆ
∂ω

(curlu)(Z · τ),

13



B2 =
1

4ε2

ˆ
∂ω

(1− |u|2)2(X · ν),

B3 =
1

2

ˆ
∂ω

(div u)2(X · ν),

B4 =
1

2

ˆ
∂ω

(curlu)2(X · ν).

We next rewrite the identity (4.1) in normal and tangential coordinates on ∂ω.
We note the following identities, with (i, j) the canonical basis ofR2:

div u =(∇v) · i+ (∇w) · j = (vττ + vνν) · i+ (wττ + wνν) · j
=uτ · τ + uν · ν.

(4.5)

We write ν = (νx, νy) and τ = (τx, τy). Using (4.5) and the identities

νx = τy, νy = −τx, curlu = div (w,−v),

we find that

curlu = uν · τ − uτ · ν. (4.6)

Similarly, we have

Z = (X · τ)uτ + (X · ν)uν , (4.7)
Z · ν = (X · τ) (uτ · ν) + (X · ν) (uν · ν) , (4.8)
Z · τ = (X · τ) (uτ · τ) + (X · ν) (uν · τ) . (4.9)

Inserting (4.5)–(4.9) into (4.1) and rearranging the terms, we obtain the following conse-
quence of (4.1).

Lemma 4.2. With the notation in Lemma 4.1, we have, for anyX0 ∈ R2,

1

ε2

ˆ
ω

(1− |u|2)2 = 1

2ε2

ˆ
∂ω

(1− |u|2)2((X −X0) · ν)

+

ˆ
∂ω

Q1(X −X0, uτ · τ, uτ · ν)

−
ˆ
∂ω

Q2(X −X0, uν · τ, uν · ν)

+

ˆ
∂ω

Q3(X −X0, uτ · τ, uτ · ν, uν · τ, uν · ν),

(4.10)

where theQj ’s are quadratic forms with coefficients depending onX −X0, explicitly given by

Q1(X −X0, ξ1, ξ2) =K1((X −X0) · ν)(ξ1)2 +K3((X −X0) · ν)(ξ2)2

− 2(K1 −K3)((X −X0) · τ)ξ1ξ2,
(4.11)

Q2(X −X0, η1, η2) = K3((X −X0) · ν)(η1)2 +K1((X −X0) · ν)(η2)2, (4.12)
Q3(X −X0, ξ1, ξ2, η1, η2) =− 2K3((X −X0) · τ)ξ1η1

− 2K1((X −X0) · τ)ξ2η2.
(4.13)

Specializing to the case where ω is a disc, respectively a half-disc, we obtain the following
consequences of our calculations.
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Lemma 4.3. Assume (2.8). Let u ∈ C3(B) be a critical point ofEε in a discB of radius r. Then

1

ε2

ˆ
B

(1− |u|2)2 + (1− δ1)r

ˆ
∂B

|uν |2 ≤
r

2ε2

ˆ
∂B

(1− |u|2)2 + (1 + δ1)r

ˆ
∂B

|uτ |2.

Lemma 4.4. Assume (2.8). Then there exist some finite positive constants Cj = Cj(δ1), j =
1, 2, 3, such that, if u ∈ C3(H) is a critical point ofEε in a half-discH of radius r, then

1

ε2

ˆ
H

(1− |u|2)2 + C1r

ˆ
∂H

|uν |2 ≤
C2r

ε2

ˆ
∂H

(1− |u|2)2 + C3r

ˆ
∂H

|uτ |2.

Proof of Lemma 4.3. The conclusion follows from (4.10)–(4.13) (with X0 the center of B), com-
bined with the observation that, in the case of a disc of radius r, we haveQ3 = 0 and

Q1(X −X0, ξ1, ξ2) = K1r(ξ1)
2 +K3r(ξ2)

2 ≤ (1 + δ1)r|ξ|2,
Q2(X −X0, η1, η2) = K1r(η2)

2 +K3r(η1)
2 ≥ (1− δ1)r|η|2.

Proof of Lemma 4.4. In what follows,Cj denotes a generic positive constant depending possibly
on δ1.

With no loss of generality, we may assume that r = 1 and

H = {X = (x, y) ∈ R2; |X| < 1, y > 0}.

Let 0 < a < 1 be any fixed number, and setX0 = (0, a). It is easy to see that

(X −X0) · ν ≥ C3 > 0, ∀X ∈ ∂H, (4.14)
|(X −X0) · ν| ≤ C4, ∀X ∈ ∂H, (4.15)
|(X −X0) · τ | ≤ C5, ∀X ∈ ∂H. (4.16)

Combining (4.10)–(4.13) and (4.14)–(4.16), we find that

1

ε2

ˆ
H

(1− |u|2)2 + C3(1− δ1)

ˆ
∂H

|uν |2

≤ 1

ε2

ˆ
H

(1− |u|2)2 +
ˆ
∂H

Q2(X −X0, uν · τ, uν · ν)

≤ C4

2ε2

ˆ
∂H

(1− |u|2)2 + 2(C4 + C5)

ˆ
∂H

|uτ |2

+ 4C4

ˆ
∂H

(|uτ · τ ||uν · τ |+ |uτ · ν||uν · ν|)

≤ C4

2ε2

ˆ
∂H

(1− |u|2)2 + 2(C4 + C5)

ˆ
∂H

|uτ |2

+ 4C4

ˆ
∂H

|uτ ||uν |

≤ C4

2ε2

ˆ
∂H

(1− |u|2)2 + 2(C4 + C5)

ˆ
∂H

|uτ |2

+
1

2
C3(1− δ1)

ˆ
∂H

|uν |2 + C6

ˆ
∂H

|uτ |2,

whence the conclusion of the lemma.
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By a straightforwardmodification of the proof of Lemma4.4, we obtain the following result
in a fixed bounded domainΩ, that we state without proof.

Lemma 4.5. Assume (2.8). Then there exist some finite positive constants Cj = Cj(δ1), j =

1, 2, 3, and r0 = r0(δ1,Ω) such that, if u ∈ C3(Br(x0) ∩ Ω) is a critical point ofEε inBr(x0)∩
Ω, with r ≤ r0 and x0 ∈ ∂Ω, then

1

ε2

ˆ
Br(x0)∩Ω

(1− |u|2)2 + C1r

ˆ
∂(Br(x0)∩Ω)

|uν |2 ≤
C2r

ε2

ˆ
∂(Br(x0)∩Ω)

(1− |u|2)2

+ C3r

ˆ
∂(Br(x0)∩Ω)

|uτ |2.
(4.17)

WhenΩ is strictly star-shaped, the local estimate (4.17) upgrades to a global estimate.

Lemma 4.6. Assume (2.8). Assume that Ω is strictly star-shaped, i.e., that there exist some
X0 ∈ Ω andC3 > 0 such that

(X −X0) · ν ≥ C3, ∀X ∈ ∂Ω. (4.18)

Let u = uε be a critical point of Eε in H1
g (Ω). Then there exists a finite positive constant

C = C(δ1, C3) such that

1

ε2

ˆ
Ω

(1− |u|2)2 +
ˆ
∂Ω

|uν |2 ≤ C

ˆ
∂Ω

|gτ |2. (4.19)

Proof. It suffices to copy the proof of Lemma 4.4. There, the existence of C3 follows from the
geometry ofH. In our case, the existence ofC3 is an assumption.

Lemmas 4.3 and 4.5 yield the following a priori estimates for critical points ofEε satisfying
a natural bound on the energy. In particular, thanks to the energy estimate (2.5), these bounds
apply to minimizers ofEε inH1

g (Ω;C). Note, however, that the estimates below do not imply
(3.1), since the constants we obtain below depend on the energy bound (which in turn depends
on the boundary datum g).

Lemma 4.7. Assume (2.8). Let u = uε be critical points ofEε inH1
g (Ω) satisfying the bound

Eε(u) ≤ K| ln ε|. (4.20)

Then, with finite constantsCj = Cj(K, δ1), j = 1, 2, we have, for small ε,

|u| ≤ C1, (4.21)
|∇u| ≤ C2/ε. (4.22)

In particular, if uminimizes Eε in H1
g (Ω), then C1, C2 may be chosen to depend only on

deg g and δ1.

Combining Lemma 4.7 with Lemma 2.5, we obtain the following

Corollary 4.8. Assume (2.8). Fix g ∈ C∞(∂Ω;S1). Let u = uε, 0 < ε ≤ 1, be critical points of
Eε inH1

g (Ω) satisfying the energy bound (4.20). Then (2.18) holds.
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Proof of Lemma 4.7. The proof is similar to the one of Lemma 3.5, with the variation that, for
clarity, we perform a blow-up.

In what follows, Cj, j ≥ 3, denotes a finite positive constant depending only on K and
possibly δ1, and Dj a finite positive universal constant. Let x ∈ Ω. With the notation in the
proof of Lemma 3.2, we have eitherBεα1 (x) ⊂ Ω, orBεα1 (x) ̸⊂ Ω. We consider only the first
case, the other one being similar. Pick some 4ε ≤ εβ < r < εα1 such that

r

ˆ
Cr(x)

|∇u|2 + r

ε2

ˆ
Cr(x)

(1− |u|2)2 ≤ C3. (4.23)

By (4.23) and Lemma 4.3, we have

1

ε2

ˆ
Br(x)

(1− |u|2)2 ≤ C4. (4.24)

Assume, for simplicity, that x = 0. Set ũ(y) := u(εy), y ∈ B := B4(0). Then

Lũ = f̃ := ũ(1− |ũ|2) inB,

so that, by standard elliptic estimates,

||ũ||C1/2(B∗)
≤ D1∥f̃∥L4/3(B) +D2||ũ||L4(B), (4.25)

whereB∗ is as defined in (2.9). By (4.24), (4.25), (3.20), and the inequality

|w|4 ≤ D3(1− |w|2)2 + 1, ∀w ∈ C,

we find (going back to u) that

|u(z)− u(t)| ≤ C5, ∀ z, t ∈ B2ε(x). (4.26)

Combining (4.26)with (4.24),wefind that (4.21) holds inB2ε(x). Then, using (4.21) inB2ε(x)
and the estimate

||∇ũ||L∞(B∗∗)
≤ D4∥f̃∥L2(B∗) +D4||ũ||L∞(B∗)

,

(withB∗ = B2(0),B∗∗ = B1(0)) and going back to u, we find that (4.22) holds inBε(x).

Lemma 4.9. Assume (2.8). Assume thatΩ is strictly star-shaped. Consider critical points u =
uε of Eε in H1

g (Ω) satisfying the energy bound (4.20). Then, for some finite constant C1 =
C1(K, δ1,Ω, g) and small ε, we haveˆ

Ω

|1− |u|2| × |∇u|2 ≤ C1. (4.27)

Proof. By the Gagliardo-Nirenberg inequality, (4.21), standard elliptic estimates, and Lemma
4.6, we have the following (global inΩ) estimates, with constants depending only onK, δ1,Ω,
g:

||∇u||24 ≤C2||u||∞||u||H2 ≤ C3||u||H2 ≤ C4(||g||H3/2 + ||Lu||2)

≤C5(1 + ε−2
∣∣∣∣1− |u|2

∣∣∣∣
2
) ≤ C6

ε
.

(4.28)

We obtain (4.27) from (4.19), (4.28), and Cauchy-Schwarz.
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5 Bad discs structure
In this section, we provide some easy consequences of the a priori estimates established in the
previous sections. We first define the notion of bad disc. A bad disc B = BCε(xε) is a disc of
radiusCε, centered atxε, such that |uε(xε)| ≤ 1/2 and |uε(x)| ≥ 1/2on∂(B∩Ω). Note that in
our situation we have uε ∈ H1

g (Ω), and thus the latter condition is equivalent to |uε(x)| ≥ 1/2
on ∂B ∩ Ω. Here, the constant C could possibly depend on a sequence εℓ → 0, but its size is
controlled by the a priori estimates available on u.

Lemma 5.1. Assume that (2.8) holds. We have:
1. Suppose that Ω is strictly star-shaped. Consider critical points u = uε of Eε inH1

g (Ω) sat-
isfying the energy bound (4.20), where ε = εℓ → 0. Set Aε := {x ∈ Ω; |u(x)| ≤ 1/2}. Then
there exist finite constantsN = N(K, δ1,Ω, ||gτ ||2) andL = L(K, δ1) such that, possibly along
a subsequence (εℓm),

Aε can be covered with at mostN bad discsBCε(x
j
ε), (5.1)

for some constantC possibly depending on (εℓ) such that

3 ≤ C ≤ L, (5.2)

and

for j ̸= k, |xjε − xkε | ≥ 4Cε. (5.3)

Moreover, there exists some finite numberC ′ ≥ C, possibly depending on (εℓ), such that,
possibly along a further subsequence (εℓmn

),

Aε can be covered with at mostN “enlarged” bad discsBC′ε(x
j
ε) (5.4)

such that

for j ̸= k, |xjε − xkε | ≫ ε as ε→ 0. (5.5)

2. The same conclusions hold ifΩ is arbitrary and u is a minimizer ofEε inH1
g (Ω), where this

timeN = N(deg g, δ1) andL = L(deg g, δ1).
3. For each ε, consider: (i) either critical points ofEε in a strictly star-shaped domainΩ, satis-
fying the energy bound (4.20) ; (ii) orminimizers ofEε. Then there exists aC = C(ε) satisfying
(5.1)–(5.2).

Note that the price to pay in order to have (5.5) is the lack of control on the constantC ′.

Proof. 1. By (4.22) in Lemma 4.7, there exists some λ > 0 such that, if ε > 0 is small, we have[
x ∈ Ω,

ˆ
Bε(x)∩Ω

(1− |u|2)2 ≤ λ

]
=⇒ [|u| ≥ 1/2 inBε(x)]. (5.6)

Combining this fact with the a priori estimate (4.19), we find that any disjoint family of discs
B = Bε/3(x) such that |u(x)| ≤ 1/2 has at mostN elements, whereN = N(K, δ1,Ω, ||gτ ||2).
Therefore, the set Aε can be covered with at mostN discs Bε

i = Bε(x
ε
i ), satisfying |u(xεi )| ≤

1/2.
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We next enlarge these discs in order to obtain bad discs. For this purpose, let us note the
following. Fix an integerM and consider, for each ε, at mostM intervals Iε1 , . . . , Iεk, each of
length≤ 2ε. Then, up to a sequence εℓ → 0, there exists some 3 ≤ C ≤ 3(M + 1) such that
Cε ̸∈ ∪kIεk. (A similar conclusion can be drawn if we start from a sequence εℓ → 0, possibly
after passing to a subsequence.) Indeed, the union of the Iεk ’s cannot contain all the points nε,
with n = 3, 6, . . . , 3(M + 1), and thus, up to a subsequence, we may take C = 3n, for one of
these n’s. Applying this observation to the sets {|x − xεi |;x ∈ Bε

j}, we find that there exists
some 3 ≤ C ≤ 3(N + 1)(N + 2)/2 such that the discs BCε(x

ε
i ) cover Aε and, in addition,

CCε(x
ε
i ) does not intersect any of the Bε(x

ε
j). Therefore, we have CCε(xεi ) ∩ Aε = ∅. We find

that eachBCε(x
ε
i ) is a bad disc.

Finally, the existence of enlarged bad discs satisfying the additional properties (5.3) or (5.5)
is then obtained as in [2, Chapter IV]. (This may require taking passing to a further subse-
quence.)
2.The proof is essentially the same, thanks to the upper bound (2.5). The only difference arises
from the argument leading to the existence ofN = N(δ1, deg g), since we are not in position
to rely on the assumption (4.18). Let 0 < β < α < 1 be fixed. Let 0 < λ < 1/2 and let
η be as in Lemma 3.1 (corresponding to this λ). If ε is sufficiently small and x ∈ Aε, then
Eε(uε, Bεα/5(x)) ≥ η| ln ε|. Therefore, there exists someN1 = N1(deg g, δ1) such thatAε can
be covered with at mostN1 admissible ballsBεα(x

ε
i ). By a mean value argument, there exist a

constantC0 = C0(deg g, α, β) and radii r = rεi such that εα ≤ rεi ≤ εβ and

r

ˆ
∂(Br(xεi )∩Ω)

|uτ |2 +
r

ε2

ˆ
∂(Br(xεi )∩Ω)

(1− |u|2)2 ≤ C0. (5.7)

Combining (5.7) with (4.17), we find that, for some constantD = D(deg g, δ1), we have, for
small ε,

1

ε2

ˆ
Bεα (xεi )∩Ω

(1− |u|2)2 ≤ D, ∀ i. (5.8)

Using (5.8) and arguing as in the proof of item 1, we find thatAε ∩ Bεα(x
ε
i ) can be covered

with at mostN2 = N2(deg g, δ1) discs Bε(x). This yields a covering of Aε with at mostN1N2

discs, each of radius ε.
3. By the argument used in the proof of item 1, wemay actually choose someC(ε) ∈ [3, 3(N +
1)(N + 2)/2].

6 Theenergy is boundedon “intermediate” balls away from the
bad discs

In this section, we derive an easy consequence of the results in Section 4 combinedwith the bad
discs structure. We consider the setting of Section 3.We assume (2.8). LetΩ and the boundary
datum g ∈ C∞(∂Ω;S1) be fixed. Let u = uε be a minimizer ofEε inH1

g (Ω;C). By Lemma 5.1
item 2, we may find an integerN and a finite constantC, depending only on deg g, such that,
for small ε (depending onΩ and g), (5.1) holds.

An inspection of the proofs in Section 3 shows that the smallness of the constant η plays a
rolemainly in the existence of a suitable radius r such that, on ∂(Br(x)∩Ω), (i) |uε| is far away
from 0 and (ii) uε/|uε| has degree 0. This is especially useful in Lemmas 3.2 and 3.3. If we know
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that the assumptions (i) and (ii) are valid for all “useful” radiir (i.e., for the radii obtained via ameanvalue
argument, as, e.g., in (3.8)), then Lemmas 3.2 and 3.3 holdwithout the smallness assumption onη.These
considerations lead to the following result.

Lemma 6.1. Let 0 < α < 1 < β < 1/α and ε < 1/2. Let Sε denote the union of the bad discs
in (5.1) and suppose thatB = BR(x) is a ball such that

ε1/β ≤ R ≤ εα and dist(x, Sε) ≥ R. (6.1)

Then, for sufficiently small ε and some finite constantC1 = C1(deg g, δ1, α, β), we have

Eε(u,BRβ(x) ∩ Ω) ≤ C1 andGε(u,BRβ(x) ∩ Ω) ≤ C1. (6.2)

Sketch of proof. Inwhat follows,Cj = Cj(deg g, δ1, α, β) is afinite constant, and ε is sufficiently
small. By Lemma2.2, the assumption ε1/β ≤ R ≤ εα, and amean value argument, there exists
someRβ < r < R/2 such that

r

ˆ
∂Br(x)∩Ω

|uτ |2 +
r

ε2

ˆ
∂Br(x)∩Ω

(1− |u|2)2 ≤ C2. (6.3)

LetC be the constant in (5.1). Since dist(Br(x), Sε)) ≥ R/2 ≥ Cε, we find that |u| ≥ 1/2
inBr(x)∩Ω, and thus, in particular, u/|u| has degree zero on ∂(Br(x)∩Ω). By the above, we
are now in position to repeat the proof of (3.3) in Lemma 3.2 and obtain the estimates∣∣∣∣ˆ

Cr(x)∩Ω
u ∧ uτ

∣∣∣∣ ≤ C3 andGε(u,Br(x) ∩ Ω) ≤ C4. (6.4)

Combining (6.4) and (2.3), we find that

Eε(u,Br(x) ∩ Ω) ≤ C5. (6.5)

Finally, (6.2) follows from the second inequality in (6.4) and (6.5).

InSection 13,wewill encounter anavatar of the above considerations; seeLemma13.4 there.

7 Zoomnear the boundary
In this section, we prove that the bad discs described in the previous section are far away from
the boundary at the ε scale. This fact is an obvious consequence of the following result.

Lemma 7.1. Let u = uε be critical points of Eε in H1
g (Ω) satisfying the energy bound (4.20).

LetC be a fixed constant. Consider, for each ε, a point yε ∈ Ω such that dist(yε, ∂Ω) ≤ Cε and
let, for small ε, zε be the nearest point projection of yε on ∂Ω. Then

uε(yε)− g(zε) → 0 as ε→ 0. (7.1)

Corollary 7.2. Under the assumptions of Lemma 5.1, the centers xjε of the bad discs satisfy
dist(xjε, ∂Ω) ≫ ε as ε→ 0.
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Proof of Lemma 7.1. It suffices to obtain (7.1) up to a subsequence. This is obtained via a blow-up
analysis. Consider the rescaled maps

vε(z) := uε(εz + zε), ∀ z ∈ Uε := ε−1(−zε + Ω),

extended with the same formula toU ε.
Note that 0 ∈ ∂Uε. Up to a subsequence, we have g(zε) → g̃ for some constant g̃ ∈ S1,

and the unit outer normal to Uε at the origin converges to some ξ ∈ S1. We work with such a
subsequence. Consider the half-planeH := {X ∈ R2; X · ξ < 0}.

We next note that, by Corollary 4.8, vε has bounded derivatives, at any order. Moreover, the
tangential derivative of vε on ∂Uε is (uniformly) of the order of ε. By the above, possibly up to
a further subsequence, we have vε → v pointwise inH and uniformly on bounded sets, where
the map v is smooth inH, satisfies v = g̃ on ∂H, and is a solution of

Lv = v(1− |v|2) inH. (7.2)

(To be specific, uniform convergence on bounded sets means that

max{|vε(x)− v(x)|;x ∈ K ∩ U ε} → 0 as ε→ 0, ∀K ⊂ H compact.) (7.3)

We note that the conclusion of the lemma amounts to v = g̃. In order to obtain this con-
clusion, we first establish an additional property of v. By Lemma 4.5, the energy bound (4.20)
and a mean value argument, there exist a finite constant C (possibly depending on δ1,K, Ω,
and g) and some r = rε ∈ (ε1/2, ε1/3) such that

r

ˆ
Br(zε)∩∂Ω

|uε,ν |2 ≤ C. (7.4)

Estimate (7.4) is equivalent toˆ
Br/ε(0)∩∂Uε

|vε,ν |2 ≤ C
ε

r
. (7.5)

Using (7.5), Corollary 4.8, and the fact that ε/r → 0 as ε→ 0, we find that v satisfies
v ∈ C∞(H)

Lv = v(1− |v|2) inH
v = g̃ ∈ S1 on ∂H
vν = 0 on ∂H

. (7.6)

We complete the proof of lemma via the following
Claim. The only solution of (7.6) is v ≡ g̃. In order to prove the claim, we extend v toR2 with the
value g̃ onH− := R2 \H, and still denote the extension by v. We note that v ∈ H1

loc(R2) and
thatLv = v(1− |v|2) inH and also inH−. The key observation is that we actually have

Lv = v(1− |v|2) in the weak sense inR2. (7.7)

Indeed, since v ≡ g̃ =constant on ∂H and vν = 0 on ∂H, we find that∇v = 0 on ∂H.
Therefore, if φ ∈ C∞

c (R2;R2) and we write g̃ = (g̃1, g̃2), φ = (φ1, φ2), then (using the fact
thatL is formally self-adjoint)ˆ

H

v · tLφ =

ˆ
H

v · Lφ = T +

ˆ
H

Lv · φ = T +

ˆ
H

φ · v(1− |v|2),
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ˆ
H−

v · tLφ =

ˆ
H−

v · Lφ = −T +

ˆ
H−

Lv · φ = −T = −T +

ˆ
H−

φ · v(1− |v|2),
ˆ
R2

v · tLφ =

ˆ
R2

v · Lφ =

ˆ
R2

φ · v(1− |v|2),

where T is the boundary term

T =

ˆ
∂H

[−K1g̃
1νx(φ

1
x + φ2

y)−K3g̃
1νy(φ

1
y − φ2

x)

−K1g̃
2νy(φ

1
x + φ2

y) +K3g̃
2νx(φ

1
y − φ2

x)],

whence (7.7).
We complete the proof of the claim, and thus of the lemma, by noting that the definition of

v onH− combined with Lemma 2.6 implies that v ≡ g̃.

8 Zoomof enlarged bad discs
The results in this section are valid under the assumption (2.8). We consider maps u = uε ∈ H1

g (Ω)
satisfying the assumptions of Lemma 5.1, i.e.: (i) either critical points ofEε inH1

g (Ω) in a strictly star-
shaped domainΩ, satisfying the a priori bound (4.20); (ii) orminimizers ofEε inH1

g (Ω). In particular,
the conclusions of Lemma 5.1 hold.

Consider an enlarged bad disc as in Lemma 5.1. Consider the rescaled maps vε as in the
proof of Lemma 7.1, with zε replaced with the center of the bad disc. By Lemma 2.5, Corollary
7.2 and the a priori estimates (4.21), (4.22), and (2.19) (all valid, for small ε, as a consequence of
the assumptions considered above), the following hold, with constants independent of small ε,
δ satisfying (2.8), the boundary datum g, and withRε → ∞ as ε→ 0:

vε is defined inBRε(0), (8.1)
|vε(0)| ≤ 1/2, (8.2)

|Dkvε(x)| ≤ C̃k inBRε(0), ∀ k, (8.3)
Lvε = vε(1− |vε|2) inBRε(0). (8.4)

Moreover, there exists finite constants D1, D2 (possibly depending on g if uε is merely a
critical point ofEε) such that

ˆ
BRε (0)

(1− |vε|2)2 ≤ D1, (8.5)

|vε(x)| ≥ 1/2 ifD2 ≤ |x| < Rε. (8.6)

In addition, if uε is a minimizer ofEε,

vε is a minimizer ofE1 inBRε(0)with respect to its own boundary condition. (8.7)

It follows that, possibly up to a subsequence, (vε) converges in C∞
loc(R2) to a smooth map

v : R2 → C such that

|v(0)| ≤ 1/2, (8.8)

|Dkv| ≤ C̃k, ∀ k, (8.9)
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Lv = v(1− |v|2), (8.10)ˆ
R2

(1− |v|2)2 <∞, (8.11)

and, if uε is a minimizer ofEε,

v is an entire local minimizer ofE1 (in the sense of De Giorgi). (8.12)

For furtheruse, letusnote that anymapv satisfying (8.9) and (8.11) satisfies lim|x|→∞ |v(x)| =
1, and thus v has a “degree at∞”, in the sense that, for large R (depending on v), the integer
deg v := deg(v/|v|, CR(0)) is well-defined and independent ofR.

In what follows, we derive some easy consequences of the analysis developed up to now.

Corollary 8.1. For every δ, there exists a bounded entire local minimizer ofE1 satisfying (8.11)
and of negative degree.

Proof. Consider any domainΩ and any boundary datum of negative degree. The enlarged bad
discs in Lemma 5.1 satisfy∑

j

deg(uε/|uε|, CC′ε(x
ε
j)) = deg(g, ∂Ω)

(sinceuε does not vanish inΩ\∪jBC′ε(x
j
ε)). Therefore, at least one of themhas negative degree

on CC′ε(x
ε
j). Blowing-up this bad disc and possibly after passing to a subsequence, we obtain

a v as in the above statement.

Remark 8.2. With more work, it is possible to remove the assumption (8.11) and establish the
following analogue of the main result in Sandier [17]. Let v be a bounded entire local mini-

mizer ofE1. Then
ˆ
R2

(1− |v|2)2 <∞. However, it is unclear how to remove the boundedness

assumption on v.

We next note a first “small δ” result.

Lemma8.3. Wefixaboundarydatumg ∈ C∞(∂Ω;S1). Letuε beaminimizerofEε inH1
g (Ω;C).

Let 0 < λ < 2π. There exist finite constants δ0,C1,C2 depending only onλ, such that, if δ < δ0
and ε < ε0(δ, λ), and vε is as above, then:

ˆ
BC1

(0)

(1− |vε|2)2 ≥ λ, (8.13)

|vε(x)| ≥ 1/2 ifC2 ≤ |x| ≤ Rε, (8.14)
deg(vε/|vε|, CC2(0)) = ±1. (8.15)

Corollary 8.4. If δ < δ0 and uεminimizesEε inH1
g (Ω;C), then wemay replace, in the defini-

tion of the enlarged bad discs, the condition |uε(xjε)| ≤ 1/2with uε(xjε) = 0.

Proof. This follows by noting that, by (8.14) and (8.15), v has to vanish inBC2(0).

Combining Lemma 8.3 with the proof of Corollary 8.1, we obtain the following

Corollary 8.5. If δ < δ0, then there exists an entire local minimizer satisfying (8.11) and of
degree−1.
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Proof of Lemma 8.3. For a fixed δ, consider any vδ arising as a C∞
loc(R2) limit of vε (possibly up

to a subsequence εk → 0). The conclusion of the lemma follows provided any such vδ has, for
small δ and with respect to appropriate constantsC1 andC2, the following properties:

ˆ
BC1

(0)

(1− |vδ|2)2 > λ, (8.16)

|vδ(x)| ≥ 2/3 if |x| ≥ C2, (8.17)

deg(vδ/|vδ|, CC2(0)) = ±1. (8.18)

In turn, (8.16)–(8.18) hold if any v arising as a C∞
loc(R2) limit of vδ (possibly up to a subse-

quence) satisfies
ˆ
BC1

(0)

(1− |v|2)2 > λ, (8.19)

|v(x)| ≥ 3/4 if |x| ≥ C2, (8.20)
deg(v/|v|, CC2(0)) = ±1. (8.21)

In order to prove (8.19)–(8.21), we note that (8.8) and (8.12) applied to vδ yield, by letting
δ → 0, that

|v(0)| ≤ 1/2 (8.22)

and v is an entire local minimizer of G1. (Here, we use the fat that, when δ = 0, the min-
imization of E1 is equivalent to the minimization of G1; see the proof of Lemma 2.1.) Such
minimizers are either constants of modulus 1 (which cannot happen in our case, by (8.22)) or,
up to a rotation and translation, of the form v(reıθ) = f(r)e±ıθ [14]. Here, f ≥ 0 is (strictly)
increasing and uniquely determined by the equation −∆v = v(1 − |v|2) and the condition
f(r) → 1 as r → ∞. Moreover, for such v we have, by a straightforward application of Po-
hozaev’s identity,

ˆ
R2

(1− |v|2)2 = 2π (8.23)

(see also Brezis, Merle, and Rivière [3] for a more general result). If, for 0 < t < 1, we let rt
be the unique solution of f(rt) = t, then, by (8.23) and the monotonicity of f , (8.19) holds for
largeC1, while (using (8.22)) (8.20) and (8.21) hold withC2 := r3/4 + r1/2.

9 Small δ analysis. Bad discs structure forminimizers
Throughout this section, we consider minimizers u = uε of Eε in H1

g (Ω;C), with boundary
datum of degree−D < 0. Themain result of this section is the following.

Theorem 9.1. There exists some 0 < δ2 < 1, possibly depending onD, but not onΩ or g, such
that, if 0 ≤ δ ≤ δ2 and ε is small, then u has exactlyD enlarged bad discs, all of degree−1.

Theproof ofTheorem9.1,which is somewhat similar to [19, Proof ofTheorem5.4], is slightly
easier in the case whereΩ is strictly star-shaped. We start with this case, and later we present
the minor modifications to be made in order to treat the general case. A first key ingredient is
the following straightforward variant of Lemma 4.3 combined with Lemma 4.6.
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Lemma 9.2. Let 0 ≤ δ ≤ δ2 < 1. If u is a critical point ofEε inH1
g (Ω), then there exists some

finite constantC depending only on δ2 such that, for every x ∈ Ω and r > 0,

1

ε2

ˆ
Br(x)∩Ω

(1− |u|2)2 + (1− δ2)r

ˆ
Cr(x)∩Ω

|uν |2 ≤
r

2ε2

ˆ
Cr(x)∩Ω

(1− |u|2)2

+ (1 + δ2)r

ˆ
Cr(x)∩Ω

|uτ |2

+ Cr

ˆ
Br(x)∩∂Ω

|∇u|2.

(9.1)

If, moreover,Ω is strictly star-shaped, then there exists some finite constant C̃, depending
on δ2,Ω and g, such that, for every x ∈ Ω and r > 0,

1

ε2

ˆ
Br(x)∩Ω

(1− |u|2)2 + (1− δ2)r

ˆ
Cr(x)∩Ω

|uν |2 ≤
r

2ε2

ˆ
Cr(x)∩Ω

(1− |u|2)2

+ (1 + δ2)r

ˆ
Cr(x)∩Ω

|uτ |2

+ C̃r,

(9.2)

and therefore
ˆ
Cr(x)∩Ω

[
1

2
|∇u|2 + 1

4ε2
(1− |u|2)2

]
≥1

r

[
1

2(1 + δ2)ε2

ˆ
Br(x)∩Ω

(1− |u|2)2 − C̃r

2(1 + δ2)

]
.

(9.3)

A second ingredient is reminiscent of the expanding balls technique in [19, Chapter 4]. Al-
though we could adapt to our context the more general arguments in [19], we rely on a very
simple result, sufficient for our purposes. Since the proof does not “see” the space dimension,
we state the result inRn (and use it inR2).

Lemma9.3. Let n ≥ 2,R0 > 0, andX ⊂ Rn. SetU := {x ∈ Rn; dist(x,X) ≤ R0}. Consider
an integerN , a radius 0 < R ≤ 31−NR0, andN (not necessarily disjoint) closed balls of radius
R,Bj = BR(xj), 1 ≤ j ≤ N , such that xj ∈ X, ∀ j. For each x ∈ X and 0 < r ≤ R0, set

J(x, r) := {j; Bj ⊂ Br(x)}.

Let λ1, . . . , λN ≥ 0. Suppose that a non-negative Borel function h defined onU \∪jBj has
the following property:

[Sr(x) ∩Bj = ∅, ∀ j] =⇒
ˆ
Sr(x)

h ≥ 1

r

∑
j∈J(x,r)

λj, ∀x ∈ X, ∀ 0 < r ≤ R0. (9.4)

Then
ˆ
U\∪jBj

h ≥
(
ln

R0

3N−1R

)∑
j

λj. (9.5)
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Proof of Lemma 9.3. With no loss of generality, we may assume that R0 = 1. The proof is by
induction onN . WhenN = 1, we note that

ˆ
U\BR(x1)

h ≥
ˆ
B1(x1)\BR(x1)

h =

ˆ 1

R

ˆ
Sr(x1)

h(y) dσ(y)dr ≥
(
ln

1

R

)
λ1,

whence the conclusion.
Assume next that (9.5) holds for (N − 1) balls and considerN balls as in the statement of

the lemma. Setm :=
1

2
min
i ̸=j

|xi − xj|.

Case 1. We havem ≤ R. Equivalently, we have Bi ∩ Bj ̸= ∅ for some i ̸= j. With no loss
of generality, we may assume that BN−1 ∩ BN ̸= ∅. Consider the balls B̃j := B3R(xj), 1 ≤
j ≤ N − 1. Then ∪1≤j≤NBj ⊂ ∪1≤j≤N−1B̃j and 3R ≤ 31−(N−1). Associate with these balls
the numbers λ̃1 := λ1, . . . , λ̃N−2 := λN−2, λ̃N−1 := λN−1 + λN . Then clearly the radius 3R,
the (N − 1) balls B̃j, and the (N − 1) numbers λ̃j satisfy the adapted version of (9.4). By the
induction assumption, we find that

ˆ
U\∪jBj

h ≥
ˆ
U\∪jB̃j

h ≥
(
ln

1

3N−2(3R)

)∑
j

λ̃j =

(
ln

1

3N−1R

)∑
j

λj,

whence the desired conclusion in Case 1.
Case 2. We haveR <m ≤ 31−N . Consider the ballsBm(xj), 1 ≤ j ≤ N . Then (by definition of
m) two of these balls have a common point. By the conclusion of Case 1, we have

ˆ
U\∪jBm(xj)

h ≥
(
ln

1

3N−1m

)∑
j

λj. (9.6)

On the other hand, we have (using (9.4))
ˆ
∪j(Bm(xj)\BR(xj))

=
∑
j

ˆ m

R

ˆ
Sr(xj)

h(y) dσ(y)dr ≥
(
ln

m

R

)∑
j

λj. (9.7)

We complete Case 2 by combining (9.6) and (9.7).
Case 3. We havem > 31−N .Then the ballsB31−N (xj) are mutually disjoint and therefore (using
(9.4))

ˆ
U\∪jBj

h ≥
∑
j

ˆ
B

31−N (xj)\BR(xj)

h =
∑
j

ˆ 31−N

R

ˆ
Sr(xj)

h(y) dσ(y)dr

≥
(
ln

1

3N−1R

)∑
j

λj.

Proof ofTheorem 9.1 whenΩ is strictly star-shaped. Let λ < 2π be a number to be fixed later (suffi-
ciently close to 2π). Let δ < δ0 = δ0(λ), with δ0 as at the end of Section 8. By Lemma 8.3, if we
prove that there are at mostD enlarged bad discs, then there are exactlyD enlarged bad discs,
and their respective degrees are all−1.

Let C1 be as in Lemma 8.3. (Note that C1 depends only on λ.) Let xjε, 1 ≤ j ≤ N(ε) ≤ N ,
be the centers of the enlarged bad discs (as in Lemma 5.1 item 2). For a sufficiently small ε, the
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enlarged bad discs are contained in Ω (Corollary 7.2) and, by Lemma 8.3 and the convergence
results derived at the beginning of Section 8, we have (after rescaling back the functions vε)

lim inf
ε→0

inf
j

1

ε2

ˆ
BC1ε

(xjε)

(1− |uε|2)2 ≥ λ. (9.8)

Consider some smooth S1-valued extensionG of g toR2 \Ω. (Recall that, for simplicity, we
have assumedΩ simply connected, and therefore such an extension does exist.) We still denote
u = uε the extension of uwith the valueG outsideΩ.

Consider a small number a > 0, to be fixed later. Set

X := Ω, U := {x ∈ R2; dist(x,Ω) ≤ 1}, (9.9)

R := C1ε, Bj := BR(x
j
ε), 1 ≤ j ≤ N(ε), (9.10)

h :=
1

2
|∇u|2 + 1

4ε2
(1− |u|2)2, (9.11)

λ1 = · · · = λN(ε) :=
λ

2(1 + δ2)
− a. (9.12)

Let a be sufficiently small such that λ1 > 0 and

R0 :=
2(1 + δ2)a

C̃
≤ 1. (9.13)

By (9.8) and (9.3), when x ∈ Ω, 0 < r ≤ R0, andBr(x) contains at least one enlarged bad
discBj0, we have

ˆ
Cr(x)

h ≥ 1

r

 ∑
j∈J(x,r)

λ

2(1 + δ2)
− C̃R0

2(1 + δ2)

 ≥ 1

r

∑
j∈J(x,r)

λj. (9.14)

Using (9.14) and Lemma 9.3 (with R0 given by (9.13)), we find that, for sufficiently small ε,
we haveˆ

U

h ≥
[

λ

2(1 + δ2)
− a

]
N(ε) ln

R0

C1ε
, (9.15)

and therefore (using the definition of h and the fact thatG is smooth and S1-valued), the Gin-
zburg-Landau energy of u satisfies

Gε(u,Ω) ≥
[

λ

2(1 + δ2)
− a

]
N(ε) ln

1

ε
− C(a, ε). (9.16)

Here,C(a, ε) is bounded as ε→ 0.
On the other hand, Lemma 2.2 combined with Lemma 2.1 yields, with a constant C3 de-

pending on δ2,Ω, and g, the following bound for the standard Ginzburg-Landau energy:

Gε(u,Ω) ≤
π

1− δ2
D ln

1

ε
+ C3, ∀ 0 < ε ≤ 1. (9.17)

We finally choose λ, a, and δ2 such that

(D + 1)

[
λ

2(1 + δ2)
− a

]
> D

π

1− δ2
. (9.18)

(This is possible, provided λ is sufficiently close to 2π and δ2 and a are sufficiently small.)
By (9.16), (9.17), and (9.18), for small εwe haveN(ε) < D + 1, i.e.,N(ε) ≤ D.
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Proof ofTheorem 9.1 in the general case. Let r0 be as in Lemma 4.5. Let x0 ∈ ∂Ω. Using the up-
per bound (9.17), (4.17), and a mean value argument, we find that (with C1 as in (4.17), C4 =
C4(D, δ2), and ε ≤ ε0 = ε0(D)) there exists some r0/2 < r < r0 such that

C1r

ˆ
Br(x0)∩∂Ω

|uν |2 ≤ C4r ln
1

ε
.

Covering ∂Ωwith a finite number (independent of ε ≤ ε0) of ballsBr(x0) as above, we find
that ˆ

∂Ω

|uν |2 ≤ C5 ln
1

ε
. (9.19)

Combining (9.19) with (9.1), we obtain, for small ε, the following versions of (9.2) and (9.3):

1

ε2

ˆ
Br(x)∩Ω

(1− |u|2)2 + (1− δ2)

ˆ
Cr(x)∩Ω

|uν |2 ≤
r

2ε2

ˆ
Cr(x)∩Ω

(1− |u|2)2

+ (1 + δ2)r

ˆ
Cr(x)∩Ω

|uτ |2

+ C̃r ln
1

ε

(9.20)

and
ˆ
Cr(x)∩Ω

[
1

2
|∇u|2 + 1

4ε2
(1− |u|2)2

]
≥1

r

1

2(1 + δ2)ε2

ˆ
Br(x)∩Ω

(1− |u|2)2 − C̃r ln(1/ε)

(1 + δ2)r
.

(9.21)

Set

R0 :=
(1 + δ2)a

C̃ ln(1/ε)
. (9.22)

For small ε, we have R0 ≤ 1. Repeating the argument in the star-shaped case and using
(9.21), we see that, withR0 as in (9.22), (9.14) still holds. Therefore, we are in position to derive
the analogue of (9.16), which in our case (using (9.22)) is

Gε(u,Ω) ≥
[

λ

2(1 + δ2)
− a

]
N(ε) ln

1

ε
− C(a, ε)− C̃(a, ε) ln ln

1

ε
, (9.23)

with C(a, ε) and C̃(a, ε) bounded as ε → 0. Finally, we choose λ, a, and δ2 as in (9.18) and
complete the proof via (9.17), (9.18), and (9.23).

10 Small δ analysis. Insight on the locations of the bad discs
Throughout this section, we consider minimizers u = uε of Eε in H1

g (Ω;C), with boundary
datum of degree −D < 0. We let δ2 be as in Theorem 9.1. The main result of this section is the
following theorem that will subsequently be sharpened in several directions in Sections 12 and
13.
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Theorem 10.1. Let 0 < α < 1. There exists some 0 < δ3 ≤ δ2, possibly depending onD and α,
but not onΩ or g, such that, if 0 ≤ δ ≤ δ3 and ε is small, then the centers xjε, j = 1, . . . , D, of
the enlarged bad discs satisfy

m :=
1

2
min
j ̸=k

|xjε − xkε | ≥ εα, (10.1)

dist(xjε, ∂Ω) ≥ εα, ∀ j. (10.2)

The proof of (10.1) relies on the following generalization of Lemma 9.3.

Lemma 10.2. Weuse the same notation as in Lemma 9.3. LetΦ : R+ → R+ be a superadditive
function. LetN ≥ 2 and λ1, . . . , λN ≥ 0. Consider the numbers

b = b(λ1, . . . , λN) := min
i ̸=j

[Φ(λi + λj)− Φ(λi)− Φ(λj)] ≥ 0,

m :=
1

2
min
i ̸=j

|xi − xj|, ρ := max(R,m).

Suppose that a non-negative Borel function h onU \ ∪jBj has the following property:

[Sr(x) ∩Bj = ∅, ∀ j] =⇒
ˆ
Sr(x)

h ≥ 1

r
Φ

 ∑
j∈J(x,r)

λj

 ,

∀x ∈ X, ∀ 0 < r ≤ R0.

(10.3)

Then
ˆ
U\∪jBj

h ≥
(
ln

R0

3N−1R

)∑
j

Φ(λj) + b ln
R0

3N−1ρ
. (10.4)

Note that one recovers Lemma 9.3 by takingΦ = Id.

Proof of Lemma 10.2. Wemay assume thatR0 = 1. The proof is by induction onN . We mainly
rely on Lemma 9.3, using the fact that, thanks to the superadditivity ofΦ, the assumption (9.4)
is satisfied with λj replaced with Φ(λj). The case N = 1 is a special case of Lemma 9.3 if we
take by convention b = 0 whenN = 1. Assuming that the result holds for (N − 1) balls, we
argue as in the proof of Lemma 9.3.
Case 1. We havem ≤ R (and thusρ = R). Consider the enlarged balls B̃j as in Case 1 in the proof
of Lemma 9.3. Using the conclusion of Lemma 9.3 (with λj replaced withΦ(λj)), we find that

ˆ
U\∪jBj

h ≥
(
ln

1

3N−1R

)( ∑
j≤N−2

Φ(λj) + Φ(λN−1 + λN)

)

=

(
ln

1

3N−1R

)(∑
j

Φ(λj) + [Φ(λN−1 + λN)− Φ(λN−1)− Φ(λN ]

)

≥
(
ln

1

3N−1R

)∑
j

Φ(λj) + b ln
1

3N−1R

=

(
ln

1

3N−1R

)∑
j

Φ(λj) + b ln
1

3N−1ρ
.

29



Case 2. We haveR < m ≤ 31−N . Arguing as in Case 2 in the proof of Lemma 9.3 and using the
conclusion of Case 1 above, we find that

ˆ
U\∪jBj

h ≥
(
ln

1

3N−1m

)∑
j

Φ(λj) + b ln
1

3N−1m
+
(
ln

m

R

)∑
j

Φ(λj)

=

(
ln

1

3N−1R

)∑
j

Φ(λj) + b ln
1

3N−1ρ
.

Case 3. We havem > 31−N .The conclusion follows from Lemma 9.3 noting that in this case we

have b ln
1

3N−1ρ
≤ 0.

We may now proceed with the proof of (10.1). As for Theorem 9.1, the argument is slightly
easier whenΩ is strictly star-shaped, and we start with this case.

Proof of (10.1)whenΩ is strictly star-shaped. Thanks to the assumption δ ≤ δ2, for small ε the
function u has exactly D enlarged bad discs, each of degree −1 (Theorem 9.1). We extend u
toR2 as in the proof ofTheorem 9.1. LetX,U ,R, andBj be as in (9.9)–(9.10) (withN(ε) = D).
Let

w :=
u

|u|
, h :=

1

2
|∇w|2 inU \ ∪jBj, (10.5)

λ1 = . . . = λD := 1, (10.6)
Φ(t) := πt2, ∀ t ∈ R. (10.7)

ByTheorem 9.1, we have

deg(w,Cr(x)) = −#J(x, r) if x ∈ X, 0 < r ≤ 1, andCr(x) ∩Bj = ∅, ∀ j. (10.8)

For x and r as above, we have, by the Cauchy-Schwarz inequality and (10.8),

2πr

ˆ
Cr(x)

|wτ |2 ≥
(ˆ

Cr(x)

|wτ |
)2

≥ (2π#J(x, r))2, (10.9)

and thus (10.3) holds with λj andΦ as above.
We use the notation in Lemma 10.2. By Lemma 10.2, using the fact that w is smooth and

fixed outside Ω and that, by the construction of the enlarged bad discs, we have ρ = m for
small ε, we find that

1

2

ˆ
Ω\∪jBj

|∇w|2 ≥ πD ln
1

ε
+ 2π ln

1

m
− C, (10.10)

whereC is a finite constant independent of small ε.
On the other hand, one easily checks the following:

|u| ≥ 1

2
=⇒ 1

2
|∇u|2 ≥ 1

2
|∇w|2 − 2|1− |u|2||∇u|2. (10.11)

Combining (10.10) and (10.11) with the upper bound (4.27) and the fact that |u| ≥ 1/2 out-
side the bad discs, we find that

Gε(u,Ω) ≥
1

2

ˆ
Ω\∪jBj

|∇u|2 ≥ πD ln
1

ε
+ 2π ln

1

m
− C̃, (10.12)
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where C̃ is a finite constant independent of small ε. On the other hand, if δ ≤ δ3, with δ3 ≤ δ2
to be fixed later, (9.17) (with δ3 instead of δ2) holds, and thus, using (10.12), we find that

ln
1

m
≤ D

2

(
1

1− δ3
− 1

)
ln

1

ε
+
C̃ + C3

2π
. (10.13)

From (10.13), we find that, for small ε, (10.1) holds provided

D

2

(
1

1− δ3
− 1

)
< α.

When Ω is a general domain, we do not have (4.27) at our disposal anymore. We sketch
below the adapted argument.

Sketch of proof of (10.1) in the general case. Theinequality (10.10) still holds in thegeneral case. How-
ever, the strategy for obtaining an analogue of (10.12) from (10.10) is different. Consider some
number 0 < a < 1 to be fixed later. Define the (enlarged bad discs) as in Section 5, but with
1/2 replaced with a. One can see that Lemma 5.1 still holds, possibly with someN depending
on a. Also, the analysis in Section 8 holds, for δ ≤ δ0, with δ0 possibly depending on a. So does
Theorem 9.1. At this stage, using Theorem 9.1 and Corollary 8.4 we conclude that, for small
δ and two different a’s, the corresponding enlarged bad discs coincide, up to a multiplicative
constant factor of their radii. Therefore, the estimate (10.1) does not depend on the specific
value of awe choose.

We next explain how to choose a. We have the following substitute of (10.11):

|u| ≥ a =⇒ |∇u|2 ≥ a2|∇w|2. (10.14)

From (10.10) (with the enlarged bad discs corresponding to a) and (10.14), we find that

Gε(u,Ω) ≥ πa2D ln
1

ε
+ 2πa2 ln

1

m
− C(a). (10.15)

In order to obtain (10.1) from (10.15) and (9.17), it then suffices to choose a and δ3 such that

D

2a2

(
1

1− δ3
− a2

)
< α.

Remark 10.3. For a different approach to the case of general (i.e., not necessarily strictly star-
shaped) domainsΩ, see also Lemma 12.2 and its applications in Section 12.

The basic ingredient of the proof of (10.2) is the following simple result.

Lemma 10.4. Let 0 < λ < 2π. Let g ∈ C1(∂Ω;S1). Then there exists some r0 = r0(λ,Ω, g)
such that the following holds. Let 0 < r ≤ r0 and x0 ∈ ∂Ω. Consider a Lipschitz map w :
∂(Br(x0) ∩ Ω) → S1 such thatw = g onBr(x0) ∩ ∂Ω and degw = −1. Then

r

2

ˆ
Cr(x0)∩Ω

|wτ |2 ≥ λ. (10.16)

Similarly if degw = d ∈ Z and 0 < λ < 2d2π.
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Proof. For small r0 and with finite constants C0, C̃0, all depending only on Ω, and for r, x0 as
above, the following hold:

Cr(x0) ∩ Ω consists of a single arc of endpoints a = a(r, x0), b = b(r, x0), (10.17)
H 1(Cr(x0)) ≤ πr + C0r

2, (10.18)

dist(a, b) ≤ C̃0r (10.19)

(in the last line, dist is the geodesic distance on ∂Ω).
Using: (i) (10.17)–(10.19); (ii) the degree condition on w; (iii) the fact that g is Lipschitz; (iv)

the Cauchy-Schwarz inequality, we find successively, possibly after considering a smaller r0:ˆ
∂(Br(x0)∩Ω)

|wτ | ≥ 2π,

ˆ
Cr(x0)∩Ω

|wτ | ≥ 2π −
ˆ
Br(x0)∩∂Ω

|wτ | ≥ 2π − C(g)C̃0r,

(πr + C0r
2)

ˆ
Cr(x0)∩Ω

|wτ |2 ≥ (2π − C(g)C̃0r)
2,

and the last line implies (10.16) (since λ < 2π), provided r0 is sufficiently small.

In theproofof (10.2),wewill useLemma10.4 in conjunctionwith the following lowerbound,
which is a simple consequence of the Cauchy-Schwarz inequality:

[0 < r1 < r2, x ∈ R2, w : Br2(x) \Br1(x) → S1, w Lipschitz,

deg(w,Cr1(x)) = d ∈ Z] =⇒ 1

2

ˆ
Br2 (x)\Br1 (x)

|∇w|2 ≥ πd2 ln
r2
r1
.

(10.20)

Proof of (10.2). Let 0 < α1 < α be a constant to be fixed later. We take δ3 such that, when
0 ≤ δ ≤ δ3, (10.1) holds for α1 instead of α. Let ε be sufficiently small. Let Bj = BC1ε(x

j
ε),

1 ≤ j ≤ D, be the enlarged bad discs. Assume, with no loss of generality, that the enlarged
bad disc closest to ∂Ω is B1. If dist(x1ε, ∂Ω) ≥ εα, then we are done. Otherwise, by choosing
appropriate values of δ3, α1, and of λ in Lemma 10.4, we will obtain a contradiction for small
ε. For this purpose, we first use (10.20) and obtain the following inequalities

1

2

ˆ
Bεα1 (x

j
ε)\Bj

|∇w|2 ≥ π ln
εα1

C1ε
, ∀ j ≥ 2, (10.21)

1

2

ˆ
Bεα (x1ε)\B1

|∇w|2 ≥ π ln
εα

C1ε
. (10.22)

We next use Lemma 10.4 and obtain, for small ε andwith x0 the nearest point projection of
x1ε on ∂Ω, the bound

1

2

ˆ
Bεα1/2(x0)\B2εα (x0)

|∇w|2 ≥ λ ln
εα1/2

2εα
. (10.23)

We next note that, for small ε, the integration domains in (10.21)–(10.23) are mutually dis-
joint. Combining this observation with (10.21)–(10.23) and using the fact thatw is smooth and
fixed outsideΩ, we obtain the lower bound

1

2

ˆ
Ω\∪jBj

|∇w|2 ≥ [π(1− α1)D + (λ− π)(α− α1)] ln
1

ε
− C, (10.24)
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whereC is a finite numerical constant (depending onC1 and on the extension of u outsideΩ).
On the other hand,we know from the proof of (10.1) in a general domain that, possibly after

modifying the construction of the enlarged bad discs as explained there, we have, for a given
0 < a < 1 and sufficiently small ε,

Gε(u,Ω) ≥ a2
1

2

ˆ
Ω\∪jBj

|∇w|2. (10.25)

The estimates (10.24) and (10.25) contradict, for small ε, the upper bound (9.17) (with δ3
instead of δ2), provided we have

a2[π(1− α1)D + (λ− π)(α− α1)] >
π

1− δ3
D. (10.26)

We finally note that (10.26) holds for any constant λ > π, provided we let α1 and δ3 suffi-
ciently small and a sufficiently close to 1.

Remark 10.5. For the standard Ginzburg-Landau energy and in a strictly star-shaped domain
Ω, the method of proof of (10.1)–(10.2) allows us to recover a “repelling effect” initially estab-
lished in [2]: for small ε, the mutual distances between the bad discs and the distances from
the bad discs to ∂Ω is above some positive constant.

Indeed, combining (10.10) with the upper bound (2.5) and the inequalities (10.11) and (4.27)
(for the latter one, we rely on the fact thatΩ is strictly star-shaped), we see that

lim inf
ε→0

min
j ̸=k

|xjε − xkε | ≥ C > 0 (10.27)

for some constantC depending onΩ and g.
It remains to prove that the bad discs cannot get close to the boundary. Argue by contra-

diction and assume, e.g., that, possibly up to a subsequence,m := dist(x1ε, ∂Ω) → 0. WithC
as above, we may repeat the proof of (10.21)–(10.23), with εα1 replaced withC/4, and find (via
Lemma 10.4 and (10.20)) that

1

2

ˆ
∪j(BC/4(x

j
ε)\BC1ε

(xjε))

|∇w|2 ≥ πD ln
1

ε
+ (λ− π) ln

1

m
− C. (10.28)

Once λ > π is fixed, the inequality (10.28) contradicts, for smallm, the upper bound (2.5).

11 Toyminimization problems on an annulus
Thereexists anatural constructionof competitors for theminimizationproblemminH1

g (Ω;S1)Eε
when deg g = −D < 0. More specifically, set, for 0 < R1 < R2 <∞,

AR1,R2 := BR2(0) \BR1(0).

Consider the class

HR1,R2,C := {v ∈ H1(AR1,R2 ;S1); |vθ| ≤ C onCR1(0) andCR2(0),

deg(v, CR1(0)) = deg(v, CR2(0)) = −1}
(11.1)

and the minimization problem

IR1,R2,C := min{E0(v); v ∈ HR1,R2,C}. (11.2)
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The classHR1,R2,C is non-empty ifC ≥ 1, since for suchC it contains the map

u0 : AR1,R2 → S1, u0(z) :=
z

|z|
, ∀ z ∈ AR1,R2 .

From now on, we assume thatC ≥ 1.
It is straightforward that there exists a minimizer uR1,R2,C in (11.2). In the special case

where δ = 0, (11.2) is equivalent to the minimization of the standard Dirichlet integralG0(v),
and the above u0 is a minimizer. We conjecture that even when δ > 0, a minimizer like-
wise could be a 0-homogeneous map (thus a function depending only on θ and independent
of r = |x|,R1,R2, andC), but we are not aware of a proof of this fact.

Starting from a minimizer w := uε,R2,C in (11.2), where 0 < ε < R2 andR2 is sufficiently
small (depending on Ω) and fixed, we construct a competitor u inH1

g (Ω;S1) as follows. Con-
siderD disjoint closed ballsBR2(xj), j = 1, . . . , D, contained inΩ. Let v be the restriction of
w toCε(0). We first define u in eachBR2(xj) by setting

u(x) = u(reıθ + xj) :=

{
w(x− xj), if ε ≤ r ≤ R2

(r/ε)v(εeıθ), if r ≤ ε
. (11.3)

We next extend u toΩ by considering, inΩ \∪jBR2(xj), an S1-valuedmap, still denoted u,
agreeing with the above map on each CR2(xj) and taking the value g on ∂Ω. It is straightfor-
wards that this is possible such that, in addition,

|∇u| ≤ C1(C,Ω, g) inΩ \ ∪jBR2(xj). (11.4)

Fixing the value ofC and using u as a competitor, we obtain the upper bound

mε := min{Eε(u); u ∈ H1
g (Ω;C)} ≤ DIε,R2,C + C2(Ω, g). (11.5)

A remarkable result of Bethuel, Brezis, and Hélein [2] asserts that, when δ = 0 and Ω is
strictly star-shaped, this construction provides the correct asymptotics ofmε up to a bounded
error, that is,

mε = DIε,R2,C +O(1) = πD ln
1

ε
+O(1) as ε→ 0. (11.6)

Among other ingredients of the proof of (11.6) in [2], there is the exact formula for Iε,R2,C.
Although we are not aware of such a formula when δ ̸= 0, we will establish, in the next two
sections, analogues of (11.6) valid for small δ.

In the current section, we investigate some basic properties of IR1,R2,C , that we collect in
the following simple result.

Lemma 11.1. LetC,C ′ ≥ 1. Let 0 < R1 ≤ R2 ≤ R3 ≤ R4 <∞. Then the following properties
hold, withCj constants depending only on the variables indicated below.

(1− δ)π ln
R2

R1

− (1− δ)π ≤ IR1,R2,C ≤ π ln
R2

R1

. (11.7)

ItR1,tR2,C = IR1,R2,C , ∀ t > 0. (11.8)

IfR3/R2 ≥ 2, then IR1,R4,C ≤ IR1,R2,C + IR3,R4,C + C1(C, δ) ln
R3

R2

+ C2(C, δ). (11.9)
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If t ≥ 2, then IR1,tR2,C ≤ IR1,R2,C + C1(C, δ) ln t+ C2(C, δ). (11.10)
If t ≥ 2, then IR1,tR2,C′ ≤ IR1,R2,C + C3(C, δ) ln t+ C4(C, δ). (11.11)
There exists a constant (1− δ)π ≤ Cδ ≤ π such that

lim
t→∞

IR1,tR1,C

ln t
= Cδ, ∀R1 > 0, ∀C ≥ 1.

(11.12)

If δ > 0, thenCδ < π. (11.13)
If δ > 0, thenCδ > (1− δ)π. (11.14)

Proof of (11.7). For the left-hand side, we use (2.4) combined with the fact that u0 is aminimizer
ofG0 in the classHR1,R2,C. For the right-hand side, we consider, as in the proof of Lemma 2.2,
the competitor u0.
Proof of (11.8). This identity follows from the fact that E0 is invariant under homotheties, and
so is the condition |vθ| ≤ C.
Proof of (11.9). Let u2, respectively u3, be aminimizer inHR1,R2,C , respectively inHR3,R4,C. Let
v2, respectively v3, be the trace of u2 onCR2(0), respectively of u3 onCR3(0).

Since we have |(vj)θ| ≤ C, j = 2, 3, and deg v2 = deg v3 = −1, we may write vj(Rje
ıθ) =

exp (ı(−θ + ψj(θ))), with

|(ψj)θ − 1| ≤ C and |ψj| ≤ (1 + C)π. (11.15)

We next “interpolate” between v2 and v3 by setting

u((1− σ)R2 + σR3)e
ıθ) := exp (ı(−θ + (1− σ)ψ2(θ) + σψ3(θ))), ∀ 0 ≤ σ ≤ 1.

Clearly,u agreeswith v2 onCR2(0) andwith v3 onCR3(0). On the other hand, onehas (from
(11.15))

|ur| ≤
2(1 + C)π

R3 −R2

and |uθ| ≤ C. (11.16)

Considering the competitor


u2, inAR1,R2

u, inAR2,R3

u3, inAR3,R4

in the class HR1,R4,C and using, in AR2,R3,

(2.3) and(11.16), we obtain that (11.9) holds withC1(C, δ) := (1+ δ)πC2 andC2(C, δ) := 6(1+
C)2π3 + 2π(1 + δ).
Proof of (11.10).This is a special case of (11.9), withR3 := tR2 andR4 = R3.
Proof of (11.11).We essentially repeat the proof of (11.9). Given a minimizer u1 inHR1,R2,C and
letting v2 be the restriction of u1 to CR2(0), we interpolate, in BtR2(0) \ BR2(0), between v2
and θ 7→ e−ıθ in order to construct a competitor inHR1,tR2,C′.
Proof of (11.12). By (11.8), it suffices to investigate the case whereR1 = 1. Set

Cδ := lim inf
t→∞

I1,t,1
ln t

. (11.17)

We will prove that (11.12) holds for this Cδ. To start with, we note that, by (11.7), we have
(1− δ)π ≤ Cδ ≤ π.

We next prove that

lim sup
t→∞

I1,t,1
ln t

≤ lim inf
t→∞

I1,t,1
ln t

. (11.18)
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Let ε > 0 and letM > 1 to be fixed later in function of ε. Let t0 ≥M be such that

I1,t0,1
ln t0

< Cδ +
ε

2
. (11.19)

For t ≥ 2t0, let

k :=

⌊
ln t

ln(2t0)

⌋
≥ 1, (11.20)

so that

(2t0)
k ≤ t < (2t0)

k+1. (11.21)

By applying repeatedly (11.8)–(11.10), we obtain, by a straightforward induction on k, that

I1,t,1 ≤ kI1,t0,1 + (k − 1)[C1(1, δ) ln 2 + C2(1, δ)] + C1(1, δ) ln(2t0) + C2(1, δ). (11.22)

To illustrate the proof of (11.22), we detail, for example, the case where k = 2. Then, using
successively (11.9), (11.21), (11.9), (11.8), we find that

I1,t,1 ≤I1,2t20,1 + C1(1, δ) ln
t

2t20
+ C2(1, δ)

≤I1,2t20,1 + C1(1, δ) ln(4t0) + C2(1, δ)

≤I1,t0,1 + I2t0,2t20,1 + C1(1, δ) ln 2 + C2(1, δ) + C1(1, δ) ln(4t0) + C2(1, δ)

=I1,t0,1 + I1,t0,1 + C1(1, δ) ln 2 + C2(1, δ) + C1(1, δ) ln(4t0) + C2(1, δ),

and the last line coincides with the right-hand side of (11.22) with k = 2.
Dividing (11.22) by k ln(2t0), letting k → ∞, and taking (11.20) into account, we find that

lim sup
t→∞

I1,t,1
ln t

≤ I1,t0,1
ln t0

ln(2t0)

ln t0
+
C1(1, δ) ln 2 + C2(1, δ)

ln(2t0)
. (11.23)

We next note that, whenM > 1 is sufficiently large (depending on ε), t0 ≥ M , and (11.19)
holds, the right-hand side of (11.23) is< Cδ + ε. Therefore, (11.18) holds.

To complete the proof of (11.12), wenote the straightforward inequality I1,t,C ≤ I1,t,1. Com-
bining this with (11.11), we find that, when t ≥ 2, we have

I1,t/2,1 + C3(C, δ) ln 2 + C4(C, δ) ≤ I1,t,C ≤ I1,t,1. (11.24)

We obtain (11.18) for an arbitrary constantC ≥ 1 via (11.17), (11.18), and (11.24).
Proof of (11.13).Weconsider aC1map f : S1 → S1, of degree−1, and the competitoru(reıθ) :=
f(eıθ), ∀ r > 0. Clearly, for some C depending on f , we have u ∈ H1,t,C. On the other hand,
if we write f(eıθ) = exp(ı(−θ + ψ(θ))), with ψ of classC1 and 2π-periodic, we have

(div u)(reıθ) =
1

r
(ψ′(θ)− 1) cos(ψ(θ)− 2θ),

(curlu)(reıθ) =
1

r
(ψ′(θ)− 1) sin(ψ(θ)− 2θ),
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and thus

E0(u;A1,t)

ln t
=

ˆ 2π

0

K1 cos
2(ψ(θ)− 2θ) +K3 sin

2(ψ(θ)− 2θ)

2
(ψ′(θ)− 1)2 dθ

:= I (ψ).

(11.25)

From (11.25) and (11.12), we find that

Cδ ≤ inf{I (ψ); ψ ∈ C1([0, 2π];R), ψ(0) = ψ(2π)}
=min{I (ψ); ψ ∈ H1([0, 2π];R), ψ(0) = ψ(2π)}.

(11.26)

By the direct method in the calculus of variations, the min in the second line of (11.26) is
achieved, and any minimizer satisfies

Fψ(ψ(θ), θ)(ψ
′(θ)− 1)2 − 2[F (ψ(θ), θ)(ψ′(θ)− 1)]θ = 0,

where F (ψ, θ) :=
K1

2
cos2(ψ − 2θ) +

K3

2
sin2(ψ − 2θ).

(11.27)

Let us note that

Fψ(ψ, θ) = −2δ sin(ψ − 2θ) cos(ψ − 2θ). (11.28)

Using (11.28), we find that, when ψ = 0, the left-hand side of the first line of (11.27) equals
−6δ sin(2θ) cos(2θ), and thus, when δ ̸= 0, ψ = 0 is not a minimizer ofI . Combining this
with the fact that, whenψ = 0, we haveE0(u) = π ln t (see the proof of (11.7)) and with (11.26),
we obtain thatCδ < π when δ > 0.
Proof of (11.14). LetR1 := 1,R2 := t > 1. Any competitor v in (11.2) is of the form

v = exp (−ı(θ + ψ)), with ψ ∈ H1(A1,t).

For v as above, we find, with Ω := A1,t, using the fact that Jac v = 0 in Ω (since v is S1-
valued):

ˆ
Ω

[(div v)2 + (curl v)2] =

ˆ
Ω

|∇v|2 + 2

ˆ
Ω

Jac v =

ˆ
Ω

|∇v|2,
ˆ
Ω

|∇v|2 =
ˆ
Ω

|∇(θ + ψ)|2 =
ˆ
Ω

|∇θ|2 +
ˆ
Ω

|∇ψ|2 + 2

ˆ
Ω

1

r
ψτ

=

ˆ
Ω

|∇θ|2 +
ˆ
Ω

|∇ψ|2 = 2π ln t+

ˆ
Ω

|∇ψ|2,

E0(v) =
1− δ

2

ˆ
Ω

[(div v)2 + (curl v)2] + δ

ˆ
Ω

(div v)2

=(1− δ)π ln t+
1− δ

2

ˆ
Ω

|∇ψ|2 + δ

ˆ
Ω

[
1

r
cos(ψ − 2θ) +

(
sin(θ − ψ)
cos(θ − ψ)

)
· ∇ψ

]2
.

Assume, by contradiction, thatCδ = (1−δ)π. Then there exist tj → ∞ andψj ∈ H1(A1,tj)
such that, withΩj := A1,tj , we have

ˆ
Ωj

|∇ψj|2 +
ˆ
Ωj

[
1

r
cos(ψj − 2θ) +

(
sin(θ − ψj)
cos(θ − ψj)

)
· ∇ψj

]2
= o(ln tj)

as j → ∞.

(11.29)
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By (11.29) we obtain (using Cauchy-Schwarz on the third line) that

ˆ
Ωj

[
1

r
ψj,θ

]2
≤
ˆ
Ωj

|∇ψj|2 = o(ln tj) as j → ∞, (11.30)

ˆ
Ωj

[(
sin(θ − ψj)
cos(θ − ψj)

)
· ∇ψj

]2
= o(ln tj) as j → ∞,

ˆ
Ωj

1

r
cos(ψj − 2θ)×

(
sin(θ − ψj)
cos(θ − ψj)

)
· ∇ψj = o(ln tj) as j → ∞,

ˆ
Ωj

[
1

r
cos(ψj − 2θ)

]2
= o(ln tj) as j → ∞. (11.31)

Combining (11.30) and (11.31) with a mean value argument, we find that there exist radii
1 < rj < tj such that

1

rj

ˆ
Crj (0)

{
(ψj,θ)

2 + [cos(ψj − 2θ)]2
}
→ 0 as j → ∞.

Therefore, if we set

gj(e
ıθ) := ψj(rje

ıθ), ∀ j, ∀ θ,

we haveˆ
S1

{
(gj,θ)

2 + [cos(gj − 2θ)]2
}
→ 0 as j → ∞. (11.32)

After subtracting a suitable multiple of 2π from g, we may assume that 0 ≤ gj(e
ıθj) ≤

2π for some θj, and then (11.32) implies that, possibly up to a subsequence, there exists some
constantC such that gj → C uniformly. We obtain from (11.32) that

ˆ
S1
[cos(C − 2θ)]2 = 0,

which is impossible. This contradiction completes the proof.

While the above considerations will suffice to yield the correct asymptotics of the minimal
energymεwhenD = 1, for higher degreeswe rely on the study of a “cousin” ofHR1,R2,C. More
specifically, whenC ≥ 1, we consider the class

H̃R1,R2,C := {v ∈ H1(AR1,R2 ;S1);

ˆ
CRj

(0)

|vθ|2 ≤ 2πRjC
2, j = 1, 2,

deg(v, CR1(0)) = deg(v, CR2(0)) = −1}
(11.33)

and the minimization problem

ĨR1,R2,C := min{E0(v); v ∈ H̃R1,R2,C}. (11.34)

The following result is a straightforward version of (part of) Lemma 11.1, and its proof is
omitted.
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Lemma 11.2. Let C ≥ 1. Let 0 < R1 ≤ R2 ≤ R3 ≤ R4 < ∞. Then the following properties
hold, withCj constants depending only on the variables indicated below.

HR1,R2,C ⊂ H̃R1,R2,C , and therefore ĨR1,R2,C ≤ IR1,R2,C . (11.35)

ĨtR1,tR2,C = ĨR1,R2,C , ∀ t > 0. (11.36)

IfR3/R2 ≥ 2, then IR1,R4,C ≤ ĨR1,R2,C + ĨR3,R4,C + C1(C, δ) ln
R3

R2

+ C2(C, δ). (11.37)

WithCδ as in (11.12), lim
t→∞

ĨR1,tR1,C

ln t
= Cδ, ∀R1 > 0, ∀C ≥ 1. (11.38)

12 Small δ analysis. More on the location of bad discs. Asymp-
totic expansion of the energy

Wederive here a number of consequences of the results established in Sections 9–11; in partic-
ular, we improve the conclusion of (10.1) inTheorem 10.1.

In what follows, we consider some integerD ≥ 1. Given a domainΩ and a boundary con-
dition g : ∂Ω → S1 of degree−D, we let

mε = mε,Ω,g := min{Eε(u); u ∈ H1
g (Ω;C)}. (12.1)

Let δ2 = δ2(D) be as is defined in Theorem 9.1, and let 0 ≤ δ ≤ δ2. By Theorem 9.1, for
small ε, a map u = uε achievingmε has exactlyD enlarged bad discs of centers x1ε, . . . , xDε .

We start with an easy result.

Theorem 12.1. LetD = 1. Let δ ≤ δ2(1). Then, for anyC ≥ 1, we have

mε = Iε,1,C +O(1) as ε→ 0. (12.2)

In particular, we have

mε = Cδ ln
1

ε
+ o

(
ln

1

ε

)
as ε→ 0. (12.3)

In the above,O(1) stands for a quantity such that |O(1)| ≤ C(δ,Ω, g) <∞ as ε→ 0.
We continue with a significant improvement of (10.1).

Theorem 12.2. LetD ≥ 2. Let 0 < α0 < 1. Assume that δ3 = δ3(D) < min(δ2(D), 2/(D+2))
is such that: if 0 ≤ δ ≤ δ3, there exists some 0 < α0 = α0(δ,Ω, g) < 1with the property that,
when ε is small (smallness depending on δ), the centers xjε, j = 1, . . . , D, of the enlarged bad
discs satisfy

m :=
1

2
min
j ̸=k

|xjε − xkε | ≥ εα0 . (12.4)

Then, for every 0 < α < 1 and for δ ≤ δ3 as above, we have, for small ε (smallness depend-
ing on α and δ),

m ≥ εα. (12.5)

In particular, there exists some δ3 > 0 such that (12.5) holds for each 0 < α < 1 provided ε
is sufficiently small (smallness depending on α and δ).
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The heart of the matter consists of establishing the first part of Theorem 12.2; the second
part ofTheorem 12.2 follows from the first part combined with (10.1).

Note that, while inTheorem 10.1 δ3 depends on bothD andα, the conclusion of the second
part ofTheorem 12.2 is that δ3 can be chosen to depend only onD.

An easy consequence ofTheorem 12.2 is the following.

Theorem 12.3. LetD ≥ 2. Let δ ≤ δ3(D), with δ3(D) as inTheorem 12.2. Then

mε = DCδ ln
1

ε
+ o

(
ln

1

ε

)
as ε→ 0. (12.6)

Our next result complementsTheorems 12.1 and 12.3.

Theorem 12.4. LetD ≥ 1. IfD = 1, let δ ≤ δ2(1). IfD ≥ 2, let δ ≤ δ3(D). Let uε achievemε.
If, up to a subsequence, xjε → aj ∈ Ω, j = 1, . . . , D, then

eε(uε)

ln(1/ε)
⇀ Cδ

∑
j

δaj ∗-weakly inM (Ω). (12.7)

(Recall that

eε(u) =
K1

2
(div u)2 +

K3

2
(curlu)2 +

1

4ε2
(1− |u|2)2

is the energy density.)
A basic tool used in the proofs of the above results is the following substitute of (10.14).

Lemma 12.5. Let 1/2 ≤ a < 1 and C = C(a) < ∞ be such that, for the corresponding
enlarged bad discs, we have |u| ≥ a in ω := Ω \ ∪jBCε(x

j
ε). Letw := u/|u| in ω. Then

E0(u, ω) ≥ E0(w, ω)− C1(δ,Ω, g)
1

ε2

ˆ
Ω

(1− |u|2)2 − C2(δ, a,Ω, g). (12.8)

Proof of Lemma 12.5. If z = (z1, z2) ∈ R2 ∼ C, we set z⊥ := (−z2, z1).
Let ρ := |u| so that u = ρw in ω and

(div u)2 = (ρ divw +∇ρ · w)2 ≥ ρ2(divw)2 +∇(ρ2 − 1) · ((divw)w) (12.9)

(curlu)2 = (ρ curlw −∇ρ · w⊥)2 ≥ ρ2(curlw)2 −∇(ρ2 − 1) · ((curlw)w⊥). (12.10)

We integrate (12.9) over ω, using an integration by parts for the last term. We proceed sim-
ilarly for (12.10). Combining the two results, we find that

E0(u, ω) ≥E0(w, ω)−
K1

2

ˆ
ω

(1− ρ2)(divw)2 − K3

2

ˆ
Ω

(1− ρ2)(curlw)2

+
K1

2

ˆ
∂ω

(ρ2 − 1)(divw)w · ν − K3

2

ˆ
∂ω

(ρ2 − 1)(curlw)w⊥ · ν

− K1

2

ˆ
ω

(ρ2 − 1)(divw)2 − K3

2

ˆ
ω

(ρ2 − 1)(curlw)2

− K1

2

ˆ
ω

(ρ2 − 1)w · ∇(divw) +
K3

2

ˆ
ω

(ρ2 − 1)w⊥ · ∇(curlw).

(12.11)
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Using: (i) Corollary 4.8 ; (ii) the fact that |u| ≥ 1/2 in ω; (iii) the fact that ρ = 1 on ∂Ω, we
find that the second line in (12.11) is≥ −C3, where C3 = C3(δ, a, deg g). Using, for the other
integrals in (12.11), the fact that |u| ≥ 1/2 in ω, we find that

E0(u, ω) ≥E0(w, ω)− C3 − C4

ˆ
ω

|1− |u|2| × (|∇u|2 + |D2u|)

≥E0(w, ω)− C3 − C4

ˆ
Ω

|1− |u|2| × (|∇u|2 + |D2u|),
(12.12)

whereC4 is a universal constant.
It remains to dominate the last integral in (12.12). Using: (i) Cauchy-Schwarz; (ii) formula

(4.28) (except for the final inequality in (4.28), which requires thatΩ is strictly star-shaped), we
find thatˆ

Ω

|1− |u|2| × (|∇u|2 + |D2u|) ≤ C5(1 + ε−2
∣∣∣∣1− |u|2

∣∣∣∣
2
), (12.13)

whereC5 = C5(δ,Ω, g). We obtain (12.8) from (12.12) and (12.13).

Proof ofTheorem 12.1. Proof when Ω is strictly star-shaped and C = 1. Let ε be sufficiently small
and let BC1ε(x

1
ε) be the enlarged bad disc corresponding to u = uε. By choosing if needed a

larger (but fixed) C1, we may assume that, Ω ⊂ BC1/4(0) and thus Ω ⊂ BC1/2(x
1
ε). Extend

u to R2 as explained in the proof of Theorem 9.1 (after formula (9.8)). Assume, to simplify the
forthcoming formulas, that x1ε = 0. Using: (i) estimate (4.19); (ii) the competitor w := u/|u|
in the minimization problem (11.2) in AC1ε,C1/2 (where C defining the class HC1ε,C2/2,C is a
sufficiently large fixed constant depending on g via (4.22) and the extensionG); (iii) the upper
bound (4.19); (iv) Lemma 12.2; (v) (11.8); (vi) (11.11), we find that

mε ≥ Iε,1/2,C +O(1) ≥ Iε,1,1 +O(1). (12.14)

On the other hand, by combining (12.14) with (11.5), (11.8), and (11.10), we find that

mε ≤ Iε,1,1 +O(1). (12.15)

We complete the proof via (12.14) and (12.15).
Boundedness of the potential term in a general domain.This follows from a principle devised by Del
Pino and Felmer [6]. Assume for simplicity that 0 ∈ Ω. Let vε(x) := uε(2x), x ∈ R2 (where
uε has been extended toR2 as above). LetBR(0) be a large fixed ball containingΩ. By the first
part of the proof, we have

Eε(uε, B2R(0)) ≤ Iε,1,1 +O(1), (12.16)
Eε(vε, BR(0)) ≥ Iε,1,1 +O(1). (12.17)

Subtracting the inequalities (12.16) and (12.17) and noting that

Eε(uε, B2R(0))− Eε(vε, BR(0)) =
3

16ε2

ˆ
BR(0)

(1− |uε|2)2 =
3

16ε2

ˆ
Ω

(1− |uε|2)2,

we find that

1

ε2

ˆ
Ω

(1− |uε|2)2 ≤ C6(δ,Ω, g). (12.18)
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Proof in a general domainwhenC = 1.Weproceed as in the case of a strictly star-shaped domain,
using (12.18) instead of (4.19).
Proof in a general domain for arbitraryC. The inequalitymε ≤ Iε,1,C + O(1) is straightforward.
On the other hand, we have (arguing as in the first step and using (11.11))

mε ≥ Iε,1/2,C +O(1) ≥ Iε,1,C +O(1).

Proof ofTheorem 12.2 whenΩ is strictly-starshaped. We argue by contradiction. Then there exists
some α > 0 such that, passing to a subsequence εℓ → 0 and relabeling the enlarged bad discs
if necessary, we have

lim
ε→0

ln |x1ε − x2ε|
ln ε

= α, (12.19)

lim inf
ε→0

ln |xiε − xjε|
ln ε

≥ α, ∀ i ̸= j. (12.20)

Note that, by assumption, we have

0 < α ≤ α0 < 1. (12.21)

Possibly after passing to further subsequences, there exist a partition consisting of non-
empty sets,

{1, . . . , D} = G1 ⊔ . . .Gℓ

(with, possibly, ℓ = 1), with each Gk non-empty, and a number 0 < β < α such that

1, 2 ∈ G1, (12.22)

[i, j ∈ Gk, i ̸= j] =⇒ lim
ε→0

ln |xiε − xjε|
ln ε

= α, (12.23)

[i ∈ Gk, j ∈ Gn, k ̸= n] =⇒ lim inf
ε→0

ln |xiε − xjε|
ln ε

≥ β. (12.24)

Consider now constants β < α1 < α2 < α < α3 < α4 < 1 to be fixed later (in order
to obtain a contradiction). We extend u to R2 as explained earlier in this section. By (2.3),
the upper bound in Lemma 2.2, and a mean value argument, there exists a finite constant C ′

depending onD and on all the above constants such that: for small ε, there exist radii εα4 <
R1 < εα3 < εα2 < R2 < εα1 satisfying

Rj

ˆ
CRj

(xiε)

|∇u|2 ≤ C ′, j = 1, 2, ∀ 1 ≤ i ≤ D. (12.25)

Note that (by definition of α and choice ofR1),

for small ε,BR1(x
i
ε) ∩BR1(x

j
ε) = ∅ if i ̸= j. (12.26)

For simplicity, assume, only in this paragraph, that xiε = 0. From (12.25) and the fact that
|u| ≥ 1/2 onCRj

(0), j = 1, 2, we find that, in the annulusAC1ε,R1,w := u/|u| is a competitor
in the class H̃C1ε,R1,C (whereC1 is the constant in the definition of the enlarged bad discs and
the constantC depends onC ′ and on the constantC2 in (4.22)).
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By the above, we find that

E0(w,BR1(x
i
ε) \BC1ε(x

i
ε)) ≥ ĨC1ε,R1,C − C3, ∀ i, (12.27)

withC3 a finite constant depending only on the extension of u. (Same for the constantsC4,...,
C6 below.)

SetDk := #Gk, so that

D1 ≥ 2,
∑
k

Dk = D,
∑
k

(Dk)
2 ≥ D + 2. (12.28)

Choose, for each 1 ≤ k ≤ ℓ, an index ik ∈ Gk. Note that

for small ε,BR2(x
ik
ε ) ∩BR2(x

ij
ε ) = ∅ if k ̸= j. (12.29)

We are therefore in position to apply Lemma 9.3 with:

X := Ω, U := {x ∈ R2; dist(x,Ω) ≤ 1},
R := R2, Bk := BR2(x

ikε), 1 ≤ k ≤ ℓ,

h :=
1

2
|∇w|2,

λk := (Dk)
2, 1 ≤ k ≤ ℓ.

(The fact that the assumption (9.4) is satisfied follows from (12.29) and (10.9).) Using Lemma
9.3, we find that

G0(w,Ω \ ∪kBR2(x
ik
ε )) ≥

∑
k

(Dk)
2 ln

1

R2

− C4. (12.30)

Combining (12.30) with: (i) Lemma 2.1 applied in Ω \ ∪kBR2(x
ik
ε ); (ii) the upper bounds

(12.25) and (4.21); (iii) the fact that |u| ≥ 1/2 on the complement of the enlarged bad discs, we
find that

E0(w,Ω \ ∪kBR2(x
ik
ε )) ≥

∑
k

(Dk)
2(1− δ3) ln

1

R2

− C5. (12.31)

Collecting (12.26), (12.27), and (12.31), we find that

E0(w,Ω) ≥ DĨC1ε,R1,C +
∑
k

(Dk)
2(1− δ3) ln

1

R2

− C6. (12.32)

Using: (i) (12.32); (ii) Lemma 11.2; (iii) Lemma 12.2; (iv) the fact thatΩ is strictly star-shaped
(and thus (4.19) holds); (v) the inequalities satisfied by R1 and R2; (vi) the last inequality in
(12.28), we find that

E0(u,Ω) ≥DCδ ln
1

ε
+ [(D + 2)(1− δ3)α1 −DCδα4] ln

1

ε

+ o

(
ln

1

ε

)
as ε→ 0.

(12.33)

Since we haveCδ ≤ π (see Lemma 11.1), and, by assumption, δ3 < 2/(D+ 2), we find that

(D + 2)(1− δ3)α1 −DCδα4 > 0 provided α1 and α4 are sufficiently close to α. (12.34)

We obtain the desired contradiction via (12.33), (12.34), and the upper bound (11.6).
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Proof ofTheorem 12.3 whenΩ is strictly star-shaped. Let 0 < α1 < α < 1. In what follows, con-
stants are finite and independent of small ε. Consider, for small ε, a radius εα < R < εα1 and
a finite constantC ′ satisfying

R

ˆ
CR(xiε)

|∇u|2 ≤ C ′, ∀ 1 ≤ i ≤ D. (12.35)

Arguing as for (12.27), we have

E0(w,BR(x
i
ε) \BC1ε(x

i
ε)) ≥ ĨC1ε,R,C − C3. (12.36)

From (12.36), (11.38), and the fact thatR > εα, we find that

E0(w,Ω) ≥ αDCδ ln
1

ε
+ o

(
ln

1

ε

)
. (12.37)

The parameter α being arbitrary in (0, 1), we obtain from (12.37) that

E0(w,Ω) ≥ DCδ ln
1

ε
+ o

(
ln

1

ε

)
. (12.38)

SinceΩ is strictly star-shaped, (12.38), the upper bound (4.19), and Lemma 12.8 imply that

E0(u,Ω) ≥ DCδ ln
1

ε
+ o

(
ln

1

ε

)
. (12.39)

On the other hand, (11.5) and (11.38) yield

Eε(u,Ω) ≤ DCδ ln
1

ε
+ o

(
ln

1

ε

)
. (12.40)

The conclusion then follows from (12.39) and (12.40).

Proof ofTheorem 12.2 in a general domain. Arguing as in the proof of (12.18) and using the upper
bound (12.40) (valid in any domain) and the lower bound (12.39) (valid in a ball, by the preceding
proof), we find that

1

ε2

ˆ
Ω

(1− |uε|2)2 = o

(
ln

1

ε

)
. (12.41)

We next repeat the proof of Theorem 12.2 in a strictly star-shaped domain. The only dif-
ference arises in the justification of (12.33): when Ω is strictly star-shaped, we use the upper
bound (4.19), while, for a generalΩ, we rely on (12.41).

Proof ofTheorem 12.3 in a general domain. As for the preceding proof, we repeat the proof in the
strictly star-shaped case, except when it comes to justify (12.39), for which we rely on (12.41)
instead of (4.19).

The proof of Theorem 12.4 relies on the following straightforward variant of Lemma 12.2,
whose proof is left to the reader.
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Lemma 12.6. Let 1/2 ≤ a < 1 and C = C(a) < ∞ be such that, for the corresponding
enlarged bad discs, we have |u| ≥ a in ω := Ω \ ∪jBCε(x

j
ε). LetCε < R <m. Then

E0(u,BR(x
i
ε) \BCε(x

i
ε)) ≥E0(w,BR(x

i
ε) \BCε(x

i
ε))

− C1(δ,Ω, g)
1

ε2

ˆ
Ω

(1− |u|2)2 − C2(δ, a,Ω, g)

− C3(δ,Ω, g)

ˆ
CR(xiε)

|∇u|.

(12.42)

Proof ofTheorem 12.4. Let 0 < α1 < α < 1 and let R be as in the proof of Theorem 12.3. By
(12.35), (12.36), (11.38), and (12.42), we find that

Eε(u,Bεα(x
i
ε) \BCε(x

i
ε)) ≥ αCδ ln

1

ε
+ o

(
ln

1

ε

)
. (12.43)

Therefore, for any fixed r > 0 and for any J ⊂ {1, . . . , D}, we have

Eε(u,∪j∈JBr(x
i
ε) \BCε(x

i
ε)) ≥ #JCδ ln

1

ε
+ o

(
ln

1

ε

)
. (12.44)

Combining (12.44) with the upper bound (12.40), we find that, for any fixed r > 0,

Eε(u,Ω \ ∪jBr(aj)) = o

(
ln

1

ε

)
. (12.45)

From (12.44) and (12.45),weobtain that there exist numbers bj ≥ Cδ,∀ j, such that, possibly
up to a subsequence,

eε(uε)

ln(1/ε)
⇀
∑
j

bjδaj ∗-weakly inM (Ω). (12.46)

The fact that bj ≤ Cδ, and thus (12.7) holds for the full sequence, is a consequence of (12.46)
and (12.40).

13 Arbitrary δ analysis. Asymptotic expansion of the energy
Throughout this section, we consider minimizers u = uε of Eε in H1

g (Ω;C), with boundary
datum of degree−D < 0. A first main goal is to generalize the formula (12.6) to any δ (with-
out any smallness assumption on δ). We will also obtain variants of Theorems 12.2 and 12.4,
under weaker assumption on δ. However, the results below are not necessarily, strictly speak-
ing, generalizations of the results in the previous section: while they hold either for any δ or
under explicit smallness conditions on δ, the picture we get is “blurred”, in the sense that it
involves, instead of enlarged bad discs (as up to now), giant bad discs (that we define below),
whose radii can be much bigger than ε. (Recall that, in the previous section, we assume that
δ ≤ δ2 = δ2(D), and the existence of δ2 is established via a proof by contradiction. Therefore,
the smallness conditions on δ in the previous section are not explicit.)

In order to state the main results of this section, we introduce new notation and several
definitions.
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Fix δ. Consider the enlarged bad discs constructed in Lemma 5.1. Possibly after passing to
a subsequence, we may assume that the numberM of bad discs is independent of ε, and that
all the limits

lim
ε→0

ln |xiε − xjε|
ln ε

:= Lij, i ̸= j,

exist. Note that we have 0 ≤ Lij ≤ 1, ∀ i ̸= j. There exists a partition consisting of non-empty
sets,

{1, . . . , D} = G 0
1 ⊔ . . .G 0

ℓ0

(with, possibly ℓ0 = 1) such that

[i, j ∈ G 0
k , i ̸= j] ⇐⇒ Lij = 0, (13.1)

[i ∈ G 0
k , j ∈ G 0

n , k ̸= n] ⇐⇒ Lij > 0. (13.2)

If G 0
k consists of a single index i, the corresponding giant bad disc is simply the enlarged

bad discBCε(x
i
ε). Otherwise, we choose (arbitrarily) i ∈ G 0

k . We set

Rk = Rk(ε) := 2min{|xiε − xjε|; j ∈ G 0
k , j ̸= i}

and define the giant bad disc associated with G 0
k as BRk

(xiε). Note that, while there is some
ambiguity in this definition (since it depends on the choice of i), the giant bad discs have two
common features: (i) for small ε, if j ∈ G 0

k , thenBCε(x
j
ε) ⊂ BRk

(xiε); (ii) for small ε, two giant
bad discs corresponding to two different G 0

k are disjoint.
We extend u toR2 \Ω as explained in the previous sections and define the degreeD0

k of the
giant bad disc associated with G 0

k through the formula

D0
k := deg(u/|u|, CRk

(xiε)).

It is straightforward the definition does not depend on the choice of the extension of u.
To give a flavor of the results in this section and how they do comparewith the results in the

previous sections, we start with a special case of more general assertions below.

Theorem 13.1. Assume that δ ≤ 2/(D + 2). Let 0 < α < 1. Then, for small ε (smallness
depending on α), we have

D0
k = −1, ∀ k, and thus ℓ0 = D, (13.3)

mε = DCδ ln
1

ε
+ o

(
ln

1

ε

)
as ε→ 0, (13.4)

If xiε, x
j
ε are the centers of two different giant bad discs, then |xiε − xjε| ≥ εα, (13.5)

If, up to a subsequence, the centers of the giant bad discs satisfy xjε → aj ∈ Ω,

j = 1, . . . , D, then
eε(uε)

ln(1/ε)
⇀ Cδ

∑
j

δaj ∗-weakly inM (Ω).
(13.6)

This is to be compared respectively withTheorems 9.1, 12.3, 12.2, and 12.4.
We next introduce a quantity that will play the role ofDCδ in the general case (i.e., with-

out any size assumption on δ). To start with, let d ∈ Z be an integer. Associate with d the
classes H d

R1,R2,C
and H̃ d

R1,R2,C
, by replacing, in the definition of HR1,R2,C and H̃R1,R2,C (see
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(11.1) and (11.33)), the condition deg(v, CR1(0)) = deg(v, CR1(0)) = −1, with the condition
deg(v, CR1(0)) = deg(v, CR1(0)) = d. (In order to have non-empty classes, one has to sup-
pose thatC ≥ |d|.) Consider the corresponding minima IdR1,R2,C

and ĨdR1,R2,C
. The analysis in

Section 11 (which corresponds to the special case d = −1) can be readily extended to the case
of an arbitrary degree condition and yields full analogues of the results in Section 11. We quote
e.g., without proof, straightforward generalizations of some of the results there.

d2(1− δ)π ln
R2

R1

− |d|(1− δ)π ≤ ĨR1,R2,C ≤ d2π ln
R2

R1

, (13.7)

There exists some d2(1− δ)π ≤ Cd
δ ≤ d2π such that lim

t→∞

ĨR1,tR1,C

ln t
= Cd

δ ,

∀R1 > 0, ∀C ≥ |d|.
(13.8)

Consider now the quantity

K(δ,−D) := inf

{
M∑
j=1

C
dj
δ ; M ≥ 1, dj ∈ Z,

∑
j

dj = −D

}
. (13.9)

We will see later that it suffices to consider, in (13.9), onlyM and degrees dj satisfying a
priori bounds depending only on δ andD, and thus, in (13.9), inf is actually amin. We will also
see that, under the assumption δ ≤ 2/(D + 2), we haveK(δ,−D) = DCδ.

A main result in this section is the following.

Theorem 13.2. We have

mε = K(δ,−D) ln
1

ε
+ o

(
ln

1

ε

)
as ε→ 0. (13.10)

We now proceed to the proofs and establish, on the way, some auxiliary results of indepen-
dent interest. Since the techniques and arguments used in this section are essentially variants
of the ones presented in Sections 9, 10, and 12, the proofs will be rather sketchy and send to
similar proofs in these sections.

We start with a straightforward result.

Lemma 13.3. The infimum in (13.9) is achieved, and every minimal configuration (dj)1≤j≤M
such that dj ̸= 0, ∀ j, satisfiesM ≤ C1(δ,D), |dj| ≤ C2(δ,D).

Proof. This follows from the lower bound d2(1− δ)π ≤ Cd
δ (see (13.8)).

Lemma 13.4. For small ε, a giant bad disc has a non-zero degree.

Sketch of proof. Proof by contradiction. Suppose that, possibly after a subsequence and rela-
beling the giant bad discs, we have D0

1 = 0 and x1ε ∈ G 0
1 . Let 0 < α < 1 be such that, for

sufficiently small ε,

[i ∈ G 0
k , j ∈ G 0

n , k ̸= n] =⇒ |xiε − xjε| ≥ εα. (13.11)

Let α < β < 1. Using (13.11) and the assumptionD0
1 = 0, we are in position to repeat the

arguments leading to (6.2) in the proof of Lemma 6.1, and find that

Eε(u,Bεβ(x
1
ε)) ≤ C1 andGε(Bεβ(x

1
ε)) ≤ C1, (13.12)

for some finite constant C1 = C1(α, β, deg g). For small ε, estimate (13.12), the fact that
|u(x1ε)| ≤ 1/2, and the η-ellipticity Lemma 3.1 yield a contradiction.
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Proof ofTheorem 13.2. An argument similar to the one leading to (11.5) yields the upper bound

mε ≤ K(δ,−D) ln
1

ε
+ C(Ω, g). (13.13)

The heart of the proof consists of establishing the lower bound

mε ≥ K(δ,−D) ln
1

ε
+ o

(
ln

1

ε

)
as ε→ 0. (13.14)

Construction of nested groups of bad discs. Define Lii := 1. Possibly after passing to a further sub-
sequence in ε, we may assume that there exist numbers 0 ≤ αp < · · · < α1 < α0 = 1 (with
possibly p = 0) such that

{Lij; 1 ≤ i, j ≤M} = {α0, . . . , αp}. (13.15)

For 0 ≤ q ≤ p, we define the equivalence relation

i ∼q j ⇐⇒ Lij ≥ αq.

This equivalence relation defines a partition

{1, . . . , D} = G q
1 ⊔ . . . ⊔ G q

ℓq
;

for q = 0, we recover the partition defined at the beginning at this section, and the corre-
sponding equivalence classes define the giant bad discs. Note that these equivalence classes
are nested, in the sense that, if i ∼q j (and thus i and j are in the same equivalence class at the
q level), then i ∼r j, ∀ r > q (and thus i and j are in the same equivalence class at any higher
level).
Proof of (13.14) whenΩ is strictly star-shaped. If αp > 0, define αp+1 := 0; otherwise we do not
define αp+1. We extend u to R2 as in the previous sections. For 0 ≤ q ≤ p − 1 (if αp = 0),
respectively 0 ≤ q ≤ p (if αp > 0), let

αq+1 < β′
q < β′′

q < γ′q < γ′′q < αq

be (arbitrary, but fixed at this stage) constants. Consider a radiusR such that

εγ
′′
q < R < εγ

′
q or εβ

′′
q < R < εβ

′
q . (13.16)

Then, for small ε (smallness depending only on the above constants, not onR),

If i ̸∼q j, thenBR(x
i
ε) ∩BR(x

j
ε) = ∅. (13.17)

Consider now, for each q and k, some i = i(k, q) such that i ∈ G q
k . We define the “ degree

of the class G q
k ” as

Dq
k := deg(u/|u|, CR(xiε));

the definition does not depend on the choice of i or ofR satisfying (13.16), and is independent
of the extension of u toR2 \ Ω. When q = 0, we recover the definition of the degree of a giant
bad disc. Moreover, by (13.17) we have∑

k

Dq
k = −D, ∀ q. (13.18)
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We next choose, using a mean value argument, radii

εγ
′′
q < ρq < εγ

′
q < εβ

′′
q < Rq < εβ

′
q (13.19)

such that

ρq
ˆ
Cρq (x

i(q,k)
ε )

|∇u|2 ≤ C(D) andRq

ˆ
CRq (x

i(q,k)
ε )

|∇u|2 ≤ C(D), ∀ q, ∀ k. (13.20)

Letw := u/|u|, well-defined outside the enlarged bad discs. By (13.17), if ρq ≤ R ≤ Rq and
ε is small, then deg(w,CR(x

i(q,k)
ε )) = Dq

k. Combining this fact with (13.19), (13.20), and (13.8),
we obtain

E0(w,BRq(xi(q,k)ε ) \Bρq(x
i(q,k)
ε )) ≥ (γ′q − β′′

q )C
Dq

k
δ ln

1

ε
+ o

(
ln

1

ε

)
as ε→ 0. (13.21)

Summing (13.21) over q and k, andusing (13.17), (13.18), and (13.9), and the fact thatu is fixed
and smooth inR2 \ Ω, we obtain

E0(w,Ω) ≥
∑
q

(γ′q − β′′
q )
∑
k

C
Dq

k
δ ln

1

ε
+ o

(
ln

1

ε

)
≥K(δ,−D)

∑
q

(γ′q − β′′
q ) ln

1

ε
+ o

(
ln

1

ε

)
as ε→ 0.

(13.22)

Letting, in (13.22), γ′q → αq and β′′
q → αq+1, and using the fact that

∑
q(αq − αq+1) = 1,

we find that

E0(w,Ω) ≥ K(δ,−D) ln
1

ε
+ o

(
ln

1

ε

)
as ε→ 0. (13.23)

We obtain (13.14) from (13.23), (4.19), and Lemma 12.5.
Proof of (13.14) in a general domain. As in the proof ofTheorem 12.2, we rely on the previous step
to derive first (12.41), then (13.14) in a general domain.

An inspection of the proof of (13.22) leads to the following

Corollary 13.5. With the above notation, we have∑
k

C
Dq

k
δ = K(δ,−D), ∀ q. (13.24)

Sketch of proof ofTheorem 13.1. By (13.24), we have∑
k

C
D0

k
δ = K(δ,−D). (13.25)

On the other hand, if δ < 2/(D + 2), then, by the first part of (13.8), when d ̸= 0we have

Cd
δ ≥ d2(1− δ)π >

D

D + 2
d2π. (13.26)
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Using (13.26), we find that

[Dk ̸= 0, ∀ k,
∑
k

Dk = −D] =⇒ eitherDk = −1, ∀ k,

or
∑
k

(Dk)
2 ≥ D + 2 and

∑
k

CDk
δ > πD.

(13.27)

Since, on the other hand, we have (using (11.12))

K(δ,−D) ≤ DCδ ≤ πD, (13.28)

we find, from (13.25)–(13.28) and Lemma 13.4, that each giant bad disc is of degree −1 (i.e.,
(13.3) holds) and that, moreover,

K(δ,−D) = DCδ. (13.29)

Combining (13.29) with (13.10), we obtain (13.4) when δ < 2/(D + 2).
When δ = 2/(D+2), we argue similarly (using (11.13) instead of (11.12)), andfind that (13.3)

and (13.4) still hold in this case.
On the other hand, by construction, the giant bad discs satisfy the assumption (12.4). (With

the notation in the proof ofTheorem 13.2, the role of α0 in (12.4) can be played by any constant
β with α1 < β < 1.) We are in position to repeat the proof of Theorem 12.2 and obtain, for
the centers of giant bad discs and ε small, the validity of (13.5), which is the analogue of (12.5).
Combining this with (13.29), we are in position to repeat the proof ofTheorem 12.4, and obtain
the validity of (13.6).
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