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A B S T R A C T

Analogous piezoelectric networks have been shown to be effective for multimodal vibration
attenuation in structures, including beams, plates, and rings. Previous studies for rings have
only accounted for in-plane transverse vibration attenuation and disregarded the out-of-plane
vibration modes. Furthermore, these previous numerical models and experiments have only
been studied on thin rings, which ignore the effects of shear deformation and rotary inertia.
As a result, these networks are not suitable for attenuating vibrations in thick rings. This
study enhances on the previous electrical networks, considering both shear deformation and
rotary inertia for both in-plane and out-of-plane vibrations. A new passive network topology
is developed for the out-of-plane dynamics of thick rings, and the existing passive analogous
network of in-plane vibration of thin rings is enhanced by considering the effects of shear
deformation and rotary inertia. Combined, these new networks are capable of multimodal
vibration damping of a thick ring in three-dimensions, encompassing primarily six types of
vibration modes: the inextensional bending modes, the extensional modes, the thickness-shear
modes, the coupled twist-bending modes, the torsional modes, and the transverse thickness-
shear modes. By using piezoelectric elements to couple two separate analogous passive electrical
networks derived from both the in-plane and out-of-plane governing equations of a ring
and optimizing the internal resistance in each unit cell, it becomes possible to replicate
the dynamics and effectively attenuate different types of vibration modes. This study serves
as a theoretical foundation for implementations of passive vibration attenuation in ring
structures.

. Introduction

Vibration reduction has long been a topic of significant interest and importance in various industries. Circular symmetric
tructures such as rings, as essential components of many mechanical systems, are prone to generating vibrations either due
o structural loading or due to dynamic operations in turbo-machinery [1]. Excessive vibrations contributes to increased wear,
oise, and even structural damage. Previous studies have explored the dynamics of rotating rings at high speeds [2] as well as a
omprehensive overview of rings in application to rolling tires [3]. Practical applications of vibration attenuation in circular rings
ave also been studied in gears [4,5]. Other applications have been studied in power transformers, where vibrations in the coil
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winding are one of the main contributor to transformer noise, especially at high capacity loads [6]. This phenomenon was modeled
mechanically using a series of stacked rings [7].

The dynamics of thin rings have been studied as early as the 1890s by Love [8]. Since then, various authors using different
athematical models have improved the original formulation, incorporating considerations for shear deformation and rotary

nertia to accurately model thick rings for both in-plane and out-of-plane vibrations [9–12]. Other formulations include effects
f rotation [13], and more recently, rotating rings derived from toroidal shell theory [14]. In this study, we focus on the vibration
ontrol of thick rings using an analogous electrical network derived from the governing equations of thick rings, aiming to develop
novel approach that addresses the unique dynamics posed by these structures.

The emergence of piezoelectric network damping in the early 2000s was driven by the desire to couple a structure to a medium
hat shares similar wave propagation properties [15]. However, the concept of electrical networks representing mechanical structures
s not new. Analogous electrical networks were developed as early as the 1940s by MacNeal for beams [16], plates [17], stiffened
hells [18], and entire aerospace structures [19]. These electrical networks were implemented and validated as a computational
ethod for determining structural responses, but not as a method for piezoelectric vibration damping. Later, these electrical networks
ere independently theorized and developed specifically for vibration control, as they demonstrated optimal electromechanical

oupling [20,21]. Circuit analogues were theorized for beams [22] and thin plates [23,24], but they were never realized due to the
omplex circuit topology.

To simplify and redesign the electrical networks, a finite difference scheme was applied to the classical mechanical equations
f motion, which reduced the number of components required for assembly [25,26]. The use of magnetic components in these
revious studies enabled the implementation of fully passive analogous networks. The analogous electrical networks are observed
o have operational mode shapes resembling mechanical structures. By coupling the electrical network to a mechanical structure
sing piezoelectric patches, vibration damping applications can be achieved. The matching mode shapes between the electrical
nd mechanical domains enable the network to function as a vibration absorber at every point on the structure. Numerical and
xperimental validation of this approach was successfully carried out on rods [27], beams [25], and plates [26]. The network for
curved beam was developed [28] and then experimentally validated when assembled to form a network for thin rings [29]. The

ddition of curvature in a structure is reflected in the added complexity in the equations of motion due to the coupling between the
ircumferential displacements and transverse displacements, and thus, complicating the topology of the electrical network. Recently,
he networks for beams and plates have been further enhanced to account for shear deformation and rotary inertia of the structure,
ommonly referred to as the Timoshenko-Ehrenfest beam [30] and the Mindlin-Reissner plate [31]. These modifications incorporate
dditional capacitance and inductance in the network that are analogous to shear deformation and rotary inertial effects. This
nhancement improves the frequency coherence between the analogous electrical networks and beams and plates, which leads to
mproved vibration attenuation of these structural elements with thicker cross sections [32].

Using the network derived from the dynamics of curved beams, multimodal vibration damping of thin rings have been
xplored [29], showing significant vibration attenuation for in-plane inextensional bending modes numerically and experimentally.
owever, the electrical network used in this study for piezoelectric vibration damping does not account for the shear deformation
nd rotary inertia of the structure. As a result, the same network would not be optimal for thicker rings, which require additional
onsiderations such as extension of the neutral axis, transverse shear, and rotary inertia [10,33]. Furthermore, the previous study
nly includes the damping of inextensional bending modes, which only account for a portion of the types of vibration modes
xhibited by rings. Rings typically exhibit six types of modes, three of which are in-plane, the other three are out-of-plane
odes [5,9,34]. The three in-plane mode types are the inextensional bending modes, the extensional modes, and the thickness-

hear modes. The three out-of-plane mode types are the coupled twist-bending modes, the torsional modes, and the transverse
hickness-shear modes.

In this study, the concept of multimodal vibration damping via an analogous electrical network will be enhanced to be able
o attenuate both in-plane and out-of-plane vibration modes while also considering shear deformation and rotary inertia to be
ble to accurately model thick rings. While the enhanced electrical networks will be capable of replicating the thickness-shear
odes for both out-of-plane and in-plane vibrations, this study opts to neglect these modes due to less practical applications at

uch high frequencies. Experimental investigations are not conducted due to the reliance on numerical simulations that provide
ufficient insight into the behavior of rings. Furthermore, analogous network damping has already been validated for thin rings [29].
he present study serves as a theoretical foundation for future experimental implementation as the complexity of the electrical
etwork makes it difficult to build a physical analog network. However, digital or synthetic networks may prove to be the
olution when it comes to experimentally validating the network topology. Recent developments by Raze et al. [35] offers a
odeling framework to digitize shunt and networks, eliminating the need for bulky magnetic circuit components in complex

opologies. Furthermore, Zheng [36] has developed a piezoelectric meta-ring with digital shunting circuits in rings for programmable
andgaps.

In Section 2, the governing equations for the ring are derived for both in-plane and out-of-plane motions. In Section 3, the
nalogous electrical network for in-plane vibrations is developed. In Section 4, the analogous network for the out-of-plane vibrations
s developed. In Section 5, the passive electrical components are tuned using frequency coherence conditions, and both in-plane and
ut-of-plane networks are numerically coupled to a thick ring to measure the frequency response function of the structure to a point
2

orce excitation.
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Fig. 1. Segment of a curved beam with internal forces and moments. In-plane components are marked as ( ), and out-of-plane components are marked as
( ). Single headed arrows indicate forces while double headed arrows indicate moments.

2. Governing equations for the vibrations of a ring

2.1. Governing for in-plane vibrations

Consider a segment of a ring as shown in Fig. 1. The governing equations of motion for the in-plane vibrations of a segment of
curved beam [9] of Young’s Modulus 𝐸, Poisson ratio 𝜈, cross sectional area 𝐴, and area moment of inertia 𝐼𝑥 is given by

𝜕𝑁
𝜕𝑠

+
𝑄𝑧
𝑅

= 𝜌𝐴𝜕2𝑣
𝜕𝑡2

,

𝜕𝑄𝑧
𝜕𝑠

− 𝑁
𝑅

= 𝜌𝐴𝜕2𝑤
𝜕𝑡2

,

𝑄𝑧 +
𝜕𝑀𝜃
𝜕𝑠

= 𝜌𝐼𝑥
𝜕2𝜃
𝜕𝑡2

,

𝑀𝜃 = 𝐸𝐼𝑥
𝜕𝜃
𝜕𝑠

,

𝑁 = 𝐸𝐴
( 𝜕𝑣
𝜕𝑠

+ 𝑤
𝑅

)

,

𝑄𝑧 = 𝑘𝐴𝐺𝜙𝑖,

𝜙𝑖 + 𝜃 = 𝜕𝑤
𝜕𝑠

− 𝑣
𝑅
,

(1)

where 𝑤 is the radial displacement, 𝑣 is the circumferential displacement, 𝑄𝑧 is the flexural shear force, 𝑀𝜃 is the bending moment,
𝜃 is the slope of the deflection curve when the shear force is neglected, and 𝜙𝑖 is the angle of shear along the neutral axis at the
same cross section. The total deflection is the sum of both 𝜃 and 𝜙𝑖. Note that when the angle of shear 𝜙𝑖 = 0, the inertial term
𝐼𝑥 = 0, and the radius 𝑅 → ∞, we recover the equations of motion for the Euler–Bernoulli beam equations. Furthermore, if we only
consider that the radius 𝑅 → ∞, then we recover the equations of motion of a Timoshenko beam. The shear modulus is given as
𝐺 = 𝐸∕(2(1 + 𝜈)). The constant 𝑘, which appears in the definition of 𝑄𝑧, is the Timoshenko shear coefficient that accounts for the
non-uniform strain along the cross-section of the beam. This value is typically taken to be 𝑘 = 5∕6 for rectangular sections, but other
more complex and detailed formulations exist [37]. These in-plane equations of motion describe three types of vibration modes:
inextensional bending modes, extensional bending modes, and thickness-shear modes. The first three mode shapes for each of the
three mode types are shown in Fig. 2. The number of wavelengths for each mode is indicated by 𝑛.

Following Kirkhope’s formulation [38], The natural frequencies of a free ring undergoing in-plane vibration can be determined
by solving the dynamic stiffness matrix given as

det
⎛

⎜

⎜

⎝

𝑎11 𝑎12 𝑎13
𝑎12 𝑎22 𝑎23
𝑎13 𝑎23 𝑎33

⎞

⎟

⎟

⎠

= 0

where

𝑎11 = 𝜋𝑅
[(

𝐸𝐼𝑥
𝑅4

(𝑛2 − 1)2 + 𝐸𝐴
𝑅2

)

− 𝜔2
𝑛

(

𝜌𝐴 +
𝜌𝐼𝑥
𝑅2

𝑛2
)]

,

𝑎12 = 𝜋𝑅
[(

𝐸𝐼𝑥
𝑅3

𝑛(𝑛2 − 1) + 𝐸𝐴
𝑅2

)

− 𝜔2
𝑛

(

𝜌𝐼𝑥
𝑅

𝑛
)]

,

𝑎13 = 𝜋𝑅
[

(

−𝐸𝐴
𝑅2

𝑛
)

− 𝜔2
𝑛

(

−
2𝜌𝐼𝑥
𝑅2

𝑛
)]

,

𝑎22 = 𝜋𝑅
[(

𝐸𝐼𝑥
𝑅2

𝑛2 + 𝑘𝐺𝐴
)

− 𝜔2
𝑛𝜌𝐼𝑥

]

,

𝑎23 = 𝜋𝑅
[

𝜔2
𝑛
2𝜌𝐼𝑥
𝑅

]

,

𝑎33 = 𝜋𝑅
[

(𝐸𝐴
𝑅2

𝑛2
)

− 𝜔2
𝑛

(

𝜌𝐴 +
3𝜌𝐼𝑥
𝑅2

)]

.

(2)

Expansion of the determinant results in a cubic frequency equation that when solved returns three frequencies, 𝜔2
𝑛 for each mode

number 𝑛, corresponding to the in-plane inextensional mode as the lowest frequency, extensional mode as the middle frequency,
and thickness-shear mode as the highest frequency. Inextensional bending modes are defined when 𝑛 ≥ 2 since there are no single
wavelength bending modes for circular symmetric structures. Extensional modes and thickness-shear modes are defined when 𝑛 ≥ 0.

2.2. Governing equations for out-of-plane vibrations

Following Rao’s [9] derivation of a curved beam undergoing out-of-plane vibrations, consider the free body diagram of a segment
of curved beam shown in Fig. 1, where 𝑄𝑥 represents the transverse shear force along the transverse axis 𝑥, 𝑀𝛽 represents the
torsional moment about the tangential axis 𝑠, and 𝑀 represents the bending moment about the radial axis 𝑧. The force equation of
3

𝛼
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Fig. 2. Different types of vibration modes for a thick circular ring. In-plane mode shapes: (a) inextensional bending modes, (b) extensional modes, (c) thickness-
shear modes. Out-of-plane mode shapes: (d) coupled twist-bending modes, (e) torsional modes, (f) transverse thickness-shear modes. In the numerical example,
the rectangular cross section width to thickness ratio is 𝑏

ℎ
= 4

5
, and the thickness to radius ratio is ℎ

𝑅
= 1

4
. The colors corresponds to the displacement magnitude,

as indicated in the colorbar.

motion in the transverse direction and the two moment equations of motions in the radial and tangential direction for a thin curved
ring of radius 𝑅, cross-sectional area of 𝐴, area moment of inertia 𝐼𝑧, and density 𝜌 can be given as

𝜕𝑄𝑥
𝜕𝑠

= 𝜌𝐴𝜕2𝑢
𝜕𝑡2

,

𝜕𝑀𝛼
𝜕𝑠

+
𝑀𝛽

𝑅
−𝑄𝑥 = 𝜌𝐼𝑧

𝜕2𝛼
𝜕𝑡2

,

𝜕𝑀𝛽

𝜕𝑠
−

𝑀𝛼
𝑅

= 𝜌𝐽𝑠
𝜕2𝛽
𝜕𝑡2

,

(3)

respectively, where 𝑢 denotes the transverse displacement along the 𝑥 axis. For rectangular cross-sections, the torsional constant is
given by 𝐽𝑠 = 𝐶𝑏ℎ3, where 𝑏 denotes the longer side of the cross-section, ℎ denotes the shorter side of the cross-section, and 𝐶 is
the torsional rigidity multiplier for a given geometry of the cross section [39]. Note that for a rectangular cross-section there are
no exact close form solutions, but the torsional rigidity multiplier can be approximately estimated by looking up the aspect ratio in
a table of experimentally determined values.

The bending moment along the radial axis and the torsional moment takes the form

𝑀𝛼 = 𝐸𝐼𝑧

(

𝛽
𝑅

− 𝜕𝛼
𝜕𝑠

)

,

𝑀𝛽 = 𝐺𝐽𝑠

(

𝛼
𝑅

+
𝜕𝛽
𝜕𝑠

)

,

𝑄𝑥 = 𝑘𝐴𝐺𝜙𝑜,

𝜙𝑜 + 𝛼 = 𝜕𝑢
𝜕𝑠

,
(4)

where 𝐸𝐼𝑧 is the transverse flexural stiffness, 𝐺𝐽𝑠 is the torsional stiffness, and 𝑘𝐴𝐺 is the shear stiffness. The angular displacement of
the cross section due to radial bending is given by 𝛼, 𝛽 is the angular displacement of the cross section due to torsional displacement
along the tangential axis, and 𝜙𝑜 is the angle of shear along the neutral axis at the same cross section. The total deflection is the
sum of both 𝛼 and 𝜙𝑜. When the angle of shear 𝜙𝑜 = 0, the equations of motion for the out-of-plane vibrations of a thin disk-like
ring are recovered. These out-of-plane equations of motion describe three types of vibration modes: coupled twist-bending modes,
torsional modes, and transverse thickness-shear modes. The first three mode shapes for each of the three mode types are shown in
Fig. 2.

It is possible to isolate the governing equations to model purely torsional vibrations. The equations of motion that describe
torsional vibrations can be determined from the equations for out-of-plane vibrations, as torsion is a subset of the out-of-plane
vibrations. The torsion equations can be isolated when the transverse displacement 𝑢 is small compared to the twist angular
displacement 𝛽. As a result, all terms involving the transverse displacement 𝑢 and the radial angular displacement 𝛼 can be ignored
leaving the equations of motion for pure torsional vibration as

𝜕𝑀𝛽 −
𝑀𝛼 = 𝜌𝐽

𝜕2𝛽
, 𝑀 = 𝐸𝐼

𝛽
, 𝑀 = 𝐺𝐽

𝜕𝛽
. (5)
4

𝜕𝑠 𝑅 𝑠 𝜕𝑡2 𝛼 𝑧𝑅 𝛽 𝑠 𝜕𝑠
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Following Rao’s [9] formulation, the natural frequencies of a free ring undergoing out-of-plane vibration can be determined by
olving the polynomial equation given as

𝜔6
𝑛

(

𝜌𝐴𝑅4

𝐸𝐼𝑧

)3 𝑆1𝑆3
2𝑆4𝑆5

𝑆3
− 𝜔4

𝑛

(

𝜌𝐴𝑅4

𝐸𝐼𝑧

)2 [

𝑛4𝑆2
2

(

𝑆1𝑆4 +
𝑆5
𝑆3

+
𝑆1𝑆4𝑆5

𝑆3

)

+
𝑆1𝑆2

2𝑆4

𝑆3
+ 𝑆1𝑆

2
2𝑆4𝑆5 +

𝑆2𝑆5
𝑆3

]

+𝜔2
𝑛

(

𝜌𝐴𝑅4

𝐸𝐼𝑧

)[

𝑆1𝑆2𝑆4 + 𝑆5 + 𝑛2
(

1 +
𝑆2
𝑆3

− 2𝑆1𝑆2𝑆4 + 𝑆2𝑆5

)

+ 𝑛4𝑆2

(

1 + 𝑆1𝑆4 +
𝑆5
𝑆3

)]

+(−𝑛6 + 2𝑛4 − 𝑛2) = 0 (6)

where

𝑆1 =
𝐸
𝐺
, 𝑆2 =

𝐼𝑧
𝐴𝑅2

, 𝑆3 =
𝐼𝑧
𝐽𝑠

, 𝑆4 =
1
𝑘
, 𝑆5 =

𝐸𝐼𝑧
𝐺𝐽𝑠

. (7)

olving this polynomial equation for the frequency, 𝜔2
𝑛, returns three values for each 𝑛 mode number: the twist-bending mode as the

owest frequency, the torsional mode as the middle frequency, and the transverse thickness shear mode as the highest frequency.
wist-bending modes are defined when 𝑛 ≥ 2 since there are no single wavelength bending modes for circular symmetric structures.
orsional modes and transverse thickness-shear modes are defined when 𝑛 ≥ 0.

. Development of the analogous electrical networks to the in-plane vibrations of a ring

.1. Finite difference scheme

A finite difference scheme is applied to the differential equations of motion to define a discrete model that will become the voltage
nd current equations of the electrical network. The choice in the discrete scheme is largely responsible for the simplification in
he realizable networks [40]. The finite difference scheme used by Darleux [28] is used in this case to discretize the continuous
quations for the curved beam.

.2. Analogous discrete equations

By applying the finite difference scheme to Eqs. (1), the discretized set of mechanical equations can be given as

−𝑚
2
𝜔2𝑉𝐿 = 𝑁𝐼 −𝑁𝐿 + 𝑎

2𝑅
𝑄𝐿,

−𝑚
2
𝜔2𝑉𝑅 = 𝑁𝑅 −𝑁𝐼 +

𝑎
2𝑅

𝑄𝑅,

−𝑚𝜔2𝑊𝐼 = 𝑄𝑅 −𝑄𝐿 − 𝑎
𝑅
𝑁𝐼 ,

− 𝐼
2
𝜔2𝜃𝐿 = 𝑎

2
𝑄𝐿 +𝑀𝐼 −𝑀𝐿,

− 𝐼
2
𝜔2𝜃𝑅 = 𝑎

2
𝑄𝑅 +𝑀𝑅 −𝑀𝐼 ,

𝑀𝜃𝐼 = 𝐾𝜃(𝜃𝑅 − 𝜃𝐿),

𝑁𝐼 = 𝐾𝑣

(

𝑉𝑅 − 𝑉𝐿 + 𝑎
𝑅
𝑊𝐼

)

,

𝑄𝑧𝐿 =
𝐾𝑤
2

(𝑊𝐼 −𝑊𝐿 − 𝑎
2𝑅

𝑉𝐿 − 𝑎
2
𝜃𝐿),

𝑄𝑧𝑅 =
𝐾𝑤
2

(𝑊𝑅 −𝑊𝐼 −
𝑎
2𝑅

𝑉𝑅 − 𝑎
2
𝜃𝑅),

(8)

where 𝑎 refers to the length of the unit cell in the finite difference scheme. The variables 𝑊 and 𝑉 are the frequency domain
counterparts of the time domain displacements 𝑤 and 𝑣, respectively. The mass 𝑚 replaces the term 𝜌𝐴𝑎, rotary inertia 𝐼 replaces
the term 𝜌𝐼𝑥𝑎, 𝐾𝑣 is the longitudinal stiffness replacing 𝐸𝐴∕𝑎, 𝐾𝜃 is the bending stiffness replacing 𝐸𝐼𝑥∕𝑎, and 𝐾𝑤 is the shear
stiffness replacing 𝑘𝐴𝐺∕𝑎.

Applying a direct electromechanical analogy to the equations of motion, which relates mass to inductance and the inverse of
stiffness to capacitance, the discretized set of analogous electrical equations can be given as

−𝐿
2
𝜔2𝑞𝑣𝐿 = 𝑉𝑣𝐿 − 𝑉𝑣𝐼 − �̂�

2�̂�
𝑉𝑤𝐿

,

−𝐿
2
𝜔2𝑞𝑣𝑅 = 𝑉𝑣𝐼 − 𝑉𝑣𝑅 − �̂�

2�̂�
𝑉𝑤𝑅

,

−𝐿𝜔2𝑞𝑤𝐼
= 𝑉𝑤𝐿

− 𝑉𝑤𝑅
− �̂�

�̂�
𝑉𝑣𝐼 ,

−
𝐿𝜃
2
𝜔2𝑞𝜃𝐿 = �̂�

2
𝑉𝑤𝐿

+ 𝑉𝜃𝐼 − 𝑉𝜃𝐿 ,

−
𝐿𝜃
2
𝜔2𝑞𝜃𝐿 = �̂�

2
𝑉𝑤𝑅

+ 𝑉𝜃𝑅 − 𝑉𝜃𝐼 ,

𝐶𝜃𝑉𝑤𝐼
= 𝑞𝜃𝐿 − 𝑞𝜃𝑅 ,

𝐶𝑣𝑉𝑣𝐼 = 𝑞𝑣𝐿 − 𝑞𝑣𝑅 − �̂�
�̂�
𝑞𝑤𝐼

,

𝐶𝑤𝑉𝑤𝐿
= 𝑞𝑤𝐼

− 𝑞𝑤𝐿
− �̂�

2�̂�
𝑞𝑣𝐿 − �̂�

2
𝑞𝜃𝐿 ,

𝐶𝑤𝑉𝑤𝑅
= 𝑞𝑤𝑅

− 𝑞𝑤𝐼
− �̂�

2�̂�
𝑞𝑣𝑅 − �̂�

2
𝑞𝜃𝑅 ,

(9)

where the inductance 𝐿 is the electrical analogue of the mass of the unit cell, the inductance 𝐿𝜃 is the electrical analogue of the
rotary inertia of the unit cell, the capacitance 𝐶𝜃 is the electrical analogue of the bending stiffness in the unit cell, 𝐶𝑣 is the electrical
5

analogue of the longitudinal stiffness in the unit cell, and 𝐶𝑤 is the electrical analogue of the shear stiffness in the unit cell.
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3.3. Spatial and frequency coherence conditions

To ensure that the electrical modes match the mechanical modes, spatial and frequency conditions must be met to determine
he appropriate electrical constants. Spatial coherence refers to the resemblance between the physical shapes of mechanical modes
nd their corresponding electrical modes. This requires sufficient discretization to accurately represent the desired mode shapes, as
ell as accounting for the appropriate mechanical boundary conditions in the electrical domain. Then, if there are insufficient unit

ells in the electrical network, the spatial modes may not show an accurate representation of the actual ring mode shape. Spatial
oherence can be assured by adhering to the criteria previously described in [27] as

𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑁𝑚𝑎𝑥

≥ 10, (10)

which says that the number of elements in the structure (𝑛𝑒𝑙𝑒𝑚𝑒𝑛𝑡) has to be ten times or greater than the maximum number of
avelengths (𝑁𝑚𝑎𝑥) in the frequency range.

In the present case, the structure is closed on itself, so there are no explicit boundary conditions that need to be defined. Frequency
oherence ensures that the natural frequencies of the electrical network matches the natural frequencies of the discretized model of
he mechanical ring which ensures similar wave propagation properties. Applying a strict electromechanical analogy between the
wo domains is not necessary or ideal as it constrains the degree of freedom in network tuning. Instead, the frequency coherence is
erived by equating the mechanical and electrical transfer matrices, as shown by Darleux [28] for curved beams. The mechanical
nd electrical transfer matrices are determined by solving Eqs. (8) and (9) for all terms on the right of the unit cell. With the
dditional terms for shear deformation and rotary inertia, the mechanical and electrical transfer matrices for the in-plane motions
an be defined by
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(11)

here 𝐓∗
𝐌,𝐈𝐏 is defined by Eq. (A.1) and the superscript, *, indicates nondimensionalized quantities. Then, equating each constant in

he mechanical transfer matrix to the equivalent constant in the electrical transfer matrix, the frequency coherence of the in-plane
ibration of a curved beam element, the conditions are given as

𝑎
𝑅

= �̂�
�̂�
,

𝐾𝜃
𝐼

= 1
𝐿𝜃𝐶𝜃

,

𝐾𝑣
𝑚

= 1
𝐿𝐶𝑣

,

𝐾𝑤
𝑚

= 1
𝐿𝐶𝑤

,

𝐾𝜃

𝑎2𝑚
= 1

�̂�2𝐿𝐶𝜃
. (12)

3.4. Network development and eigenvalue analysis

The discretized electrical equations are developed into the electrical network shown in Fig. 3. The single unit cell consists of 5
inductors, 4 capacitors, and 5 transformers; however, for simplification purposes, edge components may be combined [32] reducing
the count to 3 inductors, 3 capacitors, and 3 transformers. Consider a thick ring with an outer radius of 225 mm, inner radius of
175 mm, and depth of 40 mm. To verify the convergence of the network to this ring, an eigenvalue analysis is performed on an
electrical network consisting of 100 unit cells. The eigenvalues are shown in Table 1 with the corresponding finite element method
(FEM) ring natural frequencies for comparison. The FEM ring is adequately meshed to ensure convergence of the natural frequencies.
It can be observed for the inextensional bending modes that the error increases as the mode number increases, due to insufficient
discretization of the electrical network. For the extensional and thickness-shear modes, the error does not scale as consistently with
mode number due to more empirical constants used in the model.

4. Development of the analogous electrical networks to the out-of-plane vibrations of a ring

4.1. Analogous discrete equations

By applying a finite difference scheme to Eqs. (3) and (4), the discretized set of mechanical equations can be given as

−𝑚𝜔2𝑈𝐼 = 𝑄𝑥𝑅 −𝑄𝑥𝐿 ,

−
𝐼𝛼
2
𝜔2𝛼𝐿 = 𝑀𝛼𝐼 −𝑀𝛼𝐿 + 𝑎

2𝑅
𝑀𝛽𝐿 − 𝑎

2
𝑄𝑥𝐿 ,

−
𝐼𝛼
2
𝜔2𝛼𝑅 = 𝑀𝛼𝑅 −𝑀𝛼𝐼 + 𝑎

2𝑅
𝑀𝛽𝑅 − 𝑎

2
𝑄𝑥𝑅 ,

−𝐼𝛽𝜔2𝛽𝐼 = 𝑀𝛽𝑅 −𝑀𝛽𝐿 − 𝑎
𝑅
𝑀𝛼𝐼 ,

𝑀𝛼𝐼 = 𝐾𝛼

( 𝑎
𝑅
𝛽𝐼 − 𝛼𝑅 + 𝛼𝐿
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,
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( 𝑎
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,

𝑀𝛽𝑅 =
𝐾𝛽

2

( 𝑎
2𝑅

𝛼𝑅 + 𝛽𝑅 − 𝛽𝐼
)

,

𝑄𝐿 =
𝐾𝑢
2
(𝑈𝐼 − 𝑈𝐿 − 𝑎

2
𝛼𝐿),

𝑄 =
𝐾𝑢 (𝑈 − 𝑈 − 𝑎𝛼 ),

(13)
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Fig. 3. Electrical network analogous to in-plane vibrations of rings.

Table 1
Natural frequencies of the in-plane ring electrical network with
100 unit cells compared to analytical frequencies and FEM
frequencies. The percent error to the FEM frequencies for the
analytical and network values are in parentheses.

Mode FEM Analytical Network

Inextensional modes (Hz)

2 757.16 752.81 (0.57%) 744.73 (1.64%)
3 2049.49 2034.19 (0.75%) 2007.12 (2.07%)
4 3718.36 3684.27 (0.92%) 3628.85 (2.41%)
5 5654.23 5593.05 (1.08%) 5499.44 (2.74%)
6 7776.21 7679.95 (1.24%) 7536.87 (3.08%)

Extensional modes (Hz)

0 4064.40 4033.30 (0.77%) 4019.94 (1.09%)
1 5634.13 5628.75 (0.10%) 5669.68 (0.63%)
2 8834.67 8849.59 (0.17%) 8969.14 (1.52%)

Thickness-shear modes (Hz)

0 31 364 31524 (0.51%) 31258 (0.34%)
1 31 695 31878 (0.58%) 31599 (0.30%)
2 32 650 32903 (0.77%) 32582 (1.52%)

where 𝑚 represents the mass of the element and replaces the quantity 𝜌𝐴𝑎, 𝐼𝛼 represents the rotary inertia term, 𝐼𝛽 represents the
polar inertia term, 𝐾𝛼 is the transverse bending stiffness replacing 𝐸𝐼𝑧∕𝑎, 𝐾𝛽 is the torsional stiffness replacing 𝐺𝐽𝑠∕𝑎, and 𝐾𝑢 is
the shear stiffness replacing 𝑘𝐴𝐺∕𝑎.

Applying the direct electromechanical analogy to the discrete mechanical equations results in the following electrical equations
that describe out-of-plane ring vibrations:

−𝐿𝑢𝜔
2𝑞𝑢𝐼 = 𝑉𝑢𝐿 − 𝑉𝑢𝑅 ,

−
𝐿𝛼
2
𝜔2𝑞𝛼𝐿 = 𝑉𝛼𝐿 − 𝑉𝛼𝐼 − �̂�

2�̂�
𝑉𝛽𝐿 − �̂�

2
𝑉𝑢𝐿 ,

−
𝐿𝛼
2
𝜔2𝑞𝛼𝑅 = 𝑉𝛼𝐼 − 𝑉𝛼𝑅 − �̂�

2�̂�
𝑉𝛽𝑅 − �̂�

2
𝑉𝑢𝑅 ,

−𝐿𝛽𝜔
2𝑞𝛽𝐼 = 𝑉𝛽𝐿 − 𝑉𝛽𝑅 − �̂�

�̂�
𝑉𝛼𝐼 ,

𝐶𝛼𝑉𝛼𝐼 = − �̂�
�̂�
𝑞𝛽𝐼 − 𝑞𝛼𝑅 + 𝑞𝛼𝐿 ,

𝐶𝛽𝑉𝛽𝐿 = �̂�
2�̂�

𝑞𝛼𝐿 + 𝑞𝛽𝐼 − 𝑞𝛽𝐿 ,

𝐶𝛽𝑉𝛽𝑅 = �̂�
2�̂�

𝑞𝛼𝑅 + 𝑞𝛽𝑅 − 𝑞𝛽𝐼 ,

𝐶𝑢𝑉𝑢𝐿 = 𝑞𝑢𝐿 − 𝑞𝑢𝐼 − �̂�
2
𝑞𝛼𝐿 ,

𝐶𝑢𝑉𝑢𝑅 = 𝑞𝑢𝐼 − 𝑞𝑢𝑅 − �̂�
2
𝑞𝛼𝑅 ,

(14)

where the inductance 𝐿𝑢 is the electrical analogue of the mass of the unit cell, the inductance 𝐿𝛼 is the electrical analogue of the
rotary inertia of the unit cell, the inductance 𝐿𝛽 is the electrical analogue of the polar rotary inertia of the unit cell, the capacitance
𝐶𝛼 is the electrical analogue of the transverse bending stiffness in the unit cell, 𝐶𝛽 is the electrical analogue of the torsional stiffness
in the unit cell, and 𝐶 is the electrical analogue of the shear stiffness in the unit cell.
7
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Fig. 4. Electrical networks analogous to (a) out-of-plane vibrations of rings and (b) special case for torsional vibrations of rings.

4.2. Frequency coherence conditions

The mechanical and electrical transfer matrices for the out-of-plane motions can be defined by
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(15)

where 𝐓∗
𝐌,𝐎𝐏 is defined by Eq. (A.2).

By equating the terms in the mechanical transfer matrix and the electrical transfer matrix, the frequency coherence of the
out-of-plane vibration of a curved beam element, the conditions are given as

𝑎
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.
(16)

4.3. Network development and eigenvalue analysis

The discretized electrical equations are developed into the electrical network shown in Fig. 4(a) for the coupled twist-bending
modes. The single unit cell consists of 4 inductors, 5 capacitors, and 5 transformers. By combining edge components, the simplified
unit cell reduces to 3 inductors, 3 transformers, and 3 capacitors. It is also noted that for applications on purely torsional vibrations,
further simplifications may be applied. The isolated network that represents the torsional modes is shown in Fig. 4(b).

For the same thick ring, an eigenvalue analysis is performed on an electrical network consisting of 100 unit cells. The eigenvalues
are shown in Table 2. It is observed for the twist-bending modes that the percent error decreases up to the eighth mode, where
after, the error will begin to increase again. This is also documented in literature of out-of-plane dynamics of rings, and the effects
are emphasized for thicker cross sections and shorter radii [11]. This phenomenon can be attributed to the chosen dimensions of the
ring approaching the boundaries where the dynamics of annular plates [41] become more significant and non-negligible. Indeed, as
shown by Kirhope [10], using the annular plate equations to calculate the out-of-plane natural frequencies of thick rings resulted
in improved convergence. We can confirm that the natural frequencies of the network are closer to the natural frequencies of the
analytical model, which is based off ring dynamics, whereas the FEM frequencies take into account the effects of annular plates.
As a result, it will be necessary to numerically optimize some of the electrical parameters [29] in order to improve the frequency
coherence between network and structure.

5. Frequency response analysis of the coupled piezoelectric ring and electrical networks

5.1. Coupled system frequency response

The frequency response analysis of the coupled piezoelectric ring and electrical networks is simulated on the same ring of outer
radius 225 mm, inner radius 175 mm, and depth 40 mm. Mechanical damping is prescribed in the structural model as frequency
8
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Table 2
Natural frequencies of the out-of-plane ring electrical network
with 100 unit cells compared to analytical frequencies and FEM
frequencies. The percent error to the FEM frequencies for the
analytical and network values are in parentheses.

Mode FEM Analytical Network

Twist-bending modes (Hz)

2 583.10 603.93 (3.57%) 602.53 (3.33%)
3 1615.03 1658.48 (2.69%) 1652.60 (2.33%)
4 2989.74 3057.96 (2.28%) 3041.32 (1.73%)
5 4630.61 4725.65 (2.05%) 4688.75 (1.26%)
6 6474.23 6598.25 (1.92%) 6528.55 (0.84%)

Torsional modes (Hz)

0 2525.99 2528.51 (0.10%) 2534.15 (0.32%)
1 3387.57 3510.83 (3.64%) 3514.56 (3.75%)
2 5199.95 5512.53 (6.01%) 5512.17 (6.00%)

Thickness-shear modes (Hz)

0 38 745 39197 (1.17%) 39196 (1.16%)
1 38 910 39469 (1.44%) 39469 (1.44%)
2 39 349 40266 (2.33%) 40265 (2.33%)

Fig. 5. Thick ring with a set of 40 patches for controlling in-plane modes (placed on the external cylindrical surface of the ring) and a set of 40 patches for
controlling out-of-plane modes (placed on the top plane surface of the ring).

dependent isotropic loss factor following experimental data for 6061 aluminum [42]. The mesh size used in the finite element model
to ensure convergence of the natural frequencies is 6 mm, which is approximately 2% of the size of the shortest wavelength involved
in the study.

In the numerical simulation, we consider 40 unit cells for both the in-plane and out-of-plane modes. The out-of-plane electrical
network is coupled to the flat side of the ring using 40 PIC255 patches with dimensions of 20 mm by 40 mm, which serve as
the 𝐶𝛼 capacitance. The in-plane electrical network is coupled to the curved side of the ring using 40 piezoelectric patches with
dimensions 20 mm by 30 mm. These patches serve as the 𝐶𝜃 capacitance. With 40 patches, according to spatial coherence criteria
shown in Eq. (10), it should be possible to optimally tune to the fourth wavelength mode (third bending mode) for both in-plane
and out-of-plane vibrations. The 3D model of the piezoelectric ring is shown in Fig. 5. In all, the piezoelectric patches only add
approximately 2.25% additional mass to the structure.

The capacitance value of the piezoelectric patch was calculated by applying a 1 V frequency swept input voltage and integrating
the surface charge along the top surface of the patch for each set of patches controlling in-plane and out-of-plane modes. The
capacitance is equivalent to the value of surface charge due to the unit voltage input. Since the capacitance is frequency dependent,
an average value is taken in between resonances. Using these capacitance values, 𝐶𝜃 for in-plane and 𝐶𝛼 for out-of-plane, the
other electrical constants such as the inductance and the transformer ratios are derived from the frequency coherence conditions in
Eqs. (12) and (16).

To address the unaccounted dynamics of the annular plate in the model, we conducted supplementary numerical optimization,
where the objective function is specifically aimed at minimizing errors in the first three bending modes and the first torsional
mode. The 𝐿𝛽 and 𝐿𝑢 inductors of the out-of-plane network are adjusted in the optimization process. Compared to the initial values
derived from the frequency coherence conditions, the optimized 𝐿𝛽 inductor differs by 4.73% and the optimized 𝐿𝑢 inductor differs
by 4.58%.
9
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Table 3
Values of components used in the electrical unit cell.

Network type Component Value

In-plane Capacitor (𝐶𝜃) 11.45 nF
In-plane Capacitor (𝐶𝑣) 39.50 nF
In-plane Capacitor (𝐶𝑤) 41.00 nF
In-plane Inductor (𝐿) 0.972 mH
In-plane Inductor (𝐿𝜃) 1.758 mH
In-plane Resistor (𝑅𝐼𝑃 ) 70 Ω
In-plane Resistor (𝑅𝐸𝑥𝑡) 0.75 Ω
Out-of-plane Capacitor (𝐶𝛼) 15.15 nF
Out-of-plane Capacitor (𝐶𝛽 ) 7.917 nF
Out-of-plane Capacitor (𝐶𝑢) 21.00 nF
Out-of-plane Inductor (𝐿𝑢) 1.255 mH
Out-of-plane Inductor (𝐿𝛼) 1.312 mH
Out-of-plane Inductor (𝐿𝛽 ) 6.598 mH
Out-of-plane Resistor (𝑅𝑇𝐵) 46 Ω
Out-of-plane Resistor (𝑅𝑇 𝑜𝑟) 7 Ω
Both Transformer (�̂� ∶ �̂�) 0.1571
Both Transformer (�̂� ∶ 1) 4

The optimal resistance per unit cell can be calculated according to Porfiri [22] and Lossouarn et al. [43] for simply supported
eams following the formulation

𝑅 = 𝑘𝑐 �̂�
√

2𝐿∕𝐶. (17)

Although there are no analytical equations for the optimal resistances in circular rings, this formulation serves as a baseline
approximation for the optimal resistance in a unit cell where the inductance, capacitance, and transformer ratio are modified
depending on the specific network and mode to be damped. The resistor, 𝑅𝐼𝑃 , is placed in series with the �̂� ∶ 2 transformer in
he in-plane network. Using the coupling factor of the first in-plane bending mode, the optimal resistance can be calculated by

𝑅𝐼𝑃 = 𝑘𝑐,𝐼𝑃
�̂�
2

√

2𝐿
𝐶𝜃

. (18)

The resistor for damping extensional modes, 𝑅𝐸𝑥𝑡, is placed in series with the 𝐶𝑣 capacitor, and can be approximated by the
xpression

𝑅𝐸𝑥𝑡 = 𝑘𝑐,𝐼𝑃
�̂�
2

√

2𝐿
𝐶𝑣

. (19)

The resistor, 𝑅𝑇𝐵 , is placed in series with the �̂� ∶ 2 transformer in the out-of-plane network. Using the coupling factor of the first
out-of-plane twist-bending mode, the optimal resistance can be calculated by

𝑅𝑇𝐵 = 𝑘𝑐,𝑂𝑃
�̂�
2

√

2𝐿𝑢
𝐶𝛼

. (20)

The resistor, 𝑅𝑇 𝑜𝑟, is placed in series with the �̂� ∶ �̂� transformer in the out-of-plane network, which damps the torsional modes.
sing the coupling factor of the first out-of-plane torsional mode, the resistance can be approximated by

𝑅𝑇 𝑜𝑟 = 𝑘𝑐,𝑂𝑃
�̂�
�̂�

√

2𝐿𝛽

𝐶𝛽
. (21)

The values of the electrical components are shown in Table 3.
The comparison of the electrical eigenvalues to the mechanical eigenvalues of the ring is shown in Table 4. The mode types are

labeled as: out-of-plane coupled twist-bending modes (TB), in-plane inextensional bending modes (IB), out-of-plane torsional modes
(Tor), and one in-plane extensional mode (Ext). The number following each label corresponds to the number of wavelengths of that
mode.

The electromechanical coupling factors of the piezoelectric patches are calculated separately for each network. The coupling
factors for the patches controlling in-plane vibrations and patches controlling out-of-plane vibrations are given by

𝑘𝑐,𝐼𝑃 =

√

√

√

√

𝜔2
𝑂𝐶,𝐼𝑃 − 𝜔2

𝑆𝐶

𝜔2
𝑆𝐶

, 𝑘𝑐,𝑂𝑃 =

√

√

√

√

𝜔2
𝑂𝐶,𝑂𝑃 − 𝜔2

𝑆𝐶

𝜔2
𝑆𝐶

, (22)

respectively, where 𝜔𝑂𝐶,𝐼𝑃 is the open circuit frequency for the in-plane patches when the out-of-plane patches are shorted, 𝜔𝑂𝐶,𝑂𝑃 is
the open circuit frequency for the out-of-plane patches when the in-plane patches are shorted, and 𝜔𝑆𝐶 is the short circuit frequency
of the piezoelectric ring when the patches of both networks are shorted. The electromechanical coupling factors of the ring are
10
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Table 4
Natural frequencies of both in-plane and out-of-plane electrical
networks with 40 unit cells compared to the FEM natural
frequencies. The percent error to the FEM frequencies are in
parentheses.

Mode FEM (Hz) Network (Hz)

TB2 582.17 582.38 (0.04%)
IB2 756.10 755.65 (0.05%)
TB3 1610.54 1603.61 (0.43%)
IB3 2046.13 2041.24 (0.24%)
Tor0 2500.88 2500.51 (0.01%)
TB4 2979.30 2964.68 (0.49%)
Tor1 3356.93 3495.67 (4.13%)
IB4 3710.85 3693.43 (0.47%)
Ext0 4030.32 4034.68 (0.11%)

Table 5
Electromechanical coupling factors for the natural frequencies of
a thick ring. The values that are considered for the respective
networks are in bold.

Mode Coupling factors

In-plane 𝑘𝑐,𝐼𝑃 Out-of-plane 𝑘𝑐,𝑂𝑃

TB2 1.58% 5.69%
IB2 4.57% 2.99%
TB3 1.65% 6.00%
IB3 4.43% 2.88%
Tor0 1.83% 6.86%
TB4 1.64% 6.02%
Tor1 1.34% 5.18%
IB4 4.31% 2.74%
Ext0 2.62% 3.81%

Table 6
Effective electromechanical coupling factors for the natural fre-
quencies of a thick ring. The values that are considered for the
respective networks are in bold.

Mode Effective coupling factors

In-plane 𝑘𝑐,𝐼𝑃 Out-of-plane 𝑘𝑐,𝑂𝑃

TB2 0.30% 4.17%
IB2 4.16% 1.10%
TB3 0.23% 5.07%
IB3 4.06% 1.95%
Tor0 0.05% 5.14%
TB4 0.35% 5.19%
Tor1 0.23% 3.17%
IB4 3.97% 0.39%
Ext0 0.43% 3.29%

shown in Table 5. Note that each mode exists in pairs for circular structures, so for each mode of the same wavelength, there are
two separate but identical coupling factors.

With complex electrical network involving capacitors, the effective coupling factor is usually lower than what is calculated
rom Eq. (22). Following a method used by Lossouarn [43], we can calculate the effective coupling factors by computing two
haracteristic frequencies. The first frequency is determined by setting all the inductors in the network towards a very high
nductance. The second frequency is determined by setting all the inductors in the network towards 0 H. Then, we can proceed
ith the calculation of the effective coupling factors as the traditional method. The effective coupling factors are shown in Table 6.
oticeably, the coupling factors are lower than the ones shown in Table 5, especially the Ext0 mode. This phenomenon can be
xplained by the using capacitance 𝐶𝜃 as the piezoelectric element, which, in practice, do not influence the extensional modes as
trongly, as the direct analog to these modes lies in the capacitors 𝐶𝑣. Consequently, a single analogous network may not have the
apability to effectively address all different modes by utilizing the same coupling capacitance.

The frequency response of the coupled structure is shown in Fig. 6. We observe significant multimodal damping across the
requency spectrum for different types of modes. However, it is noted that for the extensional mode, the damping performance is
eak, which is attributed to poor coupling between the piezoelectric network and the structure, as shown in Table 6. We can see

hat Ext0 has higher coupling with the out-of-plane patches than the in-plane patches. In fact, the Ext0 mode is a type of breathing
ode of the ring, where there is elongation rather than bending in the structure.
11
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Fig. 6. Frequency response function of a thick ring with a set of 40 in-plane piezoelectric patches for damping in-plane modes and a set of 40 out-of-plane
piezoelectric patches for damping out-of-plane modes coupled to their respective analogous networks ( ) and the open-circuit response ( ). Four types of
modes are shown in this frequency response: Out-of-plane coupled twist-bending modes (TB), in-plane inextensional bending modes (IB), out-of-plane torsional
modes (Tor), and one in-plane extensional mode (Ext). The number following each label corresponds to the number of wavelengths of that mode.

Table 7
Summary of the total vibration damping of each mode and
associated effective coupling factor. Ext0* indicates the damping
of the extensional mode from the results in Fig. 8.

Mode Coupling Vibration
Type Factor Reduction (dB)

TB2 4.90% 23.53
IB2 4.08% 24.19
TB3 5.15% 30.85
IB3 3.96% 31.39
Tor0 5.88% 28.60
TB4 5.16% 32.61
Tor1 3.23% 20.15
IB4 3.92% 30.79
Ext0 0.10% 2.39
Ext0* 2.44% 23.49

The frequency response of the coupled system to the analogous torsional network shown in Fig. 4(b), is depicted in Fig. 7. The
torsional network offers a simplified solution to the complex topology of the complete out-of-plane ring network. As anticipated,
the network effectively attenuates the torsional modes within the structure. This selective damping is advantageous when it is only
necessary to minimize damping in torsional modes, thereby simplifying the electrical network.

If the objective is to dampen the extensional modes, it is advisable to switch to using the 𝐶𝑣 capacitor as the coupling element.
Recall that the 𝐶𝑣 capacitor is the electrical analogy to the extensional equations of the ring. We can recalculate the electrical
parameters of the network following the frequency coherence parameters in Eq. (12). The electrical parameters for the in-plane
network when coupled via the extensional 𝐶𝑣 capacitor are shown in Table 8. The effective coupling factor for this network
configuration is improved from 0.43% (𝐶𝜃 coupling) to 2.44% (𝐶𝑣 coupling). The frequency response in Fig. 8 shows that the
improved coupling leads to stronger damping effects. In Table 7, we observe a qualitative correlation between the coupling factor
and the total attenuation. Modes with higher coupling factors show higher attenuation. Notably, for extensional modes, we observe
improved coupling and vibration reduction when the in-plane network is coupled via the 𝐶𝑣 capacitor rather than the 𝐶𝜃 capacitor.

6. Conclusion

This study has addressed the limitations of previous electrical network for vibration attenuation in rings and has introduced an
enhanced approach capable of effectively damping vibrations in thick rings. By considering the influence of shear deformation and
rotary inertia for both in-plane and out-of-plane vibrations, the proposed networks offers a comprehensive solution for multimodal
vibration control in three-dimensional space. By coupling two separate analogous electrical networks derived from the respective
12
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Fig. 7. Frequency response function of a thick ring with a set of 40 out-of-plane piezoelectric patches coupled to the analogous torsional network ( ) and
the open-circuit response ( ).

Fig. 8. Frequency response function of a thick ring coupled via the 𝐶𝑣 capacitor to an analogous in-plane network ( ) showing improved damping of the
extensional mode, and the open-circuit response ( ).

Table 8
Values of components used in the electrical unit cell of the
in-plane network when coupled via the extensional 𝐶𝑣 capacitor.

Network Component Value

In-plane Capacitor (𝐶𝑣) 11.45 nF
In-plane Capacitor (𝐶𝜃) 3.405 nF
In-plane Capacitor (𝐶𝑤) 18.35 nF
In-plane Inductor (𝐿) 3.315 mH
In-plane Inductor (𝐿𝜃) 5.700 mH
In-plane Resistor (𝑅𝐼𝑃 ) 70 Ω
In-plane Resistor (𝑅𝐸𝑥𝑡) 70 Ω
In-plane Transformer (�̂� ∶ �̂�) 0.1571
In-plane Transformer (�̂� ∶ 1) 4
13
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equations of motion, the proposed method replicates the dynamic behavior of thick rings and successfully mitigates vibrations for
in-plane bending modes, out-of-plane twist-bending modes, and out-of-plane torsion. A simplified network has also been developed,
enabling the selective targeting of torsion modes as needed, and it has proven highly effective in damping these specific modes.
Furthermore, coupling the network to the structure via the 𝐶𝑣 capacitor has introduced a method to damp the extensional modes.

In the presented numerical example, a substantial reduction in vibration exceeding 20 dB was observed across the entire
pectrum, with the exception of the extensional mode where poor attenuation was attributed to suboptimal electromechanical
oupling via the 𝐶𝜃 capacitor. However, when coupled via the 𝐶𝑣 capacitor, the vibration reduction is significantly improved.
dditionally, while analogously replicating shear modes through the electrical network is conceivable, the current example did not
anifest this phenomenon due to coupling constraints and contextual relevance. It is noteworthy that the employed piezoelectric
atch and network configuration (𝐶𝜃 coupling) exhibited limited coupling with shear modes, which primarily occur at notably higher
requencies, rendering them less practically viable for vibration control within this specific study. Nonetheless, the results underscore
he potential feasibility of emulating these shear modes if deemed necessary for future applications. Following the same method as
amping extensional modes, it may be possible to damp the thickness-shear modes by coupling via the 𝐶𝑤 or 𝐶𝑢 capacitors.

Future research may focus on experimental validation of the proposed approach and further optimization to achieve even more
fficient vibration damping in thick rings. By converting the analogous network to a digital model following the framework set by
aze et al. [35] the need for bulky magnetic circuit components in complex topologies can be eliminated and it would be more
ractical to conduct experiments to validate these numerical findings. Ultimately, this study contributes to the development of robust
nd reliable methods for multimodal vibration control, enhancing the performance and durability of structures incorporating thick
ings.
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ppendix. Definition of transfer matrices

The mechanical transfer matrices are determined by solving the discrete mechanical equations for all of the terms on the right
f the unit cell. Solving the set of discrete equations shown in Eq. (8) to be in the form shown in Eq. (11), the mechanical transfer
atrix for the in-plane dynamics of a thick ring is given by

𝐓∗
𝐌,𝐈𝐏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴11 𝐴12 𝐴13 𝐴14
1
2

𝛿
2

0 𝐴22 0 − 1
2 1 0

−𝛿 − 𝛿
2 𝐴33 𝐴34 0 1

−𝛾 − 𝛾
2 − 𝛿𝛾

2 𝐴44 0 0
𝛾
2 𝐴52

𝛿𝛾
4 𝐴54 𝐴55 0

𝛿𝜉 𝛿𝜉
2 𝐴63 𝐴64 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.1)

where 𝐴11 = 1 − 2𝜒 − 𝛿2

2 , 𝐴12 = − 𝜇
4 − 𝛿2

4 − 𝜒 , 𝐴13 = 𝛿 − 𝛿3

4 − 𝛿𝜒 − 𝛿𝜉
4 , 𝐴14 = 4𝜒−4𝜒2−𝛿2𝜒−𝛿2𝜉

𝛾 − 1
4 , 𝐴22 = − 𝜇

2 − 1, 𝐴33 = 1 − 𝜉
2 − 𝛿2

2 ,

𝐴34 = − 2𝛿𝜒
𝛾 − 𝜉𝛿

2𝛾 , 𝐴44 = 1−2𝜒 , 𝐴52 =
𝜇2

4 + 𝛾
4 , 𝐴54 =

𝜇
4 +𝜒 −1, 𝐴55 = 1− 𝜇

2 , 𝐴63 =
𝛿2𝜉
2 − 𝜉, 𝐴64 = − 𝛿𝜉

𝛾 + 2𝛿𝜉𝜒
𝛾 . The constants are defined

as 𝛿 = 𝑎
𝑅 , 𝛾 = 𝑚𝑎2𝜔2

𝐾𝜃
, 𝜇 = 𝐼𝜔2

𝐾𝜃
, 𝜉 = 𝑚𝜔2

𝐾𝑣
and 𝜒 = 𝑚𝜔2

𝐾𝑤
.

Similarly, solving the set of discrete equations shown in Eq. (13) to be in the form shown in Eq. (15), the mechanical transfer
atrix for the out-of-plane dynamics of a thick ring is given by

𝐓∗
𝐌,𝐎𝐏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝐵11 𝐵12
𝛿
2 𝐵14 0 𝛿

0 𝛿2

2 𝛿 0 0 2𝛿

0 𝐵32 𝐵33 0 0 𝐵36

−𝛾 − 𝛾
2 0 𝐵44 0 0

− 𝛾
2 𝐵52 𝐵53 𝐵54 1 𝐵56

𝛿𝜉

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(A.2)
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where 𝐵11 = 1 − 2𝜒 , 𝐵12 = 1 − 𝜒 − 𝛿2

4 , 𝐵14 = 4𝜒
𝛾 − 4𝜒2

𝛾 , 𝐵32 = 𝛿3

4 − 𝛿 + 𝛿2

2 , 𝐵33 = 1 − 𝛿2

2 − 2𝜉, 𝐵36 = 4 − 4𝜉 − 𝛿2, 𝐵44 = 1 − 2𝜒 ,

𝐵52 = 𝜇 − 𝛾
4 − 𝛿2𝜁

4 − 𝛿2𝜇
4 , 𝐵53 =

𝛿𝜁
2 + 𝛿𝜇

2 , 𝐵54 = 1 − 𝜒 , 𝐵56 = 𝛿𝜁 + 𝛿𝜇 − 𝛿𝜁
𝜉 , 𝐵66 = 1 − 2𝜉. The constants are defined as 𝛿 = 𝑎

𝑅 , 𝛾 = 𝑚𝑎2𝜔2

𝐾𝛼
,

= 𝐼𝛼𝜔2

𝐾𝛼
𝜉 = 𝐼𝛽𝜔2

𝐾𝛽
, 𝜁 = 𝐼𝛽𝜔2

𝐾𝛼
and 𝜒 = 𝑚𝜔2

𝐾𝑢
. An electromechanical analogy is then used to convert mechanical terms into electrical

erms, and the various ratios can be identified and used as frequency coherence conditions.
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