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ABSTRACT

Context. Current radio interferometers output multi-petabyte-scale volumes of data per year, making the storage, transfer, and pro-
cessing of these data a sizeable challenge. This challenge is expected to grow with next-generation telescopes such as the Square
Kilometre Array (SKA), which will produce a considerably larger data volume than current instruments. Lossy compression of in-
terferometric data post-correlation can abate this challenge, but any drawbacks from the compression should be well understood in
advance.
Aims. Lossy data compression reduces the precision of data, introducing additional noise. Since high-redshift (e.g., cosmic dawn or
epoch of reionization) 21 cm studies impose strict precision requirements, the impact of this effect on the 21 cm signal power spectrum
statistic is investigated in a bid to rule out unwanted systematics.
Methods. We applied dysco visibility compression, a technique for normalizing and quantizing specifically designed for radio in-
terferometric data, to observed visibilities datasets from the LOFAR telescope as well as simulated ones. The power spectrum of
these data was analyzed, and we establish the level of the compression noise in the power spectrum in comparison to the thermal
noise. We also examined its coherency behavior by employing the cross-coherence metric. Finally, for optimal compression results,
we compared the compression noise obtained from different compression settings to a nominal 21 cm signal power.
Results. From a single night of observation, we find that the noise introduced due to the compression is more than five orders of
magnitude lower than the thermal noise level in the power spectrum. The noise does not affect calibration. Furthermore, the noise
remains subdominant to the noise introduced by the nonlinear calibration algorithm used following random parameter initialization
across different runs. The compression noise shows no correlation with the sky signal and has no measurable coherent component,
therefore averaging down optimally with the integration of more data. The level of compression error in the power spectrum ultimately
depends on the compression settings.
Conclusions. dysco visibility compression is found to be an insignificant concern for 21 cm power spectrum studies. Hence, data
volumes can be safely reduced by factors of ∼4 with insignificant bias to the final power spectrum. Data from SKA-Low will likely
be compressible by the same factor as data from LOFAR owing to the similarities of the two instruments. The same technique can be
used to compress data from other telescopes, but a small adjustment of the compression parameters might be required.

Key words. instrumentation: interferometers – methods: data analysis – methods: observational – methods: statistical –
techniques: interferometric – cosmology: observations

1. Introduction

Over the past several decades, radio interferometers have been
expanding in physical dimensions, transitioning into what is
referred to as the large-N regime, due to an ever-increasing
number of antennas used. This trend is particularly pronounced
in low-frequency instruments, where the relatively low cost of
antenna components makes it economically viable to construct
phased arrays consisting of hundreds of antennas. Such arrays
include the Low-Frequency Array (LOFAR; van Haarlem et al.
2013), the New Extension in Nançay Upgrading LOFAR
(NenuFAR; Zarka et al. 2012), the Murchison Widefield Array
(MWA; Tingay et al. 2013), and the Hydrogen Epoch of Reion-
ization Array (HERA; Deboer et al. 2017). The forthcoming
Square Kilometre Array-Low (SKA-Low; Braun et al. 2019;

? Corresponding author; chege@astro.rug.nl

Mellema et al. 2013) will have more than 105 antennas, consid-
erably more than current instruments.

An increased number of observing antennas that are cor-
related (or other correlated receiver systems such as tiles or
stations) results in a substantially larger data volume. This is
because the data output from an interferometer – referred to
as the visibility – is a short-time-integrated cross-correlation of
electric fields from each antenna pair (Thompson et al. 2017),
therefore scaling as O(N2), where N is the number of correlated
components. Moreover, to cater to different requirements, the
visibilities are often recorded and written to disk at high tempo-
ral and spectral resolutions over long observation durations and
large instantaneous bandwidths. Temporal resolution is prefer-
able for the study of highly dynamic time-domain phenom-
ena such as transient radio-frequency interference (RFI; e.g.,
Gehlot et al. 2024) and ionospheric effects (e.g., Chege et al.
2022). Similarly, observations with high spectral resolution are
often required, for example in the study of radio spectral lines
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(e.g., Asgekar et al. 2013). Some science cases such as deep all-
sky radio surveys require observations of large sky areas (e.g.,
Shimwell et al. 2017), while others require integration of large
data volumes obtained from the same sky field over a long dura-
tion. An example of the latter are the observations targeting the
cosmic 21 cm signal emitted during the epoch of reionization
(EoR) and the cosmic dawn (e.g., Paciga et al. 2013; Patil et al.
2017; Cheng et al. 2018; Gehlot et al. 2019; Kolopanis et al.
2019; Li et al. 2019; Mertens et al. 2020; Trott et al. 2020;
HERA Collaboration 2022, 2023; Munshi et al. 2024). All these
varying requirements result in considerable volumes of unpro-
cessed observational data.

The output volumes from current interferometers have
already grown to petabyte scales1 (Sabater et al. 2015), and with
the forthcoming SKA-Low telescope, the data deluge is bound
to surge into unprecedented exabyte volumes. This “big data”
demands large storage spaces coupled with complex network
architectures for prompt retrieval and transfer, sometimes over
thousands of kilometers, before any processing can be under-
taken. For this reason, data archiving and management alone
becomes a significantly expensive and sometimes limiting part
of a science project. A viable solution capable of saving sub-
stantial storage resources and considerably mitigating the input–
output bottleneck could be the application of data compression
techniques.

A compression method can be said to be either lossy or loss-
less depending on whether or not information is lost during the
data compression. Lossless compression methods (e.g., GZIP2),
while fully preserving every single data bit, rely on structured
information, which is scarce in noisy data. Hence, lossless meth-
ods achieve compression factors of only a few tens of percent
on noisy data (Lindstrom 2017). Lossy methods achieve much
higher compression factors on noisy data but at the cost of los-
ing some information.

At high resolutions, radio data are very noisy, and as such
lossy compression methods are usually preferred over lossless
ones. However, lossy compression, as with any other data trans-
forming step, should preferably not bias the final science out-
put in any significant way. This is especially the case for high-
redshift 21 cm studies, as they target an extremely faint signal
and thus require the integration of a thousand hours (e.g., for
the LOFAR telescope) before a detection can be achieved (e.g.,
Mesinger et al. 2016).

Furthermore, this signal is buried under strong Galactic and
extragalactic foregrounds that are three to five orders of mag-
nitude brighter (e.g., Jelić et al. 2008, 2010), exacerbating the
challenge. High-redshift 21 cm studies thus aim for minimal sys-
tematic biases and errors (e.g., Barry et al. 2016). Errors result-
ing from lossy visibility data compression should not further
complicate this already considerable challenge.

Several algorithms have already been developed for the spe-
cific purpose of compressing radio visibility data. They include
BITSHUFFLE (Masui et al. 2015), implemented for lossless
compression of integer data from the Canadian Hydrogen Inten-
sity Mapping Experiment (CHIME) and reported to achieve data
compression of almost a factor of 4. Several other compres-
sion methods have been developed for specific data formats
such as the Flexible Image Transport System3 (FITS; Wells et al.
1981) file format and the Astronomical Image Processing Sys-

1 The LOFAR EoR Key Science Project project alone has ≈5 petabytes
of archival data.
2 https://www.gzip.org/
3 https://fits.gsfc.nasa.gov/

tem4 (AIPS; see, e.g., White et al. 2012). For noisy complex vis-
ibilities data in the MeasurementSet5 data format, the Dynam-
ical Statistical Compression (dysco; Offringa 2016) tool was
developed to perform lossy compression and has been shown to
achieve a compression factor of 4 or more on LOFAR and MWA
visibilities.

In this study we investigated the impact of lossy compression
on visibilities in 21 cm observations data processing as a means
of tackling excessive data volume challenges. While antenna-
specific recorded voltages are normally quantized before corre-
lation in well-understood procedures, compression of data after
correlation and its effect in the case of the 21 cm signal obser-
vations remain largely unexplored. Previous work by Offringa
(2016) investigated the image-space effects when compressing
visibility data with dysco. In this work we examined the impact
of data compression specifically on studies of the high-redshift
21 cm signals using the power spectrum method, which is the
conventional metric of 21 cm signal measurements in most cur-
rent EoR studies. We quantify the compression noise added to
the power spectrum and establish its behavior. Specifically, we
tackle three pertinent questions: (i) What is the level of compres-
sion noise compared to thermal noise? (ii) Is compression noise
incoherent? (iii) Does compression noise affect calibration?

We describe dysco, the compression tool used in this work,
in Sect. 2 before describing the observation and simulation
data used in Sect. 3. The data processing methodology is then
described in Sect. 4, and the results are presented in Sect. 5. Our
conclusions are outlined in Sect. 6.

2. Dynamical Statistical Compression (dysco)

In this section we briefly summarize the data compression tool
used throughout this paper, namely dysco. dysco6 was devel-
oped by Offringa (2016) and it consists of a visibility compres-
sion algorithm and a casacore7 standard data storage manager
that enables transparent storage of compressed data in the Mea-
surementSet format. In this way, the compressed data can be
written to disk and processing can proceed normally without any
additional steps. dysco is already integrated into both LOFAR
and MWA data preprocessing pipelines.
dysco compression is performed in two consecutive steps:

a normalization and a quantization step. The normalization
ensures that the full dataset has a constant noise variance.
The noise distribution in visibility data can vary across differ-
ent antennas, polarizations, timesteps, and frequencies. There-
fore, assumptions made during the normalization step regarding
the noise distribution across the four dimensions will have an
impact on the compression accuracy. For instance, the row-
normalization (R) method assigns a scaling factor per “row”,
which contains data from the same antenna and timestep, but
different polarizations and frequencies. Due to the assumption of
uniform variance across multiple polarizations and frequencies,
the row-normalization method has been shown to perform signif-
icantly worse in the image space by adding much higher noise in
comparison to the other available methods. Alternatively, dysco
incorporates two more normalization methods, namely the row-
frequency (RF) and the antenna-frequency (AF) normalization
methods. The former is similar to the row-normalization method
but with an additional scaling factor per frequency channel.

4 http://www.aips.nrao.edu
5 https://casa.nrao.edu/Memos/229.html
6 https://github.com/aroffringa/dysco
7 https://casacore.github.io/casacore
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Table 1. Bit size, normalization method, and quantization distribution parameters used for dysco compression in DP3. While many other bit sizes
can be used, here we list the bit sizes as recommended from prior tests. The default DP3 values are in the second row.

Bit size Normalization Distribution Expected compression factor

8 Row-Frequency 1.5σ Truncated Gaussian 6
10 Antenna-Frequency 2.5σ Truncated Gaussian 4
12 Row 3.5σ Truncated Gaussian 3.5
16 Gaussian 2.5

Uniform
Student’s T

The method also stores the per-polarization normalization fac-
tors separately. The latter uses a three-term normalization factor
composed of a frequency channel factor and a factor for each of
the two correlated antennas. The normalization here is also done
independently of each timestep and polarization.

After normalization, the data are encoded using a nonlinear
quantization scheme with dithering. The encoding is optimized
for complex samples using a distribution with a zero mean in
such a way that probable values are more accurately compressed
than less probable values. The choice of such a distribution is
also optimizable by the dysco user. The encoded values are
finally converted to binary values and bit-packed using a chosen
number of bits.

The compression bit size, normalization, and quantization
distribution parameters available for compression in dysco are
listed in Table 1. The default values used by the Default Prepro-
cessing Pipeline8 (DP3; van Diepen et al. 2018), which is used
extensively for LOFAR data analysis, are AF normalization, a
Gaussian distribution that is truncated at 2.5σ (only the distri-
bution that is used to compute the ideal encoding is truncated;
actual visibilities are never truncated, as during the normaliza-
tion it is made sure that all visibility values fit within the chosen
distribution), and 10 bits. We studied whether these default set-
tings are sufficient to compress LOFAR 21 cm signal data, or
whether other settings are needed. We finally note that given that
uncompressed data are typically stored in 32 or 64-bit format,
storing them in a 10-bit format leads to the earlier-mentioned
substantially smaller data volumes. We note that the metadata
in the measurement sets are not compressed and some metadata
(i.e., scale factors for the RF and AF normalizations) are added,
hence leading to a slightly lower compression factor compared
to the simple ratio of bits per visibility.

3. Data acquisition

In this section we describe the data used in the rest of the paper,
which includes both real and simulated radio observations.

3.1. Real observations

The datasets used in examining the effects of lossy data com-
pression were obtained with LOFAR (van Haarlem et al. 2013).
LOFAR is a low-frequency radio interferometer and a pathfinder
instrument for the SKA with a geographical footprint centered in
the Netherlands and spreading out into multiple European coun-
tries. It can observe in two frequency bands using the low-band
antennas (LBAs; 10−90 MHz) and high-band antennas (HBAs;
110−240 MHz), respectively. The antennas are phased-up into
stations, with the core consisting of 48 stations (24 stations
8 https://github.com/lofar-astron/DP3

Table 2. Two nights of real LOFAR HBA observations analyzed in this
work.

Parameter L246297 L246309

Observation cycle 2 2
UTC (a) start date-time 2014-10-23 2014-10-16

16:46:30 17:01:41
LST (b) start-time [hour] 19.3 19.1
Duration [hour] 13.0 12.6
SEFD (c) estimate 4294 4253
Number of stations (d) 62 62
Frequency range (MHz) 148–160 148–160
Frequency resolution (e) (kHz) 12.2, 61.0 12.2, 61.0
Time resolution (s) 2.0 2.0

Notes. (a)Coordinated Universal Time. (b)Local Sidereal Time. (c)System
Equivalent Flux density; as reported in Mertens et al. (2020).
(d)International stations not included. (e)Values corresponding to data
with 15 and 3 channel per sub-band, i.e., before and after frequency
averaging.

each split into two separate stations) densely packed within a
2-kilometer-wide area near the town of Exloo in Drenthe. An
additional 14 stations are located further across the Nether-
lands while 14 others are located in different European coun-
tries. These are referred to as the remote and international sta-
tions, respectively. The core, remote and international stations,
have maximum baselines of approximately 4, 120, and 2000 km,
respectively.

In our analysis, we used a typical LOFAR HBA dataset from
the Cycle 2 observing season, retrieved from the LOFAR Long
Term Archive. In total, two nights of observation were used,
spanning a duration of 12 hours per night and a 12 MHz band-
width between 148 and 160 MHz. The raw data have a 12 kHz
and 2 s frequency and time resolution, respectively. More infor-
mation about this dataset is summarized in Table 2.

3.2. Simulations

Besides using real LOFAR observation data, we complemented
our study with simulated data. These simulations are based on
the measurement set of the real observation L246297, listed in
Table 2, with the simulated data replacing the observed data for
consistent data structure and properties. We simulated two sets
of data, which we refer to as simulation sets A and B. Table 3
lists the dataset properties and compression settings used for the
different simulations.

Firstly, for simulation set A, we used all core and remote
stations to simulate two observation datasets, both spanning the
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Table 3. Simulated LOFAR HBA observation data.

Parameter Simulation A Simulation B

MS template L246297 L246297
Stations CS+RS CS
Duration [hour] 12.0 6.0
Bit size 10 10, 12, 16
Normalization AF AF, RF

2.5σ truncated 2.5σ truncated
Distribution Gaussian Gaussian

same 12-hour duration. The datasets had an identical foreground
emission comprising compact extragalactic radio sources but a
unique and independent noise realization We modeled an area
of 10◦ around the north celestial pole (NCP) using the brightest
∼700 sources. We also included the far-field Cygnus A and Cas-
siopeia A sources as they are bright enough to have a significant
impact on the processing of the NCP field. More details on this
simplified NCP model can be found in Brackenhoff et al. (2024).

For simulation set B, we used the same foreground model as
simulation set A, but varied the compression bit size and nor-
malization parameters. In contrast with simulation A where we
used different noise realizations per dataset, in simulation B, we
added the same noise realization to all datasets. Here, we also
limited ourselves to including only the core LOFAR stations and
a shorter observation duration of 6 hours. This reduced dataset is
chosen for less memory usage and quicker computation.

All datasets generated from both simulations (A and B)
included the instrumental beam attenuation effect and were car-
ried out at the same time and frequency resolution as the real raw
data before any averaging, as listed in Table 2. The simulations
were done using the sagecal9 algorithm (Yatawatta et al. 2013;
Yatawatta 2015). For each simulated dataset, its uncompressed
version was used as the reference dataset.

4. Data processing, compression, and calibration

In this section we describe the data reduction steps carried out for
our analysis. The analysis closely follows the steps applied in the
LOFAR EoR Key Science Project data processing pipeline (see
Mertens et al. 2020). However, we introduced data compression
as an additional data preprocessing step where needed.

4.1. Preprocessing and compression

In the preprocessing step, data were first run through an RFI
excision step carried out using AOFlagger10 (Offringa et al.
2012). This step serves not only to get rid of unwanted terrestrial
signals but also to reduce any dynamic range contribution by
RFI to the data. A reduced dynamic range improves the perfor-
mance of the normalization step during compression improving
the overall compression performance. While RFI flagging has no
effect on simulated data, we retained the RFI flags obtained from
real data in our simulation datasets to replicate a realistic obser-
vation. All data from the international stations was also flagged
in this step.

The data were then compressed using Dysco. We first
used the default DP3 compression parameters recommended
by Offringa (2016) for our relatively high-resolution noise-

9 https://github.com/nlesc-dirac/sagecal
10 https://sourceforge.net/projects/aoflagger

dominated data. Such noisy data are typical for 21 cm signal
studies since they usually target sky fields with minimal fore-
ground power and ease of foregrounds modeling. Later, we
examined whether these default parameters are sufficient for
the precision required in high-redshift 21 cm signal studies. For
improved signal-to-noise ratios (S/Ns) per solution time interval
during calibration and for quicker computation, the data were
averaged to 61 kHz per spectral channel.

4.2. Calibration

Throughout this work, we limited ourselves to performing the
first direction-independent (DI) calibration step in the LOFAR
EoR pipeline. One calibration step is sufficient for answering
the question of whether compression errors affect calibration
and its results would apply to the other stages of calibration.
This is because compression is only applied once on the high-
est resolution raw data as it is the most voluminous. This is typ-
ically done for archival purposes. Decompression is then done
prior to any further processing and therefore any compression
effects on calibration should manifest clearly in the first cali-
bration stage. Moreover, multiple compression and decompres-
sion runs during processing are not recommended as each itera-
tion would introduce additional noise to the visibilities. Averag-
ing in time and frequency carried out during processing reduces
the data volume by a factor of 25 (the data are averaged from
15 to 3 frequency channels per sub-band for DI and from 2 s
to 10 s time integration for the direction-dependent calibration
step). However, intermediate visibilities during the different cal-
ibration steps occupy additional columns in the measurement set
but require relatively limited disk space due to the averaging.

All gain calibration was carried out using sagecal
(Yatawatta 2016). For the real data, the calibration sky model
was composed of two sky directions, one around the NCP and
the other for the bright source 3C 61.1 with 1333 and 1545 com-
ponents, respectively. A calibration solution interval of 30 s was
used with a single solution being obtained for each 183.3 kHz
sub-band. A minimum and maximum calibration baseline cut-
off was set at 50λ and 5000λ, respectively, and the resulting
gains were regularized using a third-order Bernstein polynomial.
The resulting Bernstein polynomial for the central NCP direc-
tion was applied to the data to obtain the calibrated visibilities.
The baseline cutoff and gains smoothing have been deemed cru-
cial to minimize signal suppression and noise boost in the 21 cm
power spectrum (e.g., Barry et al. 2016; Mevius et al. 2022).
More details on these calibration parameter choices are available
in Patil et al. (2017), Mouri Sardarabadi & Koopmans (2019),
and Mertens et al. (2020). The simulated data were calibrated
similarly, with the only difference being in the sky model, which
in this case was composed of fewer components since the simu-
lations had fewer compact foregrounds.

4.3. Generation of power spectra

Results presented in this paper are based on power spectra gen-
erated from different visibility datasets, real or simulated, raw or
calibrated using the pspipe11 tool. In this section we describe the
process involved.

First, the visibilities from all sub-bands are gridded and
transformed into image cubes using WSClean (Offringa et al.
2014). Each image cube has a field of view (FOV) of 12◦ × 12◦
centered at the NCP with an angular resolution of 0.5 arcmin.

11 https://gitlab.com/flomertens/pspipe
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Fig. 1. Processing flow for the different visibility products used to obtain
the compression residual noise, thermal noise, and solver noise power
spectra displayed in Figs. 2 and 3. The flow of compressed and uncom-
pressed data is indicated in blue and red, respectively, while different
residuals are shown in green. Overlapping panels imply steps carried
out multiple times on different datasets or on the same dataset). The
two curved lines represent the thermal noise variance obtained as the
difference of even-odd timestep image data. The exact details involved
in each step are described in the text.

For the actual power spectrum, this FOV is then reduced to 4◦
by use of a Tukey spatial window. The image cube was then
re-gridded and converted from image space units of Jy/PSF12

into brightness temperature units of kelvins together with a spa-
tial Fourier transform step back into visibilities space. This final
step was carried out on a visibilities subset that includes only
baselines between 50λ and 250λ in length. Concurrently, an esti-
mate of the thermal noise variance is obtained by generating
a new cube composed of the difference between even and odd
timesteps. From such cubes, we can obtain the power spectrum
by first taking a Fourier transform along the frequency direc-
tion. The coordinates are then mapped into comoving distances
in the form of wavenumbers (k) with the appropriate cosmo-
logical units (Morales & Hewitt 2004; McQuinn et al. 2006). We
used the common cylindrically averaged (2D; k⊥ and k‖ coordi-
nates) and the dimensionless spherically averaged (1D, k) power
spectra.

5. Results

In this section we present the results of our analysis. First, we
establish the scale of the compression noise in comparison to
thermal noise. We then show the coherence properties of the
compression noise followed by an assessment of how data com-
pression affects calibration. Finally, we examine what are the
optimal dysco compression settings.

5.1. Compression noise

To determine the additional noise introduced to the 21 cm power
spectrum due to visibility compression, we computed the dif-
ference between the compressed and the reference (not com-
pressed) visibilities before calibration. In the following sections,
we refer to the output of this subtraction as the compression

12 PSF stands for point-spread function.

residuals or the compression noise (Fig. 1). Figure 2 shows the
comparison between these compression residuals and the refer-
ence thermal noise by use of the cylindrically averaged power
spectrum. The noise introduced to the power spectrum due to
data compression is shown to be around 5.5 orders of magni-
tude lower than the raw thermal noise. Similarly, the compres-
sion noise power is shown to be 4.5 orders of magnitude lower
than the uncertainty of the reference thermal noise. Hence, even
if compression noise were fully coherent (e.g., the result of com-
pression of coherent foreground emission), it would only reach
the level of the error on the thermal noise by adding about 30 000
times more data. Such a huge amount of data will, most likely,
never be a requirement. Additionally, the ratios are devoid of
any spatial structures, implying that compression noise does not
introduce any spurious or scale-dependent errors. We studied the
coherence, finding that the compression noise is consistent with
being incoherent.

A similar metric can be obtained for calibrated data by apply-
ing identical calibration gains solutions to both the reference and
the compressed dataset before obtaining the calibrated compres-
sion residuals. The need for identical solutions is to eliminate
calibration “solver noise”, a term that refers to the additional
noise introduced due to random initialization of parameters by
sagecal per calibration run, which leads to slightly different
gain solutions after a finite number of iterations during the opti-
mization (e.g., Mevius et al. 2022). It is known that calibration
also introduces a systematic power contribution resulting from
various factors, for example, the use of incomplete sky mod-
els, transfer of gains solution from longer to shorter baseline
sets, and spectrally noisy gain solutions (e.g., Barry et al. 2016;
Mevius et al. 2022). This systematic power is different from the
solver noise referred to here, which is indeed random and intrin-
sic to the calibration algorithm used. Without identical calibra-
tion gains, the compression residuals would be dominated by
this solver noise, although it is well below the thermal noise, as
shown below. We thus applied the DI calibration gains obtained
for the reference dataset to its compressed version (we show in
Sect. 5.3 that the results do not change significantly if calibra-
tion solutions obtained from the compressed dataset are applied
instead).

Subsequently, we reran the power spectrum computation on
the calibrated compression residuals, and the result is shown
in Fig. 3. Similar to raw data, the compression of visibili-
ties does not introduce spurious noise after calibration. The
ratio between the compression residuals and the thermal noise
level remains at orders lower than 10−5 between their 2D
power spectra. A slightly higher level is seen in the ratio of
the compression residuals and the thermal noise uncertainty.
Additionally, solver noise bias is shown to be more domi-
nant in comparison to the compression residuals noise, but also
well below the thermal noise and the error on the thermal
noise.

5.2. Compression noise coherence

Having determined that the added compression noise is far below
both the thermal and solver noise for LOFAR HBA data, we
investigated whether this noise has any correlation with the sky
signal and therefore is coherent in nature. Partly coherent com-
pression noise would not only average down more slowly than
incoherent noise, but it could also introduce biases on the 21 cm
measurements obtained from deep integrations. For this test, we
obtained three pairs of compression residuals from:
1. both LOFAR nights before calibration,
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Fig. 2. Cylindrically averaged power spectra comparing the compression noise (the compressed minus uncompressed visibilities) power spectrum
to the thermal noise power spectrum. In the top row, the compression noise power spectrum (left), the thermal noise (middle), and the thermal
noise uncertainty (right) are shown. In the bottom row, we show the ratio between the compression noise and the thermal noise (middle) and the
thermal noise uncertainty (right). These spectra are obtained from real uncalibrated data (hence the arbitrary power spectrum units).

2. both LOFAR nights after calibration, and
3. two identical simulations with different noise realizations

(simulation A).
As summarized in Table 3, all the datasets used for simulation
A spanned an equal 12-hour duration, with the same LST range.
The simulated LOFAR HBA datasets comprising identical extra-
galactic foregrounds but a different thermal noise realization was
added to each. We processed all the datasets similarly, again
applying the gains obtained from each uncompressed dataset to
its compressed version, in order to get rid of the solver noise.
We then obtained the difference of the DI-calibrated visibili-
ties for each pair of reference and compressed simulated data,
which gave us a pair of DI-calibrated compression residuals.
We checked for any correlation between each pair in this trio
of residuals pairs.

We used the coherence metric, C, given by the real part
of the normalized cross-power spectrum (Mertens et al. 2020;
Gehlot et al. 2024):

Ca,b
(
k⊥, k‖

)
=
<

(
T̃ ∗a (k)T̃b(k)

)
√
|T̃a(k)|2|T̃b(k)|2

· (1)

Taking the real values of the cross-spectrum as opposed to the
absolute values used in Mertens et al. (2020), provides infor-
mation on how positive and negative coherence values are dis-
tributed around zero. Therefore, this metric ranges from −1 to
1 with both extremes denoting maximum coherence while zero
denotes total incoherence. Although the coherence can have
an imaginary component, due to spatial shifts between modes
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Fig. 3. Comparisons between the cylindrically averaged power spectra of both compression and solver noise to the thermal noise and the thermal
noise uncertainty after calibration. The top row shows the cylindrically averaged power spectrum of the compression noise (top left), its ratio with
the thermal noise power spectrum (top middle), and the thermal noise uncertainty (top right). Similarly, the bottom row shows the solver noise
power spectrum (bottom left) and its ratio with both the thermal noise power spectrum (bottom middle) and the thermal noise uncertainty (bottom
right). The thermal noise and compression residuals here are obtained from real calibrated data.

before and after compression, such an effect would require com-
pression to be highly spatially correlated, which is not the case.
We can therefore ignore the imaginary component. The coher-
ences from each pair are shown in the top panels of Fig. 4.
The compression noise is seen to be highly incoherent across
all k-modes with a noise-like behavior around a mean of zero,
devoid of any spurious coherence structures. The coherence has
an rms of ∼0.14 around a mean of zero, which remains consis-
tent across all three cases. In the bottom panel, we present the
average coherence with respect to both the k⊥ and k‖ modes. The
average coherence again has a noise-like behavior around zero
that is within the rms and consistent for both cases.

To ascertain that this coherence level is consistent with ran-
dom uncorrelated residuals data, we computed the spherically
averaged power spectrum of the compression residuals from
each night separately and then compared it with the power spec-
trum obtained from a coherent averaging of the compression

residuals from both nights. Figure 5 shows the three spectra as
well as a ratio of each individual night’s residual power spectrum
to the combined power spectrum. Both ratios show a consistent
factor of ∼2 as expected from combining two equal-size datasets
composed of highly incoherent noise. This verifies that compres-
sion noise will progressively average down, like normal system
noise, with deeper data integrations. Any coherence in the com-
pression noise would not rise above the error on the thermal
noise for at least several hundred thousand hours of integration.

For completeness, we also examined the correlation of the
solver noise as obtained from the calibration of two different
observation nights. This noise is also found to have minimal
coherence with a mean of −0.013 and an RMS of 0.18 as shown
in Fig. A.1. This too, while not being the main subject of this
paper, is a novel result. It shows that the random algorithmic
solver noise, examined in this work using sagecal, does not
introduce significant bias in the power spectrum.
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Fig. 4. Compression residuals coherence for raw real, calibrated real,
and calibrated simulated data. For each panel in the top row, the coher-
ence is computed using two compressed minus uncompressed data
residuals from two separate datasets. To eliminate solver noise, the cal-
ibration gains solution from each uncompressed dataset is applied to its
compressed version before obtaining the residuals. The average coher-
ence for each top row panel is shown in the bottom row as a function of
both k⊥ (left) and k‖ (right) modes.

5.3. Calibration on compressed data

Calibration gains solutions obtained from compressed data
should not show significant discrepancies from those obtained by
calibrating uncompressed data. In the tests discussed above, we
used gains from the reference data for the purpose of eliminating
solver noise. We show that the results remained unchanged when
we used the calibration gains solutions from compressed data
instead. In Fig. 6 we show the ratio of the compression residu-
als obtained by applying either the compressed or uncompressed
data solutions. This ratio shows random fluctuations close to
unity implying no significant difference.

Additionally, we examined the signal de-correlation result-
ing from calibrating a compressed dataset, as opposed to its
original uncompressed version. A unity coherence between the
calibrated reference and compressed data is expected if the cal-
ibration solutions obtained for the two datasets were identical.
We wanted to measure the level of signal de-correlation resulting
from the difference in the gains. The metric was obtained from
the pair of reference and compressed calibrated datasets after
applying the same gains solutions set to both (the gains obtained
from either the reference data or the uncompressed data13). We

13 We can also apply the gains solutions obtained from calibrating the
compressed dataset to the reference dataset and check the decoher-
ence as well. The two decoherence outputs should be equivalent in the
case where calibration gains solution outputs are the same regardless of
whether the input data were compressed or not. The two were found to
be similar to the order of ∼10−7. Therefore, the reference solutions and
dysco compressed solutions are almost identical. By applying either of
them to both the reference and compressed data and then computing the
coherence of the calibrated data pair, we obtain an equivalent estimate
of the compression noise coherence.

Fig. 5. Spherically averaged power spectra obtained from the compres-
sion residuals of two nights and their combined power spectrum. The
ratio of each night to the combined power spectrum is shown in the
bottom plot.

Fig. 6. Ratio of compression residuals after applying the gains solutions
obtained from either uncompressed or compressed data.

used the “decoherence” metric14 (D; Eq. (2)): an exactly zero
decoherence value signals total coherence between the two cali-
brated datasets (i.e., no compression effect), while 1 signals max-
imum decoherence:

Dabs
a,b

(
k⊥, k‖

)
= 1 −

|T̃ ∗a (k)T̃b(k)|√
|T̃a(k)|2|T̃b(k)|2

· (2)

14 The actual de-correlation is due to a reduction in the S/N between the
two calibrated datasets and not loss of the actual signal.
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Fig. 7. Amount of signal de-correlation (due to a reduced S/N) result-
ing from calibration of a compressed dataset instead of its original ver-
sion (without compression). The same calibration gains solutions set is
applied to both the reference and compressed data before computing the
coherence. The dashed lines show the 5, 30 and 90◦ delay lines.

Figure 7 shows the decoherence resulting from this calibra-
tion of compressed data as opposed to uncompressed data due to
the reduced S/N of the data. Here we see a decoherence at the
10−6 level. Since we have already shown that the compression
noise is far below the thermal noise level, any apparent deco-
herence seen in the noise-dominated regions (e.g., at higher k‖
modes) can be attributed to the noisy nature of the data itself
in those regions as opposed to being an effect of data compres-
sion. Nevertheless, this effect is overall insignificant and there-
fore the calibration of compressed data yet again shows no nefar-
ious effects.

Similarly, we find that the solver noise has a decoherence
on the order of ∼10−4, two orders of magnitude higher than
the decoherence caused by data compression. This implies that
the compression noise de-correlates the signal at a subdominant
level in comparison to the solver noise. Compression noise is
therefore not an issue of concern.

5.4. Optimal compression settings for LOFAR HBA data

The error introduced by lossy compression is expected to vary
depending on the compression settings chosen for dysco. A
higher bit-rate choice for the compressed data will result in
a reduced compression error. Additionally, the choice of the
data normalization and the quantization distribution will influ-
ence the final compression error. The previous sections used
the default dysco settings (see Table 1) as implemented in the
DP3 pipeline. While these default parameters might be ideal
for science cases such as radio surveys and transient searches,
the requirements on any resulting errors in high-redshift 21 cm
signal detection experiments are much more stringent. We thus
intended to show how varying these compression parameters
reflects on the 21 cm signal power spectrum, specifically the
bit size and normalization. We did not test parameters that are
known to be worse than the default parameters, such as the row-
normalization method and bit sizes of less than 10.

We also did not test the effect of different quantization distri-
butions, firstly because any conclusions drawn from comparing
different distributions would not be robust enough to apply to all
datasets: and secondly, the performance of a given distribution is
also coupled to other settings such as the bit size (Offringa 2016).
As summarized in Table 3 (simulation B), this test was carried
out using 6-hour simulations and incorporating only the core sta-
tions of the LOFAR HBAs. For reference, we also included a
simulated 21 cm signal model at z = 8.3 from Mesinger et al.
(2016).

Figure 8 shows the data compression factor and the spher-
ically averaged power spectrum of the compression residuals
obtained by varying the data compression normalization method
and bit-rates. Across the three tested bit-rates (10, 12, 16), both
RF and AF normalization result in similar error levels that are all
far below the thermal noise level. However, the RF normalization
errors are about ×1.4 higher than the AF errors. As described in
Sect. 2, this error difference between AF and RF is attributable to
the difference in the normalization dimensions between the two
methods. Nevertheless, all compression residuals are well below
the theoretical EoR level at z = 8.3 for both normalization meth-
ods, across all the bit sizes, even in the 6 hours of data used in
this test. In 1200 hours of data, for example, these errors would
be 200 times lower even.

As expected the compression noise is higher with lower bit
sizes. Moving from 10 to 12 bits results in a factor of ∼4 and
∼60 (slightly lower than the expected factor of 64) from 12 to
16, respectively. The compression factor achieved varies from
3.4, 3.0, to 2.5 for 10, 12, and 16 bit-rates, respectively. The
exact compression factor is dependent on the dimensions of the
data, particularly on the number of channels: the more channels
stored in a measurement set, the lower the relative impact of the
metadata, and the higher the compression factor. Since the tests
were done on a subset of the data, the compression factor on
a full LOFAR observation night dataset is ∼4 when done with
10 bits and AF normalization. If done with RF normalization
instead, this factor will be slightly lower; however, the RF nor-
malization method can be used to compress both visibility cross-
correlations and auto-correlations while the AF normalization is
limited to the cross-correlations only.

Based on these results, for LOFAR EoR data, we recom-
mend 10-bits dysco compression with RF normalization. These
parameters are suitable for LOFAR and might need retuning
for other instruments. However, due to the similarities between
LOFAR and SKA-Low, it suffices to conclude that the optimal
parameters obtained here for LOFAR are likely also applicable
for SKA-Low with minimal adjustments.

6. Conclusions

Lossy data compression methods can be a means to reduce the
large expected costs associated with the storage and transfer of
radio interferometric data, in particular those from LOFAR and
SKA. The compression should not, however, compromise the
fidelity of the data, especially for high-precision studies such
as 21 cm signal observations of the EoR and cosmic dawn. In
this work, we have investigated the effect of lossy compression
of visibilities on the 21 cm observations. Specifically, we have
examined the level of compression errors and their behavior as
they manifest in the 21 cm power spectrum using the dysco
compression code (Offringa 2016).

We find that compression introduces additional noise to the
power spectrum. However, this noise is around five orders of
magnitude lower than the error on the thermal noise power
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Fig. 8. Comparison of the compression error levels to the
spherically averaged power spectrum and the compression
factors, for different bit sizes and normalization methods.
Orange and blue lines represent AF and RF normaliza-
tion methods, respectively, with the three thickness levels
and markers representing the bit sizes from 10 (thickest
line with square markers) to 16 (thinnest line with circle
markers). The green line shows a representative spheri-
cally averaged power spectrum from a simulated 21 cm
model at z = 8.3. Compression errors from all settings
are below the 21 cm signal, even from a relatively small
6-hour dataset. Since the compression noise is shown to
be incoherent, a deeper data integration of, for example,
1000 hours will result in a compression noise level that is
1000 times lower for all settings. The compression factors
obtained for each setting are shown in brackets in the leg-
end.

spectrum of a single night. This noise also has been shown to
not be correlated to the sky, as seen from the minimal coherence
between the residuals of different datasets.

Since the compression noise is much lower than the thermal
noise and is highly incoherent, its effect on calibration is found to
be insignificant, as expected. The calibration solutions obtained
from compressed data are highly similar to those obtained from
the reference data. While this test was done using only the DI
calibration step, it suffices to conclude that a similar insignificant
effect applies in all calibration stages of the data. Thus, we did
not delve into compression effects in direction-dependent cali-
bration.

We examined the optimal dysco compression parameters
for LOFAR EoR data. We find that the bit size used to store the
compressed data is crucial in determining whether an error in the
power spectrum remains well below the expected 21 cm signal
after long integrations. Larger bit sizes result in lower compres-
sion factors on one hand, but also less compression on the other.
Therefore, a balance between these two factors should be consid-
ered when choosing a suitable compression bit size. Moreover,
since the compression performance depends on the instrument
sensitivity, these parameters might need to be retuned for differ-
ent instruments. While this paper used LOFAR HBA data, the
findings reported here will likely apply to SKA-Low data since
both instruments will have around the same noise per visibility.
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Fig. A.1. Ratio of compression residuals after applying the gains solu-
tions obtained from either uncompressed or compressed data.

Appendix A: Coherence of the calibration solver
noise

In Fig. A.1 we show the coherence between the solver noise
obtained from the calibration runs of two different nights. Sim-
ilar to the compression noise coherence shown in Fig. 4, solver
noise shows minimal coherence. Therefore, conclusions drawn
from the compression noise coherence hold for solver noise as
well.
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