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Abstract—For data augmentation (DA), Generative Adversar-
ial Networks (GANs) are typically integrated with CNNs or MLPs
to generate samples in classification and segmentation tasks. For
classification, categorical ground truth is leveraged in conditional
GANs to generate samples for each class. For regression, data
generation becomes complex as the aim now is to generate both
the samples (images) and their continuous ground truth vectors.
GANs for classification can no longer, therefore, be leveraged for
DA on regression. To address this issue, we propose GT&I GAN,
a novel GAN-based DA model that generates jointly image
samples and their ground truth continuous vectors by learning
their conjoint distribution. The main idea behind GT&I GAN is
to add, to the RGB sample image, an additional (fourth) channel
associated with the ground vector. GT&I GAN offers the great
advantage of generating conjointly the samples and their ground
truths by a single model without needing an additional network.
We assess our approach on an image dataset where the ground
truth consists of a high dimensional vector of continuous values.
The results show that the synthetic data consisting of the image
& ground truth vector pairs are realistic and allow improving
the CNN regressor performance. Moreover, we show that our
GT&I GAN can be leveraged seamlessly for segmentation tasks
by adding, in a similar way, the ground truth segmentation mask
as an additional channel to the input RGB image.

Index Terms—deep neural networks, generative adversarial
networks, regression task, segmentation task

I. INTRODUCTION

CNNs are widely used DL models with remarkable success
in image classification, object detection, segmentation, etc.
[1]. CNNs, however, require large training data. GANs have
emerged as a potent strategy for augmenting training datasets,
with significant improvements in performance and general-
ization. Current state-of-the-art GANs are highly effective in
computer vision [2] [3], natural language processing [4] [5],
healthcare [6] [7] [8], agriculture [9] [10], etc. GANs are

commonly paired with CNNs or MLPs to perform tasks like
data generation for classification, and semantic segmentation.
In classification, they often rely on categorical ground truth
to generate synthetic samples for each class. This generative
scheme, however, is not adapted to regression tasks, where
the ground truth is a continuous valued vector. In this case,
data generation becomes more intricate as the goal now is
to generate both images and their continuous ground truth
vectors. Conventional GANs, therefore, are no longer suitable
for DA for regression tasks.
To address this issue, we introduce GT&I GAN, a novel
GAN-based DA model for generating not only image samples
but also their continuous ground truth vectors. The core
concept behind GT&I GAN is the incorporation, into the RGB
sample, of an extra (fourth) channel encoding the ground vec-
tor. Building the training dataset in this way, our GT&I GAN
model is able to learn the joint distribution of the image-
ground truth vector pairs and generate synthetic ones, without
the need for an auxiliary network. This greatly simplifies the
training process and improves overall efficiency. To validate
our approach, we conducted experiments on an image dataset
with ground truth represented by a vector of continuous values.
The results demonstrate that the synthetic data, consisting of
image and ground truth vector pairs, exhibit a high level of
realism. When these synthetic data are added to the training
set of a CNN regressor, we obtain improved performance,
thereby showcasing our approach potential for tasks requiring
data generation for regression tasks.
Furthermore, we show that GT&I GAN can be seamlessly
extended to segmentation tasks. By augmenting, in a similar
way, the RGB image with its ground truth segmentation mask
as an additional channel, our GT&I GAN model learns the



join distribution of the input images and their associated
segmentation masks, and is able to generate the segmentation
mask of any test RGB image. This versatility underscores
our model adaptability and potential for various tasks beyond
regression. This paper extends our preliminary work in [11]
by showcasing the generalization aspects of our model to both
regression and segmentation tasks, and to a wide array of
image types, sizes, and ground truth formats. The first dataset,
RAPID [14], belongs to the agricultural domain . It consists
of pairs of synthetic aerial images and the corresponding
vectors of soil moisture dissipation rate values.The ground
truth consists of continuous soil moisture dissipation rate
values. The second dataset is a collection of medical images
and associated information related to brain tumors, with the
ground truth annotations represented as masks delineating the
regions occupied by the tumors within the images.
This paper is organized as follows. Section 2 presents the
background. The methods and materials are outlined in Section
3. Section 4 presents an evaluation of the experimental results,
followed by a discussion in Section 5. Finally, the paper
concludes in Section 6.

II. GENERATIVE ADVERSARIAL NETWORKS (GANS)
A. Background

The fundamental idea behind GANs was introduced by Ian
Goodfellow and his colleagues in 2014. GAN is a powerful DL
model composed of two key components: a discriminator and a
generator [15]. As the GAN undergoes training, the generator
improves its ability to create more convincing fake samples,
while the discriminator becomes adept at discerning between
real and generated examples [16]. The ultimate objective is
to achieve an equilibrium where the generator creates images
that are nearly indistinguishable from real samples. In the
ideal scenario, the discriminator would be entirely perplexed,
guessing with a 50% probability that all samples, regardless of
their origin, are fake [17]. During GAN training, the primary
objective is to optimize the following loss function:

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pgenerated(z)[log(1−D(G(z))]
(1)

The optimization of the loss function involves calcu-
lating the expectations over the original samples denoted
as Ex ∼ pdata(x) and the generated samples denoted as
Ez ∼ pgenerated(z). Here, pgenerated(z) represents the prob-
ability distribution of the noise vector z, D(x) measures the
discriminator’s loss based on the probability that x comes from
the training data distribution, G(z) denotes the generator’s
loss, and x represents the original dataset. The loss function
aims to balance the discriminator’s ability to distinguish real
data from the generated samples and the generator’s capability
to produce realistic data that approximate the original dataset.

During training, the generator and discriminator play a two-
player minimax game, where the generator seeks to mini-
mize loss function (1) and the discriminator seeks to max-
imize it. Concretely, the discriminator maximizes logD(x)

to ensure proper classification of the original and gener-
ated samples, while the generator simultaneously minimizes
log(1−D(G(z)) to improve its ability to produce more real-
istic samples. The theoretical game solution is reached when
pgenerated closely aligns with pdata, causing the discriminator
to start randomly guessing whether the inputs are real or
generated.

B. State of the art

GANs have been applied in several domains, showcasing
their versatility and transformative potential. These domains
range from computer vision and natural language processing
to creative arts and more. GANs are increasingly leaving a
notable mark on the agricultural sector, offering innovative
solutions in various agricultural domains, as mentioned in [18].
This paper provides an overview of the development of GAN
architectures, followed by the first comprehensive examination
of their diverse applications in agriculture and food systems.
These applications encompass a wide range of visual recogni-
tion tasks, including the assessment of plant health conditions,
weed detection, preharvest evaluation of fruits, aquaculture,
animal farming, plant phenotyping, and the postharvest identi-
fication of fruit defects. GANs are increasingly being applied
to crop monitoring and yield prediction. By analyzing data
from various sources such as satellite images, weather records,
and soil data, GANs can generate predictive models that
assist farmers in optimizing planting and harvesting schedules,
leading to increased crop yields [19]. In precision agriculture,
GANs play a vital role in image-based plant disease detection.
They can be trained to generate synthetic images of healthy
and diseased crops, helping develop and fine-tune machine
learning models for early disease diagnosis [20]).
GANs also contribute to land-use planning by generating land-
cover classification maps from satellite imagery, aiding in
sustainable resource management and crop planning [21]. In
livestock management, GANs have been used for generating
synthetic data related to animal behavior and physiology. This
synthetic data can be employed to train machine learning
models for improved livestock monitoring and management.
Furthermore, GANs have shown promise in optimizing irri-
gation strategies by generating synthetic scenarios based on
historical data, helping farmers make informed decisions to
conserve water resources [22]. In a separate study, researchers
[23] introduced a synthetic data generation pipeline that
leverages GANs. This pipeline empowers users to artificially
create images via a web interface designed for agriculture pest
detection. It serves as a valuable tool for augmenting small
datasets by generating additional synthetic data, contributing to
more robust and effective pest detection models. Another study
by ( [24] explored the use of Sentinel-1 and Sentinel-2 feature
translation based on a DL method known as Cycle-Consistent
GAN. Their research focused on addressing situations where
specific features are missing over agricultural fields, highlight-
ing the adaptability and utility of GANs in various agricul-
tural applications. Furthermore, in another study, researchers
[25] introduced a novel generative modeling technique for



plant growth prediction, utilizing conditional GANs. They
formulated plant growth as an image-to-image translation task,
forecasting the appearance of a plant at a particular growth
stage as a function of its previous stage. This innovative
approach holds the potential to advance our understanding of
plant development and improve crop management practices.
In the medical sector, Gans have been extensively employed
for generating synthetic medical images, thereby addressing
issues related to data scarcity and privacy concerns [26]. GANs
have played a pivotal role in image enhancement, enabling the
augmentation of image resolution in modalities like MRI and
CT scans, consequently improving diagnostic accuracy [27].
Furthermore, GANs have been integral in automating image
segmentation tasks, vital for surgical planning and disease
progression monitoring [28]. They have also facilitated the
creation of synthetic datasets for machine learning, particularly
valuable when real data is limited or imbalanced. GANs have
enabled the development of anomaly detection models by
comparing real medical images with GAN-generated coun-
terparts, aiding in the identification of medical irregularities
[29]. Additionally, GANs have contributed to the simulation
of treatment outcomes and their impact on medical images,
assisting healthcare practitioners in treatment planning [30].
In the studies above, whether in the field of agriculture or the
medical domain, an interesting observation emerges: none of
them explores the approach of generating ground truth simulta-
neously with image generation using GANs. In each case, the
established practice involves GANs generating the images first,
followed by the subsequent use of secondary methods, whether
they are automatic or semi-automatic, to generate the ground
truth data. This observation provides the foundation for our
approach, which is designed to address this specific gap in the
existing research. Our approach aims to enable the generation
of training images in conjunction with their corresponding,
realistic continuous values of ground truth. This innovative
methodology has the potential to significantly impact various
agricultural and medical applications by providing a holistic
solution for both image and ground truth data generation.

III. GANS FOR REGRESSION TASKS

A. Dataset

We utilize the RAPID dataset [14], which includes pairs
of synthetic aerial images and corresponding soil moisture
dissipation rate values. RAPID contains 1400 aerial images
taken over a vineyard, each linked to specific soil moisture
levels. The dataset is pre-divided into a training set of 1200
images and a test set of 200 images. Each image depicts 200
equidistant plants, arranged in a grid pattern of 10 columns and
20 rows. Each plant is associated with a ground truth vector of
200 soil moisture values. Fig. 1 displays three example images,
resized to 128×128 pixels. Regions marked in yellow indicate
higher soil moisture dissipation rates, while those in green
correspond to lower rates. This dataset allows us to explore the
relationship between aerial imagery and soil moisture levels in
the vineyard context. Notably, the ground truth in this context
consists of continuous soil moisture dissipation rate values.

Fig. 1. Original images resized to 128×128.

B. Convolutional Neural Network (CNN)

We employ a CNN regression model with Euclidean loss.
To evaluate accuracy, we use the Mean Absolute Error (MAE)
metric (equ. 2). In this context, yij denotes the true dissipation
rate for plant j in image i (ground truth), y

ij represents the
predicted value, n is the number of plant images, and p is the
dataset size, where 1 ≤ i ≤ p and 0 ≤ j ≤ n.

MAE =
1

p
(
1

n

p∑
i=1

n∑
j=0

|ŷij − yij | (2)

Our CNN architecture comprises six convolutional layers
followed by a fully connected layer, utilizing ReLU as the
activation function. Input images are sized 128×128×3. The
initial layer consists of 32 filters with dimensions of 3×3,
followed by a dropout layer. Subsequently, the second layer
also employs 32 filters of 3×3, in addition to a max pooling
layer of 2×2 with stride 0. The third layer contains 64 filters of
3×3, followed by another dropout layer. Continuing, the fourth
layer features 64 filters of 3×3, followed by a max pooling
layer of 2×2 with stride 0. The fifth layer utilizes 128 filters of
3×3, accompanied by a dropout layer. The final convolutional
layer includes 128 filters of 3×3, succeeded by dropout and
max pooling layers, both sized 2×2 with stride 0. These layers
culminate in a fully connected layer with 200 dimensions, in-
tended to predict a vector of 200 soil moisture dissipation rates.
This CNN architecture underwent optimization via Greedy
optimization on the validation set, adjusting hyperparameters
such as filter size, batch size, optimizer, learning rate, number
of epochs, and dropout rates.

C. Proposal and Experimental Design

We developed a model that learns to generate realistic syn-
thetic images along with their corresponding ground truth,
mirroring the original dataset. These generated samples will
augment the training set to enhance CNN training. For this
purpose, we propose a DCGAN architecture that not only
generates realistic images but also produces their ground truth
values within the same network architecture.
The rationale behind this approach lies in the capability of
GANs to learn from the dataset to generate the three channels
of each RGB image, suggesting the feasibility of generating
a fourth channel for the ground truth (GT) values of these
images. This is further supported by the correlation between
the GT values and the pixels representing the plants. In each
frame, there are 200 plants organized in a 20x10 grid along
rows and columns. Utilizing the equidistant nature of these



Fig. 2. The GAN training involves images comprising RGB data along with
soil moisture dissipation rates. Each original frame contains 200 plants, with
the humidity value of each plant marked at its center location in a new
channel. The GAN is trained to generate images adhering to this correlated
four-channel configuration.

plants, we identify their centers through a straightforward loop.
For every RGB frame, we add an extra channel of the same
dimensions, initially filled with zeros, to accommodate humid-
ity (GT) values. Leveraging the previously extracted center
coordinates, we assign the corresponding GT values in this
additional channel. Pixels outside these centers remain filled
with zeros, effectively preventing overlap between adjacent
plant centers. This approach is illustrated in Fig. 2.

D. Experimental Details

In all experiments, we employed an Adam optimizer (with
a learning rate of 0.0002) to update the parameters of our
architectures. The number of epochs and batch size were set
to 200 and 128, respectively, and the binary cross-entropy
function was used as the loss function.

1) Generator Network: The generator is fed a 100×1 ran-
dom noise and outputs an image sized 320×320×3. It com-
prises four convolutional layers and three dense layers. The
LeakyReLU activation function is applied throughout, except
for the output layer, which employs Tanh. An Upsampling
layer follows each convolutional layer, except the input layer.
Moreover, batch normalization is applied to the first two dense
layers to stabilize the learning process by standardizing the
input to have zero mean and unit variance.

2) Discriminator Network:: The discriminator is responsi-
ble for distinguishing between real and generated images [15].
It accepts images sized 320×320×3 as input. In this design,
the input undergoes transformation embeddings through two
convolutional layers and three dense layers, followed by the
Sigmoid activation function to determine the authenticity of
the sample. The LeakyReLU activation function is utilized
after each convolutional and dense layer, except for the output
layers. Furthermore, dropout layers are incorporated into the
first two dense layers.

IV. RESULTS

A. Convolutional Neural Network

We first examine the CNN discussed in Section III.B, used
solely on the original data, devoid of any DA. The Mae and
loss metrics for the test set are 0.0282 and 0.0013 respectively.

Fig. 3. Generated images using DCGAN.

B. Deep Convolutional GANs

DCGAN successfully generated samples resembling real
data after approximately 80 epochs, with the quality of
these synthetic samples showing continual improvement until
around 200 epochs.
The DCGAN model undergoes training for approximately 100
epochs, during which it begins to produce realistic images
as early as 10 epochs. The quality of the generated images
progressively improves throughout the training process until
reaching 100 epochs. Fig. 3 visually depicts these synthetic
samples, which remarkably resemble the original dataset. No-
tably, the color distribution of green, yellow, and brown hues,
as well as the column count, closely mirror the characteristics
of the authentic data. The results indicate that our proposed
model (DCGAN) effectively generates realistic synthetic data,
offering the potential to enhance overall performance. To
evaluate this potential, 1200 generated samples were inte-
grated into the original dataset for comparison in a regression
application, resulting in a validation Mean Absolute Error
(MAE) of 2.03%. Following this configuration, the trained
model was tested on a separate set of 200 images, achieving a
validation MAE of 1.87% compared to the original 2.82%,
representing a relative decrease of 33% in MAE (refer to
equations (3) and (4)). However, it was observed that the
model began to overfit when more than 1200 generated images
were employed, leading to a decrease in accuracy beyond this
threshold.

Absolute change = Maefinal −Maeinitial (3)

Relative change = (
Maefinal −Maeinitial

Maeinitial
)× 100 (4)

V. GANS FOR SEGMENTATION TASKS

A. Dataset

To evaluate our model, we selected the Brain Tumor dataset,
a collection of medical images and associated GT related to
brain tumors. The dataset consists of 500 images for training
and 100 images the test. The ground truth annotations are
represented as masks delineating the regions occupied by the
tumors in the images. For visual illustration, Fig. 4 showcases
three sample images along with their corresponding masks.

B. U-Net model

We used U-Net due to its popularity in image segmenta-
tion tasks. U-Net incorporates a symmetrical encoder-decoder
structure, facilitating precise delineation of object boundaries



(a) (b) (c)

(a’) (b’) (c’)

Fig. 4. (a)(b)(c) Original images of the Brain Tumor dataset; (a’)(b’)(c’)their
corresponding ground truth.

in images. It consists of a series of convolutional layers inter-
leaved with pooling and upsampling layers. The encoder con-
sisting of convolution and pooling layers, captures hierarchical
features from the input image. The decoder, featuring upsam-
pling and convolution layers, then reconstructs a segmented
output map, highlighting distinct regions of interest within the
image. Dropout layers are used to prevent overfitting. Rectified
Linear Unit (ReLU) is used as activation function. The final
layer uses a sigmoid activation function to produce pixel-wise
binary predictions, suitable for image segmentation tasks. The
model is compiled with the Adam optimizer, with binary cross-
entropy as loss function and accuracy as evaluation metric.
To assess the segmentation accuracy, we adopt as metric, pixel
accuracy, the proportion of correctly labeled pixels in the
predicted segmentation compared to their ground truth.

C. Deep Convolutional Adversarial Network

1) Generator Network: The generator consists of sequential
layers aimed at converting a random noise vector into a
synthetic image. It starts with a convolutional layer with 16
filters, followed by LeakyReLU and BatchNormalization. This
is followed by a similar pattern with increased filter counts (32,
64, 128) and alternating LeakyReLU and BatchNormalization,
along with Dropout layers for regularization, and then by a
convolutional layer with 256 filters and LeakyReLU, coupled
with an UpSampling2D layer to increase dimension. After
flattening, two fully connected layers with LeakyReLU and
dropout are employed. Then, two more fully connected layers
follow, eventually culminating in a dense layer with ReLU and
reshaping to match the desired image shape.

2) Discriminator Network: The discriminator is built as a
sequence of layers to differentiate real and synthetic images.
It starts with a Conv2D layer with 256 filters, kernel size
3x3, and LeakyReLU activation. Another Conv2D layer with
128 filters follows, employing a stride of 2 for downsampling
and LeakyReLU activation. The resulting feature maps are
flattened for further processing. Then, the architecture employs
two fully connected (Dense) layers with 128 and 64 units, each
with LeakyReLU activation and dropout for regularization.
Lastly, a fully connected layer with a sigmoid activation
function is employed for binary classification (real or fake).
In this case, the ground truth is a mask which contains the
localization of the brain tumor. In this case the fourth channel

image represents the mask. Subsequently, this fourth-channel
image is utilized as ground truth for both the discriminator
and the generator. The generator is trained to produce four-
channel images that closely resemble the authentic data. Upon
completion of training, the generator generates four-channel
images, with the first three channels representing the images
and the last channel containing the corresponding labels.

D. Results

1) UNET Model: We assess UNET on the Brain Tumor
dataset for segmentation. This model is used only on the
original dataset, without integrating any DA.The accuracy and
loss metrics on the test set are 0.94 and 0.17 respectively.

2) Deep Convolutional GANs: DCGAN was able to pro-
duce samples similar to real data at about 50 epochs, with
quality progressively improved until around 200 epochs. This
demonstrates that DCGAN can generate realistic data. Subse-
quently, the new generated samples were systematically added
into the initial dataset, enabling a comparative analysis within
the context of regression application.To begin, we allocated
a training set comprising 500 actual samples. The process
involved a stepwise addition of 500 generated samples to the
real training images. This led to accuracy levels of 97.6%.
This configuration is tested on the held-out 100 test images
to achieve 98.2%, which amounts to a relative change of the
accuracy of 5% (see equ. (3) and equ. (4)).
DCGAN was trained for approximately 100 epochs. Interest-
ingly, the model demonstrated its ability to generate realistic
images as early as around the 10th epoch. The quality of the
generated images continued to improve steadily throughout the
training process, culminating at 100 epochs. As illustrated in
Fig. 5, these synthetic samples and their corresponding tumor
locations strikingly resemble the original dataset.

(a) (b) (c)

(a’) (b’) (c’)

Fig. 5. (a)(b)(c) Generated images of the Brain Tumor dataset; (a’)(b’)(c’)their
corresponding ground truth.

VI. DISCUSSION

DA has become a critical component in machine learning,
particularly in scenarios where access to large and diverse
datasets is limited. The introduction of GANs has revolution-
ized the way synthetic data is generated to improve model
performance. While GANs have traditionally excelled in clas-
sification tasks where categorical ground truth is available, this
paper addresses the significant challenge of extending their
utility to regression tasks with continuous ground truth.



The proposed solution, GT&I GAN, represents a novel ap-
proach to this problem. It bridges the gap by jointly generating
image samples and their associated continuous ground truth
vectors, simplifying the DA process. GT&I GAN’s innovative
concept of adding a fourth channel associated with the ground
vector to the RGB sample image allows for the integrated
generation of both data components using a single model. This
eliminates the need for an auxiliary network, streamlining the
training process and enhancing overall efficiency.

On a regression task with an image dataset with continuous
ground truth vectors, the synthesized data, consisting of image
and ground truth vector pairs, exhibit a remarkable level of
realism. When added for training a CNN regressor, this DA
significantly improves performance, which shows the potential
of GT&I GAN as a powerful tool for DA. Beyond regression,
GT&I GAN versatility is further demonstrated in its seamless
adaptation to segmentation tasks. By adding ground truth
segmentation masks as additional channels to RGB images,
it opens doors to enhanced DA in semantic segmentation.

VII. CONCLUSION

We have proposed a novel GAN, for regression and seg-
mentation tasks, that generates, not only synthetic images, but
also heir continuous ground truth vectors. Through rigorous
evaluations on datasets from different domains, we have
demonstrated the robustness and adaptability of our model,
and its potential impact across a multitude of real-world tasks.
In essence, we have shown how our GT&I GAN model is
able to generate data augmented with their real-valued ground
truths, leading to improved performance on regression and
segmentation tasks. For future work,we will seek enhancing
our proposed GAN by investigating combination schemes with
adversarial learning-based data augmentation [31] [32].
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