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Abstract

Analogous electrical networks were previously derived from the

Euler–Bernoulli and Kirchhoff–Love theories to represent beams and plates,

respectively, for use in multimodal structural vibration damping. However,

these networks do not account for shear deformations or rotary inertia, which

can result in suboptimal vibration damping performance when used on moder-

ately thick beams and plates. In this paper, we investigate the incorporation of

shear deformation and rotary inertia using Timoshenko–Ehrenfest beam the-

ory and Mindlin–Reissner plate theory to develop improved electrical net-

works that can more accurately represent thick beams and plates. Our findings

suggest that the inclusion of shear deformation and rotary inertia can signifi-

cantly improve the frequency coherence of the electrical networks and multi-

modal vibration damping for thicker structures. The electrical analogs

presented here are of use for various applications, especially to conveniently

design complex circuit topologies in fields spanning from vibration attenuation

to energy harvesting.

KEYWORD S

electrical networks, electromechanical analogy, multimodal damping, piezoelectric
coupling, rotary inertia, shear deformation, vibration control

1 | INTRODUCTION

In the 1940s, MacNeal1 developed electrical networks that modeled mechanical structures using passive components.
These networks were initially used for computing structural responses in beams,2 plates,3 stiffened shells,4 and even
entire aerospace structures.5 The concept of using electrical circuits for vibration damping came later in the 1990s,
starting with the unimodal RL shunt proposed by Hagood and von Flotow.6 Hollkamp7 further expanded on this topic
by connecting multiple RL shunts in parallel, which provided a multimodal damping solution. The use of inter-
connected piezoelectric transducers to create electrical transmission lines was later developed by dell'Isola et al,8 which
demonstrated one of the first instances of multimodal electromechanical coupling using an electrical mesh that repre-
sents a modular truss beam. Later, analogous networks were developed specifically for vibration control, which had
demonstrated the most optimal electromechanical coupling effect for broadband damping.9,10

Received: 6 September 2023 Revised: 2 November 2023 Accepted: 20 November 2023

DOI: 10.1002/cta.3899

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2023 The Authors. International Journal of Circuit Theory and Applications published by John Wiley & Sons Ltd.

Int J Circ Theor Appl. 2024;52:2985–2998. wileyonlinelibrary.com/journal/cta 2985

https://orcid.org/0000-0002-2266-4786
https://orcid.org/0000-0001-7382-3137
https://orcid.org/0000-0003-0110-5376
mailto:boris.lossouarn@lecnam.net
https://doi.org/10.1002/cta.3899
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/cta
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcta.3899&domain=pdf&date_stamp=2023-12-27


Vibration damping through electrical analogs is an effective method for multimodal vibration control of structures.
In theory, the network is capable of reproducing the exact modal dynamics of the structures in both spatial and
frequency domains. This method of damping has been studied for 1-D longitudinal vibration in bars by Lossouarn.11

Porfiri12 derived the electrical analog for a Timoshenko beam but only demonstrated the piezoelectric vibration
damping using the simplified Euler–Bernoulli (E–B) analog network for single mode damping. The electrical analog of
a piezoelectric beam13 used in multimodal vibration damping was later developed followed by the electrical analog for
a piezoelectric plate.14 More recently, Darleux15 developed the analogous network for a curved beam. Presently, we
focus on improving the analogous networks for beams and plates, which were derived from the E–B beam theory and
Kirchhoff-Love plate theory, respectively.

The E–B beam model and the Timoshenko beam model are two widely used mathematical approaches that describe
beam deflection and stress distribution.16 The E–B beam model assumes slender beams with small deflections, neg-
lecting shear deformation and rotational inertia effects. In contrast, the Timoshenko beam model incorporates shear
deformation and rotational inertia, making it suitable for scenarios where these effects are significant. In practical
applications such as analyzing railway track vibrations, it has been shown that Timoshenko's beam model leads to
higher accuracy in the results for modeling moving loads.17

The Mindlin–Reissner (M–R) plate theory extends the principles of beam theory to two-dimensional plate struc-
tures.18 Similar to the Timoshenko beam model, the M–R plate theory accounts for the significant influence of shear
forces on plate behavior.

By developing electrical networks from the governing equations of Timoshenko's beam theory in Section 2, and M–
R's plate theory in Section 3, we can improve the convergence of natural frequencies of the previously derived electrical
analogs for beams and plates considered to be thick and short where classical beam and plate theory fails. Furthermore,
by using these analogous networks in piezoelectric damping, we can improve the broadband damping frequency
response of thick beams and plates.

In this study, we use numerical simulations to validate of the modifications to the original electrical networks13,14

and the improvements to the multimodal piezoelectric damping for thick structures. Previous research has extensively
employed both experimental and numerical approaches to validate the accuracy of the mathematical models, including
rods,19 beams,13 plates,20 and rings.21 These studies have consistently shown a strong correlation between the results
obtained from numerical simulations and experimental data, indicating the reliability and robustness of the numerical
modeling technique. Therefore, based on the established track record of previous studies, it is reasonable to assume that
the numerical simulations in this research will yield comparable results to those obtained through experimental investi-
gations. The utilization of numerical simulations allows for a cost-effective and efficient analysis, providing valuable
data and enabling comprehensive understanding of beam and plate responses.

2 | ANALOGOUS ELECTRICAL NETWORK DEVELOPED FROM
TIMOSHENKO–EHRENFEST (T–E) BEAM THEORY

2.1 | Equations of motion

The governing equations of motion for the transverse vibrations of a T–E beam of Young's Modulus E, Poisson ratio ν,
cross-sectional area A, and area moment of inertia Ix are given by

∂Q
∂x

¼ ρA
∂2w
∂t2

,

Qþ ∂M
∂x

¼ ρIx
∂2θ

∂t2
,

Q¼ kAGϕ,

M¼EIx
∂θ

∂x
,

ϕþθ¼ ∂w
∂x

ð1Þ

where w is the transverse deflection, Q is the transverse shear force, M is the bending moment, θ is the slope of the
deflection curve when the shear force is neglected, and ϕ is the angle of shear along the neutral axis at the same cross
section. The total deflection is the sum of both θ and ϕ. Note that when the angle of shear ϕ¼ 0, and the inertial term
Ix ¼ 0, we recover the equations of motion for the E–B beam. The shear modulus is given as G¼E=ð2ð1þνÞÞ. The con-
stant k is the Timoshenko shear coefficient that accounts for the non-uniform strain along the cross-section of the
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beam. This value is typically taken to be k¼ 5=6 for rectangular sections, but other more complex and detailed formula-
tions exist.22

Following the same finite difference scheme as previous electrical analog derivations,13 the discrete set of equations
can be written as

�mω2WI ¼QR�QL,

� I
2
ω2θL ¼ a

2
QLþMI �ML,

� I
2
ω2θR ¼ a

2
QRþMR�MI ,

MI ¼KθðθR�θLÞ,

QL ¼
Kw

2
WI �WL�a

2
θL

� �
,

QR ¼
Kw

2
WR�WI �a

2
θR

� �
,

ð2Þ

where a represents the length of the unit cell, m represents the mass of the element and replaces the quantity ρAa, I
represents the rotary inertia of the element and replaces the quantity ρIxa,Kw is the transverse shear stiffness replacing
kAG=a, and Kθ is the bending stiffness replacing EIx=a.

2.2 | Designing an analogous electrical network

A direct electromechanical analogy is applied to the discrete set of mechanical equations to convert force or moments
and velocities into voltages and currents, respectively. The analogy is summarized in Table 1. Applying the direct elec-
tromechanical analogy, the set of discrete electrical equations can be written as

�Lω2qwI
¼VwL �VwR ,

�Lθ

2
ω2qθL ¼� â

2
VwL þV θL �V θI ,

�Lθ
2
ω2qθR ¼� â

2
VwR þV θI �V θR ,

CθV θI ¼ qθL �qθR ,

Cw

2
VwL ¼ qwI

�qwL
� â
2
qθL

Cw

2
VwR ¼ qwR

�qwI
� â
2
qθR

ð3Þ

This set of discrete electrical equations describe the network, shown in Figure 1, that is analogous to the T–E beam.
Compared to the original E–B derived beam network,13 this network includes two additional capacitors Cw=2, which
account for the shear stiffness, and two inductors Lθ=2 which account for the rotary inertia of the beam.

When considering that this electrical unit cell is assembled in series to other unit cells, this network may be further
simplified by combining the edge transformers, Cw=2 capacitors, and Lθ=2 inductors, as depicted in Figure 2. For
instance, when examining successive unit cells where the Lθ=2 inductors are in shown to be in the same electrical line,
we note that they can be combined into a single Lθ inductor. It is only at the boundaries of the network where there
needs to be a single Lθ=2 inductor to ensure behavior of the circuit is equivalent to the discrete unit cell model shown
in Equation (3). The proposed modified unit cell has been shown to be an adequate solution in the network simplifica-
tions for thin rings21. The inductance value is doubled, the capacitance value is also doubled, and the transformer ratios
are thus combined to become â : 1. The simplified network is shown in Figure 3.

TABLE 1 Summary of the direct electromechanical analogies.

Mechanical variables Electrical variables

Force (F) or moment (M) Voltage (V )

Velocity ( _u) or ( _θ) Electrical current (i)

Displacement (u) or (θ) Electrical charge (q)

Compliance (1=Kθ) Capacitance (C)

Mass (m) or Inertia (I) Inductance (L)

Unit cell length (a) Transformer of ratio (â)

LUO ET AL. 2987
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FIGURE 2 Combining the edge electrical components of the unit cell to form a simplified network. The two transformers, two

capacitors, and two inductors ( ) are combined into a single transformer, capacitor and inductor.

FIGURE 1 Electrical unit cell of the Timoshenko–Ehrenfest Beam that considers shear deformation and rotary inertia.

FIGURE 3 Simplified electrical unit cell of the Timoshenko–Ehrenfest Beam that considers shear deformation and rotary inertia.
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2.3 | Frequency coherence conditions

Frequency coherence refers to the degree to which the frequencies of mechanical and electrical systems are related. In
an electrical network, the natural frequency is determined by the inductance and capacitance in the network. In a
mechanical structure, the natural frequency is determined by the mass and stiffness of the structure.

It is not necessary to apply a direct analogy as this does not leave any degree of freedom to optimize the passive
component values. Instead, the frequency coherence conditions between the mechanical structure and the electrical
network are determined by equating the transfer matrix of each domain to ensure similar dispersion relations.15 In the
mechanical domain, the variables are the displacements, moments, and forces, and in the electrical domain, the vari-
ables are currents and voltages. Using nondimensionalized displacements w ∗ ¼w=a, rotations θ ∗ ¼ θ, shear forces
Q ∗ ¼ aQ=Kθ, and bending moments M ∗ ¼M=Kθ, the relationships between the left hand terms and right hand terms
are given as

w
θ
M
Q

0
@

1
A

∗

R

¼T ∗
M

w
θ
M
Q

0
@

1
A

∗

L

,
qw
qθ
Vθ

Vw

0
@

1
A

∗

R

¼T ∗
E

qw
qθ
Vθ

Vw

0
@

1
A

∗

L

ð4Þ

where T ∗
M refers to the mechanical transfer matrix and T ∗

E refers to the electrical transfer matrix. Solving the set of dis-
crete equations in Equation (2), we determine the mechanical transfer matrix to be

T ∗
M ¼

1�ξ
μ

4
� ξ

2
�ξ2

γ
þ2ξ

γ
þ1
4

1
2

0
μ

2
�1

1
2

1

� γ

2
μ� γ

4
1� ξ

2
1

�γ
�γ

2
1� ξ 0

2
66666666664

3
77777777775

ð5Þ

where γ¼ma2ω2

Kθ
, μ¼ Iω2

Kθ
, and ξ¼mω2

Kw
. To ensure frequency coherence conditions, we can equate these ratios to the equiv-

alent electrical ratio using the direct electromechanical analogy resulting in the frequency coherence conditions

Kθ

I
¼ 1
LθCθ

,
Kθ

a2m
¼ 1

â2LCθ

,
Kw

m
¼ 1
LCw

: ð6Þ

with identical dispersion relation and analogous boundary conditions, we retrieve the same natural frequencies from
the structure as well as the network.

2.4 | Numerical evaluation of the electrical network

The deflections caused by shear are relatively small for long, slender beams, resulting in minimal differences in such
cases. However, if the beams are short and thick, the differences become more significant as shear deflections become
more critical. As a result, we consider a simply supported beam on two ends of length l¼ 500 mm, thickness of h¼ 50
mm, width of b¼ 17 mm, and thus, a cross-sectional area of A¼ 850 mm2. The aluminum beam has a Young's Modulus
of E¼ 69 GPa, Poisson's ratio of ν¼ 0:33, and density of ρ¼ 2700 kg/m3. The analytical natural frequencies, ωn for each
nth mode, of a T–E beam simply supported on both sides23 can be determined by solving the expression

ω4
n
ρr2

kG
�ω2

n 1þn2π2r2

l2
þn2π2r2

l2
E
kG

� �
þα2n2π2

l4
¼ 0, ð7Þ
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where α2 ¼ EIx
ρA , r

2 ¼ Ix
A, and the area moment of inertia for a rectangular cross-section is given by Ix ¼ 1

12bh
3. When

solved, the quadratic equation returns two values of ω2
n for each nth mode, the lower value corresponding to the bend-

ing mode, and the higher value corresponding to the shear deformation mode. It is noted that although the analogous
electrical network is capable of reproducing the shear deformation modes, these higher frequency modes fall out of the
scope of this paper and thus will not be covered in the analyses.

The simply supported boundary conditions are shown in Table 2 for the beam and its electrical equivalence. The Vw

ports remain open circuit while the V θ ports remain grounded for a simply supported beam.11 In COMSOL Multi-
physics, 100 unit cells of the analogous Timoshenko beam network are assembled to test the validity of the theory. The
natural frequencies of the electrical network are then compared with the natural frequencies of an equivalent finite ele-
ment beam model for a beam. In the finite element simulations, the mesh size used to ensure convergence of the natu-
ral frequencies is 5 mm, which is approximately 5% of the size of the shortest wavelength involved in the study. We
study four separate cases of the network frequencies compared with the FEM frequencies:

1. The natural frequencies of the E–B beam network.
2. The natural frequencies of the E–B beam network while only considering the addition of rotary inertia.
3. The natural frequencies of the E–B beam network while only considering the addition of shear deformation.
4. The natural frequencies of the T–E beam network which considers both rotary inertia and shear deformation.

The results of the study are shown in Table 3. For a thick beam, it is demonstrated that the E–B beam network is
inadequate in representing the natural frequencies, as the error increases with shorter wavelength modes. For lower
modes, the E–B theory serves as an adequate approximation.

In the present case, it is also apparent that the impact of the shear deformation on the natural frequencies is far
stronger than the impact of the rotary inertia. In the context of the electrical network, the shear deformation refers to
the Cw capacitors, and the rotary inertia refers to the Lθ inductors. In the case with only rotary inertia (Cw ¼ 0 F), there
is still a sizable error for the fifth bending mode. On the other hand, in the case with only shear deformation (Lθ ¼ 0 H),
the error for the fifth bending mode decreases significantly. Finally, considering both shear deformation and rotary
inertia in the analogous network, otherwise known as the T–E network, we can retrieve almost exactly the same eigen-
values as the FEM eigenvalues.

TABLE 2 Mechanical and electrical boundary conditions for a simply supported beam on both sides.

@x¼ 0 and @x¼Lx

Mechanical Electrical

Q, free Vw, free

M¼ 0 V θ ¼ 0

w¼ 0 qw ¼ 0

θ, free qθ, free

TABLE 3 Natural frequencies of the electrical network with 100 unit cells comparing: FEM frequencies, analytical frequencies, E–B
network frequencies, E–B network frequencies with rotary inertia only, E–B network frequencies with shear deformation only, and T–E
network frequencies considering both shear deformation and rotary inertia.

FEM Analytical E–B network Rotary inertia Shear deformation T–E network

450.77 Hz 450.80 Hz (0.07%) 458.46 Hz (1.65%) 456.55 Hz (1.28%) 452.53 Hz (0.39%) 451.04 Hz (0.06%)

1721.9 Hz 1721.4 Hz (0.03%) 1833.8 Hz (6.33%) 1803.8 Hz (4.82%) 1744.0 Hz (1.34%) 1724.7 Hz (0.22%)

3621.0 Hz 3623.3 Hz (0.06%) 4126.1 Hz (13.4%) 3978.6 Hz (9.88%) 3708.5 Hz (2.42%) 3637.2 Hz (0.45%)

5952.7 Hz 5959.3 Hz (0.11%) 7335.3 Hz (22.4%) 6887.2 Hz (15.70%) 6148.8 Hz (3.29%) 5994.5 Hz (0.70%)

8561.4 Hz 8575.4 Hz (0.16%) 11461.5 Hz (32.6%) 10419.0 Hz (21.70%) 8891.1 Hz (3.85%) 8643.9 Hz (0.96%)

Note: The percent error to the FEM natural frequencies are in parentheses.

2990 LUO ET AL.
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2.5 | Piezoelectric vibration damping

We consider a 30-unit cell network coupled to the beam to ensure spatial coherence as well as adequate tuning up to
the third mode.19 The simulation setup is shown in Figure 4. The piezoelectric transducers used are PIC255 square pat-
ches with a side length of 15 mm and a thickness of 0.5 mm. The piezoelectric patches replace the Cθ capacitors in the
electrical network. The material properties of PIC255 are shown in Table 4. By integrating the surface charge across a
piezoelectric patch from a 1V input voltage, it was determined that the patch capacitance is approximately 4.5 nF. The
analogous mass inductor, rotary inertia inductors, and shear capacitors are then determined by the frequency coher-
ence conditions outlined in Equation (6). The optimal resistor placement in series with the transformer, as shown in
Figure 5, was derived by Porfiri for simply supported beams12 and is given by the equation

FIGURE 4 Numerical setup of the coupled beam-network. The beam is simply supported on both ends, and the xy-plane of the beam is

coupled to the electrical network by 30 piezoelectric patches. A drive point measurement, where the measurement and excitation point

coincide, is taken for the frequency response.

TABLE 4 Summary of the material properties for the piezoelectric material PIC255.

Compliance (m2/N) Charge constants (m/V)

SE11 1:606�10�11 d31 �1:867�10�10

SE12 �5:685�10�12 d33 3:996�10�10

SE13 �7:454�10�12 d15 6:174�10�10

SE33 1:909�10�11

SE44 4:699�10�11

SE55 4:699�10�11

SE66 5:350�10�11

Relative permittivity Density (kg/m3)

ϵσ11=ϵ0 1852 ρp 7800

ϵσ22=ϵ0 1852

ϵσ33=ϵ0 1751

FIGURE 5 Model of the resistor placement in series with the transformer.

LUO ET AL. 2991
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RT ¼ kCâ

ffiffiffiffiffiffi
2L
Cθ

r
ð8Þ

where L denotes the inductor that is analogous to the mass term, and Cθ refers to the capacitor analogous to the bend-

ing stiffness. The coupling factor is given by kC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
OC�ω2

SC

� �
=ω2

SC

q
, where ω2

OC refers to the open circuit natural fre-

quency and ω2
OC refers to the short circuit natural frequency.

The acceleration frequency response of the coupled system subjected to unit force at position x¼ 330 mm is shown
in Figure 6. The beam coupled to the T–E network demonstrates adequate tuning with broadband damping across all
three modes, whereas coupled to the E–B network, the damping effects are diminished due to poor frequency coher-
ence in the network.

We can conclude that for thick beams, the E–B network is inadequate in optimally attenuating vibrations. Using
the T–E network instead results in improved frequency coherence between the electrical and mechanical domains,
which subsequently improve the broadband damping of the system. Although there is no consensus on what constitutes
a thick beam and thus when to use the T–E network over the E–B network, we can usually switch when the error of
the natural frequencies between the mechanical and electrical domains exceed tolerated values.

3 | ANALOGOUS ELECTRICAL NETWORK DEVELOPED FROM M–R PLATE
THEORY

3.1 | Equations of motion

M–R extended T–E's beam theory to derive the equations of motions for plates considering shear deformation and
rotary inertia. The governing equation of motion for the transverse vibrations of a M–R plate of Young's Modulus E,
density ρ, Poisson's ratio ν, side length a, and thickness h is given in terms of the intermediate force and moment quan-
tities by

∂Qx

∂x
þ ∂Qy

∂y
¼ ρh

∂2w
∂t2

,

Qxþ
∂M
∂x

¼ ρIx
∂2θx
∂t2

,

Qyþ
∂M
∂y

¼ ρIy
∂2θy
∂t2

,

M¼D
∂θx
∂x

þ ∂θy
∂y

� �
,

Qx ¼ kGhϕx ,

Qy ¼ kGhϕy,

ϕx þθx ¼ ∂w
∂x

,

ϕyþθy ¼ ∂w
∂y

,

ð9Þ

FIGURE 6 Frequency responses of the beam in open circuit configuration ( ), coupled to the Timoshenko–Ehrenfest (T–E) network
( ), and coupled to the Euler–Bernoulli (E–B) network ( ). The E–B network adequately damps the first mode; however, the vibration

mitigation worsens at higher modes due to poor frequency coherence. The T–E network is able to maintain adequate damping for the first

three modes.
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where w is the transverse deflection, Ix is the second moment of area along the x axis, Iy is the second moment of area
along the y axis, and the bending stiffness is given by D¼Eh3=ð12ð1�ν2ÞÞ. Qx is the transverse shear force in the x
direction, Qy is the transverse shear force in the x direction, and M is the linear combination of the bending moment in
both x and y directions, as formulated by Lossouarn.14 The slopes of the deflection curves when shear forces are
neglected in the x direction and y direction are given, respectively, as θx and θy. The angles of shear along the neutral
axis in the x direction and y direction are given, respectively, as ϕx and ϕy. The total deflection in each direction is the
sum of both θ and ϕ. Like the T–E beam theory, when both angle of shear ϕx ¼ϕy ¼ 0, and the inertial terms Ix=Iy=0,
we recover the equations of motion for the Kirchoff–Love plate. The shear modulus is given as G¼E=ð2ð1þνÞÞ. The
constant k is a shear correction factor similar to the Timoshenko shear coefficient in Equation (1). Mindlin chose to use
the value k¼ π2=12, whereas Reissner used the value k¼ 5=6. To simplify the problem, we assume that the plate is uni-
form in thickness and that the unit cells are square. Thus, the rotary inertia in both x and y directions, Ix and Iy, are
equivalent and are replaced by the term I.

Substituting the intermediary forces, moments, and displacements into the equilibrium equations yield the equa-
tions of motions

kGhðr2w�ΘÞ¼ ρh
∂2w
∂t2

, ð10aÞ

kGh
∂w
∂x

�θx

� �
þD

∂2θx
∂x2

þ ∂2θy
∂x∂y

� �
¼ ρI

∂2θx
∂t2

, ð10bÞ

kGh
∂w
∂y

�θy

� �
þD

∂2θy
∂y2

þ ∂2θx
∂y∂x

� �
¼ ρI

∂2θy
∂t2

, ð10cÞ

where r2 ¼ ∂2=∂x2þ ∂2=∂y2 is the Laplacian operator and Θ¼ ∂θx=∂xþ ∂θy=∂y. We can eliminate θx and θy by differ-
entiating Equations (10b) and (10c) with respect to x and y, respectively, and summing them to obtain the equation

Dr2ΘþkGhðr2w�ΘÞ¼ ρI
∂2Θ
∂t2

: ð11Þ

Finally, substituting Equation (10a) into (11), we can eliminate Θ and write the single equation of motion in terms
of w, given by

r2� ρ

kG
∂2

∂t2

� �
Dr2�ρI

∂2

∂t2

� �
wþρh

∂2w
∂t2

¼ 0, ð12Þ

which confirms the equivalence of the M–R plate equations18 to Equation (9) which involves the moment variable M.
Using a 2-D finite difference method,14 the continuous equations of motions in Equation (9) can be rewritten as a

set of discrete equations given by

�QL�QBþQT þQR ¼�ω2mWI ,

�MLþMI þa
2
QL ¼�ω2mθ

2
θL,

�MI þMRþa
2
QR ¼�ω2mθ

2
θR,

�MBþMI þa
2
QB ¼�ω2mθ

2
θB,

�MI þMT þa
2
QT ¼�ω2mθ

2
θT ,

MI ¼KθðθR�θLþθT �θLÞ,

QL ¼
Kw

2
WI �WL�a

2
θL

� �
,

QR ¼
Kw

2
WR�WI �a

2
θR

� �
,

QB ¼
Kw

2
WI �WB�a

2
θB

� �
,

QT ¼
Kw

2
WT �WI �a

2
θT

� �
,

ð13Þ

LUO ET AL. 2993

 1097007x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cta.3899 by C

ochrane France, W
iley O

nline L
ibrary on [22/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



where m¼ ρha and mθ ¼ ρIa represent the mass and inertia of the plate element. The second moment of area for a rect-
angular cross-section per unit cell is given by I ¼ 1

12ah
3. The bending stiffness is represented by Kθ ¼D, and the shear

stiffness is represented by Kw ¼ kGh. In each unit cell, the subscript variables T,L,B,R, I represent the top, left, bottom,
right, and center of the cell, respectively.

3.2 | Designing an analogous electrical network

Using the same direct electromechanical analogy from the previous section, the discrete set of mechanical equations
can be converted into voltages and currents and are written as

VwL �VwR þVwB �VwT ¼�ω2LqwI
,

V θL �V θI �
a
2
VwL ¼�ω2Lθ

2
qθL ,

V θI �V θR �
a
2
VwR ¼�ω2Lθ

2
qθR ,

V θB �V θI �
a
2
VwB ¼�ω2Lθ

2
qθB ,

V θI �V θT �
a
2
VwT ¼�ω2Lθ

2
qθT ,

CθV θI ¼ qθL �qθR þqθB �qθT ,

Cw

2
VwL ¼ qWI

�qWL
�a
2
qθL ,

Cw

2
VwR ¼ qWR

�qWI
�a
2
qθR ,

Cw

2
VwB ¼ qWI

�qWB
�a
2
qθB ,

Cw

2
VwT ¼ qWT

�qWI
�a
2
qθT :

ð14Þ

The electrical network that corresponds to these discrete electrical equations is shown in Figure 7. Compared with
the plate unit cell network derived from Kirchhoff–Love theory, the M–R network consists of four additional capacitors
Cw=2 that account for the shear stiffness and four additional inductors Lθ=2 that account for the rotary inertia.

Like the beam network, the plate network may be simplified by combining the edge components. The four edge
transformers with ratios of â : 2 become two transformers of ratio â : 1, the four shear stiffness capacitors Cw=2 become
Cw, and the four rotary inertia inductors Lθ=2 become two inductors of value Lθ. The simplified network is shown in
Figure 8.

Since the equations for the M–R plate are essentially an extension of the T–E beam in two dimensions coupled by
the 1:1 transformer, we can utilize the same frequency coherence conditions.

3.3 | Numerical evaluation of the electrical network

Consider a simply supported rectangular plate on all four sides, with the x side length lx ¼ 400 mm, y side length ly ¼
320 mm, and a thickness of h¼ 50 mm. The aluminum plate has a Young's modulus of E¼ 69 GPa, Poisson's ratio of
ν¼ 0.33, and density of ρ¼ 2700 kg/m3. The analytical natural frequencies, ωn for each (m, n)th mode, of a M–R plate
simply supported on all sides23 can be determined by solving the expression

�m2π2

l2x
�n2π2

l2y
þρω2

mn

kG

 !
�D

m2π2

l2x
þn2π2

l2y

 !
þρh3ω2

mn

12

 !
�ρhω2

mn ¼ 0: ð15Þ

As in the case with the equation for the natural frequencies of the Timoshenko beam, this quadratic equation
returns a lower bending frequency and a higher shear frequency for each (m, n)th mode.

The simply supported boundary conditions are shown in Table 5 for the plate and its electrical equivalence. The
numerical setup is shown in Figure 9. In the numerical model, 20 by 16 unit cells of the analogous plate network are
assembled to test the validity of the theory. In comparison, the natural frequencies of an equivalent finite element plate
are calculated. In the finite element simulations of the plate, the mesh size used to ensure convergence of the natural
frequencies is 6.5 mm, which is approximately 5% of the size of the shortest wavelength involved in the study. We study
four separate cases of the network frequencies compared to the FEM plate frequencies:

2994 LUO ET AL.
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1. The natural frequencies of the Kirchoff–Love (K–L) plate network.
2. The natural frequencies of the K–L plate network while only considering the addition of rotary inertia.
3. The natural frequencies of the K–L plate network while only considering the addition of shear deformation.
4. The natural frequencies of the M–R plate network which considers both rotary inertia and shear deformation.

The results of the study are shown in Table 6. Similar to the previous case for the thick beam, for a thick plate, it is
demonstrated that the K–L plate network is inadequate in representing the natural frequencies, as the error increases
with higher wavelength modes. For lower modes, the K–L theory serves as an adequate approximation.

Similar to the case with the beam, the impact of the shear deformation on the natural frequencies is far stronger
than the impact of the rotary inertia for plates. In the case with only rotary inertia (Cw ¼ 0 F), there is still a sizable
error for the fifth bending mode. On the other hand, in the case with only shear deformation (Lθ ¼ 0 H) for plates, the

FIGURE 7 Electrical unit cell of the Mindlin–Reissner plate that considers shear deformation and rotary inertia.

FIGURE 8 Simplified electrical unit cell of the Mindlin–Reissner plate that considers shear deformation and rotary inertia.

LUO ET AL. 2995
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error is significantly lower, even comparable with the M–R network results. Finally, when considering both the effects
of shear deformation and rotary inertia in the analogous network, otherwise known as the M–R network, we can
recover almost exactly the same eigenvalues as the FEM eigenvalues with errors around 1%.

3.4 | Piezoelectric vibration damping

We consider a 15 by 12 unit cell network coupled to a thick plate simply supported on all four sides for a study on the
effects of the improved network on multimodal piezoelectric damping. The piezoelectric transducers used are PIC255
square patches with a side length of 25 mm and a thickness of 0.5 mm. The patch capacitance is approximately 11.88
nF. Following the same procedure as for the beam, the analogous mass inductor, rotary inductors, and shear capacitors
are then determined by the frequency coherence conditions outlined in Equation (6).

TABLE 5 Mechanical and electrical boundary conditions for a simply supported plate.

@x¼ 0, x¼Lx , y¼ 0, y¼Ly

Mechanical Electrical

Q, free Vw, free

M¼ 0 V θ ¼ 0

w¼ 0 qw ¼ 0

θ, free qθ, free

FIGURE 9 Numerical setup of the coupled plate-network. The plate is simply supported on all four sides, and the xy-plane of the plate

is coupled to the electrical network by an array of 15�12 piezoelectric patches. A drive point measurement, where the measurement and

excitation point coincide, is taken for the frequency response.

TABLE 6 Natural frequencies of the electrical network with 20 by 16 unit cells comparing: FEM frequencies, analytical frequencies, K–
L network frequencies, K–L network frequencies with rotary inertia only, K–L network frequencies with shear deformation only, and M–R
network frequencies considering both shear deformation and rotary inertia.

FEM Analytical K–L network Rotary inertia Shear deformation M–R network

1820.43 Hz 1815.29 Hz (0.28%) 1939.21 Hz (6.52%) 1938.56 Hz (6.49%) 1834.31 Hz (0.76%) 1833.83 Hz (0.74%)

3703.19 Hz 3682.95 Hz (0.54%) 4192.53 Hz (13.21%) 4189.48 Hz (13.13%) 3743.38 Hz (1.09%) 3741.69 Hz (1.04%)

4672.57 Hz 4641.87 Hz (0.66%) 5439.52 Hz (16.41%) 5434.51 Hz (16.31%) 4716.71 Hz (0.94%) 4714.26 Hz (0.89%)

6272.83 Hz 6219.98 Hz (0.84%) 7692.82 Hz (22.64%) 7682.76 Hz (22.48%) 6352.12 Hz (1.26%) 6348.27 Hz (1.20%)

6433.80 Hz 6376.31 Hz (0.89%) 7886.22 Hz (22.57%) 7875.65 Hz (22.41%) 6485.93 Hz (0.81%) 6481.96 Hz (0.75%)

Note: The percent error to the FEM plate frequencies are in parentheses.
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The plate is excited and measured at the drive point as shown in Figure 9. The measured frequency response func-
tion using both the original network and the enhanced network are shown in Figure 10. The frequency response utiliz-
ing the enhanced electrical network shows stronger broadband damping than the original network. Although the
original network still achieves vibration damping for the three modes shown, the vibration mitigation is lower.
The enhanced network is able to create the broadband damping due to the improved frequency coherence.

4 | CONCLUSION

This study addresses the limitations of existing electrical networks derived from E–B and Kirchhoff–Love theories,
which fail to account for shear deformations in thick beams and plates. By incorporating T–E beam theory and M–R
plate theory, this study aimed to develop enhanced electrical networks capable of accurately representing such struc-
tures. The findings of this investigation demonstrated that the inclusion of shear deformation and rotary inertia resulted
in significant improvements in frequency coherence and multimodal vibration damping for thicker structures.

The results of this study provide a more comprehensive and accurate representation of the behavior of thick beams
and plates. The improved electrical networks derived from the incorporation of shear deformation can enable more
effective vibration damping strategies in practical applications. These findings highlight the significance of considering
shear deformations when designing damping systems for thick structural elements.

Using numerical simulations, we verified the improvements in the broadband frequency response for thick beams
and plates using the enhanced networks that consider shear deformation and rotary inertia. For both structures,
although it was shown that the added effect of shear deformation has a more drastic effect on improving the frequency
coherence of the network, considering both rotary inertia and shear deformation effects leads to the best
frequency coherence with less than 1% error. These may be practical considerations when building the electrical net-
works. Depending on the application, it may be possible to exclude the rotary inertia if the error is acceptable.

In the frequency response for both structures, we observe that the original electrical networks (E–B and K–L) still
provide adequate piezoelectric damping for the first mode, but the vibration mitigation deteriorates for successive
modes. On the other hand, the enhanced electrical networks (T–B and M–R) are able to provide adequate damping for
multiple modes. These findings highlight the significance of considering shear deformations and rotary inertia when
designing analogous electrical network damping systems for thick structural elements.
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FIGURE 10 Frequency responses of the plate in open circuit configuration ( ), coupled to the Mindlin–Reissner (M–R) network
( ), and coupled to the K–L network ( ). The vibration mitigation using the K–L network is deteriorated due to the poor frequency

coherence; however, the T–E network is able to increase piezoelectric damping.
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