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We derive a compact expression for the second-
order correlation function g(2)(0) of a quantum
state in terms of its Wigner function, thereby
establishing a direct link between g(2)(0) and
the state’s shape in phase space. We conduct an
experiment that simultaneously measures g(2)(0)

through direct photocounting and reconstructs the
Wigner function via homodyne tomography. The
results confirm our theoretical predictions.

1. Introduction
Phase-space methods were proposed in the early days
of quantum mechanics to circumvent some of the
conundrums inherent in the conventional Hilbert-space
formulation. While Weyl [1] and Wigner [4] laid the
groundwork for this approach, it was the contributions
of Groenewold [5] and Moyal [6] that paved the
way to formally represent quantum mechanics as a
statistical theory in phase space [7–13]. This facilitates the
emergence of the corresponding classical limit in a more
natural and intuitive manner.

The essence of this approach lies in a mapping that
associates every operator to a function (known as its
symbol) defined on a smooth manifold with a very
precise mathematical structure [14]. Unfortunately, this
mapping is not unique: a whole family of functions can
be consistently assigned to each operator. In particular,
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the quasiprobability distributions, so popular in quantum optics, are just the corresponding
symbols of the density operator [15–20]. For continuous variables, such as position and
momentum of a harmonic oscillator (or a single-mode field), the quintessential example that
fuelled the interest for this topic, the most common choices are the P (Glauber-Sudarshan) [21,22],
W (Wigner) [4], and Q (Husimi) [23,24] functions, respectively.

These quasidistributions convey complete information about the system, yet each of
them corresponds to a different ordering of the creation and destruction operators. The P -
representation is utilized to evaluate normally ordered correlations of field operators, the
Q function is associated with antinormal order, and the Wigner function is employed with
symmetrically ordered operators.

Direct photodetection corresponds to the expectation values of certain simple products of
creation and annihilation operators in normal order [21]. This fundamental aspect underscores
the significance of the P -representation. The optical equivalence theorem [25] establishes a
formal correspondence between expectations of normally ordered operators in quantum optics
and expectations of the corresponding c-number functions in classical optics. Notably, the P -
representation stands out from other phase-space densities as it aligns with classical probability
when a classical description of the field state exists. However, its behavior for states that
are strongly nonclassical can be somewhat problematic, a trade-off necessary for maintaining
correspondence with classical optics [26]

The second-order correlation function g(2)(0) is nowadays an essential tool to certify the
quantumness of a given state and to distinguish antibunched light sources from classical
thermal ones [27]. Photon counting pertains to the realm of g(2)(0) and, consequently, to the P
function [28].

For numerous reasons [29], the Wigner function has gained more significance than any other
quasiprobability. It can be reconstructed via optical homodyne tomography [30,31] or directly
sampled point-by-point with photon counting and displacement [32]. Yet it is not directly
applicable for evaluating correlation functions, as it is associated with symmetric ordering.
The main goal of this paper is to demonstrate how to address this issue and derive quantum
correlation functions from moments of the Wigner function.

The plan of this paper is as follows. Section 2 provides a brief overview of the fundamental
elements necessary to establish a proper phase-space description of a single-mode quantum
field [2,3]. In Sec. 3, we demonstrate how to express the correlation function g(2)(0) in terms
of the Wigner function, yielding an explicit and simple formula. Section 4 details an experiment
in which we directly determine g(2)(0) both through direct photon counting and via homodyne
detection. Finally, our conclusions are summarized in Sec. 5.

2. Phase space for quantum continuous variables
In this section we briefly recall the basic ingredients needed to set up a phase-space description
of a single-mode field. The relevant observables are the Hermitian coordinate and momentum
quadratures x̂ and p̂, with canonical commutation relation [x̂, p̂] = i 1̂1 (with ℏ= 1 throughout). To
avoid technical problems with the unboundedness of x̂ and p̂, it is convenient to work with their
unitary counterparts

Û(x) = exp(−ix p̂) , V̂ (p) = exp(−ip x̂) , (2.1)

which act on the bases of eigenvectors of position and momentum as

Û(x′)|x⟩= |x+ x′⟩ , V̂ (p′)|p⟩= |p+ p′⟩ , (2.2)

so they represent displacements along the corresponding coordinate axes. The commutation
relation is then expressed in the Weyl form [33,34]

V̂ (p)Û(x) = e−ixp Û(x)V̂ (p) . (2.3)
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The infinitesimal version immediately gives the standard commutation relation, but (2.3) is more
useful in many instances.

In terms of Û and V̂ a general displacement operator can be introduced as

D̂(x, p) = eixp/2 Û(p)V̂ (x) = exp[i(px̂− xp̂)] , (2.4)

with the parameters (x, p)∈R2 labeling phase-space points.
The Fourier transform of the displacement D̂(x, p)

ŵ(x, p) =
1

(2π)2

∫
R2

exp[−i(px′ − xp′)] D̂(x′, p′) dx′dp′ , (2.5)

is an instance of a Stratonovich-Weyl quantizer [35]. This quantizer can be easily modified to deal
with general s-parametrized quasidistributions [36]. One can check that the operators ŵ(x, p) are
a complete trace-orthonormal set that transforms properly under displacements

ŵ(x, p) = D̂(x, p) ŵ(0, 0) D̂†(x, p) , (2.6)

where

ŵ(0, 0) =

∫
R2
D̂(x, p) dxdp= 2P̂ , (2.7)

and P̂ =
∫
R |x⟩⟨−x| dx=

∫
R |p⟩⟨−p| dp is the parity operator [37].

Let Â be an arbitrary (Hilbert-Schmidt) operator acting on H. Using the Stratonovich-Weyl
quantizer (2.5) we can associate to Â a tempered distribution a(x, p) representing the action of the
corresponding dynamical variable in phase space. This is known as the Wigner-Weyl map and
reads

a(x, p) =Tr[Â ŵ(x, p)] . (2.8)

The function a(x, p) is called the symbol of the operator Â. Conversely, we can reconstruct the
operator from its symbol through

Â=
1

(2π)2

∫
R2
a(x, p) ŵ(x, p) dxdp . (2.9)

In this context, the Wigner function is nothing but the symbol of the density matrix ϱ̂.
Therefore, we write

Wϱ(x, p) =Tr[ϱ̂ ŵ(x, p)] ,

(2.10)

ϱ̂=
1

(2π)2

∫
R2
ŵ(x, p)Wϱ(x, p) dxdp .

For a pure state |ψ⟩, it can be represented as

Wψ(x, p) =
1

2π

∫
R
exp(ipx′)ψ(x− x′/2)ψ∗(x+ x′/2) dx′ , (2.11)

which is, perhaps, the most traditional form of writing it.
The Wigner function defined in (2.10) fulfills all the basic properties required for any good

probabilistic description. First, on integrating W (x, p) over the lines xθ = x cos θ + p sin θ, the
probability distributions of the rotated quadratures xθ are reproduced∫

R2
Wϱ(x, p) δ(x− xθ) dxdp= ⟨xθ|ϱ̂|xθ⟩ . (2.12)

In particular, the probability distributions for the canonical variables can be obtained as the
marginals ∫

R
Wϱ(x, p) dp= ⟨x|ϱ̂|x⟩ ,

∫
R
Wϱ(x, p) dx= ⟨p|ϱ̂|p⟩ . (2.13)
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Second, Wϱ(x, p) is translationally covariant, which means that for the displaced state ϱ̂′ =

D̂(x′, p′) ϱ̂ D̂†(x′, p′), one has

Wϱ′(x, p) =Wϱ(x− x′, p− p′) , (2.14)

so that it follows displacements rigidly without changing its form, reflecting the fact that physics
should not depend on the choice of the origin. The same holds true for any linear canonical
transformation.

Finally, the overlap of two density operators is proportional to the integral of the associated
Wigner functions:

Tr(ϱ̂ ϱ̂′) =

∫
R2
Wϱ(x, p)Wϱ′(x, p) dxdp . (2.15)

This property (known as traciality) offers practical advantages, since it allows one to predict the
statistics of any outcome, once the Wigner function of the measured state is known. In particular,
we have

⟨A⟩=Tr(ϱ̂ Â) =

∫
R2
WA(x, p)Wϱ(x, p) dxdp . (2.16)

Coherent states are closely linked with the notion of Gaussian states. The displacements
constitute a basic ingredient for their definition: indeed, if we choose a fixed normalized reference
state |ψ0⟩, we have [38]

|x, p⟩= D̂(x, p) |ψ0⟩ , (2.17)

so they are parametrized by phase-space points. These states have a number of remarkable
properties inherited from those of D̂(x, p). The standard choice for the fiducial vector |ψ0⟩ is the
vacuum |0⟩; this guarantees that ∆x=∆p= 1/

√
2, with ∆ψA= [⟨Â2⟩ − ⟨Â⟩2]1/2, and they are

minimum uncertainty states

∆x∆p=
1

2
. (2.18)

3. Correlation functions in the Wigner representation
The definition of the normalized second-order correlation function for a single-mode field
reads [27]

g(2)(τ) =
⟨â†(t)â†(t+ τ)â(t+ τ)â(t)⟩

⟨â†(t)â(t)⟩2
, (3.1)

where we have introduced the standard creation and annihilation operators

â=
1√
2
(x̂+ ip̂) , â† =

1√
2
(x̂− ip̂) , (3.2)

with commutation relation [â, â†] = 11.
Although all the results we derive in the following can be worked out for g(2)(τ), things

become simpler for the case τ = 0, so that

g(2)(0) =
⟨â†â†ââ⟩
⟨â†â(t)⟩2

=
⟨n̂(n̂− 1)⟩

⟨n̂⟩2
, (3.3)

and n̂= â†â is the number operator. Note that this of particular interest, since g(2)(0) represents
the conditional probability how likely is it to detect a second photon at the same time one photon
was already detected. Thus, it is a measure of the temporal photon coincidences, required to
distinguish between different light states.

In order to express this correlation function in terms of the Wigner function, we need the
notion of Weyl (or symmetric) ordering of operators [39]: for arbitrary powers k and ℓ, we
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denote by {â†kâℓ}W the average sum of the (k + ℓ)!/k!ℓ! different ordered operator products. If
n̂W = {â†â}W is the symmetrically ordered number operator, a direct calculation shows that [40]

n̂W = n̂+ 1
2 = 1

2 (x̂
2 + p̂2) ,

n̂2W = n̂2 + n̂+ 1
2 = 1

4 (x̂
2 + p̂2)2 .

(3.4)

The process can be easily continued to higher powers of the photon number operator and thus
our treatment can be extended to any correlation function.

From (3.4), we immediately get n̂2 = n̂2W − n̂W. Consequently, the correlation function g(2)(0)
can be expressed in terms of the symmetrically ordered photon-number operator as

g(2)(0) =
⟨n̂2W⟩ − 2⟨n̂W⟩+ 1

2(
⟨n̂W⟩ − 1

2

)2 . (3.5)

Now, note that the Weyl moments of the number operator can be immediately calculated from
the Wigner function:

⟨n̂W⟩=
∫

1
2 (x

2 + p2)Wϱ(x, p) dxdp ,

⟨n̂2W⟩=
∫

1
4 (x

2 + p2)2Wϱ(x, p) dxdp .

(3.6)

In this way, we can determine g(2)(0) directly from the Wigner function.
In what follows, we assume, for simplicity, the case of Gaussian states, whose Wigner function

can be compactly written as [41]

Wϱ(ξ) =
1

2π detV
exp

[
1
2 (ξ − ξ̄)⊤V−1(ξ − ξ̄)

]
. (3.7)

Here, we have used the column vector ξ = (x, p)⊤ (the subscript ⊤ being the transpose), ξ̄ = ⟨ξ⟩,
and the 2× 2 covariance matrix V has elements

Vij =
1
2 ⟨∆ξ̂i∆ξ̂j +∆ξ̂j ∆ξ̂i⟩ (3.8)

with ξ̂ = (x̂, p̂)⊤ and ∆ξ̂i = ξ̂i − ξ̄i.
In many interesting instances, the covariance matrix is diagonal so that

ξ̄ =

(
x0
p0

)
, V=

(
(∆x̂)2 0

0 (∆p̂)2

)
. (3.9)

The corresponding Wigner function then reduces to

Wϱ(x, p) =
1

2π∆x∆p
exp

[
− (x− x0)

2

2(∆x)2
− (p− p0)

2

2(∆p)2

]
. (3.10)

For a coherent state the Weyl moments (3.6) can be directly computed; the result is

⟨n̂W⟩= 1
2 |ξ̄|

2 + 1
2 , ⟨n̂2W⟩= |ξ̄|4 + 2|ξ̄|2 + 1

2 , (3.11)

where |ξ̄|2 = x20 + p20. Using (3.5), we get (see Appendix)

g
(2)
coh(0) = 1 . (3.12)

For a thermal state (see Appendix)

ϱ̂=

∞∑
n=0

n̄n

(1 + n̄)n
|n⟩⟨n| , (3.13)

where n̄= [exp(ℏω/kBT )− 1]−1 is the average number of photons, we have ∆x=∆p=
√
2n̄+ 1

and we can check that ⟨n̂2W⟩= 2⟨n̂W⟩2, so that

g
(2)
th (0) = 2 . (3.14)
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⟨ ̂n⟩
Figure 1. Second-order correlation function as a function of the mean photon number for the three typical states

considered in this work. Note, that the red curve is for pure squeezed states and not for attenuated squeezed states.

Both, thermal and coherent light are characterized by a two-dimensional symmetric noise. The
distinctly different g(2)(0) for the coherent state is a result of its uncertainty being at the quantum
limit given by ⟨n̂W⟩= 1/2 for ⟨n̂⟩= 0 and is related to the non-commuting field operators.

As a final example of Gaussian states, we consider squeezed states, for which (∆x)2 = e−r and
(∆p)2 = er , where r is the squeezing parameter [42,43]. Now, we have

⟨n̂W⟩= 1
2 (e

r + e−r) , ⟨n̂2W⟩= 3⟨n̂W⟩2 − 1
4 . (3.15)

From here, we obtain that

g
(2)
sq (0) = 3 +

1

⟨n̂⟩ . (3.16)

The different values 1, 2 and 3 of g2(0) corresponding to a coherent state, a thermal state, and
a highly squeezed vacuum have been interpreted as originated from the different dimensionality
of these states in phase space [44,45]. This establishes a direct link between g2(0) and the shape
of the state in phase space.

Figure 1 depicts g(2)(0) for coherent, thermal, and squeezed states as a function of ⟨n̂⟩=
⟨n̂W⟩ − 1/2. As it is clear, in the case of a squeezed vacuum, as the average photon number
approaches to zero, g(2)(0) diverges. Under attenuation, squeezed states become mixed, altering
their variance but their g(2)(0) does not change. In contrast, coherent and thermal states remain
coherent and thermal, respectively, under attenuation. Consequently, their g(2)(0) is not only
constant under attenuation but also independent of the average photon number.

4. Experiment
We check our theory with an experiment able to perform simultaneously both measurements;
direct and homodyne. The setup is sketched in Fig 2 and has been detailed in Ref. [46]. We use
a type-II phase-matched KTP triply-resonant optical parametric oscillator, pumped far below
threshold by a continuous-wave Nd:YAG laser at 532 nm. The output polarization modes can
be mixed using a half-wave plate (HWP) and a polarizing beam splitter (PBS). One output of
the PBS is frequency filtered with an interferential filter and a cavity. This path is then split on a
fiber coupler BS, and the outputs are detected via two superconducting nanowire single-photon
detectors (SNSPDs) [47]. This configuration enables us to check the second-order correlation
function. The other output of the PBS is measured via homodyne detection, thus enabling to
reconstruct the density matrix and the associated Wigner function.

For each angle of the HWP, we can thereby record g(2)(τ) and the density matrix of its
complementary. However, the two recorded states only differ by a rotation in phase space.
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Figure 2. Experimental setup (for more details see Ref. [46]): a type-II OPO is continuously pumped with a 532 nm

Nd:YAG laser. The output modes are mixed using a polarized beam splitter (PBS) and a half-wave plate (HWP). A

two-photon detection is implemented on one output of the PBS via multiplexed superconducting nanowire single-photon

detectors (SNSPDs) after frequency filtering. The other output is analyzed via a homodyne detection for full quantum state

tomography.

Therefore their quadrature variances and g(2)(τ) are the same. So, we can measure these two
quantities simultaneously and separately on the two output ports of the PBS.

When the HWP is at 0◦ it corresponds to the perfect separation of the two orthogonally
polarized modes. The resulting state is a twin beam, exhibiting EPR entanglement [48]:

|ψ⟩=
√

1− |λ|2
∑
n

λn|n⟩s|n⟩i , (4.1)

where λ= eiϕ0 tanh r, with ϕ0 being the pump field phase, and the subscript s and i refer to the
signal and idler modes, respectively. For this angle, the output is thus made of two correlated
thermal states, and we have g(2)th (0) = 2 in each of the two output ports of the PBS.

When increasing the angle, a squeezed vacuum is produced with g
(2)
sq (0) given by (3.16).

Through this basis change we introduce a continuous transition in Fig. 1 in the vertical direction
from thermal to squeezed statistics.

When the polarization basis is rotated by 45◦, the signal and idler modes can be rewritten as

âs = â1 + iâ2 , âi = â2 − iâ1 , (4.2)

so that we have two uncorrelated squeezed vacuum states on each of the spatial modes 1 and 2:

|ψ⟩ ∝

(∑
n

c2n|2n⟩1

)(∑
n

c2n|2n⟩2

)
. (4.3)

This occurs when the angle of the HWP is 22.5◦. In consequence, depending on the HWP we
can either generate EPR-entanglement, leading to thermal states in each spatial mode, or to
decorrelate the modes, which leads to independent squeezed vacua on each mode. This situation
corresponds to the transition from two independent single-mode squeezers to one two-mode
squeezer.

The filtered path enables to measure the second order correlation function. To achieve this, we
acquire the time of the two single-photon detections within an acceptance window of 50 ns. The
distribution of the photon coincidences depending on the delay τ , normalized by the uncorrelated
coincidences, gives g(2)(τ). Two datasets were acquired for 2 mW and 10 mW of pump power,
corresponding respectively to 0.7 and 1.6 dB of squeezing. The experimental values correspond
to the blue points in Fig. 3. The solid line represents the theoretical fitting of the experimental
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Angle of HWP (º)

2 mW

10 mW

Angle of HWP (º)

Figure 3. Values of g(2)(0) as a function of the angle of the wave plate, for two different input powers indicated in

the insets. In each figure we plot the results obtained from both direct photon counting and via the Wigner function

reconstructed from homodyne detection. The shadows indicate the errors associated with both methods.

data points with the model f(θ) = a sin[(b+ θ)π/45)]2 + c, where θ is the angle of the HWP, and
{a, b, c} are the fitting parameters. The shaded area is the confidence region of the model.

At θ= 0◦, we observe a value g(2)(0)≃ 2.2 for both powers, slightly higher than theoretical
value. At θ= 22.5◦, the values are g(2)(0)≃ 27.5 and g(2)(0)≃ 90 for 2 mW and 10 mW,
respectively. This is consistent with mean photon numbers of 0.0115 and 0.004, respectively.

With our homodyne detection setup, for the same HWP angle, we can also reconstruct the full
density matrix of the state and derive the associated Wigner function using standard methods.
We can thus witness the transition from a squeezed state, where one quadrature has smaller
fluctuations than the other, to a thermal state.

To determine the quadrature variances, we fit the Wigner functions by a Gaussian distribution
model

W (x, p) =W0 exp[−F (x, y)] , (4.4)

where

F (x, y) =
[(x− x0) cos θ + (p− p0) sin θ]

2

2(∆x)2
+

[−(x− x0) sin θ + (p− p0) cos θ]
2

2(∆p)2
.

The reconstructed Wigner functions for some values of the angle θ of the HWP are given in
Fig. 4, as well as the resulting variances for each quadrature. Using these variances we can now
calculate the corresponding values of g(2)(0); they are plotted in Fig. 3. The blue shadow indicates
the confidence regions.
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Figure 4. Contour plots of the reconstructed Wigner functions for several HWP angles showing the transition from a

thermal state corresponding to the angle 0◦ to a squeezed vacuum state corresponding to 22.5◦. We also include the

variances derived from the reconstruction. The top panel correspond to 2 mW and the bottom panel to 10 mW.

While the directly measured g(2)(0) nicely follows the theoretically expected curve when
rotating the two-mode basis, the values inferred from the Wigner function are sometimes
significantly different. To better understand these discrepancies, it is important to note that in
the expression (3.16) for pure squeezed states, both the denominator and the numerator approach
zero as the mean photon number approaches zero. This can result in very large ratios without
a definite limit. In the same limit, the corresponding Wigner function differs only slightly from
that of the vacuum. Thus, even minor noise or imperfections in the experimental setup can have
a drastic effect on the inferred data.

It is worth noting that starting with a pure squeezed state and then decreasing the mean photon
number by attenuation leads to values of g(2)(0) no longer following this curve for pure squeezed
states. Instead, the new g(2)(0) remains constant on a horizontal line. Consequently, two Wigner
functions (pure and mixed), both very close to the vacuum state, correspond to significantly
different values of g(2)(0).

Appreciating the numerical and experimental challenges, the results are nonetheless
encouraging. We plan to redo the experiment with an emphasis on much larger mean photon
numbers, where the corresponding Wigner functions are significantly different from each other.
Additionally, we will repeat the experiments reported here in the regime of very low mean photon
numbers with the utmost care to identify all parameters affecting g(2)(0) in this delicate regime.
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An interesting application is the experimental determination of the overall losses by
comparing the directly measured g(2)(0) with the homodyne measurement of the squeezed
quadrature. The measured variance (∆x)2meas is affected by losses. The g(2)(0) is not affected
by losses. Therefore, we can deduce the symmetrically ordered mean photon number for the
underlying unattenuated squeezed state:

⟨n̂W⟩sq =
1

g
(2)
sq (0)− 3

+
1

2
(4.5)

from the g(2)sq (0) measurement. The quadrature variance, (∆x)2sq, of the underlying squeezed
states without losses can be deduced from ⟨n̂W⟩sq = [(∆x)2sq + 1/(∆x)2sq]/2. Using the relation
between the quadrature variances with and without losses, (∆x)2meas and (∆x)2sq, one can
determine the overall losses. This procedure with directly detecting photodiodes in the
homodyning channel is somewhat in the spirit of the proposal by Klyshko [49] for click detectors.
For more recent work see [50,51].

To conclude, we note that we have only considered Gaussian states. The method works
though for non-Gaussian states, for which the Wigner function can take on non-positive values.
This indicates that different quadratures cannot be jointly measured, reflecting the inherent
quantumness of those states. In such cases, the vacuum state often has a significant contribution
to the overall quantum state, especially for weak light fields. The experimental limitations due to
this strong vacuum contribution have already been discussed [52].

5. Concluding remarks
Photon counting and the ensuing photon correlation properties is the main experimental
technique in the discrete-variable approach to quantum optics. On the other hand, the continuous-
variable approach is based in quasiprobabilities, the Wigner function being the most conspicuous
of them. These two worlds, providing both complete information, do not talk much to each
other. In this paper, we have shown how one can pass from one to the other in a crystal-clear
manner. Using a unique experimental setup that can work in both worlds, we have shown this
equivalence.

Acknowledgements. It is our pleasure to dedicate this article to Rodney Loudon, who will be remembered
as a pioneer of quantum optics. One of us (GL) fondly and thankfully remembers the period about 25
years ago, when Rodney Loudon visited Erlangen frequently as an Awardee of Alexander von Humboldt
Foundation.

A. Intensity correlation function for Gaussian states
Here we derive an explicit expression for g(2)(0) using the Weyl moments (3.6) for Gaussian
states. We take x= x0 +∆x and p= p0 +∆p, so that we get

⟨n̂W⟩= 1
2 [x

2
0 + p20 + (∆x)2 + (∆p)2],

⟨n̂2W⟩= 1
4{x

4
0 + p40 + 3(∆x)4 + 3(∆p)4 + 2(∆x)2(∆p)2

+ 2x20[(∆p)
2 + 3(∆x)2] + 2p20[(∆x)

2 + 3(∆p)2]} .

(A 1)

The same results can be derived using the explicit form of the Wigner function (3.7) and
performing the resulting integrals. Replacing these values in the general expression (3.5), we can
obtain the values for the states considered here. For a coherent state ∆x=∆p= 1/

√
2 and then

⟨n̂W⟩= 1
2 |ξ̄|

2 + 1
2 , ⟨n̂2W⟩= |ξ̄|4 + 2|ξ̄|2 + 1

2 , (A 2)

with ξ̄ = x20 + p20. Hence, we get

g
(2)
coh(0) = 1. (A 3)
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For a thermal state, we can take x0 = p0 = 0 and ∆x=∆p=
√
2n̄+ 1, which leads:

⟨n̂W⟩= 2n̄+ 1, ⟨n̂2W⟩= 2(2n̄+ 1)2 , (A 4)

so that
g
(2)
th (0) = 2. (A 5)

Finally, for the squeezed state we can take without loss of generality x0 = p0 = 0, and (∆x)2 =
1
2e

−r and (∆p)2 = 1
2e
r . Now,

⟨n̂W⟩= 1
4 (e

r + e−r) , ⟨n̂2W⟩= 3⟨n̂W⟩2 − 1
4 , (A 6)

and so
g
(2)
sq (0) = 3 +

1

⟨nW ⟩ − 1
2

= 3 +
1

⟨n⟩ . (A 7)

References
1. Weyl, H.

Gruppentheorie und Quantemechanik (Hirzel-Verlag, Leipzig, 1928).
2. Rigas, I., Sánchez-Soto, L. L., Klimov, A. B., Řeháček, J. & Hradil, Z.
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