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About the Bang-Bang Principle for piecewise affine systems*

Ruben Chenevat1, Bruno Cheviron2, Sébastien Roux1 and Alain Rapaport1

Abstract— We show that for piecewise affine controlled sys-
tems, the Bang-Bang Principle does not hold even when the
dynamics is continuous with respect to the state variable.
However, we show that there exist minimal time trajectories
with extreme controls at the loci where the dynamics is
differentiable. We give two examples which exhibit singular
arcs exactly at the loci of non-differentiability.

I. INTRODUCTION

The Bang-Bang Principle is a pillar of the theory of linear
controlled systems (see [10], [15], [8], [11]). Consider a
linear dynamical system

Ẋ = A(t)X +B(t)u, X ∈ Rn, u ∈U ⊂ Rp (1)

where A(·), B(·) are time-measurable matrices of adequate
dimensions, and U is a convex compact set. Denote E(U) the
set of extreme points of the set U . For any initial condition
(t0,X0) in R+×Rn, the attainability set A (t), resp. ABB(t),
is defined as the set of X(t) where X(·) is the solution of
(1) for the initial condition (t0,X0) and any time-measurable
controls u(·) that takes values in U , resp. in E(U). The Bang-
Bang Principle states that A (t) and ABB(t) coincides. This
result has consequences in terms of controllability and the
nature of trajectories that join two points of the state space
in minimal time.

We shall consider in this paper piecewise affine controlled
systems, defined by a family of controlled affine systems

Ẋ = fi(t,X) := Ai(t)X +B(t)u+Ci(t), i ∈ I

over a partition of Rn, and whose dynamics is given by
one of these linear systems on each subset of the partition.
Such a dynamics is in general discontinuous and the question
of well-posedness of solutions raises. In particular sliding
modes [17] or Filippov solutions [7] may be considered.
Controllability of such systems has been well investigated in
the literature (see [4], [6], [14], [18]). In the present work, we
shall assume that the piecewise affine systems are continuous
with respect to X (but not necessarily differentiable), which
does not pose any problem to define unique solutions as
for any Lipschitz continuous differential equations. There
is much less works dedicated to this precise setting [16].

*This work was supported by Labex Numev (ANR-10-LABX-0020) and
by the French National Research Agency under the Investments for the
Future Program, referred as ANR-16-CONV-0004.
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One may wonder if the Bang-Bang Principle still holds in
this simple setting, and if not where the control has to be
an non extreme point. It seems that this question has not
addressed specifically in the literature, although the problem
of regional optimal control has get recent interests in the
literature (see [3], [1], [2]). For instance in [2], a minimal
time problem with piecewise affine dynamics is presented,
but whose dynamics is discontinuous. Note that considering
a family of linear systems with the continuity assumption is
very restrictive (as it imposes the common boundary of two
domains Di, D j to belongs to the kernel of Ai(t)−A j(t) for
any t). This is why we consider families of affine rather than
linear systems. This allows in particular to consider dynamics
with saturation. Let us underline that applying directly the
Bang-Bang Principle for trajectories joining two points in a
same subset Di does not guarantee that the trajectory with
extreme controls remains in the same set Di. This is precisely
the matter investigated in the present work.

The paper is organized as follows. In the next section,
we make precise our notations and assumptions, making
distinctions between linear and affine Bang-Bang Principle
for the minimal time control problem. In Section III, we give
our main result. Section IV is devoted to examples.

II. PRELIMINARIES

In this section we present the framework of piecewise
affine systems, and highlight their similarities and differences
with classical linear systems.

We consider an non-autonomous system that is linear with
respect to u:

Ẋ = F(t,X)+B(t)u (2)

where X ∈ Rn and u ∈U ⊂ Rr under the following assump-
tions.

Assumption 2.1: There exists a partition of the state space

Rn =
⊔

i∈I

Di

where D̊i is a non-empty connected set for any i ∈I (where
I is countable), such that

F(t,X) = Ai(t)X +Ci(t), X ∈ Di, t ≥ 0

where Ai and Ci are n× n− and n× 1− time measurable
matrix-valued functions. B is a n × r− time measurable
matrix-valued function. Moreover F is continuous with re-
spect to X for any t.

Let us stress that we do not impose any regularity of the
boundaries of the sets Di.

Assumption 2.2: U is a convex compact set.



We consider the minimum time problem to reach a com-
pact target set Ω ⊂ Rn from an initial state X(0) = X0 ∈ Rn

that belongs to the attainability set of Ω. For this problem,
the Bang-Bang Principle is often stated for linear dynamics
[9], as follows.

In the case where I = {α} and Cα = 0, we have in fact
a classical linear system

Ẋ(t) = Aα(t)X(t)+B(t)u(t) (3)

Theorem 2.1: If X0 belongs to the attainability set of Ω,
then there exists a control function u(·) that takes values in
E(U) for which the associated trajectory of (3) reaches Ω in
minimal time from the initial condition X(0) = X0.

We recall that this statement holds true also for affine
systems.

Lemma 2.2: Consider the affine system in Rn

Ẏ (t) = L(t)Y (t)+M(t)u(t)+N(t) (4)

where u(t) ∈U , a convex compact set of Rp, and L, M and
N are n× n−, n× r− and n× 1− time mesurable matrix-
valued functions. Then, the conclusion of Theorem 2.1 holds
for dynamics (4).

Proof: The proof only consists in rewriting the affine
system into an equivalent linear one in higher dimension,
and we explicitly construct it as follows :

˙̃Y (t) = L̃(t)Ỹ (t)+ M̃(t)u(t) (5)

where L̃ and M̃ are (n + 1)× (n + 1)− and (n + 1)× r−
matrix-valued functions. Let us set the additional state vari-
able :

ẏn+1(t) = 0 ,yn+1(0) = 1

Then we define Ỹ ∈ Rn+1 such that the j-th coefficient
of Ỹ is Ỹj = Yj for all 1 ≤ j ≤ n, and Ỹn+1 = yn+1. We
posit L̃ ∈ Mn+1,n+1(R) such that the coefficients (k, j) are
L̃k, j = Lk, j for all 1 ≤ k, j ≤ n, the coefficients (k,n+1) are
L̃k,n+1 = Nk for all 1 ≤ k ≤ n, and the coefficients (n+1, j)
are L̃n+1, j = 0 for all 1 ≤ j ≤ n+1. We similarly define M̃ ∈
Mn+1,r(R) such that the coefficients (k, j) are M̃k, j = Mk, j
for all 1 ≤ k ≤ n and 1 ≤ j ≤ r, and the coefficients (n+1, j)
are M̃n+1, j = 0 for all 1≤ j ≤ r. With such a construction, we
easily check that the system (5) describes the same dynamics
as the system (4).

We may now introduce the main issue of this work. Con-
sidering a time-optimal problem subject to the dynamics (2),
we will discuss about a revisit of the Bang-Bang principle
for such settings. It is well known that for hybrid dynamical
systems or switched systems the optimal time trajectory
may lie on the locus of discontinuity of the dynamics, and
it is called a sliding mode. In this work, the systems we
consider might be seen as spatially hybrid systems, but with
an additional condition of continuity at the boundaries. One
may wonder if such sliding mode behaviours is still possible
with continuous piecewise affine dynamics. The Lemma 2.2
suggests that the Theorem 2.1 should remain relevant where

the dynamics of (2) is affine. However a direct application of
the Bang-Bang principle would fail, since we can not ensure
that the obtained Bang-Bang trajectory doesn’t cross any
boundary, which would thus modify the dynamics driving
the system. Therefore we have to be a bit more cautious
and judiciously examine the evolution of the system in order
to locally apply the Bang-Bang principle, and then build a
candidate Bang-Bang control step by step. In the end, we
still show that there exists an optimal solution composed of
a succession of Bang-Bang arcs over time intervals where
the state trajectory belongs to a region D̊i, but an optimal
trajectory may contain a portion located in a boundary
∂Di, thus consisting in singular arcs. We shall present in
the Section IV examples where there is indeed singular
arcs, showing this way that the Bang-Bang principle is not
true globally for piecewise affine problems, even when the
dynamics is continuous with respect to the state.

III. MAIN RESULTS

Proposition 3.1: For a minimum-time control problem
subect to the piecewise affine settings (2), there exists an
optimal solution composed of a succession of Bang-Bang
arcs over time interval where the state trajectory belongs to
a region D̊i.

Let u∗(·) ∈ U be an optimal solution of the time-optimal
problem (2). Denote X∗(·) the associated optimal trajec-
tory and T ∗ ∈ R∗

+ the corresponding optimal time. Assume
that there exists a time interval [a,b] ⊂ [0,T ∗] such that
X∗(b) ∈ ∂Di where Di is a fixed region of the partition,
and X∗([a,b)) ⊂ D̊i. For any [td , t f ] ⊂ (a,b), we study the
evolution of the system over [td , t f ], thus following the
dynamics of the region Di :

Ẋ(t) = Ai(t)X(t)+B(t)u(t)+Ci(t) (6)

We aim to apply the Bang-Bang principle for affine systems,
but we need to ensure that all the trajectories undergo the
same dynamics. To this aim we will have to study the local
behaviour of trajectories and we will define an appropriate
neighbourhood of X∗([td , t f ]) where the principle may be
applied.

Lemma 3.2: With the notations above, for any [td , t f ] ⊂
[a,b), there exists a Bang-Bang control such that its associ-
ated trajectory Z(·) verifies :

Z(td) = X∗(td) , Z(t f ) = X∗(t f ) , Z([td , t f ])⊂ D̊i
Proof: The distance from this portion of trajectory

to the boundary is r = d(X∗([td , t f ]),∂Di) > 0. Let us fix
t̂ ∈ [td , t f ). Consider the problem defined by the dynamics
of (6) with the initial condition X(t̂) = X∗(t̂), and select an
admissible control u(·). We want to evaluate the difference
between the associated trajectory X(·) and the reference
trajectory X∗(·). In particular, we are looking for a time t+

such that for all t ∈ [t̂, t+] we have ∥X(t)−X∗(t)∥ ≤ r. For
t ≥ t̂ we have :

X(t)−X∗(t) = X(t)−X(t̂)− (X∗(t)−X∗(t̂))

=
∫ t

t̂
Ai(s)(X(s)−X∗(s))+B(s)(u(s)−u∗(s))ds



Then :

∥X(t)−X∗(t)∥ ≤ 2M(t − t̂) sup
s∈[a,b]

∥B(s)∥

+
∫ t

t̂
∥Ai(s)∥∥X(s)−X∗(s)∥ds

By the Grönwall lemma, we get :

∥X(t)−X∗(t)∥ ≤ 2M(t − t̂)KB
[a,b] exp

(∫ t

t̂
∥Ai(s)∥ds

)
≤ 2M(t − t̂)KB

[a,b] exp
(
(t − t̂)KA

[a,b]

)
where KA

[a,b] = sup
s∈[a,b]

∥Ai(s)∥<+∞ and KB
[a,b] = sup

s∈[a,b]
∥B(s)∥<

+∞. Then there exists t+ ∈ (t̂, t f ] such that :

∥X(t)−X∗(t)∥ ≤ r ,∀t ∈ [t̂, t+]

Moreover, the distance δ = |t+− t̂| only depends on r. Then
there exists N ∈ N∗ such that td +(N −1)δ < t f ≤ td +Nδ ,
and we define a finite sequence (θk)0≤k≤N by :

θk = td + kδ , for 0 ≤ k ≤ N −1
θN = t f

Therefore from above we deduce that for any 0 ≤ k ≤ N −
1, all the trajectories Yk(·) following the dynamics (6) with
initial condition Yk(θk) = X∗(θk) satisfy :

Yk(t) ∈ B(X∗(t),r) ,∀t ∈ [θk,θk+1]

In particular, we have :

Yk([θk,θk+1])⊂
⋃

t∈[θk,θk+1]

B(X∗(t),r)⊂ D̊i

As a consequence, we now may apply the Bang-Bang
principle as follows. Consider the dynamics of (6) over the
whole space Rn, with the initial condition Yk(θk) = X∗(θk).
By asumption, the target X∗(θk+1) is attainable at the time
θk+1, thus the Bang-Bang principle for linear time-optimal
problems indicates that there exists a Bang-Bang control
ūk(·) such that the corresponding trajectory Ȳk(·) reaches
X∗(θk+1) at the time θk+1. Furthermore, we know from the
well-chosen construction detailed above that this trajectory
verifies :

Ȳk([θk,θk+1])⊂ D̊i

Let us now define v(·) as the concatenation of the ūk(·) for
0 ≤ k ≤ N −1, and denote Z(·) the corresponding trajectory
as we can see in Fig. 1.

Fig. 1. Optimal Bang-Bang trajectory constructed from X∗ on [td , t f ]

Finally we showed that for any [td , t f ]⊂ [a,b) the obtained
control v(·) is a Bang-Bang control defined over [td , t f ], and
the associated trajectory Z(·) satisfies Z(td)=X∗(td), Z(t f )=
X∗(t f ) and :

Z([td , t f ])⊂
⋃

0≤k≤N−1

( ⋃
t∈[θk,θk+1]

B(X∗(t),r)

)
⊂ D̊i

Proof: (of Proposition 3.1) To conclude for the main
statement, it then suffices to apply the previous Lemma 3.2
on well-chosen intervals. We set a sequence of times (σ j

f ) j≥0
by :

σ
j
f = b− (b−a)/2 j , for j ∈ N

We get a corresponding family of radiuses r j =

d(X∗([σ j
f ,σ

j+1
f ]),∂Di) > 0, and the previous reasoning

provides a family of Bang-Bang controls (v j) j≥0, and their
associated trajectories (Z j) j≥0, defined on each portion of
time interval by :

v0 : [a,σ1
f ]−→U given by Lemma 3.2 over [a,σ1

f ]

with Z0(a) = X∗(a), Z0(σ1
f ) = X∗(σ1

f )

and Z0([a,σ1
f ])⊂ D̊i

v j : [σ j
f ,σ

j+1
f ]−→U given by Lemma 3.2 over [σ j

f ,σ
j+1
f ]

with Z j(σ j
f ) = X∗(σ j

f ), Z j(σ j+1
f ) = X∗(σ j+1

f )

and Z j([σ j
f ,σ

j+1
f ])⊂ D̊i

Finally, the control defined by a forward concatenation of
the controls v j above is :

V (t) = v j(t) for t ∈ [σ j
f ,σ

j+1
f )

Thus V is well-defined over [a,b), is Bang-Bang, and its
corresponding trajectory ξ (·) satisfies :

ξ (a) = X∗(a) , ξ (t)−→
t→b

X∗(b) , ξ ([a,b))⊂ D̊i

Hence the existence of an optimal solution composed of
Bang-Bang arcs in the regions where the dynamics is dif-
ferentiable.

Remark 3.3: Since the classical Bang-Bang principle does
not give information about the number of commutations, we
may have constructed an optimal Bang-Bang solution that
has an infinite (countable) number of commutations. How-
ever, if the boundaries fulfill the interior sphere condition
(see [12]), then the radiuses r j in our construction may not
converge to zero, and we could be able to have a finite
number of concatenations with an appropriate seuquence of
time intervals.

IV. EXAMPLES

In this section we are going to present two examples. The
first one is a very simple autonomous system driving an
optimal time problem where the geometry of the partition
of the space gives the intuition of the existence of a singular
arc. The second one is from a crop irrigation model, and is
written as a non-autonomous system driving an optimization



problem with a fixed terminal time, a terminal cost, and
constraints over the input and the state. Therefore it is much
more difficult to study the optimality of solutions, but we
will show that for some settings a singular arc is strictly
better than Bang-Bang controls over a certain time interval.

A. Turnpike-like Example

Let us consider the following time-optimal control prob-
lem :

(P1) :


ẋ(t) = u(t)

ẏ(t) = F(x(t)) where F(x) =

{
x ,x ≤ 1
2− x ,x ≥ 1

This systems (P1) respects the framework of piecewise affine
dynamics and continuous with respect to the state, the states
space being partitioned in two pieces separated by the line
x = 1. We set the initial conditions x(0) = y(0) = 0, and the
target is the singleton (x f ,y f ) = (2,3). Moreover the control
u(·) is a measurable function with values constrained in the
compact U = [−1,1]. We seek to minimize the time to reach
the target from the initial point.

By definition, the magnitude of ẏ is maximum when x =
1, then the intuition would say that the trajectory will tend
to use this line as much as possible, in order to move as
quickly as possible. We are going to show that this strategy
(as illustrated in Fig. 2) is indeed optimal.

Fig. 2. Minimum time ”Bang-Singular-Bang” trajectory for (P1)

Consider an optimal control u∗(·), with its associated
trajectory (x∗(·),y∗(·)) and the corresponding optimal time
T ∗. By continuity, the trajectory has to cross the boundary
x = 1. Define W = {t ≥ 0, st : x∗(t) = 1}, which is non-
empty. Denote t− = infW and t+ = supW . By definition of
the dynamics of x, we have t− ≥ 1 and t+ ≤ T ∗−1.

Suppose that y∗(t−) > 1/2. Denoting C = {(x,y), y =
x2/2}, we define Γ = {t ∈ [0, t−], st : (x∗(t),y∗(t)) ∈ C }.
The set Γ is non-empty since y∗(0) = (0,0), and we define
t̂ = supΓ ∈ [0, t−). Then, for all t ∈ (t̂, t−), we have either
y∗(t) ≥ 1/2 and x∗(t) < 1, or y∗(t) < 1/2 and y∗(t) −
x∗(t)2/2 > 0. In the first case, we directly have ẏ∗(t) < 1,
and in the second case, we have x∗(t) <

√
2y∗(t), and

the point (
√

2y∗(t),y∗(t)) ∈ C is attainable from the point
(x∗(t̂),y∗(t̂)). As a consequence, we have ẏ∗(t) <

√
2y∗(t).

Starting from the point (x∗(t̂),y∗(t̂)) at time t̂, we define
a trajectory (x̃, ỹ) driven by the control ũ(t) = 1 for t ∈

[t̂, t̂ + 1− x∗(t̂)), and ũ(t) = 0 for t ∈ [t̂ + 1− x∗(t̂), t̂ + 1−
x∗(t̂) + y∗(t−)− 1/2]. This trajectory follows the curb C
until it reaches the point (1,1/2), then it goes straight up
on the boundary x = 1 until the point (1,y∗(t−)). According
to what was said above, we then have for all t ∈ (t̂, t̂ +
1− x∗(t̂)+ y∗(t−)− 1/2), ẏ∗(t) < ˙̃y(t). We deduce that the
trajectory (x̃, ỹ) reaches the point (x∗(t−),y∗(t−)) at a time
t̃ < t−, which contradicts the optimality of the trajectory
(x∗(·),y∗(·)). Hence y∗(t−)≤ 1/2.

Moreover if y∗(t−)< 1/2, a brief study of reachability of
(1,y∗(t−)) shows that the trajectory of y has to decrease,
and hence the trajectory of x has to go in the negative
values. This way, it would exist a time s ∈ (0, t−) such that
x∗(s) = 0, y∗(s) < 0, and since s > 1/2− y∗(t−) (since the
speed of movement of y is smaller around x = 0, and getting
|ẏ| = 1 in the area x < 0 would require to waste more than
s = 1/2 of time). As a consequence, the time σ to reach
(1,y∗(t−)) has to verify σ ≥ 1 + s > 3/2 − y∗(t−). Thus
either the trajectory stays on the boundary x = 1 until the
point (1,1/2), or the quantity x grows. In the first case,
the trajectory starting from (0,0) and following C would
be strictly faster to reach (1,1/2), and in the second case,
we could make a similar argument as before by defining
D = {(x,y), y = −x2/2+ 2x+ 1} and considering ť = infΛ

where Λ = {t ∈ (σ ,T ∗), st : (x∗(t),y∗(t)) ∈ D}. In any case,
we conclude that it would contradict the optimality of the
trajectory (x∗(·),y∗(·)). Hence y∗(t−) = 1/2.

By mirroring these arguments for the end of the trajectory,
we can show that y∗(t+) = 5/2. Finally, any trajectory
(x(·),y(·)) that does not stay on x(t) = 1 for all t ∈ [t−, t+]
will necessarily present an interval I of non-null measure
where ẏ(t) < 1 for all t ∈ I. Therefore it will not reach the
point (1,5/2) as fast as the trajectory remaining on x = 1.
Between (1,1/2) and (1,5/2), the singular control u∗ = 0 is
then optimal.

To conclude, we necessarily have t− = 1, u∗(t) = 1 for all
t ∈ [0,1), t+ = 3, u∗(t) = 0 for all t ∈ [1,3), and u∗(t) = 1 for
all t ∈ [3,T ∗]. Furthermore, the optimal time is then T ∗ = 4.

B. Example from an Irrigation model

Let us define the following optimal control problem,
denoted (P2), taken from a crop irrigation model (see [5]),
and evolving over a fixed time interval [0,T ].

Ṡ(t) = k1(−ϕ(t)KS(S(t))− (1−ϕ(t))KR(S(t))+ k2u(t))
Ḃ(t) = ϕ(t)KS(S(t))
V̇ (t) = u(t)

with initial conditions S(0) = S0 ∈ (S∗,1], B(0) = 0 and
V (0) = 0, and where the functions KS and KR are continuous
piecewise affine, as follows :

KS(S) =


0 ,S ∈ [0,Sw]
S−Sw
S∗−Sw

,S ∈ [Sw,S∗]
1 ,S ≥ S∗

KR(S) =

{
0 ,S ∈ [0,Sh]
S−Sh
1−Sh

,S ≥ Sh



with 0 < Sh < Sw < S∗ < 1. The control u(·) takes values
in [0,1], and the constants verify k1 > 0 and k2 > 1 (local
controllability condition). The function ϕ is supposed to be
C1, increasing, and taking values in [0,1]. The optimization
problem consists in fixing a terminal time T > 0 and aiming
at a maximization of the terminal cost B(T ) under some
target constraint V (T ) = Vinit , and some state inequality
constraints Stol ≤ S(t)≤ 1 for all t ∈ [0,T ].

This system (P2) is a quite complex constrained optimiza-
tion problem, and does not fulfill the framework of piecewise
affine time-optimal problems yet. In order to solve this issue,
we first cope with the state constraints. Following an idea
in [13], we replace the constraint by two additional state
equations :

Ẏ (t) = min(0,S(t)−Stol) , Ż(t) = max(0,S(t)−1)

with complementary initial and final conditions :

Y (0) = Z(0) = 0 , Y (T ) = Z(T ) = 0

We obtain a system of five equations and additional initial
and final conditions. The functions S 7→ min(0,S−Stol) and
S 7→ max(0,S−1) are piecewise affine and continuous with
respect to the state. Then, in a similar way as in the Section
II.B, we add a new state in order to measure the time :

θ̇(t) = 1

with initial condition θ(0) = 0 and terminal condition
θ(T ) = T . Finally, let us assume that there exists an op-
timal solution of the problem (P2). In this case, there is a
corresponding optimal terminal cost B∗ > 0 and a final state
S(T ) = S̃. We then consider that it gives in fact an additional
terminal condition for the state B(·), ie. B(T ) = B∗. Now we
may replace all the terminal conditions by a target :

(S f ,B f ,Vf ,Yf ,Z f ,θ f ) = (S̃,B∗,Vinit ,0,0,T )

With all these transformations, we now have a problem writ-
ten as a piecewise affine system with continuous dynamics
with respect to the state, and the previous optimization is
thus by definition equivalent to a minimum time problem to
reach the target.

If k2 and Vinit are sufficiently high, then the application
of the Bang control u(t) = 1 over a time interval will allow
the trajectory of S(·) to reach the threshold S∗, at a certain
time t1. Then, if Vinit is not too high, we can show (by using
the expression of the switching function and the terminal
necessary conditions given by the non-smooth PMP, see [5])
that it is optimal to have a Bang arc u(t) = 0 over the final
time interval. Under these circumstances, there exists a time
t2 such that S(t2) = S∗, and S(t) < S∗ for all t > t2. Over
the time interval [t1, t2], we are going to show that it is then
optimal to keep the trajectory at S = S∗ rather than making
Bang arcs, as we illustrate in Fig. 3.

Let us denote ũ(·) an optimal control for (P2), and
(S̃(·), B̃(·),Ṽ (·)) its associated trajectory. Suppose that there
exists t1 < t2 such that S(t1) = S(t2) = S∗. For any con-
trol u and corresponding trajectory S, define B[t1,t2](u) =

∫ t2
t1 ϕ(t)KS(S(t))dt and V[t1,t2](u) =

∫ t2
t1 u(t)dt. According to

the initial problem, the objective on this interval [t1, t2] is to
maximize the quantity B[t1,t2](u) with the target V[t1,t2](u) =
V[t1,t2](ũ).

Let us assume that there exists a time t̂ ∈ (t1, t2) such
that S̃(t̂) < S∗. By continuity there exists a neighbourhood
I = [t−, t+]⊂ [t1, t2] where S̃(t)< S∗ for all t ∈ I and S̃(t−) =
S̃(t+) = S∗. Denote using the control keeping S constant,
defined by :

using(t,S) =
ϕ(t)KS(S(t))+(1−ϕ(t))KR(S(t))

k2
∈ (0,1)

Thus the trajectory of Ss over I with initial condition Ss(t−)=
S∗ and the control using(·,S∗) is constant equal to S∗ over I.
For any t ∈ I̊, using the dynamics and the fact that KS and
KR are non-decreasing in S, we then have :

0 < Ss(t)− S̃(t)≤ k1k2

∫ t

t−
using(τ,S∗)− ũ(τ)dτ

We deduce that
∫

I using(t,S∗)dt >
∫

I ũ(t)dt. As a consequence,
since we must have V[t1,t2](using) =V[t1,t2](ũ), it is not possible
to have S̃(t)≤ S∗ for all t ∈ [t1, t2], using a similar argument.
Then there exists an interval J ⊂ [t1, t2] such that S̃ > S∗ for
all t ∈ J. We define the following sets :

G< = {t ∈ [t1, t2], st : S̃(t)< S∗}

G> = {t ∈ [t1, t2], st : S̃(t)> S∗}

By the reasoning above, these sets have non-null measure,
and by using the dynamics of B and the definition of KS, we
finally have :∫

G<
ϕ(t)(KS(Ss(t))−KS(S̃(t)))dt > 0

and : ∫
G>

ϕ(t)(KS(Ss(t))−KS(S̃(t)))dt = 0

In other words, the quantity B[t1,t2](using) is thus strictly
bigger than B[t1,t2](ũ). To conclude, it is not possible to have
t̂ ∈ (t1, t2) such that S̃(t̂) < S∗ for the optimal solution. A
mirror argument holds for S̃(t̂)> S∗, and we finally deduce
that the trajectory S(·) = S∗ is optimal on such an interval
[t1, t2].

Fig. 3. Optimal mixed Bang and singular trajectory for (P2)



V. CONCLUSIONS

We focused our study here on a discussion about the
validity of the Bang-Bang principle in a piecwise affine
framework. As we saw, an optimal solution may in general
be composed of Bang arcs inside the areas of the partition,
and eventual singular arcs on the boundaries. For future
perspectives, we may wonder about deriving the non-smooth
Pontryagin principle for a continuous piecewise affine sys-
tem, and especially we may interest in the conditions of
occurence of such singular arcs. In fact, generalized gradients
may arise from the derivation of the Hamiltonian, and the
behaviour of the adjoints over time intervals where the state
runs through a non-differentiable locus of the dynamics
is therefore non-trivial. A more precise description of this
situation may be considered as the next step for the study of
continuous piecewise affine systems.
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