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Calibration of multiple shunted piezoelectric transducers
with correction for residual modes and shunt interactions

Jens D. Richardt1, Boris Lossouarn2, Jan Høgsberg1 and Jean-François Deü2

Abstract

Piezoelectric shunt damping can be used for efficient vibration mitigation of a single or multiple vibration modes of

a structure. Several analytical tuning expressions have been derived for numerous circuit topologies for a single

shunt. However, when multiple shunted piezoelectric transducers are attached to a flexible structure, their individual

interactions alongside the spillover from residual modes affect the calibration accuracy. In this paper, explicit correction

terms that represent these effects are presented for multiple shunted piezoelectric transducers targeting a single

vibration mode. The correction terms are obtained from the evaluation of effective electromechanical coupling factors,

while proper balancing between shunts follows from an assumed proportionality between shunt forces. The proposed

correction method is applicable to general shunt architectures, for which tuning is available when targeting a single-

degree-of-freedom structure. Its ability to regain nearby optimal damping properties is illustrated numerically for the

classic series RL shunt.

Keywords

Piezoelectric shunt damping, resonant shunt calibration, residual mode correction, effective electromechanical coupling
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1 Introduction

Piezoelectric materials shunted with electrical circuits have
been considered extensively for vibration control of flexible
structures since the early work by Forward (1979), and
Hagood and Von Flotow (1991). Several electrical circuits
have been proposed for vibration control of one or multiple
vibration modes. One simple circuit often used for single-
mode vibration control is the so-called resonant (RL) shunt,
where an inductance L is placed in series or parallel with
a resistance R. This creates an electrical resonance that
enables improved damping when tuned accurately to the
natural frequency of a structure’s most critical vibration
mode (Hagood and Von Flotow 1991; Thomas et al. 2012).

Several calibration expressions have been derived for the
calibration of the electrical components based on different
objectives. For example, for the parallel and series RL shunt,
explicit calibration methods are given by e.g. Hagood and
Von Flotow (1991), Wu (1996), Caruso (2001), Høgsberg
and Krenk (2012), Yamada et al. (2010), Thomas et al.
(2012), Soltani et al. (2014), Soltani et al. (2017), and
Ikegame et al. (2019). The majority of the presented
calibration methods are derived for a single shunt in a
lumped two-dof model, which couples the single RL shunt
resonance with the structures’ dominant vibration mode.

However, as shown by Gardonio and Casagrande (2017)
for a single piezoelectric shunt on a two-dimensional plate,
accurate shunt calibration must account for the influence of
residual modes. In the last decade, several methods have
been proposed to correct the influence of residual modes
for calibration of a single resonant vibration absorber. A
quasi-static correction for the influence of residual modes
by a supplemental flexibility term is introduced in Krenk
and Høgsberg (2014) for mechanical vibration absorbers and
extended to piezoelectric vibration absorbers by Høgsberg
and Krenk (2015). A similar correction for the influence
of higher modes on piezoelectric vibration absorbers is
proposed in Berardengo et al. (2016b) by a correction of
the inherent capacitance. A more general correction for
residual modes by a quasi-dynamic correction with inertia
and flexibility terms is presented for mechanical vibration
absorbers in Krenk and Høgsberg (2016) and for resonant
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piezoelectric shunts in Høgsberg and Krenk (2017). Toftekær
et al. (2018) has recently shown, that residual-mode effects
can almost exactly be accounted for by simply using the
effective electromechanical coupling factor (EEMCF) in
piezoelectric shunt tuning.

Besides being affected by residual modes, the tuning of
multiple shunts is also affected by the interaction between
shunts. However, there is limited literature on how this
interaction affects the shunt calibration. Recently, Toftekær
and Høgsberg (2020) considered the calibration of multiple
RL shunts, where a modal capacitance for each shunt, in
combination with an assumed voltage ratio between the
shunts, encapsulates the influence from both residual modes
and shunt interactions. The presented modal capacitance
deliberately ignores any coupling effects of the shunts by
residual modes, which leads to simple calibration terms.
Trindade et al. (2021) compared parametric uncertainties of
multiple decentralized RL shunts and multiple piezoelectric
patches connected to an electrical network targeting a
single mode. A uniform calibration method for multiple
decentralized shunts and multiple piezoelectric patches
connected to a network has been considered by Raze
et al. (2022) with residual modes included by a modal
electromechanical coupling factor. Furthermore, calibration
of multiple shunts targeting a single mode has been
addressed for periodic structures and metamaterials in e.g.
Thorp et al. (2001), Casadei et al. (2009), Lossouarn et al.
(2015), and Airoldi and Ruzzene (2011).

The present paper derives explicit correction terms
that consistently include the influence from both residual
modes and shunt interaction in the tuning of multiple
shunted piezoelectric transducers. The correction terms are
applicable for any shunt circuit targeting a single vibration
mode. The presented work is a comprehensive extension of
the conference paper by Richardt et al. (2023).

Optimal vibration mitigation can be realized for multiple
shunted piezoelectric transducers targeting a single vibration
mode by distributing the shunt resonances individually
around the targeted frequency, as shown for multiple tuned
mass dampers by Abé and Fujino (1994), Igusa and Xu
(1994) and Yang et al. (2022). However, this tuning principle
relies on numerical and thus non-explicit optimization. In
this paper, an alternative balancing of the shunts is therefore
applied. The interaction between shunts is represented by
a force ratio associated with the limiting case of all shunts
in open-circuit (OC) conditions. This force proportionality
allows for explicit correction terms and corresponds to
all shunts operating in phase for uni-modal excitation, a
desired property derived by Main and Krenk (2005) for

multiple viscous dampers and applied to multiple tuned
mass dampers in Hoffmeyer and Høgsberg (2020) by scaling
of the absorber mass. A similar concept has been applied
for resonant piezoelectric shunts by Toftekær and Høgsberg
(2020), where the interaction between the shunts is only
included for the targeted vibration mode to be damped.
The main novelty of the present paper is the inclusion of
shunt interaction, both for the target mode as well as for the
residual modes, while allowing for free sizing of the shunts’
inherent capacitance.

The structure of the paper is as follows: Section 2
describes the mechanical and electrical models with respect
to a modal expansion with all shunts in short-circuit (SC)
conditions, while in Section 3, the effects of residual
modes are accounted for by the evaluation of EEMCFs.
Then, the interaction between multiple shunts targeting a
single vibration mode is included in Section 4, resulting in
the formulation of explicit correction terms. A numerical
example in Section 5 demonstrates the accuracy of the
proposed correction method for the series RL-shunt, chosen
due to its wide use and large sensitivity to even small
perturbations in the electrical parameters (Gripp and Rade
2018; Andreaus and Porfiri 2007; Wu 1996; Berardengo
et al. 2016a; Trindade et al. 2021). Finally, conclusions are
presented in Section 6.

2 Multiple shunts targeting a single mode

Piezoelectric shunts can be tuned to target a single frequency.
This section derives the governing equations and expressions
for the mechanical structure, the electrical shunt and the
electromechanical coupling for multiple piezoelectric shunts
targeting the same frequency.

2.1 Governing equations

Consider a discretized model of a flexible structure, with
N degrees of freedom and P piezoelectric shunts attached.
Figure 1 shows the free-free rod with P = 20 piezoelectric
shunts used as a numerical example in Section 5. The P

piezoelectric transducers are each shunted to a decentralized
electrical circuit, with the charge Qp and the voltage Vp

across the electrodes of the p’th shunt. A modal expansion
is introduced for the discretized model with all shunts in SC,
i.e. Vp = 0 for p = 0 . . . P . The generalized displacements

q =

N∑
n=1

unrn (1)
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Figure 1. A free-free rod with 20 equally distributed
piezoelectric shunts. Distribution of the shunts on the rod (a).
Individual impedance Zp and supplementary force fp for each
shunt p (b).

are hereby expressed by the modal coordinate rn and the
corresponding mode shape vector un for a mode n.

The governing equations for the n’th vibration mode are
expressed for harmonic motion with angular frequency ω.
Structural damping and external loading are not included
in the subsequent shunt tuning. In accordance with Thomas
et al. (2009); Berardengo et al. (2016b), and derivations
in Appendix A and B, the electromechanical system is
governed by the equations

(
−ω2mn + kn

)
rn +

P∑
p=1

νn,pfp = 0 (2)

Qp = θp

N∑
n=1

νn,prn + CpVp (3)

where mn is the modal mass, kn is the modal stiffness,
νn,p represents the deformation of the mode shape vector
un along the p’th piezoelectric transducer (defined in
Appendix B), fp is the force of the p’th piezoelectric
shunt acting on the structure, while θp and Cp are
the corresponding piezoelectric coefficient and blocked
capacitance, respectively.

For each piezoelectric shunt, the associated shunt force

fp = −θpVp (4)

is proportional to the voltage Vp across its electrodes.
The charge Qp and the associated current Ip = iωQp are
governed by the voltage Vp via the frequency-dependent
impedance Zp = Zp(ω) through the relations

Vp = −ZpIp = −iωZpQp (5)

Inserting (4) and (5) into (3) leads to the modal force-
displacement relationship

(
Cp

θ2p
+

1

iω

1

θ2pZp

)
fp =

N∑
n=1

νn,prn (6)

for an arbitrary shunt p. The electromechanical system is
now governed by N modal equations of motion in (2),
coupled to P force-displacement relations in (6). The modal
interaction between the two sets of equations is represented
by the two summations, in which the modal normalization is
accounted for by νn,p defined in (B.3).

2.2 Governing electromechanical equation

The modal equation of motion (2) and the modal force-
displacement relationship in (6) can be merged to form a
single combined equation for each target shunt p = t and the
targeted structural vibration mode n = s.

Initially, the modal coordinate rn for a general mode n is
isolated as

rn = −
P∑

p=1

νn,pfp
−ω2mn + kn

(7)

from the modal equation of motion (2). This expression
demonstrates the influence of the P shunts on the individual
vibration modes. In case νn,t = 0, for a specific shunt p = t

in (7), the contribution from that shunt to mode n vanishes
because the transducer t is located at a nodal point of mode
n.

Upon substitution of expression (7) for rn, the modal
force-displacement relationship (6) can be expressed as

(
Ct

θ2t
+

1

iω

1

θ2tZt

)
ft +

P∑
p=1

N∑
n=1

νn,tνn,pfp
−ω2mn + kn

= 0 (8)

for a specific shunt p = t. In this relation, the summation
across both modes n and shunts p comprise the influence
from residual mode spill-over and shunt interaction.

In the following, the piezoelectric shunts are all calibrated
to target a single vibration mode n = s, with the SC natural
angular frequency

ωs =

√
ks
ms

(9)

obtained directly from the eigenvalue problem in (B.1).
The relation for shunt t in (8) is conveniently rewritten by
separating the targeted mode n = s from the residual modes
n ̸= s. By introducing the SC natural frequency from (9)
and multiplying the entire equation by 1/νs,t, the governing
equation (8) for shunt force ft with respect to target mode



4

n = s, can then be expressed in the homogeneous form

P∑
p=1

(
1

κtp
+ δtp

1

iω

ks
νs,tνs,pθ2tZt

− ω2
s

ω2 − ω2
s

)
νs,pfp
ks

= 0 (10)

where δtp is the Kronecker’s delta that allows shunt t to be
included within the summation. The effective stiffness ratio
κtp is conveniently expressed by the reciprocal relation

1

κtp
= δtp

ksCt

νs,tνs,pθ2t
+

N∑
n ̸=s

νn,tνn,p
νs,tνs,p

ks
−ω2mn + kn

(11)

where the first term represents the direct stiffness from
the inherent capacitance of the t’th transducer, while the
remaining terms within the summation account for the
apparent dynamic stiffness from residual modes.

For multiple shunts (P > 1), the first and last terms
in (10) include the influence from the presence of other
shunts, previously referred to as shunt interaction, because
they prevail when p ̸= t. Furthermore, the effective stiffness
ratio κtp in (11) contains both the blocked piezoelectric
capacitance Ct as well as a summation across all residual
modes. Thus, the present representation consistently includes
the influence of residual modes and interaction between the
shunts. In the following sections, the summation of residual
modes in (11) is considered as a quasi-static term, similar to
the correction in Krenk and Høgsberg (2014) and Høgsberg
and Krenk (2015). The quasi-static correction terms are then
condensed into a set of EEMCFs by considering the shunts’
OC limits.

3 Effective stiffness ratio and EEMCF

The effective stiffness ratio κtp defined in (11) contains a
summation of all residual modes, not targeted by the shunts.
Although exact, this direct evaluation of the summation is
not applicable to larger numerical models. Therefore, this
section approximates the effective stiffness ratio κtp by a
set of generalized EEMCFs, obtained by switching shunts
individually or pairwise into OC. In the following, it is
assumed that κtp is frequency-independent, which is a valid
approximation in engineering applications that typically
exhibit small changes in frequency when switching from SC
to OC electrodes.

3.1 All shunts in OC

It follows from (4) that fp = 0 when the shunt p is in SC
(Vp = 0). The associated SC natural frequency ωs in (9) for

target mode n = s is obtained by solving the fundamental
eigenvalue problem in (B.1). When changing from SC to
OC, the vanishing charge Qp = 0 in shunt p corresponds
to Zp → ∞, whereby (A.3) depicts an apparent increase in
stiffness that can be measured indirectly by the associated
increase in natural frequency.

An ultimate limit occurs when all shunts p = 1 . . . P are
in OC, whereby Zp → ∞. The corresponding eigenvalue
problem is given in (B.4) with ûn and ω̂n denoting the n’th
mode shape and natural frequency, respectively.

The EEMCF can be defined as for a single shunt in e.g.
Hagood and Von Flotow (1991); Caruso (2001); Thomas
et al. (2012); Berardengo et al. (2016b), namely by the
relative increase in natural frequency squared,

K2 =
ω̂2
s − ω2

s

ω2
s

(12)

This EEMCF represents the P shunts’ ultimate level of
electromechanical coupling for the target mode n = s. A
partial coupling effect is realized when only switching some
(< P ) of the shunts from SC to OC. In the remainder of
this section, such partial EEMCFs are used to estimate the
effective stiffness ratios κtp defined in (11).

3.2 Single shunt in OC

The diagonal effective stiffness ratios κtt are seen from
(11) to include both the apparent stiffness from the inherent
capacitance (first term) as well as the residual mode
contributions from other modes (remaining terms inside
summation). When all other shunts than p = t are in SC, the
shunt forces fp = 0 for p ̸= t. Combined with Zt → ∞ for
shunt t in OC, the governing equation in (10) reduces to(

1

κtt
− ω2

s

ω2 − ω2
s

)
νs,tft
ks

= 0 (13)

which constitutes the characteristic equation for the single
shunt t in OC and the remaining shunts in SC. The associated
natural frequency ω = ω̂s,tt for mode s with the shunt t in
OC is obtained by solving the eigenvalue problem (B.5). The
index tt in (̂ )s,tt refers to its direct relation with the diagonal
effective stiffness ratio κtt.

As the characteristic equation in (13) governs the natural
frequency for mode n = s with the single shunt p = t in
OC and the remaining shunts in SC, the solution to the
characteristic equation must be ω = ω̂s,tt. Thus, the diagonal
effective stiffness ratio can be isolated in (13) as

κtt =
ω̂2
s,tt − ω2

s

ω2
s

= K2
tt (14)
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which defines the EEMCF K2
tt associated with shunt t in

OC relative to all shunts in SC. A similar definition of the
EEMCF is used in Thomas et al. (2009) for a single shunt
attached to a structure with multiple shunts.

3.3 Shunt pairs in OC

The off-diagonal (or coupling) effective stiffness ratios κtp

(for p ̸= t) in (10) are now determined by a similar approach
to that in the previous Section 3.2, just with two shunts t

and p in OC and all other shunts in SC. The governing
equation (10) can be written for shunt p = t and p = k, with
both shunts in OC and all other shunts in SC, using the
relation fp = 0 for p ̸= k, t and both Zk and Zt → ∞. When
changing index k back to p, the two homogeneous relations
for ft and fp can be written in matrix form as

1

κtt
− ω2

s

ω2 − ω2
s

1

κtp
− ω2

s

ω2 − ω2
s

1

κtp
− ω2

s

ω2 − ω2
s

1

κpp
− ω2

s

ω2 − ω2
s


 ftνs,t

ks
fpνs,p
ks

 =

[
0

0

]

(15)
where symmetry κpt = κtp is implied. A non-trivial solution
to (15) requires the determinant of the coefficient matrix to
vanish, which gives the characteristic equation(

1

κtt
− ω2

s

ω2 − ω2
s

)(
1

κpp
− ω2

s

ω2 − ω2
s

)
−
(

1

κtp
− ω2

s

ω2 − ω2
s

)2

= 0 (16)

where the two diagonal effective stiffness ratios κtt and κpp

are determined by the direct EEMCF evaluated as in (14).

When shunts t and p are in OC, while the remaining shunts
are in SC, the eigenvalue problem for the single shunt (B.5)
is simply extended by adding the electrical stiffness from
shunt p, leading to the eigenvalue problem (B.6) with natural
frequency ω̂n,tp described by the double index tp to indicate
that both shunts t and p are now in OC. The characteristic
equation in (16) is established exactly in this limit, whereby
the solution must be ω = ω̂s,tp. Hereby, the off-diagonal
effective stiffness ratio κtp is the only unknown in (16),
which can then be written in the quadratic polynomial form

K4
tp

κ2
tp

− 2
K2

tp

κtp
+

K2
tp

K2
tt

+
K2

tp

K2
pp

−
K4

tp

K2
ttK

2
pp

= 0 (17)

when the EEMCF

K2
tp =

ω̂2
s,tp − ω2

s

ω2
s

(18)

is introduced similarly to the EEMCF K2
tt in (14). It can be

shown that the quadratic equation (17) has two real-valued
solutions for realistic EEMCFs of the shunts, when K2

tp >

K2
tt and K2

tp > K2
pp. Only the smaller of the two solutions is

physical, whereby the effective reciprocal stiffness becomes

1

κtp
=

1

K2
tp

− 1

K2
tp

√√√√(K2
tp

K2
pp

− 1

)(
K2

tp

K2
tt

− 1

)
(19)

It is noted that (19) implies symmetry (κtp = κpt) and
recovers the expression for 1/κtt in (14) when p = t.

4 Proportional calibration

The governing equation in (10) for the piezoelectric shunt
t, depends on all supplementary shunt forces, whereby
the characteristic equation becomes infeasible because it is
derived from the determinant of a set of P coupled equations.
This multidimensionality is circumvented by imposing a
proportionality between shunt forces, which reduces (10)
to a single-shunt characteristic equation for which tuning
expressions are readily available from the literature.

4.1 The OC shunt force

The governing equation (10) is derived from an expansion
in SC mode shapes, for which fp is zero for all shunts. In
the opposite limit with all shunts in OC, the charge Qp = 0,
which corresponds to Zp → ∞, whereby (6) gives the shunt
force

fp =
θ2p
Cp

N∑
n=1

νn,prn (20)

An equivalent expression can be found for a mode shape
expansion with all shunts in OC, where the corresponding
natural angular frequencies and mode shape vectors are
obtained from the eigenvalue problem (B.4). Thus, the
contribution to the shunt force in the OC limit for the targeted
mode n = s is then defined as

f̂s,p =
θ2p
Cp

ν̂s,p (21)

where the OC modal amplitude ν̂s,p at shunt location p is
defined as in (B.3) for the corresponding SC limit. This OC
modal shunt force amplitude f̂s,p is now used to balance the
individual shunt forces in (20) with respect to their respective
OC values for target mode n = s.

4.2 Shunt force proportionality

The modal expansion is based on SC mode shapes,
associated with no shunt forces. As the shunts are connected
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to piezoelectric transducers at different locations along
the structure, their individual sizing must account for any
interaction of the shunts. The shunt forces are known in the
OC limit case. Inspired by the sizing of viscous dampers in
Main and Krenk (2005), a simple condition is used for the
balancing of the shunts, which requires that they all reach
the OC limit at the same rate when the impedance Zp → ∞
for p = 1 . . . P . This suggests the proportionality

fp

f̂s,p
=

ft

f̂s,t
(22)

between two shunts p and t. In the following, shunt t

is assumed to be the targeted shunt that is calibrated by
any preferred tuning principle, while the influence of the
remaining shunts, here represented by shunt p, are then
included according to the tuning of shunt t. Thus, from (22)
the force by shunt p is isolated as

fp =
f̂s,p

f̂s,t
ft =

Ctθ
2
p

Cpθ2t

ν̂s,p
ν̂s,t

ft ≃
Ctθ

2
p

Cpθ2t

νs,p
νs,t

ft (23)

where the expression for the OC shunt force amplitude (21)
is initially introduced, while the approximation ν̂s,p ≃ νs,p

is then used to secure subsequent expressions in which the
particular sign of the target mode shapes becomes irrelevant
as νs,p only appears squared.

When inserting the proportionality relation (23), the shunt
force ft can be extracted as a common coefficient, whereby
the isolated equation for shunt t can be expressed from (10)
in the compact form(

1

βt
+

1

iω

ks
ν2s,tθ

2
tZt

− ω2
s

ω2 − ω2
s

γt

)
νs,t
ks

ft = 0 (24)

when collecting the contributions from the other shunts p ̸= t

in two coefficients βt and γt, which are conveniently defined
by the relations

1

βt
=

1

κtt
+

P∑
p ̸=t

1

κtp

ν2s,p
ν2s,t

Ctθ
2
p

Cpθ2t
(25)

γt = 1 +

P∑
p ̸=t

ν2s,p
ν2s,t

Ctθ
2
p

Cpθ2t
(26)

The coefficient γt in (26) explicitly contains a correction for
the interaction between shunts for the target mode n = s.
The coefficient 1/βt in (25) further implicitly introduces
a correction for residual modes via the effective stiffness
ratios κtp. A characteristic equation that governs the natural
frequency ω is then directly obtained from the parenthesis in

(24) as

1

βtγt
+

1

iω

1

γtν2s,t

ks
θ2tZt

− ω2
s

ω2 − ω2
s

= 0 (27)

which is used to sequentially tune all shunts t = 1 . . . P .
Thereby, the present force proportionality reduces the P × P

determinant equation in (10) to a scalar characteristic
equation for each of the P shunts in (27) that is feasible for
shunt tuning. The only remaining parameter to be included
in (27) is the shunt impedance Zt, which makes the above
characteristic equation applicable for calibration of general
shunt architectures.

4.3 Equivalent lumped parameters

Calibration of the shunt impedance Zt in (27) follows from
comparison with the characteristic equation for the single-
degree-of-freedom (sdof) lumped parameter model in Fig. 2,
for which tuning expressions are readily available from the
literature. In the sdof structure, mass ms and stiffness ks are
the modal parameters for n = s in (B.2), while the equivalent
mechanical components

k̄ =
θ2t
C̄t

, c̄(ω) = θ2t Z̄t(ω) (28)

represent the lumped model capacitance C̄t and impedance
Z̄t(ω), respectively. The bar (̄ ) denotes equivalent parame-
ters for the lumped sdof model. The equivalent sdof param-
eters are determined in the following from the already intro-
duced physical parameters to allow sdof calibration expres-
sions to be used for tuning of the shunts. Corresponding
to the definition used e.g. by Park and Inman (1999), the
EEMCF can for a shunted sdof system be defined as

K̄2
t =

k̄

ks
=

θ2t
C̄tks

(29)

which determines the sdof capacitance C̄t as function of the
EEMCF K̄2

t , the actual piezoelectric coefficient θ2t for the

Figure 2. Lumped parameter representation with equivalent
mechanical components of a single shunt.
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Table 1. Calibration expressions for a single series RL-shunt
attached to an sdof structure. Calibration methods are PPM:
Pole placement method (Hagood and Von Flotow 1991) and
FPM: Fixed point method (Yamada et al. 2010).

Label ω2
s L̄tC̄t ωsR̄tC̄t

PPM
1(

1 + K̄2
t

)2
√

4K̄2
t(

1 + K̄2
t

)3
FPM

1

1 + K̄2
t

√
3K̄2

t

(2 + K̄2
t )(1 + K̄2

t )

t’th piezoelectric transducer and the modal stiffness ks =

ω2
sms for the target mode n = s.

For the series RL shunt, two common tuning expressions
for the sdof model are expressed in terms of K̄2

t in Table 1.
The characteristic equation for free vibrations of the lumped
parameter sdof model in Figure 2 is established as

1

K̄2
t

+
1

iω

ks
c̄

− ω2
s

ω2 − ω2
s

= 0 (30)

The actual shunt components are then determined by
equivalence between this equation for the sdof model and
the characteristic equation (27) for shunt t acting on the
full flexible structure. Initially, the EEMCF for the lumped
parameter model

K̄2
t = βtγt (31)

is found by comparison of the first terms in (30) and (27).
Subsequently, the middle terms identify an expression for
c̄, which upon substitution of the second expression in (28)
gives the direct impedance equivalence

Zt =
Z̄t

γtν2s,t
(32)

Thus, an actual component in Zt is found by scaling the
equivalent component in Z̄t according to (32). The scaling
explicitly accounts for shunt interaction (γt) and mode shape
amplitude (ν2s,t), while residual mode correction is indirectly
included via K̄2

t in (31). The full calibration procedure that
corrects for residual modes and shunt interaction is outlined
in Table 2.

5 Numerical examples

The aim of this section is to investigate the influence from
residual modes and shunt interactions in the calibration of
multiple piezoelectric shunts targeting a single vibration
mode. Although this section only considers series RL shunts,
the tuning method can be applied to any shunt architecture
targeting a single mode.

Table 2. Calibration of P shunts to mode n = s.

For each shunt p = 1 . . . P :
1. Piezoelectric parameters: Cp and θp.
2. Mode shape amplitude: νs,p from (B.3).
3. Calculate 1/κtp from (19) for t = 1 . . . P .
Tuning of shunt t = 1 . . . P :
4. Calculate γt and βt from (25) and (26).
5. Sdof model: K̄2

t = βtγt, C̄t = θ2t /(K̄
2
t ks).

6. Tuning: L̄t and R̄t from literature (e.g. Table 1).
7. Scaling: Lt and Rt by (32).

The calibration is based on a consistent correction of
calibration expressions for a single shunt targeting an sdof
structure. Two different calibration principles are applied:
maximum modal damping based on the pole placement
method (PPM) by Hagood and Von Flotow (1991) and
minimum response amplitude from the fixed point method
(FPM) by Yamada et al. (2010). For these methods, Table 1
presents the non-dimensional inductance L̄ and resistance R̄

for a single series RL shunt attached to an sdof structure.

In the following, three different levels of correction are
implemented and compared:

• Individual: βt = κtt = K2
tt and γt = 1.

• Reduced: βt = κtt = K2
tt and γt from (26).

• Full: βt and γt from (25) and (26).

The full correction includes both residual mode correction
and correction for shunt interactions. In the reduced
correction, the diagonalization of βt = κtt neglects the
influence of residual modes from other shunts. Thereby,
shunt interaction is only included by the main targeted
vibration mode, which makes the reduced correction similar
to the correction used by Toftekær and Høgsberg (2020).
Finally, the individual tuning furthermore omits the shunt
interaction by γt = 1, although still including the residual
mode correction for the considered shunt by βt = κtt = K2

tt.
The individual correction uses the EEMCF for the calibration
of each individual shunt; an approach often applied in the
literature because it is easy to evaluate and takes device
imperfections into account (Toftekær et al. 2018).

5.1 Primary test case

A primary test case is considered in terms of the free-free rod
with 20 decentralized shunts in Figure 1, similar to numerical
and experimental examples used by Lossouarn et al. (2015)
and Trindade et al. (2021). Although the present method is
applicable to more complex structures, such as beams and
plates, the simple free-free rod is chosen as the numerical
example, because results are comparably simple to replicate
in laboratory experiments, see Lossouarn et al. (2015). The
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rod is made of AU4G aluminium, has the length Lr =

1000mm, width and thickness br = hr = 20mm, density
ρr = 2780 kgm−3 and Young’s modulus Yr = 73.9GPa.
Each shunted unit comprises a pair of PIC151 piezoelectric
patches connected in parallel to an electrical circuit with
impedance Zt. All piezoelectric patches are identical
with the length Lpiezo = 30mm, width bpiezo = 20mm,
thickness hpiezo = 0.5mm, density ρpiezo = 7800 kgm−3,
Young’s modulus Y E

piezo = 66.7GPa at zero electrical
field, piezoelectric charge constant d31 = −210 pCN−1

and dielectric permittivity ϵσ33 = 21.2 nFm−1. The spacing
between the patches is 20mm, while the distance from the
outer patches’ end to the end of the rod is 10mm, see
Trindade et al. (2021). In accordance to Trindade et al. (2021)
and Lossouarn et al. (2015), the blocked capacitance for
each piezoelectric shunt t is defined as Ct = 35.2 nF and the
piezoelectric coefficient is θt = 0.501N/V.

Structural damping is not included in the present study
to highlight the effects of the piezoelectric shunts and the
rod is modelled using the finite element method with 41
bar elements. The element mass and stiffness matrices are
obtained using linear shape functions, corresponding to the
matrices given for bar elements in Géradin and Rixen (2014).

The piezoelectric shunts are calibrated with respect to the
first vibration mode with all shunts in SC. This corresponds
to the target frequency ωs = ω1 = 15766 rad/s for mode
s = 1. The EEMCF for each shunt in SC/OC with all other
shunts in SC increases from K2

1 1 = K2
20 20 = 2.50 · 10−6

for the two outer pair of patches (close to the ends of the rod)
to K2

10 10 = K2
11 11 = 4.03 · 10−4 for the two pair of patches

next to the center of the rod.

Figure 3. Simplified test case in terms of an sdof system with
three shunts.

5.2 Frequency response

The frequency response for an external harmonic load is
determined for the primary test case of the free-free rod with
20 shunts. Furthermore, to highlight the influence of residual
modes on the calibration, the frequency response is also
determined for the simplified test case in Figure 3 with three
shunts attached to an sdof structure. The mass and stiffness
of the sdof structure are chosen to correspond to the free-free
rod with shunt 10 used for damping of target mode s = 1

and the other shunts in SC. Thus, the sdof mass ms = m1 =

70.8 kg and stiffness ks = k1 = 1.76 · 1010 N/m are derived
from (B.2) for the free-free rod model with unit deflection
along the considered patch 10, i.e. wT

10us = 1. Thereby, the
natural frequency of the sdof structure and EEMCF of the
shunt correspond to the values obtained for the free-free rod
with shunt 10 used for vibration damping. Three patches
are attached to the sdof mass to include the effect of shunt
interaction. The piezoelectric properties of the three patches
are equal to the considered patch 10 of the free-free rod. For
the free-free rod, the load is considered as a point load at the

(b)

(a)

Figure 4. Frequency response curves: sdof structure with three
shunts (a) and free-free rod with 20 shunts (b). Correction:
individual (blue dashed-dotted), reduced (red dashed), and full
(black solid). Numerical optimum tuning (green dotted).
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left tip of the rod, while for the sdof structure, the load acts
directly on the mass m1.

For the frequency response analysis, the shunts are
tuned by the Fixed-Point Method (FPM) in Table 1. The
frequency response curves are shown in Figure 4 for the
sdof structure with three shunts in (a) and the free-free
rod with 20 shunts in (b). In each sub-figure, the three
different levels of correction are represented by: black solid,
red dashed, and blue dashed-dotted curves, respectively. The
green dotted curves represent the absolute optimum with
identical shunt parameters, obtained by a simple search
algorithm (fminsearch in Matlab) that minimizes the
maximum response amplitude in the frequency curve around
the targeted natural frequency.

Table 3 presents the maximum frequency amplitude
around the targeted resonance ω1 for all combinations of the
three corrections (full, reduced, and individual) for both the
sdof structure and the free-free rod. All six amplitudes are
divided by the maximum frequency amplitude from (dotted)
curves obtained by the numerical optimization.

The shunt tuning obtained with full, reduced, and
individual correction, as well as by the numerical optimum,
are summarized in Table 4. For the sdof structure with
three shunts, all shunts have identical tuning for Lt and
Rt because their patches have identical Ct and θt. For the
primary test case, where the 20 piezoelectric patch pairs are
placed differently on the free-free rod, the tuning for each
shunt is in principle different. However, the present tuning
yields practically identical shunt components, in Table 4
represented by a mean value and a corresponding standard
deviation, which almost vanishes for the full correction.
Therefore, the numerical optimization (dotted) assumes
identical Lt and Rt for all 20 shunts.

5.2.1 Simplified test case The sdof structure with three
shunts includes the influence from shunt interaction,
whereby the individual correction (blue dashed-dotted) curve
exhibits a substantial amplitude increase in Figure 4(a),
which in Table 3 becomes almost 25% larger than the
numerical optimum.

Because residual modes are not present for the sdof
structure, the reduced (red dashed) and full correction
(black solid) result in identical tuning in Table 4 and
almost recover the numerical optimum in Figure 4(a) and
Table 3. Furthermore, the response with two peaks of equal
magnitude for the reduced and full correction is similar to
the expected response for the FPM calibration with a single
shunt in Yamada et al. (2010). The simplified test case results
show that the reduced correction, with a diagonalized κtt =

Table 3. Ratio of maximum displacement for the FPM with
individual, reduced, or full correction, relative to the numerical
calibration. For the free-free rod max(Knn) = 0.020, while
uniform scaling of the shunt capacitance gives
max(Knn) = 0.050 (*) and max(Knn) = 0.100 (**).

Individual Reduced Full
Sdof structure 1.2459 1.0004 1.0004
Free-free rod 2.3599 1.0486 1.0056
Free-free rod* 2.5085 1.1214 1.0139
Free-free rod** 2.8239 1.2517 1.0326

Table 4. Calibration parameters for the FPM. The parameters
are represented by the mean and standard deviation for the
free-free rod with 20 shunts.

Sdof
structure Lt [mH] Rt [Ω]

Individual 114.4 44.50
Reduced 114.3 77.02
Full 114.3 77.02
Numerical 114.3 77.59

Free-free
rod Lt [mH] Rt [Ω]

Individual 113.6± 6.0 · 10−3 28.16± 1.4 · 101
Reduced 113.2± 1.8 · 10−2 139.3± 3.3 · 10−2

Full 113.6± 5.1 · 10−5 140.2± 9.4 · 10−5

Numerical 113.7 139.7

K2
tt, is very accurate when the influence from residual modes

is insignificant.

5.2.2 Primary test case The free-free rod with 20 shunts
includes effects from both residual modes and shunt
interaction. Thus, the individual correction (blue dashed-
dotted) introduces two very high resonance peaks in Figure
4(b). Furthermore, the influence from residual modes implies
that the reduced correction (red dashed) exhibits a minor
response amplification compared to the full correction (black
solid), which coincides with the numerical optimum (dotted).
The detuning observed for the reduced correction is caused
by the slightly smaller inductance Lt in Table 4, in which
the mean value (113.2mH) differs by 0.4% compared to the
numerical optimum (113.7mH). The accuracy of the full
correction is further validated by the maximum amplitude
ratio in Table 3, where the 0.56% increase for the full
correction is about one-tenth of the 4.86% increase by
the reduced correction. The results for the free-free rod
demonstrate that shunt tuning based on the proposed (full)
correction accounts very accurately for both modal spill-
over from residual modes as well as the interaction between
shunts.

To further investigate the ability of the proposed (full)
correction to consistently account for shunt interaction, the
EEMCF is increased to amplify the influence from the other
shunts. For the individual shunts, used to obtain the previous



10

Figure 5. Root locus diagram for the free-free rod with 20 shunts for the PPM. The triangles (△), squares (□), and circles (◦)
represent the PPM tuning for the corrections: individual (blue), reduced (red), and full (black), respectively.

curves in Figure 4(b), the largest value of the square root
of the EEMCF is max(Knn) = 0.02 for the free-free rod.
However, larger values can be found in the literature, e.g.
0.14 for a beam with a single patch on both sides in Thomas
et al. (2009) and Thomas et al. (2012), or 0.16 in Hagood
and Von Flotow (1991). Alternatively, the EEMCF can be
increased by the addition of a negative shunt capacitance
(De Marneffe and Preumont 2008). Table 3 includes the
maximum amplitude ratios for two alternative cases, in
which the blocked capacitance is scaled by a factor of
0.1555 (*) and 0.0340 (**). This reduction in capacitance
yields a corresponding increase in max(Knn) from 0.02
(for the original patch pairs) to 0.05 and 0.100. As seen in
Table 3, this increase in EEMCF yields an amplification of
the maximum amplitude ratio by up to 25% for the reduced
correction, while the full correction limits the amplification
to 3%. This example with larger EEMCF illustrates the
improvement obtained by the present inclusion of residual
modes in the terms accounting for the interaction between
shunts.

5.3 Root locus analysis

The root locus diagrams in Figure 5 are determined for
the free-free rod with the 20 shunts tuned by the Pole
Placement Method (PPM) in Table 1. The complex poles
ω are governed by the eigenvalue problem introduced in
Appendix A. The root trajectories in Figure 5 are then
obtained by solving this eigenvalue problem for different

scaling of the optimal resistance determined by the PPM, i.e.
using Rt = αRPPM

t for each shunt with α from 0 to ∞.
The three root locus diagrams in Figure 5 are obtained for
the individual correction (blue), reduced correction (red) and
full correction (black).

As shown in Hagood and Von Flotow (1991) for an sdof
structure, the PPM tuning of a single shunt forms a half
circle, which merges with a backbone circle at a bifurcation
point. By the full correction (black) in Figure 5, the desired
root locus structure is recovered for target mode s = 1 of the
free-free rod. The large circles (◦) depict the complex roots
exactly at the PPM tuning (α = 1). Two of the 21 complex
poles (◦) form a double root exactly at the bifurcation point,
while the remaining redundant poles are heavily damped
because they are located beyond the bifurcation point along
the backbone trajectory.

For the reduced correction (red, □) in Figure 5, the
redundant poles are still heavily damped, while the two
critical modes do not exactly form a double root that meet
at a bifurcation point. This results in a slight reduction in
attainable damping compared to the desired tuning with full
correction.

The importance of consistently including shunt and modal
interaction is illustrated for the PPM tuning with individual
correction (blue) in Figure 5. The two critical roots along
the semi-circular trajectories are far away from the apparent
bifurcation point, while the remaining redundant poles are
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now placed well below the bifurcation point and thus almost
undamped for the triangles (△) closest to the real axis.

6 Conclusion

This paper describes the influence of both residual modes
and shunt interaction on the tuning of multiple piezoelectric
shunts targeting a single vibration mode. This results in
explicit correction terms that can be used for calibration of
the shunts based on available tuning expressions developed
for a single shunt attached to an undamped sdof structure.

The shunt interaction and the influence from residual
modes are included by the introduction of effective stiffness
ratios, which are then determined from EEMCFs. The
effective stiffness ratios are combined with a prescribed
force ratio, corresponding to all shunts in OC. This results
in a single characteristic equation on scalar form, which
represents an equivalent sdof model that can be used for
explicit calibration of each shunt.

The accuracy of the proposed calibration method has been
validated numerically for series RL shunts by comparison
of the frequency response curves and root locus diagrams
for different levels of correction. When the calibration is
conducted for series RL shunts based on the fixed point
method for minimum displacement, it is found that the
calibration is practically similar to a numerical calibration
with equal parameters for all shunts.
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Appendix A

This appendix considers the modelling of a mechanical
structure with P piezoelectric elements using the finite
element method, see e.g. Preumont (2018); Thomas et al.
(2009) for further details. In the frequency domain, the
structural equation of motion (without damping) can be
written as

(
−ω2M+K

)
q+

P∑
p=1

wpfp = fext (A.1)

where the vector q contains the generalized displacements,
M is the mass matrix, K is the stiffness matrix, fext

contains external loads and wp is the connectivity vector that
describes where the force fp acts on the structure. The mass
of the piezoelectric transducers are included in M, while K

contains their mechanical stiffness with SC electrodes.

The charge Qp at the electrodes of shunt p is governed by
the sensor or balance equation

Qp = θpw
T
p q+ CpVp (A.2)
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in which the shunt capacitance Cp is associated with blocked
transducer boundaries.

Upon elimination of Vp and Qp by substitution of (4) and
(5), the balance equation (A.2) can be written as(

Cp

θ2p
+

1

iω

1

θ2pZp

)
fp = wT

p q (A.3)

which represents a mechanical force-displacement relation-
ship for the p’th piezoelectric shunt.

The complex poles ω, describing the root locus diagram in
Figure 5, are determined by solving the eigenvalue problem
comprised by the homogeneous form of (A.1) and (A.3).

Appendix B

When all shunts are in SC, Vp = 0 for p = 1, . . . , P which
implies that fp = 0 in (4). The structural equation of motion
in (A.1) then reduces to the eigenvalue problem

(
−ω2

nM+K
)
un = 0 (B.1)

for a mode n, which governs the SC natural angular
frequency ωn and the corresponding mode shape vector un.
The associated modal parameters are

mn = uT
nMun , kn = uT

nKun (B.2)

while the deformation of the mode shape across the
transducer location is defined by the parameter

νn,p = uT
nwp = wT

p un (B.3)

with the indices referring to mode n and shunt p.

When all shunts p = 1 . . . P are in OC, then fp in (A.1)
is substituted from (A.3) with Zp → ∞, which yields the
eigenvalue problem(

−ω̂2
nM+K+

P∑
p=1

wpw
T
p

θ2p
Cp

)
ûn = 0 (B.4)

where ûn and ω̂n denote respectively the mode shape and
natural frequency with all P shunts in OC.

The natural frequency associated with shunt t in OC and
the remaining shunts in SC is determined by solving the
eigenvalue problem(

−ω̂2
n,ttM+K+wtw

T
t

θ2t
Ct

)
ûn,tt = 0 (B.5)

which corresponds to (B.4) with p = t as the single term in
the summation.

In the final case, where two shunts t and p are in OC, while
the remaining shunts are in SC, the eigenvalue problem(

−ω̂2
n,tpM+K+wtw

T
t

θ2t
Ct

+wpw
T
p

θ2p
Cp

)
ûn,tp = 0

(B.6)
is simply obtained from (B.5) by adding the extra term for
shunt p.
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