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RÉSUMÉ. Le Grafcet est un puissant langage de modélisation graphique pour la spécification de
contrôleurs dans des systèmes à événements discrets. Il prend en compte des structures hiérar-
chiques ainsi que des contraintes structurelles et sémantiques. Ici, nous proposons d’utiliser un mo-
dèle de spécification Grafcet dans une approche d’ingénierie dirigée par les modèles (IDM) pour la
synthèse multi-cible de systèmes de contrôle commande embarqués basés sur des microcontrôleurs.
Dans cette approche, un métamodèle Grafcet est associé à un métamodèle microcontrôleur, lequel
caractérise les fonctionnalités de la plateforme spécifique microcontrôleur à considéerer lors de la
génération de code. Ce métamodèle Grafcet proposé prend en compte la modélisation des expres-
sions pour faciliter la vérification du modèle et une interprétation facile des événements Grafcet ainsi
que des contraintes de temps. Les règles de transformation utiles à la génération de code pour des
microcontrôleurs C-programmables sont ensuite présentées. Comme application, nous présentons
une plateforme basée sur Eclipse EMF, Object Constraint Language (OCL) et le moteur de génération
de code Acceleo.

ABSTRACT. Grafcet is a powerful graphical modeling language for the specification of controllers
in discrete event systems. It considers hierarchical structures as well as structural and semantic
constraints. In this paper, we propose to use a Grafcet specification model in a Model Driven En-
gineering (MDE) approach for multi-target synthesis of embedded logic control systems based on
microcontrollers. In this approach, a Grafcet metamodel is associated with a microcontroller meta-
model which characterizes the microcontroller platform features to be considered when generating
code. The Grafcet metamodel includes the modeling of expressions to facilitate model verification
and an easy interpretation of Grafcet events and time constraints. Transformation rules for generation
of C-programmable microcontroller code are then presented. As application, we present a platform
based on Eclipse EMF, Object Constraint Language (OCL) and Acceleo code generation engine.

MOTS-CLÉS : synthèse multi-cibles, contrôleurs logiques, Grafcet, Ingénierie Dirigée par les Mo-
dèles, vérification de modèle, génération de code C

KEYWORDS : Multi-target synthesis, logic controllers, Grafcet, Model Driven Engineering, model
verification, C code generation
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1. Introduction
The design cost of automated systems is greatly influenced by the time needed for the

development of reliable control code [2]. This task is generally accomplished by direct
implementation from the functional design specification of the controller. Conventional
manual translation of the requirements of the control software into a control code often
leads to additional costs caused by erroneous interpretations [2, 3]. It is therefore of great
interest to automatically generate software code on the basis of a graphical specification
language [4] such as Grafcet that is an international standard (IEC 60848 [7]) since 1988
. Indeed, it is an advantageous graphical modeling language for industrial programmable
logic controller (PLC) specification in discrete event systems (DES) [4].

A lot of work has been done to make Grafcet a programming language. One of
the well-known developments [8] has led to the definition of Sequential Function Chart
(SFC), which is one of the five languages of the IEC 61131-3 standard dedicated to the
programming of PLCs. On the other hand, some authors have been interested in code ge-
neration for controllers specified in Grafcet. For instance, J. Machado et al. [1] presented
a safe controller design methodology permitting to easily generate control code for logic
controllers taking as input a Grafcet specification model. Their proposal uses Grafcet
algebraic equations as a formal representation of Grafcet.

The continuous development of information and communication technology (ICT) has
facilitated the emergence and rapid proliferation of a wide variety of low-cost processors
for the execution of programs in complex embedded applications [9]. Thus, the use of
programmable controllers based on microprocessors may be preferred in low cost appli-
cations to reduce the cost of the control solution. As a consequence, it is important to
consider the description of the target architecture when generating code for a system spe-
cified in Grafcet. This allows to handle the generation of control code for a family of
hardware architectures, with the possibility to choose one specific architecture as input of
the generation process.

Among the existing approaches for code generation from formal models, recent ad-
vances in the field of Model Driven Engineering (MDE) produce the most promising
outcomes [2]. MDE is an expanding paradigm in the software engineering domain that
promotes the use of models and model transformations for the production of software ar-
tifacts (documentation, code, etc.), with the use of Domain Specific Languages (DSLs).
The MDE approach was found to be appropriate for Grafcet implementation [2, 4]. In-
deed, the Grafcet language can be seen as a DSL and can benefit from the advances of
MDE to facilitate control engineers practices, by enabling the automatic transformation
of Grafcet models into control code.

Whatever is the nature of the model used to represent Grafcet in the code generation
process, this model must support the verifications that ensure compliance with the stan-
dard [1]. A step towards a general formal definition of Grafcet is proposed in [3] and
can be used as a basis for Grafcet model-driven development [2], including hierarchical
structures [5] to enable the expantion of the existing solutions to other issues of formal
methods in control system engineering. Our objective in this paper is to propose a Grafcet
metamodel representing all its basic concepts including events and time constraints. We
will then show how to perform multi-target code generation, considering the specification
of the target used.

The rest of the paper is organized as follows: section 2 presents a background on Graf-
cet specification language and model driven development and analysis of MDE work for



Grafcet implementation. Grafcet metamodeling, verification rules and the derived pro-
perties are presented in section 3. In section 4, we present a multi target code generation,
including the microcontroller metamodel while section 5 is devoted to a case study. The
paper is concluded in section 6.

2. Background
The specification of the logic controller is the first step in the development of embed-

ded controllers for a custom application [11]. Grafcet is one of commonly used formal
techniques for logic controller specification. In this section, we present an overview of
the Grafcet language and the MDE, which is the approach through which we formalize
the Grafcet multi-target synthesis.

2.1. Grafcet description language
Grafcet is a graphical language for modeling automation systems defined in the IEC

60848 standard [7]. It is used for high level behavioral description of logic sequential
systems and has been inspired from the Petri Net language [11]. Grafcet language is used
for the specification, modelling and simulation of logic control systems in interaction with
physical processes. A Grafcet describes the states of a system and associated actions that
permit to take into account inputs and generate the corresponding outputs. This language
is defined statically by its syntax and dynamically by its evolution rules.

2.1.1. Grafcet statics
A Grafcet model (as presented in Figure 1) is a directed graph with two types of nodes:

steps and transitions. Steps are represented by squares while transitions are represented
by horizontal lines.

Figure 1. Example of Grafcet

Initial steps are represented with double lines. Steps are numbered or named while
transitions do not need to be numbered. Steps and transitions are interconnected by direc-
ted arcs so-called junctions or connections. Those arcs necessary connect steps to transi-



tions and transitions to steps. A transition condition also called receptivity or condition is
associated to each transition.

2.1.2. Grafcet dynamic behavior
The Grafcet dynamic behavior can be compared to a sequential machine that provides

an event-driven conversion of an input sequence into a set of outputs, considering the
controller’s internal state [1, 11]. The Grafcet evolution is possible by firing (or clearing)
transitions according to five evolution rules defined by the IEC 60848 standard [7] which
aims to ensure a deterministic behavior :

– Rule 1: At the initial time, all the initial steps are active; all the other steps are
inactive.

– Rule 2: A transition is enabled when all the steps that immediately precede this
transition are active. A transition is fireable when it is enabled and when the associated
transition condition is true. A fireable transition must be immediately fired.

– Rule 3: Firing a transition provokes simultaneously the activation of all the imme-
diately succeeding steps and the deactivation of all the immediately preceding steps.

– Rule 4: When several transitions are simultaneously fireable, they are simulta-
neously fired.

– Rule 5: When a step shall be both activated and deactivated, by applying the pre-
vious evolution rules, it is activated if it was inactive, or remains active if it was previously
active.
These rules enable the calculation of the subsequent state and the corresponding output
signals caused by an input event [7, 11, 2]. A step defines a partial state of the system
and can be active or inactive; hence, a Boolean variable Xi, named step activity variable
is defined for each step. The variable Xi is true (1) if the step i is active and false (0) if
not. The general state of a Grafcet called its situation, is characterized by the set of all
the active steps at a given time. It can be represented by a vector X = (Xi). Initial steps
represented by double squares are initially activated (Rule 1). As soon as time passes and
events occur, the continuous changing of the grafcet situation characterizes the evolution
of the system that it models. A mathematical formalisation of these dynamics is proposed
by [3] and R. Mros et al. [6].

2.1.3. Grafcet example
Figure 1 shows an example of a Grafcet model used in [10], inspired from a model

presented in [9] to model the water supply subsystem of a tank. This model has eight
steps numbered from 1 to 8 among which the step 1 is initial, nine transitions numbered
from (1) to (9) and several actions among which : C := 0 and N := 10 are stored actions
performed during the deactivation of step 1; V R1, AV and REC are continuous level
actions associated respectively to steps 3, 4 and 8. The action A if (bWD OR ppM1) is
a conditional level action. It is performed if the step 6 is active and the condition bWD
OR ppM1 is true. The receptivity of transition (2) is hT2 AND rain. It expresses the fact
that when the step 2 is activated and the value of hT2 AND rain is true, this transition is
fireable and should be fired; when it is fired, step 2 is deactivated and step 3 is activated.
Here, hT2 and rain are two Boolean variables modeling digital input signals.



2.2. Model driven engineering
Model Driven Engineering (MDE) is the field of software engineering that makes

use of models and model transformation to produce software artifacts such as code and
documentation [12].

2.2.1. Key principles and MDE approaches
The basic principle of MDE is “everything is a model” [12, 15]. A model is a repre-

sentation of a system under study. MDE principles state that a particular view of a system
can be captured by a model and each model is written in the language of its metamodel. In
other words, “a metamodel is a model of models” that defines the structure of a modeling
language [12]. As a consequence, a model should satisfy the structure defined at the level
of its metamodel. A modeling language is a set of all possible models that are conforming
to the modeling language’s abstract syntax, represented by one or more concrete syntaxes
and satisfying a given semantics [12]. The process of defining a modeling language starts
with the identification of the concepts, abstractions and relations underlying the applica-
tion domain. It corresponds to the domain analysis phase of the development of a Domain
Specific (Modeling) Language (DS(M)L).

MDE approaches are usually supported by complex tools called “model driven Meta-
Tools” and commonly known as “language workbenches” [13]. They provide a collection
of features to help users define DS(M)Ls, with specific editors, model validation and
model transformation. Examples of such tools are Eclipse EMF, Microsoft Software Fac-
tories, and JetBrains MPS [12]. A model transformation is “the process of converting one
model to another model of the same system‘”. Model transformation program takes as
input a model conforming to a given source metamodel and produces as output another
model conforming to a target metamodel [13].

2.2.2. Related work
Many PLC environments such as CoDeSys allow multi-target synthesis of logic control

systems [3], but these environments are proprietary and they are not interested by the syn-
thesis on microcontroller targets. Y. Qamsane et al [14] proposed a Grafcet metamodel for
the transformation of Distributed Control model of automated manufacturing systems into
Grafcet models to facilitate its implementation. This model represents the very basic Graf-
cet structure, but is limited to allow the construction of any Grafcet model. For example,
only one action can be associated to a step, and its type (continuous or stored) is not taken
into consideration. Similarly, to demonstrate that composing transformations is a complex
problem, F. Basciani et al. [15] proposed a Grafcet metamodel to illustrate model trans-
formations between incompatible metamodels, with an illustration on the transformations
between Grafcet and Petri nets. This Grafcet metamodel conforms to the Grafcet standard
and represents only the concepts of the most basic structure of the language. Similarly,
R. Julius et al. [5] proposed a metamodel based approach for GRAFCET specifications,
with a particular focus on hierarchical structures, enabling how to expand the existing
solutions to other issues of formal methods in control system engineering. The variable
and timing condition concept is presented, discussed and formalized by G. Nzebop N.
et al. [10]. Their proposal integrates a parser capable of directly analysing and genera-
ting Grafcet expressions in an IDM environment for editing Grafcet models. However,
this solution had not yet been integrated into a general Grafcet metamodel. Recently, R.
Mros et al. [6] proposed a Grafcet metamodel for editing models and transforming them
into Guarded Action Language (GAL) for verification purposes. Their contribution em-
phasizes the hierarchical structures of Grafcet and rules for editing valid Grafcet models.



Also, the Grafcet expressions must be transformed into GAL before being verified and
validated. Another limitation of this IDM synthesis solution is that their target is mainly
programmable controllers (via the Structured Text, one of the PLC languages [8]) and
does not take into account specific targets such as microcontrollers.

Here we propose a metamodel that allows the editing of valid Grafcet models with
well-constructed and verified expressions[10, 6] based on a Grafcet expression parser and
the OCL language, associated with a metamodel of C-programmed microcontrollers [17]
to facilitate code synthesis for these architectures.

3. Grafcet concepts and metamodel
Here, we present the Grafcet metamodeling, consisting of the identification of Grafcet

concepts with their interrelations, and their formalization within a metamodel.

3.1. Grafcet concepts identification
Given the complexity of the Grafcet domain, we distinguish the identification of

concepts of the basic Grafcet structure, concepts related to variables and actions, Grafcet
expressions concepts and timing variables concepts.

3.1.1. Concepts of the basic Grafcet structure
With regard to the description of the Grafcet language according to the IEC 60848

2nd Ed. standard [7], it appears that a Grafcet model groups together several steps and
transitions. They are linked together by oriented links also called connections. The steps
(Step concept), the transitions (Transition), oriented links (Connection) and variables (Va-
riable) are Grafcet elements (G7Element). Two types of connections can easily be identi-
fied: transition-to-step connections (TransitionToStep) and step-to-transition connections
(StepToTransition). Each instance of TransitionToStep is outgoing from a transition and
incoming from a step, while each instance of StepToTransition is outgoing a step and
incoming a transition.

3.1.2. Concepts related to variables, actions and expressions
A Boolean variable (BooleanVariable) is associated with a step to represent its activity,

and is internal to the Grafcet. Any variable (Variable) is either input, output or internal.
It is characterized by a name and a duration of its activity. Several actions (Action) may
be associated with a step. Every action is represented and performed by its variable.
This way of structuring Action and Variable concepts makes it possible to have the same
action associated with several different steps as stated in the standard. An action can only
be stored (StoredAction) or level (LevelAction).

The concept Expression do not appear explicitly in the Grafcet standard, but it exists
and its modeling permits to solve certain issues such as verifications and the providing
of appropriate semantics. This concept is presented, discussed and formalized by G.
Nzebop N. et al. [10], including Grafcet events and timing variables. In [6], the authors
also identify the notion of Variable as a key concept, and use the concept Condition to
refer to Boolean expressions (Expression).

3.2. The Grafcet metamodel
The formalization of Grafcet concepts and the links between them produces the Graf-

cet metamodel of Figure 2, which has been implemented within EMF.



Figure 2. The Grafcet metamodel
Many relationships are automatically derived. An automatic solution for the construc-

tion of Grafcet expressions has been presented in [10], based on an ANTLR parser ge-
nerator tool, called G7Expr, that is called to automatically and recursively derive all the
elements linked to the construction of Grafcet expressions. We therefore integrate this
solution into the proposed Grafcet metamodel.

To make sure that the models built are valid, semantic constraints or rules are stated,
formalized with OCL (in the same way as [6] and [10] ) and integrated to the Grafcet
metamodel. In effect, OCL is a formal language that is independent of a programming
language [6]. It is used to describe elements on UML models ans to query metamodel
inatances. Generally, OCL expressions are written in the context of a specific instance
of a model, to which the keyword self refers. The ”.” operator refers to an attribute,
resulting to a single attribute or a set, called collection; while the ”->” operator refers to
the navigation from a collection.

For example, the constraint ”A Grafcet has at least one initial step” is formalized with
OCL as follows :

Listing 1: A Grafcet has at least one initial step

context Grafcet invariant hasAtLeastOneInitialStep :
self.steps->select(s|s.isInitial)->size()>=1;

Annex 1 contains other rules that have been clearly identified, stated and formalized
with OCL.



3.3. Deriving relative positions between steps and transitions
The Grafcet interpretation algorithm makes use of relative positions between steps and

transitions. For example, given a transition, it is necessary to evaluate all the input steps
(upstream steps) and all the output steps (downstream steps). We provide a solution by
using the OCL language to query metamodel instances.

Input steps of a transition : According to the model, a step is at the input of a
transition if there exists a connection (of type StepToTransition) which is both at the
output of this step and at the input of this transition. Input steps are obtained by creating
the inSteps property in the context of Transition as presented on Listing 2:

Listing 2: Deriving inSteps property

property inSteps:Step[*] { derived volatile }
{ derivation: (grafcet.steps->select(step|step.outConnections->exists(outCon|

self.inConnections->includes(outCon))))->asSet(); }

Similarly, we create derived properties for output steps of a transition, input transitions
of steps and output transitions of steps, all of which are required to implement the Grafcet
evolution rules.

3.4. Model edition and validation
After the creation of the generation model (.genmodel), the project code is automa-

tically generated within Eclipse EMF, including the code of a Grafcet editor, which has
several views including a tree editor (Sample Reflective Ecore Model Editor) and a text
editor. Here, we illustrate this editor using the Grafcet model of the example. Given the
Grafcet model of Figure 1, we provide a corresponding Grafcet model with a labelling of
connected links (as shown on Figure 3), allowing connections to be distinguished from
each other.

Figure 3. Grafcet example with the links labelled



All the derived features of this Grafcet model are automatically produced, according
to section 3.3. Figure 4 shows an overview of this Grafcet model produced in the Sample
Reflective Ecore Model Editor. All steps activity variables (X1, X2, . . . , X8) are auto-
matically built, as well as steps variables, actions and transitions expressions.

Figure 4. The Grafcet example in tree editor

Validation rules are associated to the Grafcet metamodel, and they must be verified on
model instances by running the validation process.

4. Multi target code generation
This section starts with the specification of target platforms, before describing the

transformation of Grafcet to control code.

4.1. Target platforms specification and metamodel
The microcontrollers programmable in a language derived from the C-language [17]

are considered, and the metamodel of this family is given in Figure 5. As for the Grafcet,
a microcontroller model editor is also obtained in Eclipse EMF, allowing the edition and
saving models in XMI format for any use such as code generation.

The concepts of white color are describing the useful physical characteristics, those of
purple color describe characteristics related with the C-language while the others (of light
yellow) represent enumerated types or possible values of certain attributes of the model.



Figure 5. Microcontroller metamodel
4.2. Transformation step for code generation

Here is the MDE transformation process for Grafcet code generation that takes as
input the model of the microcontroller target. The transformation is based on the corres-
pondence of Grafcet-elements to C code fragments (M2T transformation), of the Model-
to-text/Concrete syntax design pattern category. Table 1 of Annex 2 presents an overview
of some basic code transformation rules.

Due to the sequential execution of instructions by microcontrollers, the Grafcet dy-
namics is stated in the code in terms of Grafcet algebraic equations presented in [1] and
recalled in [9]. Here are the two main equations of the Grafcet dynamics. If CC(tr)
(Clearing Condition) is the Boolean variable associated to the transition tr, tr can be fi-
red if it is enabled and if its associated transition condition TC(tr) is true. CC(tr) is
calculated as shown on equation 1.

CC(tr) = (

m∏
i=1

Xtr
i )× TC(tr) [1]

where :
– Xtr

i is the step activity Boolean variable associated to step i and directly preceding
transition tr,

– TC(tr) is the transition condition associated to transition tr and
– m is the number of steps immediately preceding the transition tr.∏m

i=1 X
tr
i expresses the condition for this transition to be validated.



After the initialization of activity variables, their update is computed as shown on
equations 2.

Xi(t+ 1) =

p∑
j=1

CC(tri−j ) +Xi(t)×
q∏

j=1

CC(tri+j ) [2]

where :

– Xi(t) is the step activity variable of step i in the tth scan cycle,
– Xi(t+ 1) is the step activity variable of step i in the (t+ 1)th scan cycle,
– p is the number of transitions directly preceding the step i,
– q is the number of transitions directly succeeding the step i,
– CC(tri−j ) is the clearing condition of transition j, directly preceding the step i and

– CC(tri+j ) is the clearing condition of transition j, directly succeeding the step i.
Grafcet expressions are transformed into C code using the C semantics of expressions

described in [10].

5. A case study of code generation
This case study is intended to present an example of the implementation of the trans-

formations for code generation for the family of microcontrollers presented here. We then
present a particular case with the Atmega328P microcontroller [16].

5.1. The implementation of the transformation
The transformation program is organized by modules. Each module contains several

templates and/or queries to extract information from the manipulated models and write
the result in the file on output. The Acceleo language is then used to implement the trans-
formation of Grafcet into code. It is an implementation of the MOFM2T specification
defined by the OMG and is composed of two main types of structures: templates and
queries. Templates are sets of Acceleo statements used to generate text, and queries are
used to extract information from models.

The main module (generateG7MM2Code.mtl) contains one template providing the
main structure of the code generated and outputted in a file, as shown on Figure 7 of
Annex 3.

The general architecture of this transformation system is given in figure 6. The Acce-
leo Transformation Engine takes as input a valid grafcet model and a description of the
architecture of the target microcontroller to execute the transformation rules and produce
dedicated code as output.

5.2. Application to the Atmega328P microcontroller

5.2.1. Atmega328P microcontroller description and attributes
Atmega328P is a high-performance Microchip 8-bit microcontroller based on the

AVR enhanced RISC architecture, manufactured by the Atmel company [16]. The At-
mega328P attributes used here for code generation are as follows:

– Name: Atmega328P, Manufacturer: ATMEL, 8 bits word memory;
– 20MHz of processor, 2Ko of RAM, 32Ko of Flash memory, 1Ko of EEPROM;



Figure 6. General architecture of the transformation system
– Programmable pins with numbers: PD0 (0) . . . PD7(7), PB0 (8) . . . PB7 (15), PC0

(0) . . . PC5(28);
– C-language characteristics: Name: Arduino, Timer: Timer 1 of 16 bits;
– Pins operations :

pinMode(pin_num, mode); to configure a pin number with a particular mode (INPUT/OUT-
PUT),
digitalRead(pin_num); to read a digital value of a pin number,
digitalWrite(pin_num, value); to write a digital value on a pin number,
analogRead(pin_num); to read an analog value of a pin number,
analogWrite(pin_num, value); to write an analog value on a pin number;

– Timer 1 configuration: Timer1.initialize(1000000/(1000/TIMER_PERIOD));
Timer1.attachInterrupt(update_G7TimingVars_callback);
To configure the Timer 1 (16 bits timer) with a period of TIMER_PERIOD milliseconds.
It calls periodically the function update_G7TimingVars_callback.
The ecore metamodel instance corresponding to ATmega328P is produced and used in
the code generation process.

5.2.2. Generation of Grafcet code in Arduino language
An implementation of the M2T transformation has been executed to generate arduino

code. After the selection of the Grafcet model, the microcontroller instance and the target
directory, the transformation program is run and the target code is produced. An overview
of the resulting code is presented in Annex 4.

This generated code is successfully compiled in the Arduino environment and execu-
ted by any Arduino board (Uno, Mega . . . ) equiped with the Atmega328P microcontroller
and producing the expected behaviour.

6. Conclusion
The objective of this paper was to study the multy target synthesis of logic embed-

ded controllers from Grafcet specification. We have proposed a Grafcet metamodel that
considers all aspects of the Grafcet language, including time constraints and events. This
has resulted in a Grafcet metamodel linked to a Grafcet expression parser that makes easy



the design of verified Grafcet models. To allow multi-target generation, we have pro-
posed a microcontroller metamodel representing its main characteristics useful for code
generation. Transformation rules have been designed for Grafcet code generation, given
the model of the target microcontroller, with an implementation case study in the popu-
lar Eclipse MDE environment. The flexibility of the multi-target platform for embedded
control synthesis, proposed in this paper, allows PLC technology to be used in a wide
variety of applications that were not previously associated with PLCs. The proposal in
this paper is completely transparent and can be easily adapted for any other purpose.

Annex 1 : Grafcet semantic constraints
Two different variables cannot have the same name :

Listing 3: uniqueNamesInVars constraint (Grafcet)

context Grafcet invariant uniqueNamesInVars:
self.variables->forAll(v1,v2| v1<>v2 implies v1.name<>v2.name);

An instance of StepToTransition can only link one step to one transition, i.e. only one
incoming step :

Listing 4: validStepToTransition_StepSide constraint (Grafcet)

context Grafcet invariant validStepToTransition_StepSide :
self.connections->select(c|c.oclIsTypeOf(StepToTransition))->forAll(con|

self.steps->select(s|s.outConnections->includes(con))->size()=1);

An instance of StepToTransition can only link one step one transition, i.e. only one
outgoing Transition :

Listing 5: validStepToTransition_TransitionSide constraint (Grafcet)

context Grafcet invariant validStepToTransition_TransitionSide :
self.connections->select(c|c.oclIsTypeOf(StepToTransition))->forAll(con|

self.transitions->select(t|t.inConnections->includes(con))->size()
=1);

An instance of TransitionToStep can only link one transition to one step, i.e. only one
outgoing Step :

Listing 6: validTransitionToStep_TransitionSide constraint (Grafcet)

context Grafcet invariant validTransitionToStep_TransitionSide :
self.connections->select(c|c.oclIsTypeOf(TransitionToStep))->forAll(con|

self.transitions->select(t|t.outConnections->includes(con))->size()
=1);

An instance of TransitionToStep can only link one transition to one step, i.e. only one
incoming Transition :



Listing 7: validTransitionToStep_StepSide constraint (Grafcet)

context Grafcet invariant validTransitionToStep_StepSide :
self.connections->select(c|c.oclIsTypeOf(TransitionToStep))->forAll(con|

self.steps->select(s|s.inConnections->includes(con))->size()=1);

Any transition hast at least one step in input and one step in output :

Listing 8: validTransition constraint (Transition)

context Transition invariant validTransition :
self.inConnections->size()>=1 and self.outConnections->size()>=1;

Any variable associated to a step (step activity variable) is an internal variable :

Listing 9: stepVarIsInternalVar constraint (Step)

context Step invariant stepVarIsInternalVar:
self.stepVariable.type = VarType::Internal;

Any variable representing a level action is of type BooleanVariable :

Listing 10: levelActionVarIsBoolVar constraint (LevelAction)

context LevelAction invariant levelActionVarIsBoolVar:
self.actionVariable.oclIsTypeOf(BooleanVariable);

Annex 2 : Some basic transformation rules
Table 1 presents these transformation rules.

Annex 3 : The main Acceleo module
This overview, dedicated to code generation, is shown in Figure 7.

Annex 4 : An overview of the Arduino code generated for the
example

Listing 16: Overview of the Arduino code generated

#include "TimerOne.h"
//**** Declare INPUT pins mapped **** Total : 9
const byte pin_init_ = 2;
...
//**** Declare DIGITAL INPUT pins states **** Total : 9
boolean init_, init__Old;



Tableau 1. Basic rules for the correspondence between Grafcet elements and C code
Grafcet element Code generated

Receptivity
calculation

Receptivity calculation

R_<aTransition.name> = <aTransition.getCExpr()>;

Clearing a
transition
computation

Clearing a transition computation

CC_<aTransition.name> = VT_<aTransition.name> && R_<aTransition.name>;
if(FT_<aTransition.name>) {transitions_fired = 1;}

Level action
computation

Level action computation

if(!<transitions_fired>){
//for every step <aStep>
if(<aStep.variable.name>) {
if(<aStep.actions(LevelActions)[0].expressionCondition.getCExpr()>)

<aStep.actions(LevelActions)[0].variable.name> = 1;
}
//for all level actions associated to the step <aStep>

}

updating
outputs
/actions

updating outputs or actions

if(! <transitions_fired>){
if(<action.variable.name> != <action.variable.name> +"_Old"){
digitalPinWrite("pin_"+ <action.variable.name>,<action.variable.name>);
}
//For every level action

}

Duration of
activity
variables
computation

Duration of activity variables computation

if(FE(<aVariable.name>){ <aVariable.name>_duration = 0 ;}
else if(<aVariable.name>){ <aVariable.name>_duration ++; }

...
const unsigned int TIMER_PERIOD = 100; //100 ms = 1/10 seconds
//Program Initialization
void setup(){

initializeTimer();
//INPUT PINs Configuration
pinModeConfig(pin_init_, INPUT);
pinModeConfig(pin_hT2, INPUT);
...
//OUTPUT PINs Configuration
pinModeConfig(pin_VR1, OUTPUT);
pinModeConfig(pin_C, OUTPUT);
...
//Inital steps activity variables initialization
X1_Old = true;



Figure 7. Overview of the main Acceleo module for code generation
};
//Program loop
void loop(){

//Reading states of Digital INPUT pins (Digital Input variables)
init_ = digitalPinRead(pin_init_);
hT2 = digitalPinRead(pin_hT2);
...
//Evaluate validated transitions (variables)
CC_1 = X1_Old ;
...
CC_6 = X4_Old && X5_Old;
...
//Evaluate Receptivities of transitions
R_1 = (CC_1)? (init__Old == false && init_ == true): false ;
R_3 = (CC_3)? (((! rain) && bWD) && ppM1): false ;
...
//Evaluate Clearing/firing transitions conditions
FT_1 = CC_1 && R_1;
...
//Calculation if there is any transition fired : 2nd alternative
transitions_fired = FT_1 || FT_2 || FT_3 || FT_4 || FT_5 || FT_6 || FT_7

|| FT_8 || FT_9 ;
...
//Evaluate steps activity variables
X1 = (X1_Old );
X2 = FT_9 || FT_1 || FT_6 || (X2_Old && ! R_9 && ! R_1 && ! R_6);
...
//Evaluate Digital OUTPUTs variables : 8
if(transitions_fired == false){

//Evaluate Level Actions Associated to Step 3 : 1
if(X3){ if (1) {VR1 = true;}}
...



}
//Evaluate Analog/Stored OUTPUTs variables
//Evaluate Stored Actions Associated to Step 1
//Step 1: Action C On Activation
if(X1_Old == false && X1 == true){

C = 0;
}
...
//Updating LEVEL ACTIONS OR DIGITAL OUTPUTs
if(transitions_fired == false){

//A stable situation is reached
if(VR1_Old != VR1){

digitalPinWrite(pin_VR1, VR1);
}
...

}
...
// Keep the state of Xi variable in Xi_Old before the next cycle
X1_Old = X1;
...

}

void initializeTimer(){
unsigned int FT_Steps = 1000/TIMER_PERIOD;

Timer1.initialize(1000000/FT_Steps);
Timer1.attachInterrupt(update_G7TimingVars_callback);

}
void update_G7TimingVars_callback(){

//called periodically to update timing variables
//Updating durations of steps activity variables for timing conditions
//for the step 1
if(X1_Old == true && X1 == false){

X1_duration = 0;
}else if(X1 == true){

X1_duration ++;
}
...

}
...
//Pin mode configuration
void pinModeConfig(int pin_num, int mode){

pinMode(pin_num, mode);
}
...
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