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Abstract—Palm vein recognition has attracted recently wide
attention thanks to its robust feature representation and high
accuracy. Despite advancements in the literature, however, ex-
isting solutions suffer from the following issues: 1) Insufficient
large-scale data for deep learning-based recognition of vein
biometrics, resulting in decreased generalization performance
and model accuracy. 2) Lack of methods based on machine
learning convolutional neural networks capable of capturing the
global receptive field for vein biometric recognition. In addressing
these issues, this paper proposes a method to acquire the global
receptive field, termed GANet, which extracts vein features
using Gabor filters and computes an attention mechanism to
capture the global receptive field for downstream palm vein
recognition models. Initially, vein features are extracted using
multi-scale fixed Gabor filters and multi-scale adaptive Gabor
filters. Subsequently, self-attention mechanisms are employed
to compute relationships between blocks to obtain the global
receptive field. To perform recognition, the Euclidean distance
between feature vectors is then computed. Our experiments on
three datasets show that our approach outperforms existing palm
vein recognition methods.

Index Terms—palm vein recognition, Gabor filters, global
receptive field

I. INTRODUCTION

Traditional personal identification techniques for informa-

tion security, e.g. keys, and passwords, are too simple for

everyday use. Keys can be easily copied and lost, while

passwords are frequently forgotten. Biometric identification

can be divided into two classes: 1) external, e.g., Face [1],

AND Finger print [2]; 2) internal, e.g., Palm-vein [3], Finger-

vein [4], and Hand-vein [6]. External biometric identification

is widely used in various settings, e.g. Control systems, Finan-

cial transactions, and electronic payment. However, external

biometric identification can be easily duplicated without the

user’s consent [7] [8], leading to privacy concerns. In contrast,

internal biometric features, hidden within the human body, are
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less prone to duplication and offer inherent liveness detection,

providing a high level of security and privacy [6] [7].
Currently, vein identification still with some challenging

issues due to a variety of external factors that affect image

acquisition, e.g. Light [9], Temperature [10], Light scattering

[11], identification of some user behaviors [10], identification

of dryness or wetness of objects. These factors can add

some noise or irregular shadow areas in the images, leading

to lower image identification rates. In order to address this

issue, researchers have proposed machine learning (ML) and

deep learning (DL) methods to improve model robustness

and identification rates. DL methods, including Convolutional
Neural Networks (CNNs), have recently demonstrated signif-

icant robustness in computer vision tasks, e.g. Classification

[12] [21], and Object Detection, etc. In recent years, a large

number of research works proposed DL methods for vein

identification [3] [4] [5]. However, Deep Neural Networks

require a large number of training parameters, which can

lead to reduced generalization performance and lower model

accuracy when dealing with small-scale vein datasets. Addi-

tionally, the existing ML methods for vein identification cannot

capture a global receptive field of vein images, resulting in

inadequate performance and generalization capabilities in vein

identification.
To enhance model performance, we propose GANet for

palm vein identification. We summarize our contributions as

follows:

• We propose GANet, a Gabor Attention Aggregation

Network, for palm vein identification. Specifically, we

extract vein texture features by incorporating fixed Multi-

scale Gabor filters and Adaptive-scale Gabor filters into

CNN model.

• By introducing an attention module into the CNN, we

enable the latter to learn long-range dependencies within

images and acquire a global receptive field, improving

thereby the network’s performance and generalization



ability in vein recognition tasks.

• We report several experiments on three palm vein datasets

to assess GANet’s performance. Experimental results

show that GANet, a ML-based palm vein identification

network, outperforms mainstream palm vein identifica-

tion networks both on DL and ML in terms of Equal
Error Rate (EER) and Accuracy.

II. RELATED WORK

Palm vein identification methods usually identify individ-

uals by assessing vein feature representations extracted by

network models. Thanks to the robustness of vein texture

information, and more importantly, the liveness detection

capability of veins, vein identification offers high accuracy,

security, and robustness. Consequently, vein identification has

been widely applied across various industries. To enhance

vein identification accuracy, researchers have proposed various

methods for extracting vein features. These methods can be

divided into ML-based methods and DL-based methods.

a) Machine Learning-based Methods: ML-based meth-

ods mainly rely on some hand-crafted algorithms and shallow

learning techniques designed by researchers based on their

prior knowledge. Hand-crafted methods depend on manu-

ally designing algorithm models for vein feature extraction

and classification, including curvature-based methods [22],

Gabor filter-based methods [10] [11] [28], and local binary

descriptor-based methods [23]. Shallow learning methods em-

ploy traditional ML techniques to extract vein features for

classification tasks. Representative methods, e.g. k-means clus-

tering [24], Support Vector Machine (SVM) [25], Principal

Component Analysis (PCA) [26], Two-Dimensional Principal

Component Analysis (2D-PCA) [27], and Sparse Represen-

tation (SR) [29] have been proposed for vein identification

tasks. To improve the performance, Low-Rank Representation

(LRR) [30] has been used to reduce the rank of extracted vein

features, while adding regularization terms to constrain the

low-rank coefficients to improve discriminative power.

b) Deep Learning-based Methods: DL-based methods

use DNNs, e;g., CNNs and Transformers, as they were shown

to extract robust feature representations with proven effec-

tiveness in various computer vision tasks [14] [39]. This led

researchers to apply DL to vein image quality assessment,

vein texture segmentation [3], and vein identification [20]

[13]. For example, FV-CNN [16] is a convolutional-based

model specifically designed for vein identification. To improve

the efficiency of models, LightweightCNN [18] proposed a

lightweight version of the vein identification model based on

a triplet loss function. To extract some robust features, Arcvein

[20] introduced a method that utilizes the cosine center loss

function to simultaneously learn inter-class and intra-class

information, enhancing the network’s recognition ability in fin-

ger vein recognition. The FVRASNet [19] literature proposes

a lightweight CNN model that can be used for recognition and

anti-spoofing tasks. Recently, methods based on Transformer

have been applied to vein recognition to obtain global feature

information of vein texture.Some noteworthy studies [17] are

very important in the task of vein recognition.

III. THE PROPOSED APPROACH

In this section, we present our methodologies GANet, a

CNN model aggregate with Gabor filters and a Self-attention

module, as illustrated in Figure.1.

A. CNN Training

In this section, we provide a detailed explanation of the

complete training process of GANet. Initially, we introduce

the overall framework of the network, followed by detailing

the selection process based on Gabor filters. Lastly, we present

the parameters of the proposed GANet framework.

1) Network Architecture: The GANet proposed in this paper

comprises a network framework with two convolutional layers

(L1 and L2) and one binarization layer (L3), with the network’s

input layer defined as L0. Figure Figure.2 illustrates the overall

architecture of the CNN. Details of each layer are explained

as follows:

• L0: The dimensions of the input layer are u × v, corre-

sponding to the size of the vein region in the palm vein

image.

• L1: The initial Gabor layer consists of kn Gabor filters,

and each filter is applied to the vein image at the input

layer, resulting in kn venous feature maps at the L1 layer.

• L2: The second layer of the CNN comprises a total of km
Gabor filters, with each filter applied to one of the kn vein

texture feature images from the first layer. Consequently,

the output of the L2 layer consists of kn sets, with each

set containing km vein texture feature maps.

• L3: The third layer of the network is the image binariza-

tion layer, which applies the function f(x) = bin(x) to

every pixel in each of the kn × km vein feature maps

output from the second layer, to binarize the images.

Here, bin(x) is defined by equation 1.

bin(x) =

{
1, x > 0,
0, otherwise.

(1)

2) The filters in both layers L1 and L2 are of varying

scales and orientations, and are configured as convolutional

kernel filters during the training process of vein images. In

our proposed method, we utilize filters of different orientations

and scales. Gabor filter, which is currently employed in various

state-of-the-art vein identification methods due to the ability to

effectively extract texture features of veins, thereby improving

vein classification accuracy. The Gabor filter is specifically

designed for vein features, with its shape defined by the

product of a sine wave and a Gaussian function [31].

Gf (x, y, θ, μ, σ) =
1

2πσ2
· e− x2+y2

2σ2 ·
e2πj(μx cos θf+μy sin θf ),

(2)

where θf represents the direction of the function, σ is the

standard deviation, μ is the frequency of the sine wave, and

j =
√−1. Gf (x, y, θ, μ, σ). Gf (x, y, θ, μ, σ) contains both
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Fig. 2. Topology of the proposed GANet.

real and imaginary parts, but in our specific experiments, only

the real part was utilized.

B. Feature Extraction

The feature extraction process can be divided into two steps:

I) Loading the pre-trained Gabor filters; II) Encoding the palm

vein images.

I) We loading a pre-trained CNN to the GANet. Thus, we

obtain knkm binary images. Specifically, each set of km binary

images output from L3 layers corresponds to one of the kn
images output from L1 layer, as illustrated in Figure.2. In this

way, obtained a total of kn sets, each containing km images.

II) Initially, we consider a set of km binary images denoted

as Bi, where i = 1, 2, ..., c. Each image within this set

has dimensions of u × v. For each position (x, y) in the

images, a binary vector b is constructed by concatenating

the binary values from all km images as follows: b =
[B1(x, y), B2(x, y), ..., Bkm(x, y)]. Subsequently, the binary

vector b is encoded into a decimal number d using the formula

d =
∑km

j=1 2
j−1b(j). This process encodes each position

(x, y) to produce the matrix D(x, y). Similarly, the decimal

matrices Dl are computed for all km sets of images, where

l = 1, 2, ..., km.

C. Slef-Attention Module

The self-attention module takes the query Q ∈ R
Nq×C , key

K ∈ R
Nk×C , and value V ∈ R

Nv×C as inputs. It computes a

weighted sum of values for each query, where the weights are

calculated as the normalized dot products between the query

and the corresponding keys. It is defined in a concise matrix

form according to Eq.3:

Attn (Q,K, V ) = Softmax

(
QKT

√
dk

)
V, (3)

where the scalar factor
√
dk is introduced to avoid weight

concentration and gradient vanishing [32]. In Transformers,

the actual building block used is the Multi-Head Self-Attention

(MHSA).Through this, queries Q, keys K, and values V are

derived as linear projections of the same input X ∈ R
N×C .

As for multi-head, it means splitting the output along the

channel dimension into h blocks (i.e. heads), each using a set

of independent projection weights as according to Eq.4:

MHSA(X) = Concat(head0, head1, ..., headh)W
0,

headi = Attn(XW q
i , XW k

i , XW v
i ),

(4)

where by headi ∈ R
N×C/h is the output of the i-th attention

head. XW q
i , XW k

i , XW v
i ∈ R

N×C/h are the corresponding

input projection weights. An additional linear transformation,

represented by the weight matrix W 0 ∈ R
C×C , aggregates all

the heads.

The complexity of MHSA(·) is O(N2) because there are

N queries, each involving N key-value pairs. Such high

complexity poses a serious scalability issue in terms of input

space resolution. So we propose a new attention function.

Given a two-dimensional input feature map X ∈
R(H×W×C), we first partition it into S × S non-overlapping

regions, each containing HW
S2 feature vectors. This is achieved

by reshaping X into Xr ∈ R(S2×HW
S2 ×C). Then, linear

projections are used to derive query, key, and value tensors

Q,K, V ∈ R(S2×HW
S2 ×C), and self-attention computation is

directly performed on the feature map after the CNN feature

extraction output f(x), as this process does not require updat-

ing the Q,K,V projection weights, so the values of Q, K, and

V as Eq.5:

Q = Xr,K = Xr, V = Xr. (5)

Then, by constructing a directed graph, we found the

adjacency relationship (i.e., which regions each given region

should attend to). Specifically, we first derive region level

queries and keys, Qr, Xr ∈ R(S2×HW
S2 ×C), by taking the

region-wise averages of Q and K, respectively. Through the

matrix multiplication between Qr and the transpose of Kr,



TABLE I
RESULTS OF THE ABLATION EXPERIMENTS ON THE DATASET C. 2,4,6,8,10 DENOTED THE TRAINING SAMPLES OF EACH CLASS, RESPECTIVELY.

Classifer
2 4 6 8 10

Acc(%) EER(%) Acc(%) EER(%) Acc(%) EER(%) Acc(%) EER(%) Acc(%) EER(%)
ResNet18 56.80 8.42 65.20 7.01 76.23 6.10 78.67 5.43 89.87 2.53
FVCNN 61.63 7.95 68.30 6.32 78.83 5.46 79.67 2.73 88.87 2.43

FVRASNet 60.97 8.65 68.93 5.03 77.43 2.94 80.77 3.31 86.00 2.52
LightWeightCNN 62.57 7.33 69.25 5.36 76.13 3.64 82.17 3.42 89.00 2.62

PCANet 94.33 5.45 97.10 4.98 97.67 5.05 98.00 4.88 98.10 4.83
HOG 83.63 9.10 87.80 9.22 91.03 9.09 91.57 9.28 92.77 9.24
LDP 77.27 11.02 81.10 10.88 85.23 10.87 86.43 11.13 88.60 11.08

LLDP 80.90 14.05 85.33 13.89 87.33 14.12 88.73 14.03 90.53 13.97
PalmNet 96.93 2.77 98.53 2.70 98.53 2.71 98.70 2.66 98.87 2.56

Ours 97.07 2.68 98.67 2.68 98.83 2.64 99.00 2.55 99.17 2.47

we obtain the adjacency matrix Ar ∈ R(S2×HW
S2 ×C) for the

region affinity graph:

A = Qr(Kr)T . (6)

The entries in the adjacency matrix A can be used to measure

the correlation between two regions. Our next step is to ap-

propriately optimize the adjacency matrix, thereby preserving

regions with strong correlations and weakening those with

poorer correlations.Specifically, we select the topk values by

comparing the numerical values in the adjacency matrix to

obtain the final A.

A = topkIndex(Ar). (7)

After obtaining the final adjacency matrix A, we utilize A to

multiply with V to obtain the final feature map. Then, we add

the input feature map to the final feature map as the overall

output O:

O = A ∗ V + f(x). (8)

D. Classification and Matching

GANet can be applied to both image identification and

verification [37]. In the image identification stage, for image

classification, the feature vectors H extracted from the palm

vein are used, and the Euclidean distance between each set of

feature vectors is calculated. After obtaining the Euclidean

distance matrix, a kNN classifier is used for vein image

classification, and this classifier requires no training. We set

the hyperparameter k with 1.

In the image verification stage, we perform vein feature

matching by comparing the extracted vein feature vectors H1

and H2 for feature matching verification.

IV. EXPERIMENTS

To verify the performance of our approach, we report

numerous experiments on three palm vein datasets. To eval-

uate GANet’s effectiveness in terms of improving accuracy,

we compare the proposed approach with mainstream ma-

chine learning models and deep learning models. e.g. ResNet

[15], FVCNN [16], FVRASNet [19], LightWeightCNN [18],

PCANet [33], HOG [36], LDP [35], LLDP [34], and PalmNet

[37].

A. Dataset Information

Dataset A [42]: The CASIA Palm-vein dataset contains

1200 images of palm vein. Those images come from 100

volunteers, each of whom provided images of both their left

and right hands. Specifically, each hand of every volunteer was

photographed 3 times during two different sessions. Therefore,

each volunteer provided a total of 6 images (3 left-hand images

and 3 right-hand images) in each session, making a total of 12

images across the two sessions. Dataset A has a total number

of images calculated as follows: 100 volunteers × 2 hands ×
3 images per hand per session × 2 sessions = 1200 images.

Dataset B [41]: The VERA Palm-vein dataset contains

2200 palm vein images. These images are sourced from 110

volunteers, each contributing palm vein images of their left and

right hands. Specifically, each volunteer’s hand was captured

in two separate acquisition sessions, resulting in a total of 20

images per volunteer (5 images for the left hand + 5 images for

the right hand × 2 acquisition sessions). Dataset B has a total

number of images calculated as follows: 110 volunteers × 2

hands × 5 images per hand × 2 acquisition sessions = 2200

images. The resolution of each image is 200 × 200 pixels.

Dataset C [40]: The Tongji University Palm-vein dataset

comprises 12,000 palm vein images from 300 volunteers,

collected over two acquisition sessions with an interval of ap-

proximately 60 days. Each volunteer’s hand was photographed

with 10 images in each acquisition session, resulting in a total

of 12,000 images (300 subjects × 2 hands × 10 images × 2

sessions). The resolution of each image is 128 × 128 pixels.
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TABLE II
RESULTS OF THE ABLATION EXPERIMENTS ON THE DATASET A. 2,3
DENOTED THE TRAINING SAMPLES OF EACH CLASS, RESPECTIVELY

Classifer
2 3

Acc(%) EER(%) Acc(%) EER(%)
ResNet18 74.0 10.98 88.67 3.49
FVCNN 79.67 6.14 89.00 3.47

FVRASNet 78.33 6.82 88.33 4.21
LightWeightCNN 77.00 6.33 89.00 4.53

PCANet 93.33 7.50 89.00 7.46
HOG 88.73 8.67 95.67 8.78
LDP 86.50 10.67 88.73 10.65

LLDP 88.33 10.00 86.67 10.00
PalmNet 95.00 3.97 88.67 4.10

Ours 97.00 3.50 97.00 3.44

TABLE III
RESULTS OF THE ABLATION EXPERIMENTS ON THE DATASET B. 2,4
DENOTED THE TRAINING SAMPLES OF EACH CLASS, RESPECTIVELY

Classifer
2 4

Acc(%) EER(%) Acc(%) EER(%)
ResNet18 78.55 8.36 87.36 6.00
FVCNN 80.91 5.27 89.45 5.19

FVRASNet 75.27 8.52 89.00 5.35
LightWeightCNN 75.45 8.90 88.56 6.60

PCANet 94.91 7.82 96.18 8.14
HOG 94.91 9.29 92.27 9.36
LDP 90.91 8.36 90.23 8.86

LLDP 88.00 9.93 88.41 9.36
PalmNet 96.91 5.00 97.09 5.18

Ours 97.64 4.82 97.82 5.14

B. Experiments Setting

To assess the effectiveness of our proposed method, we

divided each dataset into two separate sets. For dataset A, we

treated each palm as an individual class, resulting in a total

of 200 classes (each volunteer’s left and right palms counted

as one class, with 100 volunteers in total). We employed two

different training-testing approaches: one where we randomly

selected two images for model training in the first stage and

used the remaining images for testing in the second stage; the

other approach involved training with three images in the first

stage and testing with the remaining three images in the second

stage. For dataset B, we followed a similar methodology:

randomly selecting two and four images for training in the

first stage, and then using the remaining five images for testing

in the second stage. Dataset C was subjected to a different

grouping strategy: we randomly selected two, four, six, eight,

and ten images for training in the first stage, and used the

ten images from the second stage for testing. Considering that

original images might contain background regions irrelevant

for classification, we adopted the method described in [21]

to extract Regions of Interest Regions of Interest (ROI) from

these images. All ROI images were standardized to a size of

32 × 32.

C. Classification

We validated the effectiveness of our method on three

publicly available palm vein image databases and conducted

extensive experiments. Specifically, we have implemented nine

networks, which are ResNet [15], FVCNN [16], FVRASNet

[19], LightWeightCNN [18], PCANet [33], HOG [36], LDP

[35], LLDP [34] and PalmNet [37], and the recognition results

and equal error rate are displayed on three datasets, to calculate

the recognition results and equal error rate through a unified

method, we use the deep learning method are calculated by

extracting the feature vector of the trained model, calculating

the Euclidean distance and the equal error rate, we also

plotting the ROC curve, because each dataset has more than

one training subset in our experiment, we only show one ROC

curve in each database separately, and Figure.3 shows the ROC

curves of different methods on different datasets.

The experimental results (Table I, Table II, Table III) show

that compared with other methods, the proposed method

improves the recognition rate and obtains the lowest equal

error rate. For example, 99.17% accuracy and 2.47% equal

error rate (EER) were obtained on Dataset A using our method

in Table I.

V. CONCLUSION

In this paper, we present a method to obtain the global re-

ceptive field GANet, which extracts the vein features through

the gabor filter and then calculates the attention mechanism

to obtain the global receptive field for downstream palmar

vein recognition. Firstly, the multi-scale fixed filter and the

multi-scale adaptive Gabor filter were used to extract the

venous features, then the self-attention mechanism was used

to calculate the relationship between the blocks to obtain the

global receptive field, and finally the Euclidean distance be-

tween the feature vectors was calculated for vein recognition.

Experimental results on three databases show that our method



is superior to the existing palmar vein recognition methods in

improving the accuracy of palm vein recognition, and the best

recognition results are obtained.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural

Science Foundation of China (Grant No.61976030), the Scien-

tific Innovation 2030 Major Project for New Generation of AI

(Grant No.2020AAA0107300), the Fellowship of China Post-

Doctoral Science Foundation (Grant No.59676651E), the Sci-

ence Fund for Creative Research Groups of Chongqing Univer-

sities (Grant No.CXQT21034, Grant Nos. KJQN201900848

and KJQN201500814).and the Research on Key Technolo-

gies of Three-dimensional Finger Vein Authentication System

(Grant No.222102210301)

REFERENCES

[1] Kshirsagar V P, Baviskar M R, Gaikwad M E. Face recognition
using Eigenfaces[C]//2011 3rd International Conference on Computer
Research and Development. IEEE, 2011, 2: 302-306.

[2] Jain A, Hong L, Bolle R. On-line fingerprint verification[J]. IEEE
transactions on pattern analysis and machine intelligence, 1997, 19(4):
302-314.

[3] Qin H, El-Yacoubi M A, Li Y, et al. Multi-scale and multi-direction GAN
for CNN-based single palm-vein identification[J]. IEEE Transactions on
Information Forensics and Security, 2021, 16: 2652-2666.

[4] Qin H, El-Yacoubi M A. Deep representation-based feature extraction
and recovering for finger-vein verification[J]. IEEE Transactions on
Information Forensics and Security, 2017, 12(8): 1816-1829.

[5] Wang J, Wang G, Zhou M. Bimodal vein data mining via cross-selected-
domain knowledge transfer[J]. IEEE Transactions on Information Foren-
sics and Security, 2017, 13(3): 733-744.

[6] Kumar A, Hanmandlu M, Gupta H M. Online biometric authentication
using hand vein patterns[C]//2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications. IEEE, 2009: 1-7.

[7] Yu Z, Qin Y, Li X, et al. Deep learning for face anti-spoofing: A sur-
vey[J]. IEEE transactions on pattern analysis and machine intelligence,
2022, 45(5): 5609-5631.

[8] Menotti D, Chiachia G, Pinto A, et al. Deep representations for iris, face,
and fingerprint spoofing detection[J]. IEEE Transactions on Information
Forensics and Security, 2015, 10(4): 864-879.

[9] Huang B, Dai Y, Li R, et al. Finger-vein authentication based on
wide line detector and pattern normalization[C]//2010 20th international
conference on pattern recognition. IEEE, 2010: 1269-1272.

[10] Kumar A, Zhou Y. Human identification using finger images[J]. IEEE
Transactions on image processing, 2011, 21(4): 2228-2244.

[11] Lee E C, Park K R. Image restoration of skin scattering and optical
blurring for finger vein recognition[J]. Optics and Lasers in Engineering,
2011, 49(7): 816-828.

[12] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with
deep convolutional neural networks[J]. Communications of the ACM,
2017, 60(6): 84-90.

[13] Jin X, Zhu H, Yacoubi M AE, et al. StarLKNet: Star Mixup with
Large Kernel Networks for Palm Vein Identification[J]. arXiv preprint
arXiv:2405.12721, 2024.

[14] Liu S, Deng W. Very deep convolutional neural network based image
classification using small training sample size[C]//2015 3rd IAPR Asian
conference on pattern recognition (ACPR). IEEE, 2015: 730-734.

[15] He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition[C]//Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016: 770-778.

[16] Das R, Piciucco E, Maiorana E, et al. Convolutional neural network
for finger-vein-based biometric identification[J]. IEEE Transactions on
Information Forensics and Security, 2018, 14(2): 360-373.

[17] Qin H, Hu R, El-Yacoubi M A, et al. Local attention transformer-based
full-view finger-vein identification[J]. IEEE Transactions on Circuits and
Systems for Video Technology, 2022.

[18] Shen J, Liu N, Xu C, et al. Finger vein recognition algorithm based on
lightweight deep convolutional neural network[J]. IEEE Transactions on
Instrumentation and Measurement, 2021, 71: 1-13.

[19] Yang W, Luo W, Kang W, et al. Fvras-net: An embedded finger-
vein recognition and antispoofing system using a unified cnn[J]. IEEE
Transactions on Instrumentation and Measurement, 2020, 69(11): 8690-
8701.

[20] Hou B, Yan R. ArcVein-arccosine center loss for finger vein verifica-
tion[J]. IEEE Transactions on Instrumentation and Measurement, 2021,
70: 1-11.

[21] Qin H, Zhu H, Jin X, et al. EmMixformer: Mix transformer for eye
movement recognition[J]. arXiv preprint arXiv:2401.04956, 2024.

[22] Miura N, Nagasaka A, Miyatake T. Feature extraction of finger-vein
patterns based on repeated line tracking and its application to personal
identification[J]. Machine vision and applications, 2004, 15: 194-203.

[23] Jun B, Kim D. Robust face detection using local gradient patterns and
evidence accumulation[J]. Pattern Recognition, 2012, 45(9): 3304-3316.

[24] Sulaiman D M, Abdulazeez A M, Haron H, et al. Unsupervised
learning approach-based new optimization K-means clustering for finger
vein image localization[C]//2019 international conference on advanced
science and engineering (ICOASE). IEEE, 2019: 82-87.

[25] Kapoor K, Rani S, Kumar M, et al. Hybrid local phase quantization
and grey wolf optimization based SVM for finger vein recognition[J].
Multimedia Tools and Applications, 2021, 80(10): 15233-15271.

[26] Wu J D, Liu C T. Finger-vein pattern identification using principal
component analysis and the neural network technique[J]. Expert Systems
with Applications, 2011, 38(5): 5423-5427.

[27] Yang G, Xi X, Yin Y. Finger vein recognition based on (2D) 2 PCA
and metric learning[J]. BioMed Research International, 2012, 2012.

[28] Wang H, Du M, Zhou J, et al. Weber local descriptors with variable
curvature gabor filter for finger vein recognition[J]. IEEE Access, 2019,
7: 108261-108277.

[29] Wright J, Ma Y, Mairal J, et al. Sparse representation for computer
vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6):
1031-1044.

[30] Yang L, Yang G, Wang K, et al. Finger vein recognition via sparse
reconstruction error constrained low-rank representation[J]. IEEE Trans-
actions on Information Forensics and Security, 2021, 16: 4869-4881.

[31] Li G, Kim J. Palmprint recognition with local micro-structure tetra
pattern[J]. Pattern Recognition, 2017, 61: 29-46.

[32] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J].
Advances in neural information processing systems, 2017, 30.

[33] Chan T H, Jia K, Gao S, et al. PCANet: A simple deep learning baseline
for image classification?[J]. IEEE transactions on image processing,
2015, 24(12): 5017-5032.

[34] Luo Y T, Zhao L Y, Zhang B, et al. Local line directional pattern for
palmprint recognition[J]. Pattern Recognition, 2016, 50: 26-44.

[35] Jabid T, Kabir M H, Chae O. Robust facial expression recognition based
on local directional pattern[J]. ETRI journal, 2010, 32(5): 784-794.

[36] Dalal N, Triggs B. Histograms of oriented gradients for human detec-
tion[C]//2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05). Ieee, 2005, 1: 886-893.

[37] Genovese A, Piuri V, Plataniotis K N, et al. PalmNet: Gabor-PCA
convolutional networks for touchless palmprint recognition[J]. IEEE
Transactions on Information Forensics and Security, 2019, 14(12): 3160-
3174.

[38] Advances in biometrics for secure human authentication and recogni-
tion[M]. CRC Press, 2014.

[39] Qin H, Jin X, Jiang Y, et al. Adversarial AutoMixup[J]. arXiv preprint
arXiv:2312.11954, 2023.

[40] Zhang L, Cheng Z, Shen Y, et al. Palmprint and palmvein recognition
based on DCNN and a new large-scale contactless palmvein dataset[J].
Symmetry, 2018, 10(4): 78.

[41] Tome P, Marcel S. On the vulnerability of palm vein recognition to
spoofing attacks[C]//2015 International Conference on Biometrics (ICB).
IEEE, 2015: 319-325.

[42] Liu C L, Yin F, Wang D H, et al. CASIA online and offline Chinese
handwriting databases[C]//2011 international conference on document
analysis and recognition. IEEE, 2011: 37-41.


