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ABSTRACT

When mixing or post-producing audio scenes, it is often desirable to modify the spatial characteristics of the sound
field. In this article we present a method for controlling the angular spread of a sound source or a sound scene
encoded in Ambisonics. To do this, we develop a mathematical approach allowing the norm of the energy vector to
be continuously varied, by simulating fractional Ambisonics orders. We derive this approach for the 3D and 2D
cases, then present the objective results in particular in the form of equivalent directivity patterns. The technique
proposed here corrects and completes two previous publications on related topics [1, 2].

1 Introduction

Sound designers, composers and mixers need tools
to creatively manipulate the spatial image during
production, reproduction or post-production of 3D
sound scenes (synthesized or recorded). When work-
ing with Ambisonics scenes, spatial transformations
of the sound field can be obtained by applying a
(frequency-independent) transformation matrix in
the spherical harmonics domain [3, Chapter 5.2].
Several transformation operators have been proposed
previously in the literature, such as 3D rotation effects,
mirroring, directional emphasis, warping, etc.

The objective of this study is to propose a tool
allowing to continuously control the angular spread –
or spatial extent – of a virtual source or an Ambisonics
scene. Indeed, the angular spread (denoted σE )
of sources is an attribute known to be particularly
important for composers and sound designers [4, 5].
The creation of a spreading effect, sometimes called
“divergence” or “focus”, can be achieved by distribut-
ing (coherently or incoherently) the energy from a

phantom source to a certain number of speakers so as
to increase or reduce the perceived extent of the virtual
source [6, 7, 8, 9]. In a previous work [1], a technique
had been proposed allowing to blur an Ambisonics
scene by gradually reducing the encoding order N of
the scene (while preserving the overall energy, under
diffuse field hypothesis). A limitation of this previous
study is that it does not allow intuitive control of the
angular spread, as the latter varies non-linearly with
the chosen “blur factor” (see [1, Eq. 14 and Fig. 6]). In
this paper, we propose a new approach that provides
simple control of σE .

2 Background

2.1 Vector models

Vector models [10], derived from Makita’s localization
theory [11], are frequently used to objectively evalu-
ate amplitude-panned sources reproduced with a loud-
speaker setup. While vector models characterize the
acoustic propagation of sounds, they are used as “psy-
choacoustic” cues and claimed to predict the perceived
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direction of a virtual source [12]. The velocity vector V
assumes an amplitude combination of the loudspeaker
contributions, and is used to predict the apparent direc-
tion of a virtual source in the low frequency domain (up
to approximately 700 Hz) [13]. In the high frequency
domain, it is more relevant to consider an energetic
superposition of the signals, and the energy vector E is
used. It writes [13, Eq. 14] :

E =

K
∑

k=1
g2

k uk

K
∑

k=1
g2

k

= rE uE , (1)

where K is the number of loudspeakers, gk denotes the
gain of the kth speaker, and uk its (normalized) direc-
tion. The norm of the energy vector, denoted rE (with
0≤ rE ≤ 1), represents the concentration of energy in
the direction uE . The direction uE of the energy vector
is used as an indicator of the perceived direction of
the virtual source, while its norm rE correlates with
the perceived width of the source [14, 15] : the shorter
the energy vector, the more broadly the energy is dis-
tributed over the loudspeakers and the more the source
is perceived as “wide”. Several authors have proposed
analytical formulas to quantify this angular spread :

σE =


arccos(rE) according to [12, 16],
2arccos(2rE −1) see [17, Eq. 11],
186.4◦ (1− rE)+10.7◦ see [14, Eq. 22] .

(2)
The first two formulas can be interpreted geometri-
cally, the angular spread corresponding to the angular
aperture of the area of space in which the energy is dis-
tributed. The third formula is derived from perceptual
studies [18].

2.2 “max-rE” optimization

When decoding an N-order Ambisonics stream,
Daniel et al. have shown that it is possible to optimize
the reproduction by maximizing the norm rE of the
energy vector. This is achieved by applying weighting
coefficients dN,n (for 0 ≤ n ≤ N) to the Ambisonics
components. In the 3D case, this leads to (see [12,
Eq. A.64] or [3, Eq. A.45]) :

rE (N) =

2
N
∑

n=1
ndN,n dN,n−1

N
∑

n=0
(2n+1)d2

N,n

. (3)

Daniel et al. [12, 13] showed how to choose the weights
dN,n so as to maximize rE . The solution is expressed
as [12, Eq. 3.89]

∀n≤ N, dN,n = Pn (η) , (4)

where Pn denotes the Legendre polynomial of order
n, and η ≡ rmax

E (N) is the largest root of PN+1 (·), that
is PN+1 (η) = dN,N+1 = 0. The roots of the polynomi-
als Pn are not known analytically, but an approximate
solution was proposed by Zotter et al. [15, Eq. 38]

rmax
E (N)≈ cos

(
137.9◦

N +1.52

)
, (5)

which is presented in Figure 1. As a consequence, Eq. 4
can be rewritten as [15, Eq. 10] :

∀n≤ N, dN,n = Pn

(
cos
(

137.9◦

N +1.52

))
. (6)

3 Proposed method

3.1 Continuous variation of rE

Offering continuous control over the angular spread σE
(or equivalently over rE ) amounts to simulating frac-
tional Ambisonics orders ν ∈ R+, such that the energy
vector varies as (see Figure 1) :

rmax
E (ν)≈ cos

(
137.9◦

ν +1.52

)
. (7)

In [2, paragraph 7.2], a simple solution to this problem
was proposed, by generalizing Eq. 6 to fractional orders,
such that

∀n≤ N, dν ,n = Pn

(
cos
(

137.9◦

ν +1.52

))
. (8)

It turns out that this solution, which seemed “obvious”,
is unfortunately incorrect. It is displayed in red dashed
lines in Figure 1. We observe that the energy vector
resulting from these weightings dν ,n does not match
the expected rE (ν) curve (Eq. 7). The error is more
pronounced for lower orders (ν ≤ 4).
In the following paragraphs, we will develop a new
approach that ensures an exact solution. To do this, we
return to the notion of fractional Ambisonics orders ν .
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Fig. 1: Evolution of rE as a function of the Ambisonics
fractional order ν . The discrete markers • rep-
resent rmax

E (N) (Eq. 5). In solid black line, the
desired shape of rmax

E (ν) (Eq. 7). In red dashed
line, the results of the (erroneous) approach pro-
posed in [2, paragraph 7.2].

3.2 Synthesizing fractional orders

A method for designing directional patterns of frac-
tional orders was originally proposed by Huang et
al. [19, 20]. The method basically consists in creat-
ing a linear combination of harmonic representations
of order N−1 and N. For a fractional order ν such that
N−1≤ ν ≤ N, we write

dν ,n =

{
α dN,n +(1−α)dN−1,n if 0≤ n < N

α dN,n if n = N .
(9)

The “interpolation” factor α (such that α ∈ R and
0 ≤ α ≤ 1) obviously depends on the fractional or-
der ν ; this weighting between orders N−1 and N must
be determined according to an imposed design crite-
rion. In [19, 20], this framework was applied to cir-
cular and spherical microphone arrays, and the tuning
parameter α was determined so as to optimize the di-
rectivity factor or the white noise gain of the arrays.
In [2], the author has applied a similar methodology
to the design of other beampatterns relevant for Am-
bisonics processing. Various design criteria have been
examined such as: maximizing the directivity index
(hypercardioid pattern), maximizing the front-to-back
ratio (supercardioid pattern), canceling the rear lobes
(cardioid pattern or in-phase), etc. In the present study,
the criterion of interest is the maximization of the norm
rE (ν), a problem commonly referred to as “max-rE”
optimization [12, 13].

3.3 Determination of α according to the max-rE
criterion

According to Eq. 3, the energy vector rE for frac-
tional orders ν can be written in terms of the weights
dν ,n (Eq. 9) :

rE (ν) =

2
N
∑

n=1
ndν ,n dν ,n−1

N
∑

n=0
(2n+1)d2

ν ,n

. (10)

Here we will expand the numerator num(ν) and the
denominator den(ν) of this expression; to do this, we
separate the terms n < N and n = N :

den(ν) =
N

∑
n=0

(2n+1)d2
ν ,n

=
N−1

∑
n=0

(2n+1)d2
ν ,n +(2N +1)d2

ν ,N .

(11)

Inserting the expressions for the weights dν ,n (Eq. 9)
for n < N and n = N respectively, we obtain

den(ν) =
N−1

∑
n=0

(2n+1)
(
α dN,n +(1−α)dN−1,n

)2

+(α dN,n)
2 ,

(12)

which, after some developments and simplifications,
leads to a simple formulation of den(ν) as a function
of α :

den(ν) = α
2A+2α (1−α)B+(1−α)2 C , (13)

where we introduced the following notations

A =
N
∑

n=0
(2n+1)d2

N,n ,

B =
N−1
∑

n=0
(2n+1)dN,n dN−1,n ,

C =
N−1
∑

n=0
(2n+1)d2

N−1,n .

(14)

It should be noted here that A, B and C are known and
constant (i.e. independent of ν or α , and dependent
only on the chosen maximum Ambisonics order N).
They can be determined analytically since all terms
dN,n are known (cf. Eq. 6).
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We proceed in the same way with the numera-
tor :

num(ν) = 2
N

∑
n=1

ndν ,n dν ,n−1

= 2
N−1

∑
n=1

ndν ,n dν ,n−1 +2N dν ,N dν ,N−1 .

(15)

Replacing the weights dν ,n (Eq. 9), we obtain after
some elementary developments :

num(ν) = α
2 D+α (1−α)E

+α (1−α)F +(1−α)2 G ,
(16)

with the constants D, E, F , G defined as follows

D = 2
N
∑

n=1
ndN,n dN,n−1 ,

E = 2
N
∑

n=1
ndN,n dN−1,n−1 ,

F = 2
N−1
∑

n=1
ndN−1,n dN,n−1 ,

G = 2
N−1
∑

n=1
ndN−1,n dN−1,n−1 .

(17)

As noted previously, these terms D, E, F , G are
entirely determined, and can be easily evaluated.

Having developed the numerator and denomina-
tor, we can now express the norm of the energy vector
as a function of α

rE (ν) =
num(ν)

den(ν)

=
α2 D+α (1−α)(E +F)+(1−α)2 G

α2A+2α (1−α)B+(1−α)2 C
.

(18)

We recognize here a second degree equation in α

aα
2 +bα + c = 0 , (19)

with the following (constant) coefficients
a = D− (E +F)+G− rE (ν)(A−2B+C) ,

b = (E +F)−2G−2rE (ν)(B−C) ,

c = G−C rE (ν) .
(20)

The determinant of the quadratic equation is
∆ = b2−4ac, and we admit here that this determinant
is always positive (∀ν ≥ 0,∆≥ 0). If such result is not
trivial to prove analytically, its verification can be done
numerically. We display in Figure 2 the numerical
evaluation of ∆ for different values of the fractional
order ν , and for N = 7.

Fig. 2: Determinant ∆ of the quadratic equation
in α (Eq. 19) for various values of ν in [0,7].

Solving the quadratic equation is then straightforward.
Out of the two real solutions, we retain the one
satisfying 0 ≤ α ≤ 1. To conclude, we have shown
how to determine α according to the desired fractional
order ν . Consequently, the weights dν ,n can be
evaluated for any fractional order ν .

The method proposed in this section considered 3D
Ambisonics sound field. The approach can be straight-
forwardly adapted to the 2D case; the corresponding
results are presented in the Appendix (Section 5).

3.4 Continuous control of the spread

We note here ς a control parameter, expressed in %,
which will allow linear variation of the angular
spread σE . Such a linear control law ς is written in the
form

σE =

(
σmax

E −σmin
E
)

(100%−0%)
ς +σ

min
E , (21)

where σmin
E and σmax

E denote the minimum and max-
imum achievable spread values. For a given order N,
the minimum spread is given by

σ
min
E = 2arccos

(
2 cos

(
137.9◦

N +1.52

)
−1
)

, (22)
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using here the formula from Epain et al. [17]
(see Eq. 2). The maximum spread obviously corre-
sponds to σmax

E = 360◦.

For a continuous control of the spread, the pro-
cedure is as follows :

1. the user specifies the desired control parameter ς

(with 0≤ ς ≤ 100),
2. the corresponding angular spread σE is calculated

(Eq. 21),
3. the norm of the energy vector rE is derived (Eq. 2),
4. the corresponding fractional order ν is determined

(Eq. 7),
5. the interpolation factor α is obtained by solving

Eq. 19,
6. finally, the weights dν ,n are evaluated (Eq. 9).

The evolution of the corresponding quantities (σE , rE ,
ν , α) is represented in Figure 3 (a, b, c, and d respec-
tively), as a function of the control parameter ς .
Finally, the results of our approach are presented in Fig-
ure 4, showing the equivalent directivity patterns, for
different values of ς between 0 and 100%. As expected,
we observe a continuous (and linear) variation of the
angular spread, as manifested by the widening of the
main lobe. For ς = 0%, we obtain an optimal max-rE
pattern for the given order N = 7, and corresponding
to an angular spread σmin

E ≈ 60◦. As can be observed
in Figure 3(c), we synthesize almost integer order pat-
terns for ν ≈ 2% (N = 6), ν ≈ 4% (N = 5), ν ≈ 8%
(N = 4), ν ≈ 13% (N = 3), ν ≈ 21% (N = 2), and
ν ≈ 37% (N = 1). For these values of ν , we observe
in Figure 4 the known max-rE patterns, as presented
for example in [12, Fig. 3.14].

3.5 Implementation

The proposed method was developed in C++
language and integrated into the Spat5 library
for Max [21, 22], namely in the external ob-
ject spat5.hoa.directivitywhich implements
weighting laws dN,n according to various design criteria.
The equations introduced in the previous paragraphs are
numerically simple, therefore computationally efficient,
and well suited to real-time uses (dynamic variations
of the spread σE ).
Figure 5 illustrates the implementation in Max, with a
graphical representation of the weights dν ,n, a visualiza-
tion of the equivalent directivity pattern, the calculation
of various metrics, and the application coefficients dν ,n
to an Ambisonics audio stream.

Fig. 3: (a) Angular spread σE , (b) Energy vector rE ,
(c) Fractional order ν , and (d) Interpolation
factor α , as function of the control parameter ς .
The figures are for N = 7.
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4 Conclusion

In this article we presented a method for controlling
the angular spread of a virtual source (or a sound field)
encoded in Ambisonics. The approach is based on a
continuous variation of the energy vector norm, ob-
tained by simulating fractional orders. The technique,
mathematically simple, is integrated into the Max en-
vironment for interactive audio applications. We have
shown that the expected objective results are achieved,
and informal listenings confirmed the effectiveness of
the method.
However, the proposed solution also has limitations :
the framework is indeed based on a “coherent” spread-
ing approach, that is to say that the signal from a virtual
source is sent fully correlated to all active loudspeakers;
it has been shown that this can give rise to ambiguous
auditory events or timbral colorations [23, 8], and this
is why several authors have suggested alternative inco-
herent spreading techniques, typically based on decor-
relation or frequency-dependent filtering [24, 25, 26].
It would therefore remain to conduct perceptual studies
comparing the proposed approach to other state of the
art strategies.

References

[1] Carpentier, T., “Ambisonic spatial blur,” in Proc.
of the 142nd Convention of the Audio Engineering
Society (AES), Berlin, Germany, 2017.

[2] Carpentier, T., “Spherical beampatterns with frac-
tional orders,” in Proc. of the Forum Acusticum,
10th Convention of the European Acoustics Asso-
ciation (EAA), pp. 607 – 614, Torino, Italy, 2023,
doi:10.61782/fa.2023.0531.

[3] Zotter, F. and Frank, M., Ambisonics: A Practical
3D Audio Theory for Recording, Studio Produc-
tion, Sound Reinforcement, and Virtual Reality,
Springer, Cham, Switzerland, 1st edition, 2019,
doi:10.1007/978-3-030-17207-7.

[4] Peters, N., Marentakis, G., and McAdams, S.,
“Current Technologies and Compositional Prac-
tices for Spatialization: A Qualitative and Quanti-
tative Analysis,” Computer Music Journal, 35(1),
pp. 10 – 27, 2011, doi:10.1162/COMJ\_a\_00037.

[5] Baalman, M. A., “Spatial Composition Tech-
niques and Sound Spatialisation Technologies,”

Organised Sound, 15(3), pp. 209 – 218, 2010,
doi:10.1017/S1355771810000245.

[6] Pulkki, V., “Uniform spreading of amplitude
panned virtual sources,” in Proc. of the IEEE
Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), pp. 187 – 190,
New Paltz, NY, USA, 1999, doi:10.1109/aspaa.
1999.810881.

[7] Rumsey, F., Spatial Audio, Routledge, New
York, NY, USA, 1st edition, 2001, doi:10.4324/
9780080498195.

[8] Roginska, A. and Geluso, P., Immersive Sound:
The Art and Science of Binaural and Multi-
Channel Audio, Routledge, New York, NY, USA,
1st edition, 2018, doi:10.4324/9781315707525.

[9] Ziemer, T., Psychoacoustic Music Sound Field
Synthesis: Creating Spaciousness for Compo-
sition, Performance, Acoustics and Perception,
Springer, Cham, Switzerland, 2019, doi:10.1007/
978-3-030-23033-3.

[10] Gerzon, M. A., “General metatheory of auditory
localization,” in Proc. of the 92nd Convention of
the Audio Engineering Society (AES), Vienna,
Austria, 1992.

[11] Makita, Y., “On the directional localization of
sound in the stereophonic sound field,” in EBU
Review, volume 73, pp. 102 – 108, 1962.

[12] Daniel, J., Représentation de champs acoustiques,
application à la transmission et à la reproduction
de scènes sonores complexes dans un contexte
multimédia, Ph.D. thesis, Université de Paris VI,
2000.

[13] Daniel, J., Rault, J.-B., and Polack, J.-D., “Am-
bisonics Encoding of Other Audio Formats for
Multiple Listening Conditions,” in Proc. of the
105th Convention of the Audio Engineering Soci-
ety (AES), San Francisco, CA, USA, 1998.

[14] Frank, M., Phantom Sources using Multiple Loud-
speakers in the Horizontal Plane, Ph.D. thesis,
Institute of Electronic Music and Acoustics, Graz,
Austria, 2013.

[15] Zotter, F. and Frank, M., “All-Round Ambisonic
Panning and Decoding,” Journal of the Audio
Engineering Society, 60(10), pp. 807 – 820, 2012.

AES 156th Convention, Madrid, Spain
2024 June 15–17

Page 6 of 9



Carpentier Continuous control of the angular spread in Ambisonics

[16] Bertet, S., Daniel, J., Parizet, E., and Warusfel, O.,
“Investigation on Localisation Accuracy for First
and Higher Order Ambisonics Reproduced Sound
Sources,” Acta Acustica united with Acustica, 99,
pp. 642 — 657, 2013, doi:10.3813/aaa.918643.

[17] Epain, N., Jin, C., and Zotter, F., “Ambisonic
Decoding With Constant Angular Spread,” Acta
Acustica united with Acustica, 100(5), pp. 928 —
936, 2014, doi:10.3813/AAA.918772.

[18] Frank, M., Marentakis, G., and Sontacchi, A., “A
simple technical measure for the perceived source
width,” in Proc. of the Fortschritte der Akustik
(DAGA), pp. 691 – 692, Düsseldorf, Germany,
2011.

[19] Huang, G., Chen, J., and Benesty, J., “A flexi-
ble high directivity beamformer with spherical
microphone arrays,” Journal of the Acoustical So-
ciety of America, 143(5), pp. 3024 – 3035, 2018,
doi:10.1121/1.5038275.

[20] Huang, G., Chen, J., and Benesty, J., “Design of
Planar Differential Microphone Arrays With Frac-
tional Orders,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 28, pp. 116 –
130, 2019, doi:10.1109/TASLP.2019.2949219.

[21] Carpentier, T., Noisternig, M., and Warusfel, O.,
“Twenty Years of Ircam Spat: Looking Back,
Looking Forward,” in Proc. of the 41st Interna-
tional Computer Music Conference (ICMC), pp.
270 – 277, Denton, TX, USA, 2015.

[22] Carpentier, T., “Spat: a comprehensive toolbox
for sound spatialization in Max,” Ideas Sónicas,
13(24), pp. 12 – 23, 2021.

[23] Blauert, J., Spatial Hearing: The Psychophysics
of Human Sound Localization, The MIT Press,
Cambridge, MA, USA, 1st edition, 1983, doi:10.
7551/mitpress/6391.001.0001.

[24] Zotter, F., Frank, M., Kronlachner, M., and
Choi, J.-W., “Efficient Phantom Source Widen-
ing and Diffuseness in Ambisonics,” in EAA
Symposium on Auralization and Ambisonics, pp.
69 – 74, Berlin, Germany, 2014, doi:10.2478/
aoa-2013-0004.

[25] Zotter, F. and Frank, M., “Phantom Source Widen-
ing by Filtered Sound Objects,” in Proc. of the

142nd Convention of the Audio Engineering Soci-
ety (AES), Berlin, Germany, 2017.

[26] McCormack, L., Politis, A., and Pulkki, V.,
“Rendering of source spread for arbitrary play-
back setups based on spatial covariance match-
ing,” in Proc. of the IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acous-
tics (WASPAA), New Paltz, NY, USA, 2021, doi:
10.1109/waspaa52581.2021.9632724.

AES 156th Convention, Madrid, Spain
2024 June 15–17

Page 7 of 9



Carpentier Continuous control of the angular spread in Ambisonics

5 Annex: derivation of the proposed
method in the 2D case

Here we use the same methodology as in the Section 3,
with similar notations, and we adapt the equations
to the 2D case. The results are provided without
demonstration.

Daniel [12, Eq. A.56] established that

rE (N) =

2
N
∑

n=1
dN,n dN,n−1

d2
N,0 + 2

N
∑

n=1
d2

N,n

. (23)

The weights dN,n that maximize rE are [12, Eq. 3.88] :

∀n≤ N, dN,n = Tn (η) , (24)

where Tn (·) denotes the Chebyshev polynomial (of the
first kind) of order n such that Tn (cosθ) = cos(nθ),
and η ≡ rmax

E (N) is the greatest root of TN+1 (·) given
by [13, Eq. 19] :

rmax
E (N) = cos

(
π

2N +2

)
. (25)

Thus the weights dN,n are written [12, Eq. 3.88] :

∀n≤ N, dN,n = cos
(

nπ

2N +2

)
. (26)

Considering fractional orders ν :

rE (ν) =

2
N
∑

n=1
dν ,n dν ,n−1

d2
ν ,0 + 2

N
∑

n=1
d2

ν ,n

=
num(ν)

den(ν)
, (27)

with :

num(ν) = 2
N

∑
n=1

dν ,n dν ,n−1 , (28)

and

den(ν) = d2
ν ,0 + 2

N

∑
n=1

d2
ν ,n , (29)

we obtain after some developments and simplifica-
tions :

num(ν) = α
2 D+α (1−α)E

+α (1−α)F +(1−α)2 G ,
(30)

where : 

D = 2
N
∑

n=1
dN,n dN,n−1 ,

E = 2
N
∑

n=1
dN,n dN−1,n−1 ,

F = 2
N−1
∑

n=1
dN−1,n dN,n−1 ,

G = 2
N−1
∑

n=1
dN−1,n dN−1,n−1 .

(31)

den(ν) = α
2A+2α (1−α)B+(1−α)2 C , (32)

A = d2
N,0 + 2

N
∑

n=1
d2

N,n = (N +1) ,

B = dN,0 dN−1,0 + 2
N−1
∑

n=1
dN,n dN−1,n ,

C = d2
N−1,0 + 2

N−1
∑

n=1
d2

N−1,n = N .

(33)

As in the 3D case, we find the relevant value of α by
solving the quadratic equation :

aα
2 +bα + c = 0 , (34)

with the following (constant) coefficients
a = D− (E +F)+G− rE (ν)(A−2B+C) ,

b = (E +F)−2G−2rE (ν)(B−C) ,

c = G−C rE (ν) .
(35)
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Carpentier Continuous control of the angular spread in Ambisonics

Fig. 4: Equivalent directivity pattern for various values of ς . The angular spread σE , depicted in purple arc, varies
linearly between σmin

E ≈ 60◦ (N = 7) and σmax
E = 360◦. The radial scale is logarithmic with 6 dB/division.

Fig. 5: Example of implementation in the Max environment. ¬ Calculation of the coefficients dν ,n as function of the
spread parameter ς (here, ς = 18.9%). ­ Equivalent directivity pattern. ® Calculation of various metrics,
based on the coefficients dν ,n (we note for example that σE ≈ 105◦ and rE ≈ 0.80). ¯ Numerical display
of coefficients dν ,n. ° Graphical display of the coefficients dν ,n, in the form of bar graph. ± Application of
coefficients dν ,n to an Ambisonics audio stream (here with N = 7).
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