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Abstract
We devise and analyze hybrid polyhedral methods of arbitrary order for the approximation

of div-curl systems on three-dimensional domains featuring non-trivial topology. The systems
we focus on stem from magnetostatics models, and can either be first-order (field formulation) or
second-order (vector potential formulation). The well-posedness of our methods essentially relies
on topologically general discrete (hybrid) versions of the first and second Weber inequalities. In
turn, our error analysis is performed under low regularity assumptions on the solutions. Finally,
we provide a comprehensive numerical validation of our methodology.

Keywords: Div-curl systems; Polyhedral meshes; Hybrid methods; de Rham cohomology;
Computational topology.
AMS Subject Classification 2020: 65N12, 14F40, 35Q60.

1 Introduction

LetΩ be a domain in R3, i.e. a bounded and connected Lipschitz open set of R3. In the !2 framework,
the standard (primal) de Rham complex reads:

{0} 0−−−−−→ �1(Ω)
grad
−−−−−→ N(curl;Ω) curl−−−−−→ N(div;Ω) div−−−−−→ !2(Ω) 0−−−−−→ {0}, (1)

with cohomology spaces defined by

ℌ0 := Ker(grad) (/Im(0)), ℌ1 := Ker(curl)/Im(grad),
ℌ2 := Ker(div)/Im(curl), ℌ3 := (Ker(0) =)!2(Ω)/Im(div).

(2)

The spaces ℌ= have respective dimensions equal to the Betti numbers V0 = 1 (number of connected
components of Ω), V1 ∈ N (number of tunnels crossing through Ω), V2 ∈ N (number of voids
encapsulated into Ω), and V3 = 0 (since Ω ⊂ R3). In turn, the dual de Rham complex reads (modulo
missing minus signs in front of the operators div 0 and grad 0):

{0} 0←−−−−− !2(Ω) div 0←−−−−− N0(div;Ω) curl 0←−−−−− N0(curl;Ω)
grad 0←−−−−− �1

0 (Ω)
0←−−−−− {0}, (3)
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where the operators div 0, curl 0 and grad 0 are respectively !2-adjoint to the operators − grad, curl
and − div. The zero subscripts are here meant to recall that the domains of the adjoint differential
operators embed zero boundary conditions. The corresponding homology spaces are defined by

ℌ3
0 := (Ker(0) =)!2(Ω)/Im(div 0), ℌ2

0 := Ker(div 0)/Im(curl 0),
ℌ1

0 := Ker(curl 0)/Im(grad 0), ℌ0
0 := Ker(grad 0) (/Im(0)).

(4)

Importantly, there holds ℌ=0 = ℌ
3−= (this is the so-called Poincaré–Lefschetz duality).

Let ` be a possibly variable coefficient, assumed to be bounded by above and by below by positive
constants. In what follows, the symbols ⊥ and ⊥` respectively stand for standard and `-weighted
!2-orthogonality. We are interested in solving problems of the following form: Given some datum
j ∈ Ker(Div), find h ∈ Dom(Curl) ∩ Im(Grad)⊥` such that

ℭ(h) = j , (5)

where the bounded linear operator ℭ : Dom(Curl) ∩ Im(Grad)⊥` → Ker(Div) is such that ℭ(v) =
Curl(v) for all v ∈ Dom(ℭ). Here, the sequence of operators {Grad, Curl, Div} can either be
{grad, curl, div} from the primal de Rham complex (1), or {grad 0, curl 0, div 0} from the dual de
Rham complex (3). Accordingly, in the first case we let h= := ℌ=, whereas in the second case we let
h= := ℌ=0 . It is an easy matter to verify that the operator ℭ is Fredholm, with null space Ker(ℭ) =
Ker(Curl) ∩ Im(Grad)⊥` � h1, and defect space Codom(ℭ)/Im(ℭ) = Ker(Div)/Im(Curl) = h2.
The following Fredholm alternative thus holds true for Problem (5):

• either dim(h1) = dim(h2) = 0, then Problem (5) admits a unique solution;

• in the opposite case, for Problem (5) to admit a solution, it is necessary that j ∈ Im(ℭ) =
Im(Curl) (which amounts, for j ∈ Ker(Div), to additionally satisfying j ⊥ h2); the solution
h ⊥` Im(Grad) is then unique up to an element of h1 (retrieving uniqueness thus amounts to
imposing dim(h1) additional constraints on h).

In practice, j : Ω → R3 is a given current density, ` : Ω → R★+ is the magnetic permeability of
the medium, and h : Ω → R3 is the sought magnetic field. Problem (5) is thus the prototype of
a first-order magnetostatics model (field formulation), which can be endowed with either tangential
(based on (3)) or normal (based on (1)) boundary conditions. We refer the reader to Section 4.1.1 for
a somewhat more conventional rewriting of the latter problem. Letting Curl★ denote the !2-adjoint
of the operator Curl, since Ker(Curl)⊥ = Im(Curl★), if the solution h ⊥` Im(Grad) to Problem (5)
(assuming that it exists) additionally satisfies h ⊥` h1, then it can be written as h = `−1Curl★(a)
for some vector potential a ∈ Dom(Curl★). Obviously, the vector potential a is non-unique, and
is only defined up to an element of Ker(Curl★) (gauge). Enforcing (among other possible choices)
zero gauge, Problem (5) then equivalently rewrites: Find a ∈ Ker(Curl★)⊥ such that

Curl
(
`−1Curl★(a)

)
= j , (6)

and the (unique) solution to this problem does exist as soon as j ∈ Ker(Div) additionally satisfies
j ⊥ h2. In practice, a : Ω → R3 represents the magnetic vector potential. Problem (6) is thus the
prototype of a second-order magnetostatics model (vector potential formulation). We refer the reader
to Section 4.1.2 for a more conventional rewriting of the latter model.

In this work, we aim at devising arbitrary-order hybrid polyhedral discretizations of the first- and
second-order model problems (5) and (6). By definition, hybrid methods only attach unknowns to the
faces and to the cells of the partition. Examples of such approaches are theHybridizableDiscontinuous
Galerkin (HDG) [16], the Weak Galerkin (WG) [36], the Hybrid High-Order (HHO) [21, 22], or
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the non-conforming Virtual Element (ncVE) [32, 5] methods. As may be expected, and as first
documented in [14, 15], all these technologies share very tight links. The devising of hybrid
polyhedral methods for div-curl systems has already been addressed to some extent in the HDG and
WG literatures. For second-order problems, these contributions include [34, 12, 11] (cf. also [23]) for
HDG and [33] for WG, all of them restricted to trivial topologies. Regarding first-order problems, the
only contributions we are aware of are [31], in which a primalWGmethod is introduced, and [35, 8, 9],
in which alternative (primal-dual) WG approaches are studied. In all these contributions, full face
polynomial spaces are employed to discretize the vectorial variable. Also, either the case of non-
trivial topologies is not covered (like in [31]), or it is but in a non-systematic way. Recently, the
discretization of both first- and second-order magnetostatics models has been studied in the HHO
context [10]. Therein, the vectorial variable is sought into trimmed face polynomial spaces, reusing
and extending ideas introduced in [12]. The contribution [10], however, only covers the case of trivial
topologies. Our objective in the present article is to fill this gap. We aim at devising, analyzing,
and numerically assessing trimmed HHO methods for (first- and second-order) problems posed on
domains with arbitrary topology. With respect to [35, 8, 9], apart from using trimmed face spaces,
our approach for first-order models is also based on a different, more suitable variational formulation
(inspired from [29]), which enables a leaner construction and a systematic handling of harmonic
fields. In turn, our analysis hinges on the systematic use of the (topologically general) hybrid Weber
inequalities recently established by the two last authors in [30]. Let us finally stress that, from an
application point of view, non-trivial topologies are ubiquitous (think, e.g., of a toroidal coil). Their
proper handling is thus of paramount importance in practice.

Thematerial is organized as follows. In Section 2, we introduce both the topological and functional
frameworks, and we recall the first and second Helmholtz–Hodge decompositions. In Section 3, we
introduce the discrete setting, including polyhedral discretizations, polynomial decompositions, and
hybrid spaces. In Section 4, we devise and analyze HHO methods for (first- and second-order) model
problems of the form (5) and (6). Finally, in Section 5, we provide a comprehensive set of numerical
experiments on non-trivial domains, assessing the relevance of our methodology.

2 Preliminaries

2.1 Topological framework

We recall that Ω denotes a domain in R3, that is a bounded and connected Lipschitz open set of R3.
Let Γ := mΩ denote its boundary, and n : Γ→ R3 be the (almost everywhere defined) unit vector field
normal to Γ pointing outward from Ω. We recall that the Betti numbers V1 and V2 of Ω respectively
denote the number of tunnels crossing through Ω (V1 ∈ N), and the number of voids encapsulated
intoΩ (V2 ∈ N). ForΩ simply-connected, V1 = 0. Likewise, when the boundary Γ ofΩ is connected,
V2 = 0. In what follows, when both V1, V2 are equal to zero, we shall say that the topology of Ω is
trivial.

When V1 > 0, we make the following standard assumption: there exist V1 (non-intersecting)
orientable two-dimensional manifolds with boundary Σ1, . . . ,ΣV1 , called cutting surfaces, satisfying
mΣ8 ⊂ Γ for all 8 ∈ {1, . . . , V1}, and such that the open set Ω̂ := Ω \ ∪8∈{1,...,V1 }Σ8 is not crossed by
any tunnel (its first Betti number is zero). Remark that Γ̂ := mΩ̂ = Γ∪∪8∈{1,...,V1 }Σ8 . We will assume
in what follows that Ω̂ is connected (which is generally the case starting from a connected domain
Ω), and that the cutting surfaces are sufficiently regular so that the set Ω̂ is pseudo-Lipschitz (cf. [4,
Def. 3.2.2]). For any 8 ∈ {1, . . . , V1}, we let nΣ8 : Σ8 → R3 be the (almost everywhere defined)
unit vector field normal to Σ8 , the orientation of which we arbitrarily prescribe (recall that the cutting
surfaces Σ8 are supposed to be orientable). The orientation of nΣ8 being prescribed, we associate
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the tag “+” to the side of Ω̂ (with respect to Σ8) for which nΣ8 is outward, whereas the tag “−” is
associated to the side of Ω̂ for which nΣ8 is inward.

When V2 > 0, letting Γ0 be the (connected) boundary of the only unbounded component of the
exterior open set R3 \Ω, there exist V2 (maximally) connected components Γ1, . . . , ΓV2 of Γ such that
Γ = ∪ 9∈{0,...,V2 }Γ 9 . When V2 = 0, there holds Γ = Γ0.

2.2 Functional framework

Let ` : Ω→ R be a given function satisfying, for real numbers 0 < `♭ ≤ `♯ < ∞,

`♭ ≤ `(x) ≤ `♯ for a.e. x ∈ Ω. (7)

For < ∈ {2, 3}, and for - an <-dimensional, (relatively) open pseudo-Lipschitz subset of
Ω, we let !2(-) (respectively, R2(-)) denote the Lebesgue space of square-integrable functions
(respectively, R<-valued vector fields) over - . The standard inner products (and norms) in !2(-)
and R2(-) are irrespectively denoted by (f, g)- :=

∫
-
f·g (and ‖·‖0,- :=

√
(·, ·)- ).We also define

!2
0(-) :=

{
E ∈ !2(-) |

∫
-
E = 0

}
and R2

0(-) :=
{
v ∈ R2(-) |

∫
-
v = 0

}
. For B > 0, we let �B (-)

(respectively, NB (-)) denote the Sobolev space of functions in !2(-) (respectively, R<-valued
vector fields in R2(-)) possessing square-integrable partial weak derivatives up to order B over -
(for fractional B, we follow the classical Sobolev–Slobodeckij construction). The standard norms
(and semi-norms) in �B (-) and NB (-) are irrespectively denoted by ‖·‖B,- (and |·|B,- ). Given a
Lipschitz partition K := { } of - (in the sense that

⋃
 ∈K  = -), we also define the following

broken Sobolev space:

NB (-) :=
{
v ∈ R2(-) : v | ∈ NB ( ) ∀ ∈ K

}
.

Let . be a three-dimensional, open Lipschitz subset of Ω. Classically, we let

N(curl;. ) :=
{
v ∈ R2(. ) | curl v ∈ R2(. )

}
,

N(div`;. ) :=
{
v ∈ R2(. ) | div(`v) ∈ !2(. )

}
,

with N(div;. ) := N(div1;. ), as well as their subspaces

N(curl0;. ) :=
{
v ∈ N(curl;. ) | curl v ≡ 0

}
,

N(div0
`;. ) :=

{
v ∈ N(div`;. ) | div(`v) ≡ 0

}
.

Let nm. : m. → R3 denote the (almost everywhere defined) outward, unit normal vector field to
m. . For v ∈ N(div`;. ), the normal trace of `v on m. can be defined as an element of �− 1

2 (m. )
(space of bounded linear forms on � 1

2 (m. )), denoted (`v)|m. ·nm. , with continuous mapping v ↦→
(`v)|m. ·nm. from N(div`;. ) to �− 1

2 (m. ). Likewise, for v ∈ N(curl;. ), one can give a sense to
the rotated tangential trace of v on m. as an element of �− 1

2 (m. )3 (space of bounded linear forms
on � 1

2 (m. )3), denoted v |m.×nm. , with continuous mapping v ↦→ v |m.×nm. from N(curl;. ) to
�−

1
2 (m. )3. Following [30, Rmk. 1], from now on, tangential vector fields are identified to two-

dimensional vector fields. The relevant boundary functional spaces then become R2(m. ) = !2(m. )2,
N

1
2 (m. ) := �

1
2 (m. )2, and N−

1
2 (m. ) := �−

1
2 (m. )2, and one may abuse the notation and write

v |m.×nm. ∈ N−
1
2 (m. ). In what follows, the duality pairings between �− 1

2 (m. ) and � 1
2 (m. ) on the

one side, and between N−
1
2 (m. ) and N

1
2 (m. ) on the other side, are irrespectively denoted by 〈·, ·〉m. .

If v ∈ N(curl;. ) ∩ N(div;. ) ∩ NB (. ) for some B > 1
2 , then for almost every x ∈ m. ,

v |m. (x) = (v |m. ·nm. ) (x)nm. (x) + nm. (x)×(v |m.×nm. ) (x).
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In this case, v |m. ·nm. ∈ !2(m. ) and v |m.×nm. ∈ R2(m. ).
To account for essential boundary conditions, we introduce the following subspaces ofN(curl;Ω)

and N(div`;Ω):
N0(curl;Ω) :=

{
v ∈ N(curl;Ω) | v |Γ×n ≡ 0

}
and N0(curl0;Ω) := N0(curl;Ω) ∩ N(curl0;Ω), as well as

N0(div`;Ω) :=
{
v ∈ N(div`;Ω) | (`v)|Γ·n ≡ 0

}
and N0(div0

`;Ω) := N0(div`;Ω) ∩ N(div0
`;Ω). We also define �1

0 (Ω) := {E ∈ �1(Ω) | E |Γ ≡ 0}.
Last, assume that the first Betti number V1 of Ω is positive. Then, for E ∈ !2(Ω̂) (resp. v ∈ R2(Ω̂)),
we denote by Ě (resp. v̌) its continuation to !2(Ω) (resp. R2(Ω)). Also, for any E : Ω̂ → R, and
8 ∈ {1, . . . , V1}, denoting E+|Σ8 and E

−
|Σ8 the traces of E on Σ8 defined (if need be, in a weak sense) from

both sides of Ω̂ (respectively tagged by “+” and “−”), we define the jump of E on Σ8 by

ÈEÉΣ8 := E+|Σ8 − E
−
|Σ8 . (8)

2.3 Helmholtz–Hodge decompositions

We here collect classical results about Helmholtz–Hodge decompositions; for further details, we refer
the reader to [26, 19, 2] (cf. also [27, 4], as well as [30, Sec. 2.3]). Before proceeding, we define
R2
` (Ω) :=

(
R2(Ω), (` ·, ·)Ω

)
.

2.3.1 1st Helmholtz–Hodge decomposition

Let us first consider the harmonic space

N3 (Ω) := N0(curl0;Ω) ∩ N(div0
`;Ω), (9)

which, by (4), satisfies N3 (Ω) � ℌ1
0. In particular, N3 (Ω) has dimension V2, and it can be proved that

vector fields w ∈ N3 (Ω) are entirely characterized by the data of
(
〈(`w)|Γ 9

·n, 1〉Γ 9
∈ R

)
9∈{1,...,V2 }.

The following R2
` (Ω)-orthogonal Helmholtz–Hodge decomposition holds true:

R2(Ω) = grad
(
�1

0 (Ω)
) ⊥`

⊕
`♯

`
curl

(
N1(Ω) ∩ R2

0(Ω)
) ⊥`

⊕ N3 (Ω). (10)

Furthermore, letting

�1
Γ(Ω) :=

{
E ∈ �1(Ω), E |Γ0 ≡ 0 | ∃ (W 9) ∈ RV2 , E |Γ 9

≡ W 9 ∀ 9 ∈ {1, . . . , V2}
}
, (11)

it can be noticed that
grad

(
�1
Γ(Ω)

)
= grad

(
�1

0 (Ω)
) ⊥`

⊕ N3 (Ω). (12)

Remark, also, that grad
(
�1
Γ
(Ω)

)
⊂ N0(curl0;Ω).

2.3.2 2nd Helmholtz–Hodge decomposition

Let us now consider the harmonic space

N= (Ω) := N(curl0;Ω) ∩ N0(div0
`;Ω), (13)
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which, by (4), satisfies N= (Ω) � ℌ2
0. In particular, N= (Ω) has dimension V1, and it can be proved that

vector fields w ∈ N= (Ω) are entirely characterized by the data of
(
〈(`w)|Σ8 ·nΣ8 , 1〉Σ8 ∈ R

)
8∈{1,...,V1 }.

The following R2
` (Ω)-orthogonal Helmholtz–Hodge decomposition holds true:

R2(Ω) = grad
(
�1(Ω) ∩ !2

0(Ω)
) ⊥`

⊕
`♯

`
curl

(
N1(Ω) ∩ N0(curl;Ω)

) ⊥`

⊕ N= (Ω). (14)

Furthermore, letting

�1
Σ(Ω̂) :=

{
E ∈ �1(Ω̂) ∩ !2

0(Ω̂) | ∃ (f8) ∈ R
V1 , ÈEÉΣ8 ≡ f8 ∀8 ∈ {1, . . . , V1}

}
, (15)

it can be noticed that

ˇgrad
(
�1
Σ(Ω̂)

)
= grad

(
�1(Ω) ∩ !2

0(Ω)
) ⊥`

⊕ N= (Ω). (16)

We remind the reader that, for E ∈ �1(Ω̂), ˇgrad E is the continuation to R2(Ω) of grad E ∈ R2(Ω̂),
and that the jump È·ÉΣ8 is defined in (8). Note also that ˇgrad

(
�1
Σ
(Ω̂)

)
⊂ N(curl0;Ω).

3 Discrete setting

From now on, we assume that the domain Ω ⊂ R3 is a (Lipschitz) polyhedron.

3.1 Polyhedral discretizations

We consider discretizations D := (T , F ) of Ω ⊂ R3 in the sense of [20, Def. 1.4].
The set T is a finite collection of (disjoint) open Lipschitz polyhedra ) (the mesh cells), which

is assumed to form a partition of the domain, that is Ω =
⋃
) ∈T ) . For all ) ∈ T , we let ℎ) :=

maxx,y∈) |x − y | denote the diameter of the cell ) . We also let ℎT be s.t. ℎT |) := ℎ) for all ) ∈ T ,
and we define the mesh size by ℎD := max) ∈T ℎ) . In turn, the set F is a finite collection of (disjoint)
connected subsets of Ω (the mesh faces) such that, for all � ∈ F ,

(i) � is a relatively open, Lipschitz polygonal subset of an affine hyperplane, and

(ii) either there are two distinct mesh cells )+, )− ∈ T s.t. � ⊆ m)+ ∩ m)− (� is then an interface),
or there is a mesh cell ) ∈ T s.t. � ⊆ m) ∩ Γ (� is then a boundary face).

The set of mesh faces is further assumed to form a partition of the mesh skeleton, that is to satisfy⋃
) ∈T m) =

⋃
� ∈F �. For all � ∈ F , we let ℎ� := maxx,y∈� |x − y | denote the diameter of the face

�. Interfaces are collected in the set F ◦, whereas boundary faces are collected in the set F m. For all
) ∈ T , we denote by F) the subset of F which collects the mesh faces lying on the boundary of ) ,
so that m) =

⋃
� ∈F) �. For all ) ∈ T , consistently with our notation so far, we let nm) : m) → R3

denote the (almost everywhere defined) unit vector field normal to m) pointing outward from ) .
For all � ∈ F) , we also let n) ,� := nm) |� be the (constant) unit vector normal to the hyperplane
containing � and pointing outward from ) . For all � ∈ F , we define n� as the (constant) unit
vector normal to � such that either n� := n) +,� if � ⊂ m)+ ∩ m)− ∈ F ◦, or n� := n) ,� (= n |� ) if
� ⊂ m) ∩Γ ∈ F m. For further use, we also let, for all ) ∈ T and all � ∈ F) , Y) ,� ∈ {−1, 1} be such
that Y) ,� := n) ,� ·n� . Finally, for any - ∈ T ∪ F , we let x- ∈ R3 be some point inside - .

When V1 > 0, for all 8 ∈ {1, . . . , V1}, we assume that there exists a subset F ◦
Σ8

of F ◦ such that
Σ8 =

⋃
� ∈F◦

Σ8

�, and for which n� = nΣ8 |� for all � ∈ F ◦
Σ8
. This requirement ensures that we do

associate the tag “+” to the side of Ω̂ (with respect to Σ8) for which nΣ8 is outward, consistently with
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our assumption from Section 2.1. Notice that, since the cutting surfaces are piecewise planar, the set
Ω̂ is indeed pseudo-Lipschitz. We also let F ◦

Σ
:=

⋃V1
8=1 F

◦
Σ8
. When V2 > 0, for all 9 ∈ {0, . . . , V2}, we

let F m
Γ 9

denote the subset of F m such that Γ 9 =
⋃
� ∈Fm

Γ 9

�.
At the discrete level, the parameter ` : Ω→ [`♭, `♯] introduced in (7) is assumed to be piecewise

constant over the partition T of the domain Ω, and we let

`♭ ≤ `) := ` |) ≤ `♯ ∀) ∈ T . (17)

When studying asymptotic properties with respect to the mesh size, one has to adopt a measure
of regularity for refined sequences of discretizations. Let us thus consider (D=)=∈N, a sequence of
polyhedral discretizations D= := (T=, F=) such that ℎD=

tends to zero as = goes to infinity. We
classically follow [20, Def. 1.9], in which regularity for refined mesh sequences is quantified through
a uniform-in-= parameter r ∈ (0, 1) (the mesh regularity parameter). In a nutshell, it is assumed that,
for all = ∈ N, there exists a matching tetrahedral subtessellation of T=, (i) which is uniformly-in-=
shape-regular, and (ii) whose elements have a diameter that is uniformly-in-= comparable to the
diameter of the mesh cell in T= they belong to. In what follows, we write 0 . 1 (resp. 0 & 1) in
place of 0 ≤ �1 (resp. 0 ≥ �1), if � > 0 only depends on Ω, on the mesh regularity parameter r,
and (if need be) on the underlying polynomial degree, but is independent of both = (and thus ℎD=

)
and `. When 0 . 1 . 0, we simply write 0 h 1. In particular, for regular sequences (D=)=∈N of
discretizations, for all = ∈ N and ) ∈ T=, there holds card(F) ) . 1, as well as ℎ) . ℎ� ≤ ℎ) for all
� ∈ F) (cf. [20, Lem. 1.12]). Also, we assume that, for all = ∈ N and - ∈ T= ∪ F=, the point x- is
the center of an --inscribed ball/disk of radius ℎ- . A- ≤ ℎ- . This last assumption can always be
satisfied for regular sequences of discretizations.

3.2 Polynomial spaces

For ℓ ∈ N and < ∈ {2, 3}, we let Pℓ< denote the linear space of <-variate polynomials of total degree
at most ℓ, with the convention that P0

< is identified to R, and that P−1
< := {0}. For any - ∈ T ∪ F ,

we let Pℓ (-) be the linear space spanned by the restrictions to - of the polynomials in Pℓ3 . For -
of dimension < ∈ {2, 3}, Pℓ (-) is isomorphic to Pℓ< (cf. [20, Prop. 1.23]). We let cℓP,- denote the
!2(-)-orthogonal projector onto Pℓ (-). For convenience, we also let Pℓ (-) := Pℓ (-)<, that is,
for all ) ∈ T , Pℓ ()) = Pℓ ())3, and for all � ∈ F , Pℓ (�) = Pℓ (�)2. We finally define 0ℓ

P,-
as the

R2(-)-orthogonal projector onto P
ℓ (-).

For any ) ∈ T , we introduce the following subspaces of Pℓ ()), ℓ ∈ N:

G
ℓ ()) := grad

(
Pℓ+1())

)
, G

c,ℓ ()) := P
ℓ−1())×(x − x) ).

The space G
c,ℓ ()) is the Koszul complement of Gℓ ()). The (non R2())-orthogonal) polynomial

decomposition below is a by-product of the homotopy formula (cf. [3, Thm. 7.1]):

P
ℓ ()) = G

ℓ ()) ⊕ G
c,ℓ ()). (18)

In addition, letting R
ℓ ()) := curl

(
P
ℓ+1())

)
, by exactness of the polynomial de Rham complex, the

differential mapping curl : Gc,ℓ ()) → R
ℓ−1()) is an isomorphism.

For any � ∈ F now, we let �� be the hyperplane containing �, that we orient according to the
normal n� . For any function F : � → R, we let grad� F : � → R2 denote the (tangential) gradient
of F. We also let rot�F : � → R2 be such that rot�F :=

(
grad� F

)⊥, where z⊥ is defined as the
rotation of angle −c/2 of z in the oriented hyperplane �� . Let us introduce the following subspaces
of Pℓ (�), ℓ ∈ N:

R
ℓ (�) := rot�

(
Pℓ+1(�)

)
, R

c,ℓ (�) := Pℓ−1(�) (x − x� ),
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where, for x ∈ �, (x − x� ) ⊂ �� is identified to its (two-dimensional) tangential counterpart. The
space R

c,ℓ (�) is the Koszul complement of Rℓ (�). By the homotopy formula, in that case again,
the following (non R2(�)-orthogonal) polynomial decomposition holds true:

P
ℓ (�) = R

ℓ (�) ⊕ R
c,ℓ (�). (19)

For all ) ∈ T and � ∈ F) , since for any E : ) → R we have n�×((grad E)|�×n� ) = grad� (E |� )
(identifying n�×((grad E)|�×n� ) to its two-dimensional proxy), there holds

G
ℓ ())|�×n� = R

ℓ (�), (20)

where vectors in G
ℓ ())|�×n� are also identified to their tangential counterparts. The identity (20)

provides a characterization for the rotated tangential traces of curl-free vector polynomials. This
characterization is instrumental in the design of stable and optimally consistent trimmed HHO
methods (cf. [30, Rmk. 10] for further insight).

Last, we introduce broken versions of the 3-variate polynomial spaces Pℓ and Pℓ :

Pℓ (T ) :={E ∈ !2(Ω) | E |) ∈ Pℓ ()) ∀) ∈ T },
P
ℓ (T ) :={v ∈ R2(Ω) | v |) ∈ Pℓ ()) ∀) ∈ T }.

We classically define on Pℓ (T ) the broken gradient operator gradT , and on P
ℓ (T ) the broken

rotational operator curlT . We finally let cℓP,T (resp. 0ℓ
P,T) be the !

2(Ω)-orthogonal (resp. R2(Ω)-
orthogonal) projector onto Pℓ (T ) (resp. Pℓ (T )).

3.3 Hybrid spaces

We introduce hybrid counterparts of the spaces N(curl;Ω) and �1(Ω̂) (as well as of relevant
subspaces of the latter). The first discrete spaces will serve for the discretization of the magnetic
variable, whereas the second will be related to the pressure-like variable (Lagrange multiplier).
Henceforth, let : ∈ N★ denote a given polynomial degree.

3.3.1 N(curl)-like hybrid spaces

Global spaces: We define the following discrete counterpart of the space N(curl;Ω):

[:D :=

{
vD :=

(
(v) )) ∈T , (v�,3)� ∈F

)
:

v) ∈ P: ()) ∀) ∈ T
v�,3 ∈ Q: (�) ∀� ∈ F

}
, (21)

where the (possibly trimmed) polynomial space Q: (�) shall satisfy

R
: (�) ⊆ Q

: (�) ⊆ P
: (�). (22)

We let 0:
Q,�

denote the R2(�)-orthogonal projector onto Q: (�). In (21), v�,3 stands for the rotated
tangential trace of the (magnetic) variable. We also introduce the subspace

[:D,0 :=
{
vD ∈ [

:
D | v�,3 ≡ 0 ∀� ∈ F m

}
, (23)

discrete counterpart of N0(curl;Ω).
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Local traits: Given a cell ) ∈ T , we denote by [:
)

the restriction of [:D to ) , and by v
)

:=(
v) , (v�,3)� ∈F)

)
∈ [:

)
the restriction of the generic element vD ∈ [

:
D to the cell ) . For vD ∈ [

:
D ,

we also let vT be the broken polynomial vector field in P
: (T ) such that vT |) := v) for all ) ∈ T .

Let us now define an N(curl)-like hybrid semi-norm on[:
)
. We let, for all v

)
∈ [:

)
,

|v
)
|2curl,) := ‖ curl v) ‖20,) +

∑
� ∈F)

ℎ−1
� ‖0:Q,� (v) |�×n� ) − v�,3 ‖

2
0,� . (24)

In turn, at the global level, we classically set, for all vD ∈ [
:
D , |vD |2curl,D :=

∑
) ∈T |v) |2curl,) . Remark

that, whenever |vD |curl,D = 0 for some vD ∈ [
:
D , then by (20) one has vT ∈ N(curl0;Ω) ∩G: (T ).

We then define the rotational reconstruction operator. For any ) ∈ T , we let I:−1
) : [:

)
→ P

:−1())
be the operator such that, for all v

)
∈ [:

)
, I:−1

) (v) ) ∈ P
:−1()) is the unique solution to(

I:−1
) (v) ), z

)
)
= (v) , curl z)) −

∑
� ∈F)

Y) ,�
(
v�,3 , n�×(z |�×n� )

)
�

∀z ∈ P:−1()), (25)

where n�×(z |�×n� ) is identified to its tangential proxy. At the global level, we let I:−1
T : [:D →

P
:−1(T ) be such that, for all vD ∈ [

:
D , I

:−1
T (vD)|) := I:−1

) (v) ) for all ) ∈ T . It now remains
to define an N(curl)-like hybrid stabilizer. For any ) ∈ T , we introduce the following symmetric,
positive semi-definite bilinear form: for all v

)
, w

)
∈ [:

)
,

(curl,) (w) , v) ) :=
∑
� ∈F)

ℎ−1
�

(
0:
Q,�

(
w) |�×n�

)
− w�,3 , 0

:
Q,�

(
v) |�×n�

)
− v�,3

)
�
, (26)

where w) |�×n� and v) |�×n� are identified to their tangential proxies. At the global level, we then
classically let (curl,D (wD , vD) :=

∑
) ∈T (curl,) (w) , v) ) for all vD , wD ∈ [

:
D . Given ) ∈ T , under

the assumption that Q: (�) (already satisfying (22)) additionally satisfies P:−1(�) ⊂ Q
: (�) for all

� ∈ F) , it is an easy matter to prove that, for all v
)
∈ [:

)
,

‖I:−1
) (v) )‖

2
0,) + (curl,) (v) , v) ) h |v) |

2
curl,) . (27)

Approximation: Let @ > 2. Given ) ∈ T , we introduce the local reduction operator O:
)

:
N(curl;)) ∩ R@ ()) → [:

)
such that, for any v ∈ N(curl;)) ∩ R@ ()),

O:) (v) :=
(
0:
P,)
(v),

(
0:
Q,�
(v |�×n� )

)
� ∈F)

)
, (28)

where, as now standard, v |�×n� is identified to its (two-dimensional) tangential counterpart. Fol-
lowing [24, Sec. 5.1], note that the regularity v ∈ N(curl;)) ∩ R@ ()) is sufficient to give a (weak)
meaning to the face polynomial projections in (28) (see also [30, Rmk. 11]). At the domain level,
now, we define the global reduction operator O:D : N(curl;Ω) ∩ R@ (Ω) → [:D such that, for any
v ∈ N(curl;Ω) ∩ R@ (Ω),

O:D (v) :=
( (
0:
P,)
(v |) )

)
) ∈T ,

(
0:
Q,�
(v |�×n� )

)
� ∈F

)
.

Remark that, since v ∈ N(curl;Ω), the quantity v |�×n� is single-valued at interfaces � ∈ F ◦.
Notice also that O:D

(
N0(curl;Ω) ∩ R@ (Ω)

)
⊂ [:D,0. Given ) ∈ T , under the assumption thatQ: (�)

(already satisfying (22)) additionally satisfies P:−1(�) ⊂ Q
: (�) for all � ∈ F) , it is an easy matter

to prove the following commutation property: for all v ∈ N(curl;)) ∩ R@ ()),(
I:−1
) ◦ O:)

)
(v) = 0:−1

P,)
(curl v). (29)

Finally, without this time the need for additional assumptions on Q
: (�), the following (optimal)

polynomial consistency result holds true: for all p ∈ P: ()),
(curl,)

(
O:) ( p), v)

)
= 0 ∀v

)
∈ [:

)
.
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3.3.2 �1-like hybrid spaces

Global spaces: We define the following discrete counterpart of the space �1(Ω̂):

%̂
:

D :=

@D :=
(
(@) )) ∈T , (@� )� ∈F\F◦

Σ
, (@+� , @−� )� ∈F◦Σ

)
:

@) ∈ P:−1()) ∀) ∈ T
@� ∈ P: (�) ∀� ∈ F \ F ◦Σ

@+� , @
−
� ∈ P: (�) ∀� ∈ F ◦Σ

 .
(30)

Here, for any 8 ∈ {1, . . . , V1} and � ∈ F ◦Σ8 , @
+
�
and @−

�
stand for the traces on � of the pressure-like

variable defined, respectively, from the “+” and “−” sides of Ω̂ with respect to the cutting surface Σ8 .
Mirroring (8), for @

D
∈ %̂:D , we define its jump through � ∈ F ◦

Σ8
by

È@
D
É� := @+� − @−� . (31)

We then introduce the following subspace of %̂:D :

%̂
♭,:

D,Σ :=
{
@
D
∈ %̂:D : ∃ (f8) ∈ RV1 , È@

D
É� ≡ f8 ∀� ∈ F ◦Σ8 , 8 ∈ {1, . . . , V1}

}
, (32)

which is, modulo the zero-mean condition over Ω̂, an hybrid counterpart of the space �1
Σ
(Ω̂) defined

in (15). Next, we define the following discrete counterpart of the space �1(Ω):

%:D :=

{
@
D

:=
(
(@) )) ∈T , (@� )� ∈F

)
:
@) ∈ P:−1()) ∀) ∈ T
@� ∈ P: (�) ∀� ∈ F

}
. (33)

Interestingly, remark that whenever V1 = 0, then %̂♭,:D,Σ = %̂
:

D = %:D . For V1 > 0, the space %:D is
isomorphic to the subspace of %̂♭,:D,Σ such that È@

D
É� ≡ 0 for all � ∈ F ◦

Σ
. We may now introduce

the following subspaces of %:D :

%:D,0 :=
{
@
D
∈ %:D : @� ≡ 0 ∀� ∈ F mΓ0

}
, (34)

as well as

%:D,Γ :=
{
@
D
∈ %:D,0 : ∃ (W 9) ∈ RV2 , @� ≡ W 9 ∀� ∈ F mΓ 9

, 9 ∈ {1, . . . , V2}
}
. (35)

The space %:D,Γ is the hybrid counterpart of the space �
1
Γ
(Ω) in (11). Remark that, whenever V2 = 0,

then %:D,Γ = %
:
D,0 with %

:
D,0 being, in that case, the hybrid counterpart of �

1
0 (Ω).

Local traits: Given ) ∈ T , we denote by %:
)
the restriction of %̂:D or %:D to ) , and by @

)
:=(

@) , (@�,) )� ∈F)
)
∈ %:

)
the restriction of the generic element @

D
in %̂:D or %:D to the cell ) . For

@
D
∈ %:D , @�,) := @� for all � ∈ F) , whereas for @D ∈ %̂

:

D ,

• if � ∈ F) \ F ◦Σ , then @�,) := @� ;

• if � ∈ F) ∩ F ◦Σ with � ⊂ m)+ ∩ m)−, then @�,) := @+
�
if ) = )+ whereas @�,) := @−

�
if

) = )−.
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For @
D

in %̂:D or %:D , we also let @T be the broken polynomial function in P:−1(T ) such that
@T |) := @) for all ) ∈ T . Let us now define an (!2-scaled) �1-like hybrid semi-norm on %:

)
. We

let, for all @
)
∈ %:

)
,

|@
)
|2grad,) := ℎ2

) ‖ grad @) ‖20,) +
∑
� ∈F)

ℎ� ‖@) |� − @�,) ‖20,� . (36)

In turn, at the global level, for all @
D
in %̂:D or %:D , we set |@D |

2
grad,D :=

∑
) ∈T |@) |

2
grad,) . Remark

that, whenever |@
D
|grad,D = 0 for some @

D
in %̂

:

D or %:D , then there exists 2 ∈ R such that
@
D
� 21D , with 1D the vector of %:D whose components are all equal to one. We now define the

gradient reconstruction operator. For any ) ∈ T , we let M:
) : %:

)
→ P

: ()) be the operator such
that, for all @

)
∈ %:

)
, M:

) (@) ) ∈ P
: ()) is the unique solution to(

M:
) (@) ), z

)
)
= −(@) , div z)) +

∑
� ∈F)

(
@�,) , z |� ·n) ,�

)
�

∀z ∈ P: ()). (37)

At the global level, we let M:
T :

{
%̂
:

D , %
:
D
}
→ P

: (T ) be such that, for all @
D

in %̂:D or %:D ,
M:
T (@D)|) := M:

) (@) ) for all ) ∈ T . It now remains to define an (!2-scaled) �1-like hybrid
stabilizer. For any ) ∈ T , we introduce the following symmetric, positive semi-definite bilinear
form: for all @

)
, A) ∈ %:) ,

(grad,) (A) , @) ) :=
∑
� ∈F)

ℎ�
(
A) |� − A�,) , @) |� − @�,)

)
�
. (38)

At the global level, we then set (grad,D (AD , @D) :=
∑
) ∈T (grad,) (A) , @) ) for all @D , AD in %̂:D or

%:D . Given ) ∈ T , it is an easy matter to prove that, for all @
)
∈ %:

)
,

ℎ2
) ‖M:

) (@) )‖
2
0,) + (grad,) (@

)
, @
)
) h |@

)
|2grad,) . (39)

Besides, under the assumption that ) belongs to a regular tetrahedral mesh sequence, by [10, Lem. 1]
(and adapting the arguments from the proof of [13, Lem. 3.2]), the following important equivalence
holds true: for all @

)
∈ %:

)
,

ℎ2
) ‖M:

) (@) )‖
2
0,) h |@) |

2
grad,) . (40)

Approximation: Given ) ∈ T , we introduce the local reduction operator �:
)

: �1()) → %:
)
such

that, for any @ ∈ �1()),
�:) (@) :=

(
c:−1
P,) (@),

(
c:P,� (@ |� )

)
� ∈F)

)
. (41)

At the global level, now, we define the reduction operator �:D :
{
�1(Ω̂), �1(Ω)

}
→

{
%̂
:

D , %
:
D
}
in

the following way:

• for any @ ∈ �1(Ω̂),

�:D (@) :=
( (
c:−1
P,) (@ |) )

)
) ∈T ,

(
c:P,� (@ |� )

)
� ∈F\F◦

Σ

,
(
c:P,� (@

+
|� ), c

:
P,� (@

−
|� )

)
� ∈F◦

Σ

)
,

where, for � ∈ F ◦
Σ
such that � ⊂ m)+ ∩ m)−, we have let @+ := @ |) + and @− := @ |) − ;

11



• for any @ ∈ �1(Ω),

�:D (@) :=
( (
c:−1
P,) (@ |) )

)
) ∈T ,

(
c:P,� (@ |� )

)
� ∈F

)
.

Remark that, for � ∈ F ◦ with � ⊂ m)+ ∩ m)−, whenever @ ∈ �1 ()+ ∪ )−) , then the quantity @ |� is
single-valued. Notice also that �:D

(
�1
Σ
(Ω̂)

)
⊂ %̂♭,:D,Σ and that �:D

(
�1
Γ
(Ω)

)
⊂ %:D,Γ. Given ) ∈ T , the

following commutation property is valid: for all @ ∈ �1()),(
M:
) ◦ �:)

)
(@) = 0:

P,)
(grad @). (42)

Also, the following polynomial consistency result holds true: for all ? ∈ P:−1()),

(grad,)
(
�:) (?), @)

)
= 0 ∀@

)
∈ %:) .

4 HHO methods

We consider two magnetostatics models. The first one is the (first-order) field formulation of mag-
netostatics, endowed with normal boundary conditions, that is, Problem (5) based on the primal de
Rham complex (1). The second model is the (second-order) vector potential formulation of magneto-
statics, endowed with tangential boundary conditions, that is, Problem (6) (still) based on the primal
de Rham complex. This last model was already considered in [10, Sec. 3.2], but therein within a
trivial topological setting. These two problems are actually equivalent.

4.1 Magnetostatics models

Recall the definitions (11) and (15) of the spaces �1
Γ
(Ω) and �1

Σ
(Ω̂). Henceforth, the (variable)

coefficient ` satisfying (17) denotes the magnetic permeability of the medium.

4.1.1 Field formulation

Let j : Ω→ R3 be a given current density satisfying the following compatibility conditions:

div j = 0 in Ω, 〈 j |Γ 9
·n, 1〉Γ 9

= 0 for all 9 ∈ {1, . . . , V2}. (43)

We seek the magnetic field h : Ω→ R3 such that

curl h = j in Ω, (44a)
div b = 0 in Ω, (44b)
b |Γ·n = 0 on Γ, (44c)

〈b |Σ8 ·nΣ8 , 1〉Σ8 = 0 for all 8 ∈ {1, . . . , V1}, (44d)

with constitutive law b = `h, where b : Ω→ R3 represents the magnetic induction.
In what follows, we assume that j ∈ R2(Ω). By (12), remark that (43) is equivalent to

( j, z)Ω = 0 ∀z ∈ grad
(
�1
Γ(Ω)

)
. (45)

In the spirit of Kikuchi [29], we consider the following equivalent (cf. Remark 1 below) weak form
for Problem (44): Find (h, ?) ∈ N(curl;Ω) × �1

Σ
(Ω̂) s.t.

�(h, v) + �(v, ?) = ( j , curl v)Ω ∀v ∈ N(curl;Ω), (46a)
−�(h, @) = 0 ∀@ ∈ �1

Σ(Ω̂), (46b)
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with bilinear forms � : N(curl;Ω) × N(curl;Ω) → R, � : N(curl;Ω) × �1(Ω̂) → R set to

�(w, v) := (curlw, curl v)Ω, �(w, @) := (`w, ˇgrad @)Ω. (47)

The pressure-like variable ? is the Lagrange multiplier of the constraints (44b)–(44d) on the magnetic
induction b. Testing (46a) with v = ˇgrad ? ∈ ˇgrad

(
�1
Σ
(Ω̂)

)
⊂ N(curl0;Ω), and recalling that

? ∈ !2
0(Ω̂), one can actually infer that ? = 0 in Ω̂ (recall that Ω̂ is assumed to be connected).

The well-posedness of Problem (46) is a direct consequence of the second Weber inequality, more
precisely of [30, Rmk. 6] with [ := ` (combined with (46b) and (16)).

Remark1 (Weak-strong equivalence). Whereas it is clear that any solution toProblem (44) also solves
Problem (46), the converse is less straightforward, in particular when it comes to retrieving (44a). To
do so, one has to use the first Helmholtz–Hodge decomposition (10) (with ` ← 1 therein), combine
it to (12), then recall the compatibility condition (45), so as to infer that

(
curl h − j , z

)
Ω
= 0 for all

z ∈ R2(Ω), thereby yielding (44a).

Remark 2 (Regularity theory). Recall that Ω is a Lipschitz polyhedron. When the coefficient ` is
globally smooth (which, under (17), amounts to assuming that ` is constant inΩ), it is known (cf. [17,
Thm. 2] and [2, Prop. 3.7]) that the solution to Problem (44) (and more generally to Problem (5))
satisfies h ∈ NB (Ω) for some B > 1

2 , with B ≥ 1 if Ω is convex. When the coefficient ` is piecewise
smooth (here, under (17), piecewise constant), however, the solution h to Problem (44) (and more
generally to Problem (5)) is only known (cf. [18, 28, 7]) to belong to NB (Ω) for some B > 0.

4.1.2 Vector potential formulation

Let j : Ω → R3 be a given current density complying with (43). We seek the magnetic vector
potential a : Ω→ R3 such that

curl(`−1 curl a) = j in Ω, (48a)
div a = 0 in Ω, (48b)
a |Γ×n = 0 on Γ, (48c)

〈a |Γ 9
·n, 1〉Γ 9

= 0 for all 9 ∈ {1, . . . , V2}. (48d)

In what follows, we assume that j ∈ R2(Ω). Recall that (43) is equivalent to (45). We consider
the following weak form for Problem (48): Find (a, ?) ∈ N0(curl;Ω) × �1

Γ
(Ω) s.t.

�(a, v) + �(v, ?) = ( j , v)Ω ∀v ∈ N0(curl;Ω), (49a)
−�(a, @) = 0 ∀@ ∈ �1

Γ(Ω), (49b)

with bilinear forms � : N(curl;Ω) × N(curl;Ω) → R, � : N(curl;Ω) × �1(Ω) → R set to

�(w, v) := (`−1 curlw, curl v)Ω, �(w, @) := (w, grad @)Ω. (50)

The pressure-like variable ? is the Lagrange multiplier of the constraints (48b) and (48d) on the
magnetic vector potential a. Testing (49a) with v = grad ? ∈ grad

(
�1
Γ
(Ω)

)
⊂ N0(curl0;Ω),

using (45), and recalling the definition (11), one can actually infer that ? = 0 in Ω. Consequently,
Problems (48) and (49) are equivalent (that is, weak-strong equivalence holds true). The well-
posedness of Problem (49) is a direct consequence of the first Weber inequality, more precisely
of [30, Rmk. 3] with [ := 1 (combined with (49b) and (12)).
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Remark 3 (Equivalence with Problem (44)). Whereas it is clear that, for any solution a to Prob-
lem (48), letting b := curl a, then h = `−1b is solution to Problem (44), the converse is less obvious.
It is a consequence of the fact that the equations (44b)–(44d) imply, by the second Helmholtz–Hodge
decomposition (14), the existence of a ∈ N0(curl;Ω) such that h = `−1 curl a. The latter vector
potential is non-unique, which is the reason why one has to further impose a gauge condition. In our
case, we impose the so-called Coulomb gauge, which amounts to enforcing (48b) and (48d).

Remark 4 (Regularity theory). Since h = `−1 curl a is solution to Problem (44), we infer from
Remark 2 that `−1 curl a ∈ NA (Ω), with A > 1

2 if ` is globally smooth, or A > 0 if ` is piecewise
smooth. In turn, since a ∈ N0(curl;Ω) ∩ N(div0;Ω), there holds a ∈ NB (Ω) for some B > 1

2 . In
particular, if ` is globally constant, both `−1 curl a and a belong to NC (Ω) for some C > 1

2 , with C ≥ 1
if Ω is convex. In the general case, the solution to Problem (48) (and more generally to Problem (6))
satisfies `−1 curl a ∈ NA (Ω) for some A > 0, and a ∈ NB (Ω) for some B > 1

2 .

4.2 HHO schemes

The HHO methods we devise are directly built upon the weak formulations (46) and (49). At the
discrete level, we heavily leverage the fact that the continuous Lagrange multipliers are equal to zero.
In what follows, to avoid any confusion with the notation adopted for the mesh size, we will denote the
magnetic field h by u. For the sake of consistency, we will also extend this notation to the magnetic
vector potential a.

4.2.1 Field formulation

Recall the definition (21) of the space [:D , discrete counterpart of N(curl;Ω), and assume that, for
all � ∈ F , the space Q: (�) is given by

Q
: (�) := R

: (�) ⊕ R
c,:−1(�), (51)

in such a way that (22) is indeed fulfilled, and that the inclusion P
:−1(�) ⊂ Q

: (�) additionally
holds true. Recall, in addition, the definition (32) of the space %̂♭,:D,Σ. We introduce the following
hybrid counterpart of the space �1

Σ
(Ω̂):

%̂
:

D,Σ :=
{
@
D
∈ %̂♭,:D,Σ :

∫
Ω̂

@T = 0
}
. (52)

Remark that �:D
(
�1
Σ
(Ω̂)

)
⊂ %̂:D,Σ, since functions in �1

Σ
(Ω̂) also belong to !2

0(Ω̂).
Given ) ∈ T , we introduce the local bilinear forms �) : [:

)
×[:

)
→ R, �) : [:

)
× %:

)
→ R,

and #) : %:
)
× %:

)
→ R defined by: for all v

)
, w

)
∈ [:

)
and @

)
, A) ∈ %:) ,

�) (w) , v) ) :=
(
I:−1
) (w) ),I

:−1
) (v) )

)
)
+ (curl,) (w) , v) ), (53a)

�) (w) , @) ) := `)
(
w) ,M

:
) (@) )

)
)
, (53b)

#) (A) , @) ) := `2
) ℎ

2
)

(
grad A) , grad @)

)
)
+ `2

) (grad,) (A) , @) ), (53c)

where the local stabilizers (curl,) and (grad,) are respectively defined by (26) and (38). The scaling
`2
)
(also ℎ2

)
) in (53c) is chosen so as to restore consistency between the physical units. In turn,

and as standard, the global bilinear forms �D : [:D × [:D → R, �D : [:D × %̂
:

D → R, and
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#D : %̂:D × %̂
:

D → R are assembled by simply summing the local contributions. The discrete HHO
problem reads: Find (uD , ?D) ∈ [

:
D × %̂

:

D,Σ s.t.

�D (uD , vD) + �D (vD , ?D) =
(
j ,I:−1

T (vD)
)
Ω

∀vD ∈ [
:
D , (54a)

−�D (uD , @D) + #D (?D , @D) = 0 ∀@
D
∈ %̂:D,Σ. (54b)

We now establish well-posedness for Problem (54).

Lemma 5 (Well-posedness). For all vD ∈ [
:
D and @

D
∈ %̂:D , there holds:

|vD |
2
curl,D +

∑
) ∈T

`2
) |@) |

2
grad,) . �D (vD , vD) + #D (@D , @D). (55)

Consequently, Problem (54) is well-posed.

Proof. Let v
)
∈ [:

)
and @

)
∈ %:

)
. Starting from definition (53a), and invoking (27) (which is valid

under the assumption (51)), there holds

�) (v) , v) ) = ‖I
:−1
) (v) )‖

2
0,) + (curl,) (v) , v) ) h |v) |

2
curl,) . (56)

In the same vein, by definition (53c), there holds #) (@
)
, @
)
) = `2

)
|@
)
|2grad,) . From the above,

summing over all ) ∈ T , we readily obtain (55).
Now, since the linear system corresponding to Problem (54) is square, proving well-posedness

is actually equivalent to proving the uniqueness of its solution. Hence, let us show that, if j ≡ 0,
then necessarily (uD , ?D) =

(
0D , 0D

)
. First, remark that the map |·|grad,D (cf. (36)) defines a norm

on %̂:D,Σ (cf. (52)), as a by-product of the built-in discrete zero-mean condition over Ω̂. Second, let
us test Problem (54) (for j ≡ 0) with vD = uD and @

D
= ?

D
. Summing (54a) and (54b), and

leveraging (55), we directly infer that |uD |curl,D = 0 and |?
D
|grad,D ≤ `−2

♭

∑
) ∈T `

2
)
|?
)
|2grad,) = 0.

From the second relation, since ?
D
∈ %̂:D,Σ, we deduce that ?D = 0D . Plugging this value into (54b),

we then infer that

�D (uD , @D) =
(
`uT ,M

:
T (@D)

)
Ω
= 0 ∀@

D
∈ %̂:D,Σ.

Since, for any @ ∈ �1
Σ
(Ω̂) there holds �:D (@) ∈ %̂

:

D,Σ, letting @D = �
:
D (@) in the relation above, and

leveraging the local commutation property (42) together with the fact that `uT ∈ P: (T ), we infer(
`uT , z

)
Ω
= 0 ∀z ∈ ˇgrad

(
�1
Σ(Ω̂)

)
.

The conclusion then follows from the combination of the discrete second Weber inequality of [30,
Rmk. 16] (with [ := `) along with (16), with the fact that |uD |curl,D = 0. This yields uD = 0D . �

Last, we prove an error estimate in energy-norm for the solution to Problem (54).

Theorem 6 (Energy-error estimate). Assume that the solution u := h ∈ N(curl;Ω) to Problem (46)
further satisfies curl u ∈ NA (T ) for some A ∈ [0, :] and u ∈ NB (T ) for some B ∈ ( 12 , : + 1]. Then,
the following estimate holds true:

|uD − O:D (u) |
2
curl,D +

∑
) ∈T

`2
) |?) |

2
grad,) .

∑
) ∈T

(
ℎ2A
) | curl u |2A ,) + ℎ

2(B−1)
)

|u |2B,)
)
, (57)

where (uD , ?D) ∈ [
:
D × %̂

:

D,Σ is the unique solution to Problem (54).
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Proof. First remark that, by Sobolev embedding, since u ∈ NB (T ) for some B > 1
2 (B > 0 would be

enough), then u ∈ R@ (Ω) for some @ > 2, and one can thus give a meaning to O:D (u) ∈ [
:
D . The

starting point of the proof is the following simple inequality: for all (vD , @D) ∈ [
:
D × %̂

:

D,Σ,

| (vD , @D) |D ≤ max
(wD ,AD)∈[:

D×%̂
:
D,Σ ,

| (wD ,AD ) |D=1

�D (vD , wD) + �D (wD , @D) − �D (vD , AD) + #D (@D , AD),

where we set | (vD , @D) |
2
D := �D (vD , vD) + #D (@D , @D). Plugging vD =

(
uD − O:D (u)

)
∈ [:D

and @
D
=

(
?
D
− �:D (?)

)
= ?

D
∈ %̂:D,Σ (where we have used that ? ≡ 0), leveraging Problem (54)

to linearly develop the expression into the max, and invoking (55), we infer(
|uD − O:D (u) |

2
curl,D +

∑
) ∈T

`2
) |?) |

2
grad,)

)1/2

. max
(wD ,AD)∈[:

D×%̂
:
D,Σ ,

| (wD ,AD ) |D=1

ED
(
(wD , AD)

)
,

where ED
(
(wD , AD)

)
:=

(
j ,I:−1

T (wD)
)
Ω
− �D

(
O:D (u), wD

)
+ �D

(
O:D (u), AD

)
. Let us set

T1 :=
(
j ,I:−1

T (wD)
)
Ω
− �D

(
O:D (u), wD

)
=
(
curl u −

(
I:−1
T ◦ O:D

)
(u),I:−1

T (wD)
)
Ω
− (curl,D

(
O:D (u), wD

)
,

and
T2 := �D

(
O:D (u), AD

)
=

(
0:
P,T (`u),M

:
T (AD)

)
Ω
,

where we have invoked (44a) to replace j by curl u inT1, and used the fact that ` is piecewise constant
inT2. ForT1, using (i) the local commutation property (29) along with the fact that curl u ∈ NA (T ),
and (ii) the fact that u ∈ NB (T ) for some B > 1

2 (so that the full trace of u can be given a meaning
in !2(�)3 on both sides of each interface, and on each boundary face), we infer from the fractional
approximation results of [13, Lem. 2.5] that

T1 .

(∑
) ∈T

(
ℎ2A
) | curl u |2A ,) + ℎ

2(B−1)
)

|u |2B,)
))1/2

�D (wD , wD)
1/2.

For T2 now, using the definition (37) of the (local) gradient reconstruction, and integrating by parts
the volume term therein, we infer that

T2 =
(
`u, gradT AT

)
Ω
+

∑
) ∈T

∑
� ∈F)

(
0:
P,)
(`) u |) )|� ·n) ,� , A�,) − A) |�

)
�
,

where we have invoked the fact that gradT AT ∈ P:−2(T ) to remove the projector in the first term.
A (cell-by-cell) integration by parts of the first term in the right-hand side, and the combination of
u ∈ N0(div0

`;Ω) (according to (44b) and (44c)) and AD ∈ %̂
:

D,Σ (cf. (52) and (32)), yields

T2 =
∑
) ∈T

∑
� ∈F)

Y) ,�
( (
0:
P,)
(`) u |) )|� − (`u)|�

)
·n� , A�,) − A) |�

)
�
+
V1∑
8=1

∑
� ∈F◦

Σ8

f8
(
(`u)|� ·n� , 1

)
�
,

where we have additionally leveraged the fact that `u ∈ NB (T ) for some B > 1
2 . Now, since for any

8 ∈ {1, . . . , V1}, there holds
∑
� ∈F◦

Σ8

f8
(
(`u)|� ·n� , 1

)
�
= f8

(
(`u)|Σ8 ·nΣ8 , 1

)
Σ8
, as a consequence

of (44d), we infer that

T2 =
∑
) ∈T

∑
� ∈F)

Y) ,�
( (
0:
P,)
(`) u |) )|� − (`u)|�

)
·n� , A�,) − A) |�

)
�
.
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The approximation results of [13, Lem. 2.5] along with standard arguments then show that

T2 .

(∑
) ∈T

ℎ
2(B−1)
)

|u |2B,)

)1/2 (∑
) ∈T

`2
) (grad,) (A) , A) )

)1/2

.

Since
∑
) ∈T `

2
)
(grad,) (A) , A) ) ≤ #D (AD , AD), gathering the estimates onT1 andT2, and using that

| (wD , AD) |D = 1, we conclude the proof. �

Before concluding this section, a few remarks are in order.

Remark 7 (Solution regularity and convergence rate). Let us comment on the error estimate (57)
from Theorem 6. First, notice that when A = : and B = : +1, the HHO scheme converges with optimal
rate ℎ:D . Second, remark that our analysis requires that u ∈ N

B (T ) for some B > 1
2 (so that one can

give a classical sense to the trace of u on mesh faces) which, by Remark 2, is only met for a globally
constant coefficient `. However, adapting the arguments from [24, Sec. 5], it would be possible to
relax this assumption to B > 0, which would cover the case of a piecewise constant coefficient. We do
not pursue herein further in this direction. Finally, remark that, for our choice of error measure, our
HHO scheme is convergent only if B > 1 and A > 0. To recover convergence for any B > 0 and A ≥ 0,
one has to consider a weaker error-norm, formally on ℎTI:−1

T instead of I:−1
T . This amounts to

multiplying �) in (53a) by ℎ2
)
(and the rhs in (54a) by ℎ2

T), and #) in (53c) by ℎ−2
)
. This is precisely

the approach pursued in [25] in the context of DG methods (with scaling ℎ1/2
T therein for B > 1

2 ).

Remark 8 (Variant of the scheme). Since the model is first-order, following [10, Sec. 3.1], it is also
possible to define the discrete rotational operator as the broken rotational curlT , instead of I:−1

T . In
practice, the new scheme is obtained replacing in Problem (54) every occurrence of I:−1

T by curlT .
The advantage of doing so is that, in this case, one can relax the assumption that P:−1(�) ⊂ Q

: (�)
for all � ∈ F , and consider in place of (51) the leaner space Q

: (�) := R
: (�). This choice is

actually sufficient (and necessary, thus optimal) for ensuring stability (cf. [30, Rmk. 10]). Redefining
�) (w) , v) ), there now holds (in place of (56)) that �) (v) , v) ) = |v) |2curl,) . Importantly, this
identity holds true without having to assume that P:−1(�) ⊂ Q

: (�) for all � ∈ F) . There is, of
course, a price to pay for this complexity reduction. The commutation property (29) is no longer
valid in that case, and the proxy for curl u is then given by curlT 0:P,T (u) in place of 0

:−1
P,T (curl u).

Unfortunately, and as supported by our numerical experiments (cf. Section 5.4), for singular solutions,
this alternative proxy usually retains insufficient approximability properties.

Remark 9 (Tetrahedra and stability). Suppose T is a member of a regular tetrahedral mesh sequence.
Then, as already pointed out in [10, Rmk. 3.1], the contribution #D (?D , @D) can be removed from
Problem (54) without compromising its stability. As a matter of fact, by (40), there holds in that
case that

∑
) ∈T `

2
)
|@
)
|2grad,) .

∑
) ∈T `

2
)
ℎ2
)
‖M:

) (@) )‖
2
0,) for all @

D
∈ %̂:D . In turn, proceeding as

in [10, Lem. 3.6], one can control the right-hand side of the above estimate, thus yielding stability
for this alternative scheme. When T belongs to a (regular) general mesh sequence, Equation (39)
suggests that defining #) (A) , @) ) := `2

)
(grad,) (A) , @) ) (only part remaining to be controlled) is

sufficient to ensure the stability of the scheme. This said, remark that using #D (?D , @D) as in
Problem (54) (built from (53c)) does not add any consistency error to the scheme, owing to the
fact that the continuous Lagrange multiplier is always zero. This strategy might even yield slightly
more accurate results, as a consequence of the improved stability of the discrete problem (cf. [10,
Rmk. 3.2]). Other choices of the same nature can be made for #D , see e.g. [10, Eq. (3.4c)]. The
present remark also applies to Problem (59) (vector potential case).
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4.2.2 Vector potential formulation

Recall the definition (23) of [:D,0, discrete counterpart of N0(curl;Ω), and assume that the space
Q
: (�) is still given by (51) for all � ∈ F . Recall, in addition, the definition (35) of %:D,Γ, hybrid

counterpart of �1
Γ
(Ω).

Given ) ∈ T , we introduce the local bilinear forms �) : [:
)
×[:

)
→ R, �) : [:

)
× %:

)
→ R,

and #) : %:
)
× %:

)
→ R defined by: for all v

)
, w

)
∈ [:

)
and @

)
, A) ∈ %:) ,

�) (w) , v) ) := `−1
)

(
I:−1
) (w) ),I

:−1
) (v) )

)
)
+ `−1

) (curl,) (w) , v) ), (58a)
�) (w) , @) ) :=

(
w) ,M

:
) (@) )

)
)
, (58b)

#) (A) , @) ) := `) ℎ2
)

(
grad A) , grad @)

)
)
+ `) (grad,) (A) , @) ), (58c)

where the local stabilizers (curl,) and (grad,) are respectively defined by (26) and (38). Here as
well, the scaling `) (also ℎ2

)
) in (58c) is chosen so as to restore consistency between the physical

units. In turn, the global bilinear forms �D : [:D × [:D → R, �D : [:D × %
:
D → R, and

#D : %:D × %
:
D → R are assembled by summing the local contributions. The discrete HHO problem

reads: Find (uD , ?D) ∈ [
:
D,0 × %

:
D,Γ s.t.

�D (uD , vD) + �D (vD , ?D) =
(
j , vT

)
Ω

∀vD ∈ [
:
D,0, (59a)

−�D (uD , @D) + #D (?D , @D) = 0 ∀@
D
∈ %:D,Γ. (59b)

Let us establish well-posedness for Problem (59).

Lemma 10 (Well-posedness). For all vD ∈ [
:
D and @

D
∈ %:D , there holds:∑

) ∈T
`−1
) |v) |

2
curl,) +

∑
) ∈T

`) |@
)
|2grad,) . �D (vD , vD) + #D (@D , @D). (60)

Consequently, Problem (59) is well-posed.

Proof. Let v
)
∈ [:

)
and @

)
∈ %:

)
. Starting from definition (58a), and invoking (27) (which is valid

under the assumption (51)), there holds

�) (v) , v) ) = `
−1
) ‖I:−1

) (v) )‖
2
0,) + `

−1
) (curl,) (v) , v) ) h `

−1
) |v) |

2
curl,) . (61)

Similarly, by definition (58c), there holds #) (@
)
, @
)
) = `) |@

)
|2grad,) . From the above, summing

over all ) ∈ T , we immediately obtain (60).
Now, since the linear system corresponding to Problem (59) is square, proving well-posedness

is actually equivalent to proving the uniqueness of its solution. Hence, let us show that, if j ≡ 0,
then necessarily (uD , ?D) =

(
0D , 0D

)
. First, remark that the map |·|grad,D (cf. (36)) defines a norm

on %:D,Γ (cf. (34) and (35)), as a by-product of the essential zero discrete boundary condition over
Γ0. Now, let us test Problem (59) (for j ≡ 0) with vD = uD and @

D
= ?

D
. Summing (59a)

and (59b), and leveraging (60), we directly infer that |uD |curl,D ≤ `♯
∑
) ∈T `

−1
)
|u
)
|2curl,) = 0 and

|?
D
|grad,D ≤ `−1

♭

∑
) ∈T `) |?) |

2
grad,) = 0. From the second relation, since ?

D
∈ %:D,Γ, we deduce

that ?
D
= 0D . Plugging this value into (59b), we then infer that

�D (uD , @D) =
(
uT ,M

:
T (@D)

)
Ω
= 0 ∀@

D
∈ %:D,Γ.
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Since, for any @ ∈ �1
Γ
(Ω) there holds �:D (@) ∈ %

:
D,Γ, letting @D = �

:
D (@) in the relation above, and

leveraging the local commutation property (42) along with the fact that uT ∈ P: (T ), we infer that(
uT , z

)
Ω
= 0 ∀z ∈ grad

(
�1
Γ(Ω)

)
.

The conclusion then follows from the combination of the discrete first Weber inequality of [30,
Rmk. 14] (with [ := 1) along with (12), with the fact that uD ∈ [:D,0 (so that [30, Rmk. 14] is
applicable) and |uD |curl,D = 0. This yields uD = 0D . �

Let us now prove an error estimate in energy-norm for the solution to Problem (59).

Theorem 11 (Energy-error estimate). Assume that the solution u := a ∈ N0(curl;Ω) to Problem (49)
further satisfies curl u ∈ NA (T ) for some A ∈ ( 12 , :] and u ∈ NB (T ) for some B ∈ ( 12 , : + 1]. Then,
the following estimate holds true:∑
) ∈T

`−1
) |u) − O:) (u |) ) |

2
curl,) +

∑
) ∈T

`) |?
)
|2grad,) .

∑
) ∈T

`−1
)

(
ℎ2A
) | curl u |2A ,) + ℎ

2(B−1)
)

|u |2B,)
)
, (62)

where (uD , ?D) ∈ [
:
D,0 × %

:
D,Γ is the unique solution to Problem (59).

Proof. First remark that, by Sobolev embedding, since u ∈ NB (T ) for some B > 1
2 (B > 0 would be

enough), then u ∈ R@ (Ω) for some @ > 2, and one can thus give a meaning to O:D (u) ∈ [
:
D,0. The

starting point of the proof is the following simple inequality: for all (vD , @D) ∈ [
:
D,0 × %

:
D,Γ,

| (vD , @D) |D ≤ max
(wD ,AD)∈[:

D,0×%
:
D,Γ

,

| (wD ,AD ) |D=1

�D (vD , wD) + �D (wD , @D) − �D (vD , AD) + #D (@D , AD),

where we set | (vD , @D) |
2
D := �D (vD , vD) + #D (@D , @D). Plugging vD =

(
uD − O:D (u)

)
∈ [:D,0

and @
D
=

(
?
D
− �:D (?)

)
= ?

D
∈ %:D,Γ (where we have used that ? ≡ 0), leveraging Problem (59)

to linearly develop the expression into the max, and invoking (60), we infer(∑
) ∈T

`−1
) |u) − O:) (u |) ) |

2
curl,) +

∑
) ∈T

`) |?
)
|2grad,)

)1/2

. max
(wD ,AD)∈[:

D,0×%
:
D,Γ

,

| (wD ,AD ) |D=1

ED
(
(wD , AD)

)
,

where ED
(
(wD , AD)

)
:=

(
j , wT

)
Ω
− �D

(
O:D (u), wD

)
+ �D

(
O:D (u), AD

)
. Let us set

T1 :=
(
j , wT

)
Ω
− �D

(
O:D (u), wD

)
,

T2 := �D
(
O:D (u), AD

)
=

(
0:
P,T (u),M

:
T (AD)

)
Ω
.

For T1, (i) replacing j by curl(`−1 curl u) (leveraging (48a)) then performing a (cell-by-cell) inte-
gration by parts in

(
j , wT

)
Ω
, and (ii) using the definition (25) of the (local) rotational reconstruction

operator for �D
(
O:D (u), wD

)
, we infer that

T1 =
(
`−1 ( curl u −

(
I:−1
T ◦ O:D

)
(u)

)
, curlT wT

)
Ω
−

∑
) ∈T

`−1
) (curl,)

(
O:) (u |) ), w)

)
+

∑
) ∈T

∑
� ∈F)

Y) ,�
(
w) |�×n� − w�,3 , n�×

(
`−1 curl u − `−1

)

(
I:−1
) ◦ O:)

)
(u |) )

)
|�×n�

)
�
,

where we have also leveraged the fact that `−1 curl u ∈ N(curl;Ω) with `−1 curl u ∈ NA (T ) for
some A > 1

2 , together with the fact that wD ∈ [:D,0. Let us then estimate the two first addends in
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T1, that we denote by T1,1 (T1,2 will denote the last addend of T1). By (i) the local commutation
property (29) along with the fact that curl u ∈ NA (T ), and (ii) the fact that u ∈ NB (T ) for some
B > 1

2 , we get from the fractional approximation results of [13, Lem. 2.5] that

T1,1 .

(∑
) ∈T

`−1
)

(
ℎ2A
) | curl u |2A ,) + ℎ

2(B−1)
)

|u |2B,)
))1/2 (∑

) ∈T
`−1
) |w) |

2
curl,)

)1/2

.

In turn, using [30, Lem. 9] together with similar arguments, we infer that

T1,2 .

(∑
) ∈T

`−1
) ℎ

2A
) | curl u |2A ,)

)1/2 (∑
) ∈T

`−1
) |w) |

2
curl,)

)1/2

.

By (61), we finally get

T1 .

(∑
) ∈T

`−1
)

(
ℎ2A
) | curl u |2A ,) + ℎ

2(B−1)
)

|u |2B,)
))1/2

�D (wD , wD)
1/2.

Let us now estimate T2. Using the definition (37) of the (local) gradient reconstruction (with the fact
that AD ∈ %:D,Γ), and integrating by parts the volume term therein, we infer that

T2 =
(
u, gradT AT

)
Ω
+

∑
) ∈T

∑
� ∈F)

(
0:
P,)
(u |) )|� ·n) ,� , A� − A) |�

)
�
.

A (cell-by-cell) integration by parts of the first term in the right-hand side, and the combination of
u ∈ N(div0;Ω) (according to (48b)) and AD ∈ %:D,Γ (cf. (34) and (35)), yields

T2 =
∑
) ∈T

∑
� ∈F)

Y) ,�
( (
0:
P,)
(u |) )|� − u |�

)
·n� , A� − A) |�

)
�
+
V2∑
9=1

∑
� ∈Fm

Γ 9

W 9
(
u |� ·n� , 1

)
�
,

where we have additionally leveraged the fact that u ∈ NB (T ) for some B > 1
2 . Now, since for any

9 ∈ {1, . . . , V2}, there holds
∑
� ∈Fm

Γ 9

W 9
(
u |� ·n� , 1

)
�
= W 9

(
u |Γ 9
·n, 1

)
Γ 9
, as a consequence of (48d),

we infer that
T2 =

∑
) ∈T

∑
� ∈F)

Y) ,�
( (
0:
P,)
(u |) )|� − u |�

)
·n� , A� − A) |�

)
�
.

The approximation results of [13, Lem. 2.5] along with standard arguments then show that

T2 .

(∑
) ∈T

`−1
) ℎ

2(B−1)
)

|u |2B,)

)1/2 (∑
) ∈T

`) (grad,) (A) , A) )
)1/2

.

Since
∑
) ∈T `) (grad,) (A) , A) ) ≤ #D (AD , AD), gathering the estimates onT1 andT2, and using that

| (wD , AD) |D = 1, we conclude the proof. �

A few remarks are necessary before concluding this section.

Remark 12 (Solution regularity and convergence rate). Let us comment on the error estimate (62)
from Theorem 11. First, notice that when A = : and B = : + 1, the HHO scheme converges with
optimal rate ℎ:D . Second, remark that our analysis requires that curl u ∈ NA (T ) for some A > 1

2
which, by Remark 4, is only met for a globally constant coefficient ` (that u ∈ NB (T ) for some B > 1

2
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is always true). However, as in the first-order case, adapting the arguments from [24, Sec. 5], it would
be possible to relax this assumption to A > 0, which would cover the case of a piecewise constant
coefficient. Again, we do not pursue further in this direction. Finally, note that, for the error measure
we consider, our scheme is convergent only if B > 1 (A > 0 is always true). However, adapting
Remark 7, one could recover convergence for any B > 1

2 in a weaker norm (scaled as in [25]).

Remark 13 (Variant of the scheme). It is possible, instead of (locally) reconstructing the rotational
in P

:−1()) as in (25), to reconstruct it in the smaller space R
:−1()) = curl

(
P
: ())

)
. This was

the strategy advocated in [10, Sec. 3.2]. In this case, the proxy for curl u is given by 0:−1
R,T (curl u)

(with obvious notation for the projector) in place of 0:−1
P,T (curl u). This proxy has approximability

properties no better than curlT 0:P,T (u) (see Remark 8). Therefore, since this alternative construction
does not allow to relax (51), and given that the complexity gain in usingR:−1()) instead ofP:−1()) to
reconstruct the rotational is marginal (local systems are small and local computations embarrassingly
parallel), it is most probably a better option to stick to the choice P:−1()) as in (25).

Remark 14 (Robustness to heterogeneity). Let us introduce ^` := `♯/`♭ ≥ 1 the (global) hetero-
geneity ratio of the magnetic permeability `. Given that u = a here, one can infer from (62) that
|aD − O:D (a) |curl,D is bounded by ^1/2

` . Since b = curl a (recall that a is the magnetic vector poten-
tial), notice that |aD − O:D (a) |curl,D is actually an !2-like measure of the scheme error on b. The
discrete magnetic induction computed by the scheme is thus only mildly sensitive to heterogeneity.

5 Numerical experiments

We perform in this section a comprehensive numerical validation of the HHO schemes devised and
analyzed in Section 4.2. Our main goal is to numerically assess the convergence rates of the methods,
so our focus is on relatively simple geometries and test-cases for which an analytical solution is
available. The computational domains under study include geometries with non-trivial topology, for
which we consider suitable boundary conditions so that the harmonic spacesN3 (Ω) and N= (Ω) given
by (9) and (13) are non-empty, as well as a non-convex domain with reentrant edge. Accordingly, we
consider exact solutions u with various regularities, ranging from smooth to singular.

We focus on two families of refined (regular) mesh sequences, of respectively tetrahedral and
polyhedralmeshes. The family of refined polyhedralmeshes is constructed from the tetrahedral one by
merging tetrahedral elements into polyhedral conglomerates in a random fashion. The agglomeration
procedure concerns all tetrahedra surrounding randomly selected mesh vertices, in such a way that
one can achieve a mesh sequence whose regularity parameter does not increase upon refinement.
We solve the discrete Problems (54) and (59) (respectively referred to as first- and second-order
Problems), modulo the following adaptations: (i) building on Remark 8, for the first-order Problem,
when the considered exact solution u is regular, we replace the discrete rotational operator I:−1

T
by its broken version curlT , and the magnetic face space is then set to Q

: (�) := R
: (�) for all

� ∈ F ; building on Remark 9, (ii) when T is a tetrahedral mesh, we remove from both the first- and
second-order Problems the contribution #D (?D , @D), whereas (iii) when T is a polyhedral mesh,
we remove from both the first- and second-order Problems, in the definition of #D (?D , @D), the
contribution stemming from the local bilinear form ℎ2

)

(
grad ?) , grad @)

)
)
. Doing so we achieve,

without compromising stability, a somewhat leaner implementation, and we bear consistency with the
numerical results from [10] (therein for : ′ := : − 1) where these variants were actually implemented
(in the case of topologically trivial domains only). Crucially, and as already noticed in [10], the
numerical tests that we performed (not reported here) show that these variants achieve virtually the
same accuracy as the original schemes (and, interestingly, for examples with non-trivial topology,
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even slightly improve it). As standard with skeletal methods, for each discrete Problem, both the
magnetic and pressure-like cell unknowns are locally eliminated (without additional fill-in) from the
global linear system using a Schur complement technique. The resulting (condensed) global linear
system is solved using the SparseLU direct solver of the Eigen library, on a laptop Dell Precision
5570 equipped with an Intel Core i7-12800H processor clocked at 2.80GHz and with 64Gb of RAM.
The implementation uses the open-source (under license GNU LGPL v3.0) and publicly available
C++ library ParaSkel++1 [6]. For each computed HHO discrete solution uD corresponding to the
exact solution u, we evaluate the relative energy-error and !2-error by

En_err :=

(∑
) ∈T [

−1
)
|u
)
− O:

)
(u |) ) |2curl,)

)1/2

(∑
) ∈T [

−1
)
|O:
)
(u |) ) |2curl,)

)1/2 and L2_err :=
‖uT − 0:

P,T (u)‖0,Ω
‖0:

P,T (u)‖0,Ω
,

with [ := 1 in the first-order case, and [ := ` in the second-order case. In all the numerical examples
below, we set ` ≡ 1.

Figure 1: Test-case 5.1 (torus). Example of computed discrete cutting surface for the torus. The
surface is piecewise planar, and the shown triangles are faces of a tetrahedral mesh discretizing Ω.

5.1 Torus

Our first example consists in a toroidal domain Ω, with midline radius ' = 2 and internal radius
A = 1. For this geometry, V1 = 1 (so that there is one cutting surface Σ) and V2 = 0. We consider the
first-order Problem (44), with the following exact solution, expressed in cylindrical coordinates:

u(d, i, I) :=
(

cos
(c
A

√
(d − ')2 + I2

)
− 2

)
>̂, (63)

where the constant 2 ∈ R is set so that the condition 〈u |Σ·nΣ, 1〉Σ = 0 is satisfied. In our numerical
experiments, the current density j is set according to (44a), whereas the zero normal boundary
condition (44c) and zero flux condition (44d) (valid, respectively, on the curved domain boundary Γ
and on the Γ-supported cutting surface Σ) are replaced by their non-homogeneous versions computed
from (63) on the given polygonal approximations of Γ and Σ. To compute a discrete representative
of the cutting surface Σ (cf. Figure 1), which is involved in the definition (30) of the discrete space
%̂
:

D , we implemented a simplified version of the algorithm proposed in [1]. For : ∈ {1, 2, 3}, we
solve Problem (54) (with curlT), and depict on Figure 2, for both the tetrahedral and (agglomerated)

1cf. https://gitlab.inria.fr/simlemai/paraskel/-/tree/electromagnetics.
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polyhedral mesh families, the relative energy-error and !2-error as functions of the mesh size (ℎD)
and of the number of degrees of freedom (#DoF) after static condensation. For the two mesh families,
as predicted by Theorem 6, we obtain a convergence rate for the energy-error of order : . We also
observe a convergence rate of order : + 1 for the !2-error on the magnetic field.

: = 1 (tet) : = 2 (tet) : = 3 (tet)
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Figure 2: Test-case 5.1 (torus). Relative energy-error (top row) and !2-error (bottom row) vs. ℎD
(left column) and #DoF (right column) on tetrahedral (solid) and polyhedral (dashed) meshes.

5.2 Hollow ball

Our second example consists in a ball Ω of radius 2, encapsulating a void concentric spherical cavity
of radius 1, so that the boundary Γ consists of two connected components Γ0 and Γ1. For such a
geometry, V1 = 0 and V2 = 1. We consider the second-order Problem (48), with the following exact
solution, expressed in spherical coordinates:

u(A, \, i) :=
1
A2 cos(\) r̂. (64)

Remark that u satisfies 〈u |Γ1 ·n, 1〉Γ1 = 0 (as well as 〈u |Γ0 ·n, 1〉Γ0 = 0, since div u = 0 in Ω). In our
numerical experiments, the current density j is set according to (48a), whereas the zero tangential
boundary condition (48c) and zero flux condition (48d) (valid on the curved domain boundary Γ
or inner boundary Γ1) are replaced by their non-homogeneous versions computed from (64) on the
given polygonal approximation of Γ or Γ1. For : ∈ {1, 2, 3}, we solve Problem (59), and plot on
Figure 3 the relative energy-error and !2-error as functions of the mesh size (ℎD) and of the number
of degrees of freedom (#DoF) after static condensation, for both the tetrahedral and polyhedral mesh
families. For both mesh families, we obtain, as predicted by Theorem 11, a convergence rate for the
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energy-error of order : . We also observe a convergence rate of order : + 1 for the !2-error on the
vector potential.
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Figure 3: Test-case 5.2 (hollow ball). Relative energy-error (top row) and !2-error (bottom row)
vs. ℎD (left column) and #DoF (right column) on tetrahedral (solid) and polyhedral (dashed) meshes.

Figure 4: Test-case 5.3 (hollow torus). The toroidal domain Ω, with coaxial toric cavity. The two
cutting surfaces Σ1 and Σ2 are depicted, as well as the two connected components Γ0 and Γ1 of Γ.

5.3 Hollow torus

This test-case is defined on the same toroidal domain as in Section 5.1, except thatΩ here additionally
encapsulates a void coaxial (i.e. with midline radius 2) toric cavity of internal radius 1/2 (that is,
the cavity has half the internal radius of the torus). For this geometry, V1 = 2 (so that there are two
cutting surfaces Σ1 and Σ2) and V2 = 1 (the boundary Γ consists of two connected components Γ0 and
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Γ1); see Figure 4. We solve the field formulation, with the same exact solution (63) (also same value
for the constant 2) as in the torus test-case of Section 5.1. The vector field u given by (63) is actually
solution to a non-homogeneous version of the first-order Problem (44): it satisfies (44b)–(44c) and
〈u |Σ1 ·nΣ1 , 1〉Σ1 = 0, but 〈u |Σ2 ·nΣ2 , 1〉Σ2 ≠ 0, so that u “embeds” an harmonic field in N= (Ω). In order
to compute discrete representatives of the two cutting surfaces Σ1 and Σ2, we leveraged again in our
implementation our adapted version of the algorithm in [1]. Here again, for : ∈ {1, 2, 3}, we solve
Problem (54) (with curlT), and plot on Figure 5 the relative energy-error and !2-error as functions
of ℎD and #DoF, for both the tetrahedral and polyhedral mesh families. The obtained energy-error
convergence rates are again consistent with our theory as established in Theorem 6. The observed
!2-error convergence rates on the magnetic field are again of order : + 1.
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Figure 5: Test-case 5.3 (hollow torus). Relative energy-error (top row) and !2-error (bottom row)
vs. ℎD (left column) and #DoF (right column) on tetrahedral (solid) and polyhedral (dashed) meshes.

5.4 Singular solution

In this last test-case, we consider a singular solution over a non-convex domainΩ. The domainΩ is a
cylinder of unit radius and height, to which a quarter has been removed, so that it presents a reentrant
edge (cf. the left panel of Figure 6). We solve the field formulation, for the following exact solution,
expressed in cylindrical coordinates:

u(d, i, I) := grad

(
d

2
3 cos

(
2
3
i

))
. (65)

The vector field u given by (65) is solution to a non-homogeneous version of the first-order Prob-
lem (44): it satisfies (44b) (remark that (44d) is here trivial), but fulfills in place of (44c) a non-
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ℎD !2-error Rate
4.20E−01 3.62E−02 −
2.37E−01 2.72E−02 0.50
1.44E−01 1.99E−02 0.63
7.00E−02 1.24E−02 0.66

Figure 6: Test-case 5.4 (singular solution). The non-convex domain Ω (left panel). !2-error and
convergence rate on tetrahedral meshes for : = 1 (right panel).

homogeneous normal boundary condition on the curved section of Γ. In our numerical experiments,
the current density j is set to zero (accordingly to (44a)), and the boundary data is set in accor-
dance with (65) on the given polygonal approximation of the curved section of Γ. It can be easily
verified that u ∈ N

2
3−Y (Ω) for all Y > 0, and that u is singular along the reentrant edge. We solve

Problem (54) (with I:−1
T ), and we collect on the right panel of Figure 6 the results for the relative

!2-error on the magnetic field for : = 1 on the tetrahedral mesh sequence. We observe that the
!2-error attains its maximum possible rate of convergence of 2/3. We verified for each : ∈ {2, 3}
that this convergence rate does not depend on the polynomial degree. In agreement with Theorem 6,
we observed no convergence in energy-norm. Finally, we performed the same test, but with discrete
rotational operator given by curlT instead of I:−1

T . We observed no convergence whatsoever, even
in !2-norm. These observations corroborate the discussion in Remark 8.
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