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Abstract: Single-pixel imaging is able to acquire an image from a few point measurements10

thanks to dedicated reconstruction algorithms. In recent years, reconstruction approaches based11

on deep learning have outperformed most alternatives. However, computational experiments and12

data-driven methods have become difficult, if not impossible, to reproduce. The development13

of tools enabling reproducibility and benchmarking is therefore now essential. This paper14

describes SPyRiT, an open source PyTorch-based toolbox capable of handling various simulation15

configurations and reconstruction methods based on deep learning. In particular, we compare16

several supervised and plug-and-play methods, including post-processing and iterative strategies.17

Our results demonstrate that supervised methods trained on simulated data can be successfully18

applied to experimental data when the signal-to-noise ratio of the measurements is higher or19

equal to that of the training phase. On the other hand, the hyperparameter of the plug-and-play20

methods can be tuned to manage lower signal-to-noise ratios. The modularity of SPyRiT enables21

the evaluation of various configurations and the rigorous benchmarking of reconstructions based22

on deep learning in single-pixel imaging, as well as in related fields such as ghost imaging.23

1. Introduction24

Single-pixel imaging is a technique that enables an image to be acquired from a set of point25

measurements using dedicated reconstruction algorithms [1,2]. The technique can be traced back26

to the concept of Hadamard spectroscopy [3], that introduced Hadamard-modulated measurements27

to enhance the signal-to-noise ratio (SNR) of images reconstructed using the least squares method.28

Single-pixel imaging has gained renewed interest with the advent of compressed sensing theory,29

providing a theoretical framework to ensure perfect reconstruction of an image acquired from30

few measurements obtained with random modulations [4]. The many different applications31

of the technique include imaging in the visible and infrared domains [5], in addition to the32

mid-infrared [6], ultraviolet [7], terahertz [8] and X-ray [9] ranges, as well as through scattering33

media [10], fluorescence lifetime imaging [11], 3D time-of-flight imaging [12], time-of-flight34

LiDAR [13] and light-field microscopy [14].35

Deep learning has revolutionized the field of image reconstruction [15] and greatly advanced36

computational optics [16]. Since the first application of deep learning to single-pixel imaging [17],37

a great variety of data-driven reconstruction methods have been designed for the field. Supervised38

methods train the free parameters of a reconstruction algorithm from image-measurement pairs.39

Simple yet efficient reconstruction algorithms are obtained by post-processing a first (e.g.,40

linear) reconstruction by an image-domain neural network (e.g., a U-Net [18] or an attention41

network [19]). The first reconstruction step can be learned from the data in an end-to-end [17]42

or two-step [20] manner, chosen as the pseudo-inverse solution [21, 22], or the minimum mean43

squares error solution [23]. Following the trend of algorithm unrolling [24, 25], an empirical44

expectation maximisation network was designed in [26] while [27] considered unrolling the45

iterative hard thresholding for expanders. Adversarial training has also been considered [28, 29].46



To improve the generalization ability of supervised methods, one strategy involves fine-tuning47

using a physics-based loss [30]. An alternative is to consider plug-and-play (PnP) methods48

that combine a (deep) denoiser prior with a model-based reconstruction algorithm. Multiple49

configurations (e.g., sampling ratio, noise level, type of modulation) can, therefore, be considered50

using the same denoiser, whereas supervised methods require retraining. Among the possible51

model-based reconstruction algorithms that can be used for PnP, the proximal gradient descent [31]52

or the alternating direction method of multipliers algorithm [32] have been widely used in imaging.53

Different types of denoisers can be considered, such as traditional (e.g., BM3D [33]) or U-Net54

based denoisers (e.g., U-Net [18], DR-UNet [34]), or auto-regressive models [35]. More recently,55

untrained networks have emerged that do not require pretraining [36, 37].56

In this new data-driven deep learning era, reproducibility is a major challenge. Indeed, despite57

huge progress in both the practical and theoretical aspects, most computational experiments and58

data-driven methods have become difficult, if not impossible, to reproduce by an independent59

researcher [38], an issue referred to as the reproducibility crisis. Open source platforms with60

reference datasets and reconstruction algorithms are therefore required in order to ensure the61

reproducibility of results and fair benchmarking needed to establish reliable conclusions.62

This work introduces SPyRiT, the first, to the best of our knowledge, package dedicated to63

single-pixel imaging reconstruction based on deep learning. Though packages for solving general64

inverse problems using deep learning are available (e.g., Pixu [39] or DeepInv [40]), dedicated65

packages are usually preferred when targeting specific applications (e.g., RTK [41], ASTRA [42]66

or TIGRE [43] in computed tomography; BART [44] in magnetic resonance imaging). SPyRiT,67

on the other hand, provides a platform for the simulation and reconstruction of single-pixel68

measurements, integrated within the OpenSpyrit ecosystem that provides data and hardware69

control software [45]. The modular structure of the Python-based package allows users to70

simulate measurements from images, simulate corrupted noisy measurements, process noisy71

measurements prior to reconstruction, define data-driven reconstruction algorithms and train the72

associated networks.73

To illustrate the capabilities of SPyRiT, we implement and compare six different data-driven74

reconstruction methods, belonging to the supervised and PnP families of algorithms. All methods75

are assessed in a controlled manner by evaluation of the images reconstructed by SPyRiT from76

the ImageNet dataset and SPIHIM experimental dataset. While SPyRiT has been designed for77

single-pixel imaging, it may also benefit other computational optical imaging modalities, e.g.,78

ghost imaging which is based on the same imaging principle.79

2. Theory80

2.1. Single-pixel imaging forward model81

Single-pixel imaging aims to recover an unknown image 𝑥 ∈ R𝑁 from a few noisy observations82

𝑚 ≈ 𝐻𝑥, (1)

where 𝐻 : R𝑁 → R𝑀 is a linear measurement operator. In the case when 𝑀 = 𝑁 , it may be83

desirable to work with orthogonal bases, such as Hadamard or Fourier [46,47] to benefit from84

Fellgett’s advantage for improved SNR [3]. This implies patterns with negative values1. In85

practice, however, measurements are obtained by uploading a set of light patterns onto a spatial86

light modulator (e.g., a digital micromirror device (DMD), see Fig. 1). Therefore, only positive87

patterns can be implemented. We model the actual acquisition process as88

𝑦 = N(𝐴𝑥), (2)
1An orthogonal matrix with non-negative entries is a permutation matrix, i.e., a matrix that has only one non zero

entry (equal to one) in each row. This case corresponds to measuring each pixel in the scene independently



Fig. 1. Principle of single-pixel imaging. A single-pixel camera measures a noisy
version of the scalar product of some image 𝑥 ∈ R𝑁 and a DMD pattern 𝑎 𝑗 ∈ R𝑁 .
The measurement vector 𝑦 ∈ R𝐽 , that collects all measurements obtained for all
DMD patterns, may be preprocessed, leading to the preprocessed measurement vector
𝑚 ∈ R𝑀 . A reconstruction algorithm R𝜃 is necessary to estimate the unknown image
𝑥 from the preprocessed measurements.

where N : R𝐽 → R𝐽 represents a (not necessarily linear) noise operator (e.g., Poisson or89

Poisson-Gaussian), 𝐴 : R𝑁 → R𝐽 is the actual acquisition operator that models the (positive)90

DMD patterns, and 𝐽 is the number of DMD patterns.91

2.2. Handling non negativity with preprocessing92

We may consider preprocessing techniques that transform the actual model Eq. (2) into the target93

model Eq. (1)94

𝑚 = 𝐵𝑦 ≈ 𝐻𝑥, (3)

where 𝐵 : R𝐽 → R𝑀 is the (linear) preprocessing operator chosen such that 𝐵𝐴 = 𝐻. Note95

that the noise of the preprocessed measurements 𝑚 = 𝐵𝑦 is not the same as that of the actual96

measurements 𝑦.97

In the simple case when 𝐻 has only non-negative entries, we can choose 𝐴 = 𝐻 and 𝐵 is98

the identity matrix. There exist multiple variants to build the preprocessing operator such that99

𝐵𝐴 = 𝐻 when 𝐻 has negative entries (e.g., see [48]). A simple workaround consists in splitting100

the positive and negative entries of the matrix. Alternatively, one can add an appropriate constant101

to the patterns, which usually leads to increased noise.102

2.3. Data-driven reconstruction103

In the presence of noise and when fewer measurements than unknowns are available (i.e., 𝑀 < 𝑁),104

regularized approaches must be adopted (see Appendix 5). Data-driven methods based on deep105

learning are a modern regularized approach. They aim to find an estimate 𝑥∗ ∈ R𝑁 of the106

unknown image 𝑥 from the preprocessed measurements 𝐵𝑦 (see Eq. (3)), using a reconstruction107

operator R𝜃∗ : R𝑀 → R𝑁 . Specifically,108

R𝜃∗ (𝑚) = 𝑥∗ ≈ 𝑥, (4)

where 𝜃∗ represents the parameters learned during a training procedure.109



In the case of supervised learning, it is assumed that a training dataset {𝑥𝑖 , 𝑦𝑖}1≤𝑖≤𝐼 of pairs of110

ground truth images and measurements is available. 𝜃∗ is then obtained by solving111

minimize
𝜃

𝐼∑︁
𝑖=1

L
(
𝑥𝑖 ,R𝜃 (𝑦𝑖)

)
, (5)

where L is the training loss (e.g., squared error). It should be noted that if only a dataset of112

ground truth images {𝑥𝑖}1≤𝑖≤𝐼 is available, the associated set of measurements can be obtained113

by defining 𝑦𝑖 = N(𝐴𝑥𝑖), 1 ≤ 𝑖 ≤ 𝐼.114

The design of the reconstruction operator R𝜃 has been the topic of extensive research over115

the last decade. A simple yet efficient method consists in correcting a traditional (e.g. linear)116

reconstruction by a data-driven nonlinear step [49]. In this context,117

R𝜃 = G𝜃 ◦ R, (6)

where R : R𝑀 → R𝑁 is a traditional hand-crafted (e.g., regularized) reconstruction operator118

and G𝜃 : R𝑁 → R𝑁 is a nonlinear neural network that acts in the image domain. Algorithm119

unfolding can be seen as a generalization of Eq. (6), which consists in defining R𝜃 from an120

iterative scheme121

R𝜃 = R𝜃𝐾 ◦ . . . ◦ R𝜃1 , (7)

where R𝜃𝑘 can be interpreted as the computation of the 𝑘-th iteration of the iterative scheme122

and 𝜃 =
⋃

𝑘 𝜃𝑘 . Many variants of unfolded algorithms have been proposed in the literature [25].123

The choice of 𝑅𝜃𝑘 depends on the choice of the algorithm that is unrolled. It generally involves124

one or several analytical steps that rely on 𝐴 or 𝐻, their adjoint operators (or pseudo-inverse)125

as well as one or several neural networks. Some standard architectures for R𝜃𝑘 are described126

in Section 2.4. In particular, the formulation of Eq. (7) encompasses PnP and regularization127

by denoising methods, for which the neural networks/denoisers involved in R𝜃𝑘 are trained128

beforehand, independently of 𝐴 or 𝐻.129

2.4. Standard data-driven architectures130

A simple choice for the first step of the post-processing approach defined by Eq. (6) is to use the131

pseudo-inverse of 𝐻, i.e.,132

R(𝑚) = 𝐻†𝑚. (8)

An alternative is to use the minimum mean square estimator [50], i.e.,133

R(𝑚) = 𝛴𝐻⊤ (
𝐻𝛴𝐻⊤ + 𝛤

)−1
𝑚, (9)

where 𝛴 ∈ R𝑁×𝑁 represents the image covariance and 𝛤 ∈ R𝑀×𝑀 the noise covariance. These134

two methods are further detailed in Appendix A.1 and Appendix A.2.135

A simple choice for the iterative method described in Eq. (7) is the proximal gradient136

descent [51] for solving the regularized least-squares problem (see Appendix A.1),137

𝑥𝑘+1 = R𝜃𝑘 (𝑥𝑘) = G𝜃𝑘

(
𝑥𝑘 − 𝛾𝑘𝐻⊤ (𝐻𝑥𝑘 − 𝑚)

)
, (10)

where the proximal denoiser has been replaced by a neural network G𝜃𝑘 : R𝑁 → R𝑁 acting in138

the image domain and 𝛾𝑘 > 0 is the step size.139



(a) (b)
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Fig. 2. Typical SPyRiT pipelines involving input of an image 𝑥 ∈ R𝑁 , simulation
of modulated measurements 𝐴𝑥, application of a noise model N which leads to the
raw measurements 𝑦 ∈ R𝐽 . From these, the reconstruction operator R𝜃 outputs an
estimate 𝑥∗ of 𝑥. (a) Post-processing reconstruction approaches corresponding to
Eq. (6). All steps are clearly separated and defined independently in the submodules
core.meas, core.noise, and core.recon. The reconstruction algorithm can
integrate preprocessing from core.prep, analytical steps and neural networks from
core.nnet. (b) Iterative reconstruction approaches corresponding to Eq. (7). (c)
Hadamard acquisitions which cannot be implemented in practice due to negative values
in the target acquisition matrix. (d) Split Hadamard patterns defined by Eq. (12)
with 𝑀 = 𝑁 and the corresponding preprocessing 𝐵 = [𝐼𝑁 ,−𝐼𝑁 ]. Poisson noise is
simulated with 𝛼 = 100. (e) Square subsampling for split Hadamard acquisition, i.e.,
Eq. (12) with 𝑀 < 𝑁 and the corresponding preprocessing 𝐵 = [𝐼𝑀 ,−𝐼𝑀 ]. No noise
is simulated. (c-e) The images on the left correspond to sampling masks. White masks
correspond to the case 𝑀 = 𝑁 where all measurements are kept, while grey pixels
appear in the case of accelerated acquisitions where 𝑀 < 𝑁 . A sampling mask is a
graphical representation of the permutation matrix 𝑄 in Eq. (13). Each white pixel
of a sampling mask corresponds to the nonzero entry of each of the first 𝑀 rows of
𝑄. For simplicity, the 𝑁 = 64 × 64 acquisition matrices used are presented here as
𝑁 = 16 × 16.



3. Method140

3.1. Overview of the SPyRiT package141

SPyRiT has a modular structure with the core functionalities organized in six submodules142

(see Fig. 2) that provide classes that all inherit from PyTorch nn.Module. The module143

spyrit.core.torch provides additional auxiliary PyTorch-based functions used throughout144

the SPyRiT package.145

• spyrit.core.meas provides measurement operators that compute linear measure-146

ments corresponding to 𝐴 in Eq. (2). It also provides the adjoint and pseudo-inverse of 𝐴,147

which are at the basis of any reconstruction algorithm.148

• spyrit.core.noise provides noise operators corresponding to N in Eq. (2).149

• spyrit.core.prep provides preprocessing operators for the operator 𝐵 introduced in150

Eq. (3). These preprocessing operators can also implement additional processing steps,151

such as the normalization of Poisson-corrupted images that vary across a wide range of152

intensities.153

• spyrit.core.nnet provides neural network operators that correspond to G in Eq. (6)154

or Eq. (10).155

• spyrit.core.recon provides the reconstruction operator that correspond to R𝜃 .156

• spyrit.core.train provides the functionalities to solve the minimization problem157

of Eq. (5).158

3.2. Poisson-corrupted split Hadamard measurements159

To illustrate the capabilities of SPyRiT, we consider Poisson-corrupted split Hadamard measure-160

ments161

y𝛼 ∼ P(𝛼𝐴𝑥), (11)

where 𝛼 (in photons) represents the intensity of the image 𝑥 ∈ [0, 1]𝑁 . The higher the intensity,162

the higher the SNR of the measurements. We chose the acquisition matrix 𝐴 ∈ R2𝑀×𝑁
+ , 𝑀 ≤ 𝑁 ,163

such that the positive and negative components of the target matrix 𝐻 ∈ R𝑀×𝑁 are measured164

independently165

𝐴 =


𝐻+

𝐻−

 , (12)

where 𝐻± = max(0,∓𝐻) ∈ R𝑀×𝑁
+ . Choosing 𝐵 = [𝐼𝑁 ,−𝐼𝑁 ], we recover 𝐵𝐴 = 𝐻. In the case166

of accelerated acquisitions for which 𝑀 < 𝑁 , we choose 𝐻 as a subsampled (i.e., row-decimated)167

Hadamard matrix168

𝐻 = [𝐼𝑀 , 0]𝑄𝐻↑, (13)

where 𝐻↑ ∈ R𝑁×𝑁 represents the full Hadamard matrix, 𝐼𝑀 ∈ R𝑀×𝑀 the identity matrix, and169

𝑄 ∈ {0, 1}𝑁×𝑁 a permutation matrix that ranks the Hadamard coefficients by significance. The170

entire process is illustrated in Fig. 2d and Fig. 2e. The acquisition matrix can be defined using the171

meas.HadamSplit class, while Poisson noise is handled via the noise.Poisson class.172



3.3. Reconstruction algorithms173

We consider algorithms that fall into different reconstruction strategies (e.g., optimization-based,174

post-processing and iterative methods, supervised or PnP methods). Given the modularity of175

SPyRiT, all methods can be easily defined by exploiting the acquisition and denoising operators.176

The selected methods are:177

• Pseudo-inverse (Pinv), which corresponds to Eq. (8) with G𝜃 being the identity.178

• Pseudo-inverse with supervised denoising (Pinv-Net) [21], which corresponds to Eq. (8)179

where G𝜃 is trained using Eq. (5).180

• Pseudo-inverse with PnP denoising (Pinv-PnP), which corresponds to Eq. (8) where G𝜃 is181

trained independently as a denoiser.182

• Supervised denoised completion (DC-Net) [50], which corresponds to Eq. (9) where G𝜃183

is trained using Eq. (5).184

• Learned proximal gradient descent (LPGD), which corresponds to Eq. (10) where G𝜃 is185

trained using Eq. (5).186

• Proximal gradient descent with PnP denoising (DPGD-PnP), which corresponds to Eq.187

(10), where G𝜃 is trained independently as a denoiser.188

The Pinv, Pinv-Net and Pinv-PnP methods are all instances of the same classcore.recon.PinvNet,189

where the only difference is the denoising layer (the identity for Pinv, UNet [18] trained in a190

supervised manner for Pinv-Net, and pretrained DR-UNet [34] for Pinv-PnP). The LPGD and191

DPGD-PnP are also two instances of the same class recon.LearnedPGD. All algorithm details192

are provided in Section A.1. Note that both PnP methods (i.e., Pinv-PnP, DPGD-PnP) rely on a193

hyperparameter (𝜈 for Pinv-PnP and 𝜇 for DPGD-PnP) that allows the denoising/regularization194

level to be manually tuned (see Appendix and Sec. 1.1 and 1.2 of Supplement 1).195

3.4. Example code196

The code required to run both the simulation and reconstruction with the pinvNet network is197

shown below.198

199
# Data simulation200

import math201

import torch202

from spyrit.core.meas import HadamSplit203

from spyrit.core.noise import Poisson204

205

alpha = 100.0206

h = math.sqrt(N)207

meas_op = HadamSplit(M, h, Ord_rec)208

noise_op = Poisson(meas_op, alpha)209

torch.manual_seed(0)210

y = noise_op(x) # x is vectorized image211

212

# Image reconstruction213

from spyrit.core.recon import PinvNet214

from spyrit.core.nnet import Unet215

216

prep_op = SplitPoisson(alpha, meas_op)217

denoi_net = Unet()218

full_op = PinvNet(noise_op, prep_op, denoi_net)219

x_rec = full_op.reconstruct(y)220

221

# Simulation and reconstruction222



torch.manual_seed(0)223

x_rec_2 = full_op(x)224

225

(x_rec == x_rec_2).all() # True226227

The code that generates the masks, acquisition matrices and images in Fig. 2 is provided in the228

last section of Supplement 1. Multiple examples are provided in the tutorials accessible in [52].229

3.5. Training230

All supervised methods (i.e., Pinv-Net, DC-Net, LPGD) are trained by minimizing the mean231

squared error loss of Eq. (5) over the test dataset (100k images) of the ImageNet ILSVRC2012232

database [53]. Color images are subject to grayscale transformation, with random crops of size233

128× 128 pixels and normalization to [−1, 1] applied to all images. Measurements are simulated234

according to Eq. (11) for an image intensity 𝛼 = 10 photons. The minimization problem is solved235

using the Adam optimizer [54] with a learning rate of 10−3, a batch size of 128 for Pinv-Net and236

LPGD and 256 for DC-Net, and 30 epochs. The learning rate is decreased by a factor of 0.5237

every 10 epochs. The weight decay regularization parameter is set to 10·−7. The parameters of238

the optimizer were optimized previously for DC-Net and Pinv-Net [23]. For the PnP methods239

(i.e., Pinv-PnP and DPGD-PnP), the data driven layers are trained independently as denoisers,240

see [34] for Pinv-PnP and [55] for DPGD-PnP. The methods adapt to different noise levels by241

adjustment of a hyperparameter that controls the amount of regularization/denoising (see Sec.242

1.1 and 1.2 of Supplement 1).243

4. Results244

4.1. Simulated data245

We simulate Hadamard split measurements corrupted by Poisson noise according to Eq. (11) and246

Eq. (12) for three different image intensities 𝛼 equal to 2, 10 and 50 photons, which correspond247

to increasing SNR. Methods are evaluated using the entire evaluation set (50k images) of the248

ImageNet ILSVRC2012 database [53]. All images are cropped to 𝑁 = 128 × 128 pixels. The249

number of measurements is set to 𝑀 = 4096 and a ×4 square subsampling strategy is used250

(i.e., the measurements correspond to a full acquisition for 64 × 64 Hadamard patterns). We251

compare all methods in terms of root mean square error (RMSE), structural similarity index252

measure (SSIM), and by visual inspection. The hyperparameter of the PnP methods is chosen253

for each noise level to minimize RMSE and maximize SSIM across a subset of 384 images254

of the training set of the ImageNet ILSVRC2012 database. When RMSE and SSIM disagree,255

the hyperparameter was selected by visual inspection, as described in Sections 1.1 and 1.2 of256

Supplement 1.257

Table 1 reports RMSE and SSIM for the three noise levels for all methods. For the noise258

level used for training (𝛼 = 10 photons), all supervised methods provide similar results in terms259

of RMSE and SSIM, which are slightly better than for PnP methods. Among PnP methods,260

Pinv-PnP yields better metrics than DPGD-PnP. Deep learning methods reduce RMSE by up to261

half compared to the traditional method Pinv. Comparing the results for higher SNR (𝛼 = 50262

photons), slightly improved metrics (lower RMSE and higher SSIM) are achieved by deep263

learning methods with respect to 𝛼 = 10 photons. For lower SNR (𝛼 = 2 photons), supervised264

methods (except for DC-Net) approximately double RMSE compared to PnP methods.265

Figure 3 presents a number of ground truth and reconstructed images. For 𝛼 = 10 photons, all266

deep learning methods are able to remove noise quite efficiently. Supervised methods lead to267

sharper images than PnP methods. Pinv-Net and LPGD are more consistent across images than268

DC-Net, which yields sharper images in some cases and more blurred results in others. LPGD269

leads to sharper results than Pinv-Net for some images. Pinv-PnP provides a natural texture with270



low noise but images are less sharp. DC-Net provides the best results in terms of sharpness.271

For other image intensities, the best results are obtained using PnP methods and DC-Net, with272

more detail or less noise. For 𝛼 = 2 photons (i.e., lower SNR than training), supervised methods273

result in noisy images equivalent to Pinv, except for DC-Net which achieves similar results to274

PnP methods. For 𝛼 = 50 photons (i.e., higher SNR than training) DC-Net performs well. More275

results can be found in Sec. 1.3 of Supplement 1, including measurements simulated from the276

human brain image dataset [56].277

4.2. Experimental data278

Experimental data is used from the SPIHIM dataset [45], an open-access collection of single-pixel279

acquisitions that fulfil the FAIR principles. [57]. In particular, we consider the Star Sector280

resolution target (Thorlabs, R1L1S2P, see top row of Fig. 4) and a tomato slice (see bottom row281

of Fig. 4), which has a smother texture and no symmetry. As in Section 4.1, the measurements282

correspond to a full acquisition with 𝑀 = 4096 split Hadamard patterns of size 64 × 64, which283

correspond to a ×4 square subsampling strategy for a reconstruction with 𝑁 = 128 × 128 pixels.284

Figure 4 shows the reconstruction of the Star Sector resolution target and tomato slice. As for the285

simulated data, Pinv results in noisy images while the data-driven methods efficiently remove286

noise. For the resolution target, Pinv-Net, LPGD and DPGD-PnP effectively remove noise but287

lead to artefacts that are especially visible close to the central white disk. DC-Net leads to a288

more natural texture but slightly blurred. Pinv-PnP yields almost perfect reconstruction. For the289

tomato slice, supervised methods Pinv-Net and LPGD result in the sharpest images, while the290

other methods yield images that are excessively blurred. These findings are corroborated by the291

reconstruction results of other images, which are reported in Section 2 of Supplement 1.292

5. Conclusion293

To the best of our knowledge, this is the first time a PyTorch package has been presented to294

enable reproducible research and benchmarking in the field of single-pixel imaging. The package295

includes a number of supervised and plug-and-play methods, including post-processing and296

iterative strategies.297

We observe that all data-driven methods perform well provided that the image intensity is298

similar or higher to the training phase. However, most of the data-driven methods are not robust299

if the intensity is lower than the training phase, which is often the case in practice. This suggests300

that comparative studies should carefully address this kind of discrepancy. In this regard, the301

versatility of PnP methods is an advantage via manual tuning of the hyperparameter with respect302

to the noise level. The hyperparameter, however, has a significant impact on reconstruction303

quality and therefore requires careful selection. Among the supervised methods, DC-Net appears304

to be robust to deviations in the noise level, almost comparable to PnP methods and without305

hyperparameter selection. This is due to the fact that DC-Net includes a denoising step that306

removes noise prior to reconstruction. We also observe that the data-driven methods trained on307

simulations perform very well on experimental data, provided that the noise level corresponds308

to that of the training phase, which indicates that there is not a large model mismatch between309

simulations and experiments.310

The modularity and versatility of SPyRiT make it suitable for further studies beyond this work,311

such as the comparison or learning of acquisition matrices, noise models, or reconstruction312

algorithms. Current developments include hyperspectral imaging and dynamic imaging [58].313

While SPyRiT has been designed for single-pixel imaging, it may also benefit other modalities,314

in particular in the field of computational optics where the formation models are often in the315

form of Eq. (2). Computational ghost imaging [59] is of particular interest due to its equivalence,316

from an optical perspective, to single-pixel imaging.317



(a) GT 𝛼 = 2 (b) Pinv (c) Pinv-Net (d) LPGD (e) DC-Net (f) Pinv-PnP (g) DPGD-PnP

(h) GT 𝛼 = 10 (i) Pinv (j) Pinv-Net (k) LPGD (l) DC-Net (m) Pinv-PnP (n) DPGD-PnP

(o) GT 𝛼 = 50 (p) Pinv (q) Pinv-Net (r) LPGD (s) DC-Net (t) Pinv-PnP (u) DPGD-PnP

Fig. 3. Ground truth (GT) and reconstructed images obtained from measurements
simulated from the ImageNet ILSVRC2012 evaluation set. All supervised methods
are trained with an image intensity 𝛼 = 10 photons and tested for 𝛼 = 2 (first row),
𝛼 = 10 (second row), and 𝛼 = 50 (third row) photons. The measurements correspond
to Hadamard split acquisitions with a ×4 square subsampling strategy. The images
are reconstructed from 𝑀 = 4096 measurements, with the number of pixels set to
𝑁 = 128 × 128. The Pinv-PnP hyperparameter is set to 𝜈 = 115 for 𝛼 = 2; 𝜈 = 45 for
𝛼 = 10; and 𝜈 = 20 for 𝛼 = 50. The DPGD-PnP hyperparameter is set to 𝜇 = 6000 for
𝛼 = 2; 𝜇 = 3500 for 𝛼 = 10; and 𝜇 = 1500 for 𝛼 = 50.

(a) Pinv (b) Pinv-Net (c) LPGD

0.5 1.0 1.5 2.0 2.5 3.0

(d) DC-Net (e) Pinv-PnP (f) DPGD-PnP

(g) Pinv (h) Pinv-Net (i) LPGD

1 2 3 4

(j) DC-Net (k) Pinv-PnP (l) DPGD-PnP

Fig. 4. Experimental reconstruction results for the Star Sector resolution target and
tomato slice. The measurements correspond to Hadamard split acquisitions using
a ×4 square subsampling strategy. The images are reconstructed from 𝑀 = 4096
measurements, with the number of pixels set to 𝑁 = 128 × 128. The Pinv-PnP
hyperparameter is set to 𝜈 = 55 for the resolution target; and 𝜈 = 35 for the tomato
slice. The DPGD-PnP hyperparameter is set to 𝜇 = 4000 for the resolution target; and
𝜇 = 4000 for the tomato slice.



Table 1. Reconstruction metrics obtained for measurements simulated using the
evaluation set of the ImageNet ILSVRC2012 database for three image intensities 𝛼. All
data-driven reconstruction methods were trained considering 𝛼 = 10 photons. Values
correspond to mean (standard deviations) across images. For DPGD-PnP, standard
deviations are not shown because metrics were obtained from only 384 images, given
its higher computational cost. Pinv leads to highly corrupted images for some cases,
resulting in NaN values for SSIM.

Methods RMSE SSIM

𝛼 = 2

Pinv 1.09 (0.64) NaN

Pinv-Net 0.81 (0.51) 0.19 (0.14)

LPGD 0.84 (0.51) 0.18 (0.12)

DC-Net 0.41 (0.19) 0.41 (0.19)

Pinv-PnP (𝜈 = 115) 0.34 (0.16) 0.42 (0.19)

DPGD-PnP (𝜇 = 6000) 0.45 (-) 0.26 (-)

𝛼 = 10 (as for training)

Pinv 0.53 (0.29) NaN

Pinv-Net 0.25 (0.14) 0.61 (0.16)

LPGD 0.26 (0.14) 0.61 (0.16)

DC-Net 0.26 (0.14) 0.61 (0.17)

Pinv-PnP (𝜈 = 50) 0.27 (0.14) 0.56 (0.18)

DPGD-PnP (𝜇 = 3500) 0.30 (-) 0.46 (-)

𝛼 = 50

Pinv 0.31 (0.15) NaN

Pinv-Net 0.22 (0.14) 0.68 (0.17)

LPGD 0.23 (0.14) 0.66 (0.18)

DC-Net 0.25 (0.15) 0.71 (0.14)

Pinv-PnP (𝜈 = 20) 0.23 (0.13) 0.68 (0.15)

DPGD-PnP (𝜇 = 1500) 0.22 (-) 0.67 (-)



Appendix318

A. Algorithm details319

A.1. Reconstruction problem320

Regularized methods consist in defining the estimate as a solution to the minimization recon-321

struction problem322

min
𝑥

D(𝑚, 𝐻𝑥) + 𝑔𝜇 (𝑥), (14)

whereD is the data fidelity term and 𝑔𝜇 is a regularization term that depends on the hyperparameter323

(e.g., regularization parameter) 𝜇 > 0. We choose the weighted least-squares data fidelity term324

D(𝑚, 𝐻𝑥) = 1
2
∥𝑚 − 𝐻𝑥∥2

Γ−1 , (15)

where Γ ∈ R𝑀×𝑀 represents the noise covariance, which is assumed to be diagonal for325

independent measurements, i.e., Γ = diag
(
𝜎2

1 , . . . , 𝜎
2
𝑀

)
with 𝜎2

𝑖
> 0 the variance of the 𝑖-th326

measurement. For the Poisson-corrupted split measurements described in Section 3.2, the327

variance can be approximated as328

𝜎2
𝑖 =

1
4
(𝑚+

𝑖 + 𝑚−
𝑖 ), (16)

where 𝑚+
𝑖

and 𝑚−
𝑖

represent, respectively, the raw measurements obtained from the positive and329

negative component of the 𝑖-th target pattern [23].330

A.2. Closed-forms: pseudo-inverse and Tikhonov regularization331

Without regularization (i.e., when 𝑔𝜇 (𝑥) = 0) and in the absence of noise model (i.e., choosing332

𝛤 = 𝐼), the solution to the problem in Eq. (14) is given by the pseudo-inverse approach defined333

by Eq. (8).334

When 𝑔𝜇 (𝑥) = ∥𝑥∥2
𝛴 −1 , where 𝛴 represents the image covariance, the solution to the problem335

in Eq. (14) admits the closed form solution given by Eq. (9). The DC-Net method is of the336

form of Eq. (6) with R given in Eq. (9). In this approach, the image covariance 𝛴 , which has337

been computed on the ImageNet ILSVRC2012 database (see [45, Sec. 3.3]), and the learnable338

parameters of G𝜃 have been downloaded from [60].339

A.3. Proximal gradient descent340

A common iterative method used to solve the minimization problem in Eq. (14) with data-fidelity341

term given in Eq. (15) is the proximal gradient descent algorithm (a.k.a. forward-backward342

splitting algorithm) [61]. For this problem, iterations are given by343

𝑥𝑘+1 = prox𝛾𝑔𝜇 (𝑥𝑘 − 𝛾𝐻
⊤Γ−1 (𝐻𝑥𝑘 − 𝑚)), (17)

where prox𝛾𝑔 is the proximity operator of 𝑔 (see [61]) and 𝛾 is a step size. The sequence (𝑥𝑘)𝑘∈N344

generated by Eq. (17) converges with rate 𝑂 (1/𝑘) using a fixed step size 𝛾 ∈ (0, 𝛽−1), where345

𝛽 = ∥Γ−1/2𝐻𝐻⊤Γ−1/2∥2 = ∥𝐻⊤Γ−1𝐻∥2, (18)

with ∥ · ∥2 the spectral norm (i.e., the largest singular value of its argument).346

A.4. Step size for a Hadamard matrix347

To compute the step-size 𝛾 in Eq. (17), it is necessary to compute 𝛽. In the case when 𝐻 is348

the Hadamard matrix, we have 𝐻⊤𝐻 = 𝑁𝐼𝑁 . Hence, using Eq. (18), we have 𝛽 = 𝑁 ∥Γ−1∥𝑆 =349

𝑁 max𝑖 𝜎−1
𝑖

, so350

𝛽−1 =
min𝑖 𝜎2

𝑖

𝑁
. (19)



A.5. Learned proximal gradient descent351

The LPGD method considers the proximal iteration of Eq. (17), where the proximity operator of352

𝑔𝜇 is replaced by a neural network G𝜃𝑘 [51], i.e.,353

𝑥𝑘+1 = G𝜃𝑘

(
𝑥𝑘 − 𝛾𝐻⊤ (𝐻𝑥𝑘 − 𝑚)

)
. (20)

To limit the number of parameters, the weights of the neural network are shared across iterations,354

i.e., for every 𝑘 , G𝜃𝑘 ≡ G𝜃 . Since the neural networks of LPGD are learned end-to-end, we only355

unroll Eq. (20) over a fixed number of iterations 𝐾 .356

In this context, two hyperparameters need to be tuned: the number of iterations 𝐾 and the step357

size 𝛾. The number of iterations is commonly chosen between 3 and 10, as a trade-off between358

performance and computational cost. We have tested both fixed and decreasing step sizes, i.e.,359

𝛾𝑘 = 𝜏𝛾𝑘−1 with a decaying multiplicative factor 0 < 𝜏 ≤ 1. The step size has been initialized to360

the inverse of the Lipschitz constant given in Eq. (19), as suggested by optimization theory (see361

Appendix A.4). We have tested different values for the number of iterations (3, 6 and 10) and362

different decaying factors (0.1, 0.5, 0.9, and 1). The best results were obtained for 𝜏 = 0.9, and363

as little difference was found in terms of number of iterations, we selected 𝐾 = 3 (results not364

shown).365

A.6. Dual PGD network366

We consider the LPGD iteration given in Eq. (20), where G𝜃𝑘 is trained as a denoiser independent367

from the measurement model and is itself an unfolded algorithm that mimics the proximity368

operator of 𝑔𝜇. Specifically, we consider the case when 𝑔𝜇 = 𝜄[−1,1] +𝜆∥𝐿 · ∥1 with 𝐿 : R𝑁 → R𝑆
369

a linear sparsifying operator. In this case the proximity operator of 𝑔𝜇 can be computed using the370

dual PGD algorithm [61]. Within a deep learning framework, only a fixed number of iterations371

of the dual PGD algorithm are unrolled, and the operator 𝐿 can be learned (and changed for each372

layer), leading to a Dual PGD network dubbed DPGD-PnP (see [55, 62]).373

The DPGD-PnP network is composed of 20 layers, and the linearity associated with each layer374

corresponds to a convolution with 64 features. We trained the network using the ImageNet test375

dataset.376

Since this approach is based on the LPGD iteration from Eq. (20), the step size is chosen377

as per Appendix A.4. The main advantage compared to the supervised approaches is that the378

training is independent of the measurement model. However, a large number of iterations must379

be considered. We choose 𝐾max = 101 with a stopping criterion ∥𝑥𝑘+1 − 𝑥𝑘 ∥ < 10−4∥𝑥𝑘 ∥ in case380

convergence is reached before 𝐾max iterations.381
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