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Abstract

Missing values are prevalent across various fields, posing challenges for training
and deploying predictive models. In this context, imputation is a common practice,
driven by the hope that accurate imputations will enhance predictions. However,
recent theoretical and empirical studies indicate that simple constant imputation
can be consistent and competitive. This empirical study aims at clarifying if
and when investing in advanced imputation methods yields significantly better
predictions. Relating imputation and predictive accuracies across combinations of
imputation and predictive models on 20 datasets, we show that imputation accuracy
matters less i) when using expressive models, ii) when incorporating missingness
indicators as complementary inputs, iii) matters much more for generated linear
outcomes than for real-data outcomes. Interestingly, we also show that the use of
the missingness indicator is beneficial to the prediction performance, even in MCAR
scenarios. Overall, on real-data with powerful models, improving imputation only
has a minor effect on prediction performance. Thus, investing in better imputations
for improved predictions often offers limited benefits.

1 Introduction

Databases are often riddled with missing values due to faulty measurements, unanswered question-
naire items or unreported data. This is typical of large health databases such as the UK Biobank
[Sudlow et al., 2015], the National Health Interview Survey [Blewett et al., 2019] and others [Perez-
Lebel et al., 2022]. Statistical analysis with missing values has been widely studied, particularly
to estimate parameters such as means and variances [Little and Rubin, 2019]. However, how to
best deal with missing values for prediction has been less studied. Since most machine learning
models do not natively handle missing values, common practice is to impute missing values before
training a model on the completed data, often with the expectation that “good” imputation improves
predictions. Considerable efforts have been dedicated to improving imputation techniques, utilizing
Generative Adversarial Networks [Yoon et al., 2018], Variational AutoEncoders [Mattei and Frellsen,
2019], optimal transport [Muzellec et al., 2020] or AutoML-enhanced iterative conditional imputation
[Jarrett et al., 2022] among others. Most of these studies concentrate on imputation accuracy without
assessing performance on subsequent tasks. However, theoretical arguments suggest that good impu-
tation is not needed for good prediction [Le Morvan et al., 2021, Josse et al., 2019]. These arguments
are asymptotic and whether they hold in typical cases is debatable. To address the discrepancy
between this theory and the emphasis on imputation efforts, there is a critical need for empirical
studies to determine whether better imputations actually lead to better predictions.

Theory does establish that in some scenarios, better imputations imply better predictions. For instance
with a linearly-generated outcome, the optimal prediction writes as a linear model on the optimally-
imputed data Le Morvan et al. [2021]. Thus, using a linear model for prediction, better imputations
typically yield better predictions. Interestingly though, theoretical results indicate that for linear

Preprint. Under review.



models, simple constant imputations suffice in very high dimensions [Ayme et al., 2023], or in small
dimensions with uncorrelated features [Ayme et al., 2024]. Beyond linear models, empirical studies
on real data have shown the competitiveness of simple imputations –such as mean– [Paterakis et al.,
2024, Perez-Lebel et al., 2022, Shadbahr et al., 2023] aligning with theoretical arguments. However,
their findings may be driven by “predictive” missingness [Missing Not At Random data, for which
most imputation methods are invalid Little and Rubin, 2019, Josse et al., 2019]. In addition, these
studies have not quantified the effect of imputation accuracy on prediction performance nor how these
effects are modulated by the choice of downstream model, the use of a missingness indicator, the
missingness mechanism or dataset-related features. Our work fills this gap and provides actionable
conclusions.

We study settings where good imputations are most likely to benefit downstream predictive per-
formance, in order to obtain an upper bound on the potential benefits of improved imputation in
general cases. If only minor benefits are observed in this context, it would suggest even smaller
benefits in general. Specifically, there are 3 types of missingness mechanisms [Rubin, 1976]: (i)
Missing Completely At Random (MCAR), where each entry is missing with a fixed probability; (ii)
Missing At Random (MAR), where the probability of a value being missing depends only on observed
variables, (iii) Missing Not At Random settings (MNAR), where the missingness is informative and
encompasses all other scenarios. Most imputation algorithms are valid under MCAR but not under
MNAR. Therefore, we focus on the MCAR settings where imputation algorithms are most likely
to produce accurate imputations. Additionally, we focus on datasets with only numerical values.
For categorical features, handling missing values by treating them as a new category is a popular
and effective approach that does not involve a notion of imputation accuracy. In this setting, we
characterize the relationship between imputation accuracy and predictive performance for several
downstream prediction models, with and without the missingness indicator. Properly benchmarking
methodologies with missing values is particularly resource-intensive, as already emphasized in previ-
ous works [Jäger et al., 2021, Perez-Lebel et al., 2022]. Indeed, computing costs are driven by the
combinatorics of imputation and prediction models, hyperparameter optimization for both, inclusion
and exclusion of the indicator, and varying missing rates.

Section 2 introduces related work, covering both benchmarks for prediction with missing values and
available theory. Section 3 details our experimental procedures, specifically the methods examined.
Section 4 presents our findings, relating gains in imputation to prediction performance. Finally,
section 5 summarizes the lessons learned.

2 Related work

Benchmarks. Several benchmark studies have investigated imputation in a prediction context
[Paterakis et al., 2024, Jäger et al., 2021, Ramosaj et al., 2022, Woźnica and Biecek, 2020, Perez-
Lebel et al., 2022, Poulos and Valle, 2018, Shadbahr et al., 2023, Li et al., 2024]. However, drawing
definitive conclusions from most studies is challenging due to various limitations in scope and
experimental choices. For example, Bertsimas et al. [2018], Li et al. [2024] trained imputation
methods using both the training and test sets, rather than applying the imputation learned on the
training set to the test set, which is not possible with many imputation packages. This approach
creates data leakage. Woźnica and Biecek [2020] trained imputers separately on the train and test sets,
which creates an “imputation shift” between the training and test data. Jäger et al. [2021] discards
and imputes values in a single column of the test set, chosen at random and fixed throughout the
experiments. Yet as they note, conclusions can change drastically depending on the importance
of the to-be-imputed column for the prediction task or its correlation with other features. Some
studies [Poulos and Valle, 2018, Ramosaj et al., 2022] use a small number of datasets (resp. 2 and 5
datasets from the UCI machine learning repository respectively), thus limiting the significance of their
conclusions. Woźnica and Biecek [2020] do not perform hyperparameter tuning for the prediction
models, while Ramosaj et al. [2022] tunes hyperparameters on the complete data, though it is unclear
whether the best hyperparameters on complete data are also the best on incomplete data. Furthermore,
some benchmarks focus on specific types of downstream prediction models, such as linear models
[Jäger et al., 2021], AutoML models [Paterakis et al., 2024] or Support Vector Machines [Li et al.,
2024], meaning their conclusions should not be generalized to all types of downstream models. The
data used in benchmarks also affects the scope of the conclusions. For instance, Paterakis et al. [2024]
considers 35 datasets, most with only a few hundred samples and a 50% train-test split, making
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their conclusions more relevant to small data scenarios. Finally, only Perez-Lebel et al. [2022] and
Paterakis et al. [2024] evaluate the use of the missingness indicator as complementary input features.

Among the benchmarks with largest scope, Paterakis et al. [2024] recommend mean/mode imputation
with the indicator as the default option in AutoML settings, both for native and simulated missingness.
It is among the top-performing approaches, never statistically significantly outperformed, and is
also the most cost-effective. They also show that using the missingness indicator as input improves
performances slightly but significantly for most imputation methods. Perez-Lebel et al. [2022] focus
on predictive modeling for large health databases, which contain many naturally occurring missing
values. They compare various imputation strategies (mean, median, k-nearest neighbors imputation,
MICE) combined with gradient-boosted trees (GBTs) for prediction, as well as GBTs with native
handling of missing values. Similarly to Paterakis et al. [2024], they find that appending the indicator
to the imputed data significantly improves performances, which may reflect MNAR data. While
they recommend resorting to the native handling of missing values as it is relatively cheap, their
results further indicate that no method is significantly better than using the mean as imputation
method together with the indicator. Shadbahr et al. [2023] also find that the best imputations do not
necessarily result in the best downstream performances. Using an analysis of variance, they show that
the choice of imputation method has a significant but small effect on the classification performance.

Whether better imputation leads to better prediction may vary depending on factors like the choice of
downstream model, the missingness rate, or the specific datasets. Yet, many studies seek a definitive
conclusion across diverse settings. Only Paterakis et al. [2024] conducted a meta-analysis, yet it did
not determine when more advanced imputation strategies are beneficial compared to mean or mode
imputations. Identifying scenarios in which better imputations are more likely to improve predictions
is however of strong practical interest.

Theoretical insights. Previous works have also addressed this question from a theoretical point of
view. Le Morvan et al. [2021] showed that for all missingness mechanisms and almost all deterministic
imputation functions, universally consistent algorithms trained on imputed data asymptotically
achieve optimal performances in prediction. This is in particular true for simple imputations such
as the mean [Josse et al., 2019], thereby providing rationale to favor simple imputations over more
accurate ones. Essentially, optimal prediction models can be built on mean-imputed data by modeling
the mean as a special value encoding for missingness. Ayme et al. [2023] also provide theoretical
support for the use of simple imputations, as they advocate for the use of zero imputation in high-
dimensional settings. They show that, for a linear regression problem and MCAR missingness,
learning on zero-imputed data instead of complete data incurs an imputation bias that goes to zero
when the dimension increases. This holds given certain assumptions on the covariance matrix, which
intuitively impose some redundancy among variables. Finally, Van Ness et al. [2023] prove that in
MCAR settings, the best linear predictor assigns zero weights to the missingness indicator, whereas
these weights are non-zero in MNAR settings. Their theoretical results imply that the missingness
indicator neither degrades nor enhances performances asymptotically in MCAR.

3 Experimental setup.

Imputation methods. We chose four imputation models to cover a wide range of imputation
qualities. Importantly, our goal is not to extensively benchmark different imputation strategies but to
understand the link between imputation quality and prediction performance.

mean - each missing value is imputed with the mean of the observed values in a given variable. It
provides a useful baseline for assessing the effectiveness of advanced techniques.

iterativeBR - each feature is imputed based on the other features in a round-robin fashion using a
Bayesian ridge regressor. This method is related to mice [Van Buuren and Groothuis-Oudshoorn,
2011] in that it is also based on a fully conditional specification [Van Buuren, 2018]. It is
implemented in scikit-learn’s IterativeImputer [Pedregosa et al., 2011].

missforest [Stekhoven and Bühlmann, 2012] - operates in a manner analogous to iterativeBR,
wherein it imputes one feature using all others and iteratively enhances the imputation by sequen-
tially addressing each feature multiple times. The key distinction lies in its utilization of a random
forest for imputation rather than a linear model. We used scikit-learn’s IterativeImputer
with RandomForestRegressor as estimators. Default parameters for Missforest were set to
n_estimators=30 and max_depth=15 for the random forests (the higher the better) to keep a
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reasonable computational budget. Note that in HyperImpute [Jarrett et al., 2022], random forests
are more limited: 10 trees and a maximum depth of 4.

condexp - uses the conditional expectation formula of a multivariate normal distribution to impute
the missing entries given the observed ones. The mean and covariance matrix of the multivariate
normal distribution are estimated with (pairwise) available-case estimates [Little and Rubin, 2019,
section 3.4], i.e., the (i, j)th entry of the covariance matrix is estimated solely from samples where
both variables i and j are observed. This approach offers computational advantages over more
resource-intensive approaches such as the Expectation-Maximization (EM) algorithm. It is related
to Buck’s method [Buck, 1960, Little and Rubin, 2019, section 4.2].

Mean imputation can be expected to give the worst imputation, with other methods offering varying
improvements. In particular, missforest often delivers top-tier performance on tabular data.

Models: As the effect of imputation on prediction quality can be modulated by the predictive model
used, we included three predictive models. In particular, we took care to include both deep learning
and tree-based representatives, as the prediction functions produced by these models have different
properties, for example regarding their smoothness.

• MLP: a basic Multilayer Perceptron with ReLU activations, to serve as a simple baseline.
• SAINT [Somepalli et al., 2021]: Self-Attention and Intersample Attention Transformer (SAINT)

is a deep tabular model that performs both row and column attention. The numerical features are
first embedded to a d-dimensional space before being fed to the transformer. We chose SAINT as it
has been shown to be state-of-the-art among deep learning approaches for tabular data in several
surveys [Borisov et al., 2022, Grinsztajn et al., 2022].

• XGBoost [Chen and Guestrin, 2016]: We chose XGBoost as it is a popular state-of-the-art boosting
method, and it has been shown to be the best tree-based model on regression tasks with numerical
features only in Grinsztajn et al. [2022].

We tuned hyperparameters with Optuna [Akiba et al., 2019] for XGBoost and MLP. For SAINT, we
used the default hyperparameters provided by its authors [Somepalli et al., 2021] for computational
reasons. Tables 2 to 4 give all details on hyperparameter tuning and default hyperparameters.

Native handling of missing values: Both SAINT and XGBoost can directly be applied on incom-
plete data, without prior imputation of the missing values, each with its own strategy. XGBoost uses
the Missing Incorporated in Attribute (MIA) [Twala et al., 2008, Josse et al., 2019] approach. When
splitting, samples with missing values in the split feature can go left, right, or form their own leaf.
MIA retains the option that minimizes the prediction error. In SAINT, numerical features are embed-
ded in a d-dimensional space using simple MLPs. In case of missing value, a learnable d-dimensional
embedding is used to represent the NaN. Each feature has its own missingness embedding.

The datasets We use a benchmark created by Grinsztajn et al. [2022] for tabular learning. It
comprises 20 datasets (listed in table 1), each corresponding to a regression task with continuous and
ordinal features. Missing data is generated according to a MCAR mechanism with either 20% or 50%
misssing rate. Continuous features are gaussianized using scikit-learn’s QuantileTransformer
while ordinal features are standard scaled to have a zero mean and unit variance. This is true for all
imputation and model combination except for XGBoost with native handling of missing values, as it
is not expected to benefit from a normalization. The outputs y are also standard scaled. In all cases,
the parameters of these data normalizations are learned on the train set with missing values. We also
provide experiments on semi-synthetic data where the response y is simulated as a linear function of
the original data X . The coefficients β of the linear function are all taken equal and scaled so that the
variance of β⊤X is equal to 1. Noise is added with a signal-to-noise ratio of 10.

Evaluation strategy Each dataset is randomly split into 3 folds (train - 80%, validation - 10% and
test - 10%), and each split is furthermore capped at 50,000 samples (table 1). Train, validation and
test sets are imputed using the same imputation model trained on the train set. Prediction models are
then trained on the imputed train set. For XGBoost and the MLP, hyperparameters are optimized
using Optuna [Akiba et al., 2019] with 50 trials, i.e, Optuna draws 50 sets of hyperparameters, trains
a model for each of these hyperparameter sets, and retains the best one according to the prediction
performance on the validation set. When the indicator is used, it is appended as extra features to the
imputed data, it is not leveraged for the imputation stage. We run all combinations of the 3 prediction
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models with the 4 imputation techniques, with and without the indicator, resulting in 4× 3× 2 = 24
models to which we add XGBoost and SAINT with native handling of missing values. This results in
a total of 26 models displayed in Figure 1. Finally, the whole process is repeated with 10 different
train/validation/test splits. For reproducibility, the code will be available on GitHub upon publication
of the preprint.

Computational resources. Multiplying the number of models (26) with the number of datasets
(20 + 20 linear versions), the hyperparameter tuning (50 trials), the number of repetitions of the
experiments (10), and the 2 missing rates, we get a very large number of runs (around 700,000). As
some methods are computationally expensive –such as missforest for imputing, as well as SAINT
notably when the indicator is used–, these experiments required a total of 2.5 CPU years. A quarter
of this time was dedicated to imputation.

4 Results: Determinants of predictions performance with MCAR missingness

4.1 Benefits of sophisticated imputation, the indicator, and XGBoost amid high variance.

Figure 1 summarizes the relative performance of the various predictors combined with the different
imputation schemes across the 20 datasets. Some trends emerge: more sophisticated imputers tend
to improve prediction, with missForest-based predictors often outperforming those using condexp
or iterativeBR imputers, which in turn outperform predictors based on mean imputation. However,
using the missingness indicator decreases this effect. Additionally, this effect is barely noticeable for
the best predictor, XGBoost, which appears to maintain its advantages on tabular data [as described
in Grinsztajn et al., 2022] even in the presence of missing values.

That the best predictor barely benefits from fancy imputers brings us back to our original question:
should efforts go into imputation? Drawing a conclusion from fig. 1 would be premature: the variance
across datasets is typically greater than the difference in performance between methods (critical
difference diagram in figs. 6 and 7). For example, missforest + XGBoost + indicator outperforms
all other methods on only a third of datasets. Additionally, XGBoost + indicator does not perform
significantly better with missforest than with condexp, while mean imputation does not always lead
to the worst prediction. In what follows, we focus on quantifying the effects of improved imputation
accuracy on predictions in different scenarios.

MLP SAINT XGBoost
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Figure 1: Relative prediction performances across datasets for different imputations, predictors,
and use of the missingness indicator. Each boxplot represents 200 points (20 datasets with 10
repetitions per dataset). The performances shown are R2 scores on the test set relative to the mean
performance across all models for a given dataset and repetition. A value of 0.01 indicates that
a given method outperforms the average performance on a given dataset by 0.01 on the R2 score.
Corresponding critical difference plots in figs. 6 and 7.
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4.2 A detour through imputation accuracies: how do imputers compare?

Although comparing imputers is not our main objective, it is enlightening for our prediction purpose
to characterize their relative performance range. Figure 2 (left) gives imputation performances
measured as the R2 score between the imputed and ground truth values, relative to the average across
methods and missing rates for each dataset. At 20% missing rate, the best imputer is missforest,
followed by condexp and iterativeBR, nearly tied, and far behind mean imputation. At 50% missing
rate, the imputation accuracy of all but mean imputation drop, but interestingly condexp is much
less affected. It is interesting that such a simple method performs best. It is notably two orders of
magnitude faster than missforest (figure 2 right), which makes it an imputation technique worth
considering. It is possible that the gaussianization of the features helped condexp, although a
feature-wise gaussianization does not produce a jointly Gaussian dataset.

This work does not aim to compare or identify the best imputers, but rather to achieve varying
imputation qualities to highlight the link between imputation and prediction quality. In this regard, the
high range of imputation accuracy between the best and worst methods (an average difference of 0.5
R2 points at 20% and 0.3 R2 points at 50%) allows capturing differences in prediction performance.

4.3 Linking imputation accuracy and prediction performances.

Combining the four imputation techniques with 10 repetitions of each experiment yields 40 (im-
putation R2 , prediction R2 ) pairs for each model and dataset. To quantify how improvements in
imputation accuracy translate into downstream prediction performance, we fit a linear regression
using these 40 points for each model and dataset1. Figure 3 gives two examples of such fit: on
the Bike_Sharing_Demand dataset, for a missing rate of 50%, the prediction R2 increases as a
function of the imputation R2 ; the effect is greater for the MLP, for which the fit gives a slope of 0.24,
than for the MLP with indicator for which the slope is only 0.03. Figure 4 summarizes the slopes
estimated using the aforementioned methodology across all datasets, predictors with and without
the indicator, and varying missing rates. Firstly, the fact that most slopes are positive indicates that
better imputations correlate with better predictions, aligning with common beliefs. However, this
observation should be nuanced by the size of the effects.

Gains in prediction R2 are 10% or less of the gains in imputation R2 . Figure 4 shows that
the slopes are typically small, rarely exceeding 0.1. This implies that an improvement of 0.1 in
imputation R2 typically leads to an improvement in prediction R2 that is 10 times smaller, i.e. a gain
of 0.01 in prediction R2 , or even less. For XGBoost, the average slope across datasets in rather close
to 0.025 or less (even zero without the mask at 20% missing rate). Thus, an enhancement of 0.3 in

1The repetition identifier is also used as a covariate in the linear regression to account for the effects of the
various train/test splits on prediction performance.
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Figure 2: Left: Imputer performance for recovery. Performances are given as R2 scores for each
dataset relative to the mean performance across imputation techniques. A negative value indicates
that a method perform worse than the average of other methods. Right: Imputation time.
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imputation R2 , which represents the average difference between the best of the worst imputer in this
scenario (mean vs condexp in fig. 2), implies a gain in prediction R2 of only 0.0075.

Good imputations matter less for more expressive predictors. Comparison between models
shows a decrease in slope from MLP to SAINT, to XGBooost. These results illustrate the idea that a
powerful model can compensate for the simplicity or inaccuracy of an imputation (in our case, the
MLP can be considered the least expressive model, and XGBoost the most expressive). Le Morvan
et al. [2021] gives a formal proof in an extreme case: given enough samples, a sufficiently expressive
model can always build a Bayes optimal predictor even on the simplest imputations (e.g. a constant).

Good imputations matter less when adding the indicator. Figure 4 shows that adding the
missingness indicator clearly decreases the effect size: imputing better has less impact on performance
when the indicator is used (we discuss this effect further in section 4.4).

Good imputations matter less when the response is non-linear. When the response y is a linear
function of the input X , the best predictor can be built using a linear model on the most accurate
simple imputation. However, when the responses are non-linear, it may be difficult to learn the best
possible predictor even with the most accurate imputation [Le Morvan et al., 2021]. There are thus
reasons to believe that response non-linearity, which is common in real data, alters the relationship
between imputation accuracy and prediction performance. To investigate this, we compare the real
datasets with matching semi-simulated datasets where y is simulated as a linear function of the
input X . We also measure correlation2 (fig. 5) in addition to the slope, to quantify the reliability
of the association: correlation captures not only the effect size (slope) but also the amount of noise
(appendix C recalls this classic result) in the relationship. While the effects are similar between
real and linear outcomes (fig. 11 gives effects in the semi-simulated case), the correlation between
imputation accuracy and prediction performance, averaged across all datasets, is systematically
smaller for real outcomes than for linear ones (fig. 5). The average decrease in correlation lies
between 0.1 and 0.3 across models. Moreover, the variance in correlations for real outcomes is

2Specifically we use the partial correlation, partialing out the effect of repeated train/test splits.
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Figure 4: Effect of the imputation recovery on the prediction performance. We report the slope
of the regression line where imputation quality is used to predict prediction performance.
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Figure 5: Correlation between imputation quality and prediction performance. A correlation
close to 1 indicates that the quality of imputations is stronly associated to the quality of predictions,
while a correlation close to zero means that the quality of predictions is not linked to the quality of
imputations. Each correlation is computed using 40 different imputation/performance pairs, made of
4 imputation methods (mean, iterativeBR, missforest, condexp) repeated 10 times.

much larger, with many datasets with a near-zero correlation. This shows that the gains expected in
prediction from better imputation are much more reliably achieved when the response is linear.

4.4 Why is the indicator beneficial, even with MCAR data?

In general, we find that adding the missingness indicator really helps prediction. While it is expected
that adding the indicator is beneficial in MNAR scenarios, as the missingness is informative, it is less
obvious in the MCAR settings studied here. Indeed, the indicator contains absolutely no relevant
information for predicting the outcome. To the best of our knowledge, the benefit of using an indicator
in MCAR has not yet been established. Below, we propose a theoretical insight to explain this finding.

The best possible predictor in the presence of missingness can always be expressed as the composition
of an imputation and a prediction function [Le Morvan et al., 2021]. But, in general, the best prediction
function on the imputed data can be challenging to learn, even for perfect conditional imputation. In
fact, it often displays discontinuities on imputed points. We hypothesize that adding the missingness
indicator simplifies modeling functions that exhibit discontinuities at these points, as the indicator
can act as a switch to encode these discontinuities.

The case of XGBoost in Figure 1 illustrates the importance of keeping the missingness information
encoded. For 50% missing rate, in the absence of an indicator, no imputation really benefits prediction
with XGBoost, and the best option is to use the native handling of missing values. This suggests that
XGBoost benefits from knowing which values are missing. With advanced imputations, distinguishing
between imputed and observed values becomes challenging. Appending the indicator to the imputed
data reinstates the missingness information unambiguously, which enables XGBoost to benefit from
more advanced imputations, in particular missforest.

5 Conclusion

For prediction, imputation matters but marginally. Prior theoretical work showed that in extreme
cases (asymptotics), imputation does not matter for predicting with missing values. We quantified
empirically the effect of imputation accuracy gains on prediction performance across many datasets
and scenarios. We show that in practice, imputation does play a role. But various factors modulate the
importance of better imputations for prediction: investing in better imputations will be less beneficial
when a flexible model is used, when a missing-value indicator is used, and if the response is thought to
be non-linear. These results are actually in line with the theoretical results suggesting that imputation
does not matter, as these hold for very flexible models (ie universally consistent). A notable new
insight is that adding a missing-value indicator as input is beneficial for prediction performances even
for MCAR settings, where missingness is uninformative.

We show that large gains in imputation accuracy translate into small gains in prediction performance.
These results were drawn from a favorable MCAR setting, and it is likely that with native missingness,

8



often Missing Non At Random (MNAR), the performance gains are even smaller. As novel imputation
methods usually provide small gains in imputation accuracy compared to the state-of-the-art, the
corresponding gains in downstream prediction tasks are likely to be even smaller.

There are multiple potential reasons why imputation gains do not always correlate with performance
gains. For instance, some features may be well recovered, but not useful in the prediction because
they are not predictive. Or even with accurate imputations, it may still be difficult to learn a predictor
that performs well for all missing data patterns. Finally, the imputation accuracy is also probably
an imperfect measure of the potential gains in prediction: in our experiments on 50% missing rate,
missforest and iterativeBR performs comparable on average yet missforest-based predictors tend to
outperform those based on iterativeBR.

Limitations and future work. A remaining question is whether better imputations matter more for
higher-dimensional datasets. In our study, the 3 datasets with higher dimension (superconduct, isolet
and year) show high correlations of imputation with prediction gains, and larger effects, notably for
isolet. It would also be useful to investigate whether imputations based on random draws outperform
deterministic imputations for downstream prediction tasks, and the usefulness of multiple imputations
[Perez-Lebel et al., 2022]. A related question is whether reconstructing well the data distribution
is important for better predictions. Shadbahr et al. [2023] shows that it does not seem crucial for
classification performances but may compromise more seriously model interpretability. Finally,
adding the indicator to the input enables better predictors to be learned, yet it may not be the best
way to represent the missingness information, and further investigation is needed in this direction.

Outlook We have seen that often, improving imputation is a difficult way of improving prediction.
On top of imputation, future research could focus more on developing advanced modeling techniques
that can inherently handle missing values and effectively incorporate missingness indicators to
improve predictive performance.
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Supplementary materials – Imputation for prediction:
beware of diminishing returns.

A List of datasets.

This benchmark was created by Grinsztajn et al. [2022], and is available on OpenML at https://www.
openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=297.

Table 1: Datasets dimensions.
dataset d n_train n_test

house_16H 16 18185 2274
cpu_act 21 6553 820
elevators 16 13279 1661
wine_quality 11 5197 651
Brazilian_houses 8 8553 1070
house_sales 15 17290 2162
sulfur 6 8064 1009
Ailerons 33 11000 1375
Bike_Sharing_Demand 6 13903 1739
california 8 16512 2064
diamonds 6 43152 5394
fifa 5 14450 1807
houses 8 16512 2064
isolet 613 6237 781
medical_charges 3 50000 50000
MiamiHousing2016 13 11145 1394
nyc-taxi-green-dec-2016 9 50000 50000
pol 26 12000 1500
superconduct 79 17010 2127
year 90 50000 50000

B Hyperparameter search spaces

Table 2: XGBoost hyperparameter space. We used the XGBRegressor from the xgboost Python
library. The hyperparameters optimized are commonly accepted as the most important ones. The
variation ranges are inspired by the ones used in Grinsztajn et al. [2022], while the default hyperpa-
rameters are those of the xgboost library.

parameter range log scale default

n_estimators [100, 2000] no 100
max_depth [1, 6] no 6
learning_rate

[
10−5, 0.7

]
yes 0.3

reg_alpha
[
10−8, 102

]
yes 10−8

reg_lambda [1, 4] yes 1
early_stopping_rounds - - 20
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Table 3: MLP hyperparameter space. We implemented the MLP in PyTorch. The parameter d for
the width of the MLP represents the number of features. When d > 1024, the width is taken equal to
the number of features d.

parameter range default

MLP depth J0, 6K 3
width [d,min (10d, 1024)] 3d
dropout rate [0, 0.5] 0.2

Optimizer name - AdamW
weight decay - 10−6

learning rate - 10−3

Scheduler name - ReduceLROnPlateau
factor - 0.2
patience - 10
threshold - 10−4

General max nb. epochs - 2000
early stoppping - Yes
batch size - 256

Table 4: SAINT default hyperparameters. We used the implementation provided by Somepalli et al.
[2021]. d refers to the number of features of the dataset. We did not use a scheduler with SAINT. We
followed the default configuration provided by the paper introducing SAINT [Somepalli et al., 2021]
when there is both intersample and feature attention (i.e. attention_type = ’colrow’).

parameter default

SAINT dim 32 if d < 70, 16 if d ∈ [70, 200], 4 if d ≥ 200
depth 1
heads 4
attn_dropout 0.8
ff_dropout 0.8
attentiontype colrow

Optimizer name AdamW
weight decay 10−2

learning rate 10−4

General max nb. epochs 100
early stopping yes
batch size 256
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C Link between correlation and effect size.

For completeness, we recall below the relationship between correlation and effect size.
Proposition C.1 (Link between correlation and effect size.). Let X ∈ R be a random variable, and
β ∈ R a parameter. Furthermore, define:

Y = βX + ϵ where E[ϵ|X] = 0, var (ϵ) = σ2.

Then:
cor (X,Y ) =

1√
1 + σ2

β2var(X)

Proof. Let’s first derive the expression of the variance of Y :

Var (Y ) = E
[
(Y − E[Y ])

2
]

= E
[
(βX + ϵ− βE[X])

2
]

= E
[
(β (X − E[X]))

2
+ ϵ2

]
= β2var(X) + σ2

It follows that:

cor (Y,X) =
E[(Y − E[Y ]) (X − E[X])]√

var(X) var(Y )

=
E
[
β (X − E[X])

2
]

√
var(X) var(Y )

= β

√
var(X)√
var(Y )

= β

√
var(X)√

β2var(X) + σ2

=
1√

1 + σ2

β2var(X)

Hence, in a case where the imputation accuracy X covers a wider range of values, i.e., var(X) is
larger, but the effect β and the noise σ2 stay the same, then the correlation increases.

D Critical Difference diagrams.

Figures 6 to 9 give the Critical Difference diagrams across all predictors and imputers of average
score ranks for a significance level of 0.05. The difference in ranks for all methods covered by the
same black crossbar are not statistically significant according to a Nemenyi test for multiple pairwise
comparisons. The colors encode the imputation type, the markers identify the model, and the line
types encode the presence or absence of an indicator.
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Figure 6: Critical Difference diagram - 20% missingness rate.

Figure 7: Critical Difference diagram - 50% missingness rate.

Figure 8: Critical Difference diagram - 20% missingness rate, semi-synthetic data with linear
outcomes.

Figure 9: Critical Difference diagram - 50% missingness rate, semi-synthetic data with linear
outcomes.
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E Prediction performances for the semi-synthetic data.
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Figure 10: Relative prediction performances for the semi-synthetic data with linear outcomes
across datasets for different imputations, predictors, and use of the missingness indicator. Each
boxplot represents 200 points (20 datasets with 10 repetitions per dataset). The performances shown
are R2 scores on the test set relative to the mean performance across all models for a given dataset
and repetition. A value of 0.01 indicates that a given method outperforms the average performance
on a given dataset by 0.01 on the R2 score.

F Regression slopes for the semi-synthetic data.
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Figure 11: Effect of the imputation recovery on the prediction performance
for the semi-synthetic data with linear outcomes. We report the slope of the regression line
where imputation quality is used to predict prediction performance.
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G Computation times per method.
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Figure 12: Running time for each model, including the 50 iterations of hyperparameter search for
XGBoost and MLP.
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Figure 13: Running time for each model for the semi-synthetic data with linear outcomes, includ-
ing the 50 iterations of hyperparameter search for XGBoost and MLP.
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H Scatterplots of prediction R2 vs imputation R2 for each model and dataset.

Figure 14: Prediction R2 vs imputation R2 for a MLP - missing rate 50%. The R2 scores are given
relative to the mean R2 score, with the effects of experiment repetitions eliminated (i.e. the effect of
the train/test splits on the performance)

19



Figure 15: Prediction R2 vs imputation R2 for a MLP + indicator - missing rate 50%. The
R2 scores are given relative to the mean R2 score, with the effects of experiment repetitions eliminated
(i.e. the effect of the train/test splits on the performance)
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Figure 16: Prediction R2 vs imputation R2 for SAINT - missing rate 50%. The R2 scores are given
relative to the mean R2 score, with the effects of experiment repetitions eliminated (i.e. the effect of
the train/test splits on the performance)
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Figure 17: Prediction R2 vs imputation R2 for SAINT + indicator - missing rate 50%. The
R2 scores are given relative to the mean R2 score, with the effects of experiment repetitions eliminated
(i.e. the effect of the train/test splits on the performance)
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Figure 18: Prediction R2 vs imputation R2 for XGBoost - missing rate 50%. The R2 scores are
given relative to the mean R2 score, with the effects of experiment repetitions eliminated (i.e. the
effect of the train/test splits on the performance)
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Figure 19: Prediction R2 vs imputation R2 for XGBoost + indicator - missing rate 50%. The
R2 scores are given relative to the mean R2 score, with the effects of experiment repetitions eliminated
(i.e. the effect of the train/test splits on the performance)
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Figure 20: Prediction R2 vs imputation R2 for a MLP - semi-synthetic data with linear outcomes,
missing rate 50%. The R2 scores are given relative to the mean R2 score, with the effects of experiment
repetitions eliminated (i.e. the effect of the train/test splits on the performance)

25



Figure 21: Prediction R2 vs imputation R2 for a MLP + indicator -
semi-synthetic data with linear outcomes, missing rate 50%. The R2 scores are given relative
to the mean R2 score, with the effects of experiment repetitions eliminated (i.e. the effect of the
train/test splits on the performance)
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Figure 22: Prediction R2 vs imputation R2 for SAINT - semi-synthetic data with linear outcomes,
missing rate 50%. The R2 scores are given relative to the mean R2 score, with the effects of experiment
repetitions eliminated (i.e. the effect of the train/test splits on the performance)
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Figure 23: Prediction R2 vs imputation R2 for SAINT + indicator -
semi-synthetic data with linear outcomes, missing rate 50%. The R2 scores are given relative
to the mean R2 score, with the effects of experiment repetitions eliminated (i.e. the effect of the
train/test splits on the performance)
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Figure 24: Prediction R2 vs imputation R2 for XGBoost -
semi-synthetic data with linear outcomes, missing rate 50%. The R2 scores are given relative
to the mean R2 score, with the effects of experiment repetitions eliminated (i.e. the effect of the
train/test splits on the performance)
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Figure 25: Prediction R2 vs imputation R2 for XGBoost + indicator -
semi-synthetic data with linear outcomes, missing rate 50%. The R2 scores are given relative
to the mean R2 score, with the effects of experiment repetitions eliminated (i.e. the effect of the
train/test splits on the performance)

30


	Introduction
	Related work
	Experimental setup.
	Results: Determinants of predictions performance with MCAR missingness
	Benefits of sophisticated imputation, the indicator, and XGBoost amid high variance.
	A detour through imputation accuracies: how do imputers compare?
	Linking imputation accuracy and prediction performances.
	Why is the indicator beneficial, even with MCAR data?

	Conclusion
	List of datasets.
	Hyperparameter search spaces
	Link between correlation and effect size.
	Critical Difference diagrams.
	Prediction performances for the semi-synthetic data.
	Regression slopes for the semi-synthetic data.
	Computation times per method.
	Scatterplots of prediction R2 vs imputation R2 for each model and dataset.

