
HAL Id: hal-04662665
https://hal.science/hal-04662665v1

Submitted on 26 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifying HyperLTL properties in Event-B
Jean-Paul Bodeveix, Thomas Carle, Elie Fares, Mamoun Filali, Thai Son

Hoang

To cite this version:
Jean-Paul Bodeveix, Thomas Carle, Elie Fares, Mamoun Filali, Thai Son Hoang. Verifying HyperLTL
properties in Event-B. 10th International Conference on Rigorous State-Based Methods (ABZ 2024),
Jun 2024, Bergame, Italy. pp.255-261, �10.1007/978-3-031-63790-2_20�. �hal-04662665�

https://hal.science/hal-04662665v1
https://hal.archives-ouvertes.fr

Verifying HyperLTL properties in Event-B

Jean-Paul Bodeveix1[0000−0002−4179−6063]⋆, Thomas Carle1[0000−0002−1411−1030],
Elie Fares4,1[0000−0002−9277−4024], Mamoun Filali2[0000−−0001−5387−6805], and

Thai Son Hoang3[0000−−0003−−4095−−0732]

1 Univ. Toulouse 3 – IRIT, Toulouse, France
2 IRIT – CNRS, Toulouse, France
3 University of Southampton, UK

4 Higher Colleges of Technology, Ras Al Khaimah, UAE

Abstract. The study presented in this paper is motivated by the ver-
ification of properties related to hardware architectures, namely timing
anomalies that qualify as counter-intuitive timing behaviour. They are
avoided by a monotonicity property which is a Hyper-LTL property. We
present how to prove some classes of Hyper-LTL properties with Event-
B.

1 Introduction

The study presented in this paper is motivated by the verification of prop-
erties related to hardware architectures, especially multicore platforms.
We are concerned about timing anomalies that qualify a counter-intuitive
timing behaviour: a locally faster execution leads to an increase in the
execution time of the whole program [7]. Monotonicity is a property that
ensures such timing anomalies do not occur. The monotonicity property
does not belong to the usual safety and liveness classes because it relates
to two distinct execution traces. Such kind of properties have already
been identified and coined as hyperproperties [2]. Here, we investigate
the notion of hyperproperties and evaluate their verification methods [6]
for our Event-B context5. The verification of hyperproperties has mainly
been studied in the context of model-checking. Here, our models are pa-
rameterized and will be formalized and reasoned about with the help of
proof assistants. For this purpose, in Section 3, we reuse a proof-based
framework [3] on top of the Rodin Event-B framework.

2 Hyperproperties

Definitions. Hyperproperties introduce universal and existential trace
quantifiers as in the general purpose TLA+ [5] language or in the special-
ized language HyperLTL [1] extending linear temporal logic with trace
quantifiers:

φ ::=

E

π · φ |

A

π · φ | ψ ψ ::= aπ | ψ ∨ ψ | ¬ψ | X ψ | ψ U ψ

⋆ This work was partially supported by the ANR ProTiPP project (grant ANR-22-
CE25-0004).

5 Hyperproperties have been mainly applied to the security domain.

2 J.-P. Bodeveix et al.

where

A

π and

E

π are universal and exisitential quantification over some
trace π, aπ is atomic proposition interpreted on a trace π, X and U
are LTL next and until temporal operators. Other logical and temporal
operators can be defined as syntactical sugar accordingly.

HyperLTL semantics. Let P be a set of propositions, T ⊆ N → 2P a
set of traces, Π a set of path identifiers and T ∈ Π ↛ T . The judgment
T |=i φ (φ is satisfied by the assignments T at time i) is defined as:

T |=i aπ if a ∈ T [π][i]
T |=i ¬ψ if T ̸|=i ψ
T |=i ψ1 ∨ ψ2 if T |=i ψ1 or T |=i ψ2

T |=i X ψ if T |=i+1 ψ
T |=i ψ1 U ψ2 if ∃ j ≥ i s.t. T |=j ψ2 and ∀ i ≤ k < j , T |=k ψ1

T |=i

E

π · φ if ∃ t ∈ T s.t. π 7→ t ,T |=i φ
T |=i

A

π · φ if ∀ t ∈ T : π 7→ t ,T |=i φ

where π 7→ t ,T denote the same function as T , except π is mapped to
t . An important point to note is that time advances synchronously in
every considered trace.

Examples of Hyperproperties. Hyperproperties have mainly been in-
troduced for security. We illustrate the use of HyperLTL through the
expression of two security properties. They use a predicate P encoding
the behavior of the considered system.
– Observational determinism is a 2-safety property. It states that two

traces agree at any time on their observable outputs if they agree at
any time on their observable inputs:

A

π1 ·

A

π2 · P(π1) ∧ P(π2) ∧ 2(inpπ1 ⇔ inpπ2) ⇒ 2(outπ1 ⇔ outπ2)

– Generalized non-interference: It states that observing public infor-
mation reveals no private information: one can find a trace π that
agrees with π1 on its public inputs and with the private part of any
other trace π2, thus not revealing π1 private information.

A

π1 ·

A

π2 · P(π1) ∧ P(π2) ⇒E

π · P(π) ∧ 2(pubπ ⇔ pubπ1
∧ privπ ⇔ privπ2

)

Example 1 (Secret Transfer). Consider a system where Alice wants to
send a secret bit h to Bob by “spliting” h into two bits t1 and t2 such
that h = t1 XOR t2 and transfer t1 and t2 separately using different
channel to Bob. Upon receiving both t1 and t2, Bob reconstructs the
received bit r = t1 XOR t2 accordingly. Assuming that any intruder can
only have access to either t1 or t2 but not both, the protocol ensures that
the value of the secret h is not revealed.
– Observational determinism. if two traces have the same input h, they

have the same output r :

A

π1, π2 · hπ1 = hπ2 ⇒ rπ1 = rπ2 .
– Generalized non-interference. For every two traces π1 and π2, there

exists trace π such that hπ = hπ1 and t1π = t1π2 , i.e., leaking infor-
mation about t1 alone does not reveal the secret h.

Verifying HyperLTL properties in Event-B 3

An Event-B model of split and merge can be seen below. Note that
variable time is used to ensure event ordering. At time 0, split splits
the Boolean h into t1 and t2. Afterwards, merge computes the result r .

3 Verification in Rodin/Event-B

Verifying HyperLTL properties needs comparing several executions and
thus, in the context of Event-B, several copies of the same machine us-
ing copies of state variables. This comes to build composed machines,
a feature present in the CamilleX [4] plugin. We thus present this plu-
gin and how it can be used to produce proof obligations ensuring some
HyperLTL properties.
The CamilleX plugin is a Rodin plugin which brings several syntactic
extensions to Event-B among which are machine inclusion and event
synchronization.

– machine inclusion: the command includes M as m1 ... mk inserts k
copies of M variables and invariants to the current machine, variables
of each copy being prefixed by the corresponding alias mk .

– event synchronization: the command synchronises mi ·e called from
an event ev where mi is machine inclusion prefix and e an event of the
included machine adds e parameters and guards to ev after prefixing
these parameters and the variables referenced by the guards by mi .

The CamilleX plugin has some limitations we have bypassed through
some extensions. The first one concerns the set of copied parameters,
guards and invariants. The second one concerns the copy of proofs.

Parameters, guards and invariants. The original CamilleX plugin only
copies information from the directly included machine.We have modified
this behavior as follows: (1) the machine inclusion command copies in-
variants of (indirectly) refined machines that do not use hidden machine
variables. (2) the event synchronization command copies event parame-
ters and guards of the whole chain of event extensions.
It has to be noted that copied invariants are not guaranteed to be pre-
served both in the original and the modified CamilleX plugins. Their
preservation proof in the included machine may depend on the invariants
established in the whole chain of refinements. We only copy invariants
referring visible variables.

4 J.-P. Bodeveix et al.

Proofs We have added to the CamilleX plugin the generation of proofs
of the invariants copied from included machines. Consider a machine M
as the one given in the next section. The preservation of invariant I by
the event ev leads to a proof obligation named ev/I/INV. Consider a
machine M1 including two copies of M prefixed m1 and m2 and thus two
invariants named m1.I and m2.I. The introduction of the event ev in M1
leads to the generation of two proof obligations named ev/m1.I/INV and
ev/m2.I/INV. Their proofs have in fact already been done in machine M
up to the renaming of variables V and of M and parameters P of the event
ev of M. The copied proofs may be incorrect because they use invariants
visible by M and not copied in M1. They are thus replayed.

4 Verification of hyperproperties with CamilleX

We now use the (extended) CamilleX plugin to build machines in charge
of producing proof obligations matching the assertion of the fact that
a machine satisfies some HyperLTL properties. The class of properties
supported by this methodology should have the shape M |=

A+ E?2P
(any non negative number of universal quantifiers followed by at most
one existential quantifier).
Consider the machine M having a set of variables V together with in-
variants I and an indexed family of events evi :

machine M variables V invariants I
event evi when Gi then Ai end

end

The universal prefix is obtained through composition: we create the syn-
chronous product of several copies of the machine M to be checked. The
optional existential quantifier is managed by refinement, where the ma-
chine corresponding to the existential quantification is refined by the
synchronous product of several copies of machine M. In order to make
the schema simpler, we separate

A+ and

A+ E

managements.

4.1 M |=

A+
2P verification

In order to check the

A+2P property over our given machine M , we build
a check machine containing two or more independent copies of M state
variables together with their invariants. The box property P is added
as an invariant over the product state space. To simulate the universal
quantifications over the behaviors, a free product of machine events is
build: the behavior of the product machine is obtained by independently
choosing at each step an event in each machine.

machine check includes M as m1 m2
// two copies of M state variables and invariants

invariants P(m1_V,m2_V) // property to be proved as invariant
events // synchronous product (one step in each copy)

event ev_ij synchronises m1·evi synchronises m2·evj end
end

Verifying HyperLTL properties in Event-B 5

Additional invariants might be required for the proof of the Hyper-
LTL property.

Example 2 (Linear Pipeline). To illustrate the verification of a

AA

prop-
erty, we consider a strongly simplified specification of a linear pipeline
and its monotony property. A processor cycle processes a stream of in-
structions through a sequence of stages. The pos variable maps instruc-
tions to their stage. Instructions may skip some stages. This feature is
described by the jumps state variable. It must be seen as an input fixed
during machine initialization and left unchanged during execution. A cy-
cle moves instructions to the right while performing jumps as required.

machine mRISC sees cGEN // defines State as N1

variables pos jumps
invariants

@pos pos ∈ 1. .LEN ↣ State
@jumps jumps ∈ 1. .LEN → P(State) // skipped states (hits),
@pos_jumps ∀i·i ∈ 1. .LEN ⇒ pos(i) ̸∈ jumps(i)

events . . .
event cycle any P where

@P_ty P ∈ 1. .LEN ↣ State
@P_gt ∀i·i ∈ 1. .LEN ⇒ pos(i) < P(i)
@H_to_P ∀i·i∈1. .LEN ⇒ pos(i)+1. .P(i)−1 ⊆ jumps(i)
@at_P ∀i·i∈1. .LEN ⇒ P(i) ̸∈ jumps(i)

then @npos pos := P end
end

The property to be checked is that if a behavior makes fewer jumps, all
the instructions are less advanced in the pipe.

machine check sees cGEN includes mRISC as m1 m2
invariants

@jumps ∀i· i∈1. .LEN ⇒ m1_jumps(i) ⊆ m2_jumps(i)
@isLate ∀i · i∈1. .LEN ⇒ m1_pos(i) ≤ m2_pos(i)

events
event INITIALISATION . . . end
event product synchronises m1·cycle synchronises m2·cycle end

end

4.2 M |=

A+ E

2P verification

In order to check that M satisfies the hyperproperty

A

π+ E

π′2P(V +
π ,Vπ′),

we first introduce a check machine which represents the product com-
position of the

A

+ portion (similar to the previous section) and prove
that this machine refines the original machine M so that the property P
is satisfied at any instant. To find the matching abstract trace, we must
provide an event-to-event mapping. The refines clause allows specifying
such a mapping.

6 J.-P. Bodeveix et al.

machine check refines M includes M as m1 m2
invariants P(V+, V) // state-only body of hyper property
events

event ev_ij refines ev_k // selected to get P
synchronises m1·ev_i // Syncrhonise with the ev_i of m1
synchronises m2·ev_j // Syncrhonise with the ev_j of m2
end

end

Discharging the proof obligations of the machine check guarantees the
correctness of the HyperLTL property as refinement proof obligations
the existence of an abstract trace linked to the concrete trace through
the provided gluing invariant. However, a failure in these proof attempts
is inconclusive.
Example 3 (Secret Transfer non-interference). Consider Example 1 and
focus on the generalised non-interference property, which can be formal-
ized as

A

π1

A

π2

E

π.hπ = hπ1 ∧ t1π = t1π2 . We construct a composition
machine for π1 and π2 and state that it is a refinement of M with the
appropriate gluing invariants.

machine check refines M includes M as m1 m2
@glue−h h = m1_h @glue−t1 t1 = m2_t1

events
event m1_split_m2_split refines split
synchronises m1· split synchronises m2· split
with

@c1 c1 = m2_c1 @c2 c2 = m1_h XOR m2_c1
end

event m1_merge_m2_merge refines merge
synchronises m1·merge synchronises m2·merge end
. . .

end

The refinement proof relies on the notion of “witnesses” in Event-B when
the hidden bit is split. The witness for c1 (which will eventually be the
value for t1) is chosen the same as m2 c1 (so that the observed bit t1 will
be the same for π2 and π). The witness for (hidden) c2 is then chosen to
ensure that c1 XOR c2 = m1 h (since the hidden input h is the same
for π1 and π). In general, to prove refinement, it can be necessary to add
invariants or revise the abstract model by event splitting.

5 Conclusion

This paper has presented a way to verify HyperLTL properties in the
Event-B framework thanks to the use of the CamilleX plugin for building
products of Event-B machines. As we have said, our example is strongly
simplified. We envision to enrich this work first with respect the instru-
mentation of the verification of HyperLTL properties and with respect
to our initial case study.

Verifying HyperLTL properties in Event-B 7

References

1. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe,
M.N., Sánchez, C.: Temporal logics for hyperproperties. CoRR
abs/1401.4492 (2014), http://arxiv.org/abs/1401.4492

2. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Se-
cur. 18(6), 1157–1210 (2010). https://doi.org/10.3233/JCS-2009-
0393, https://doi.org/10.3233/JCS-2009-0393

3. Hoang, T.S., Snook, C., Dghaym, D., Fathabadi, A.S., Butler,
M.: The CamilleX framework for the rodin platform. In: ABZ
2021- 8th International Conference on Rigorous State Based Meth-
ods: ABZ 2021 (07/06/21 - 11/06/21). pp. 124–129 (June 2021),
https://eprints.soton.ac.uk/448174/

4. Hoang, T.S., Snook, C., Dghaym, D., Fathabadi, A.S., But-
ler, M.: Building an extensible textual framework for the
rodin platform. In: Software Engineering and Formal Methods.
SEFM 2022 Collocated Workshops: AI4EA, F-IDE, CoSim-
CPS, CIFMA, Berlin, Germany, September 26–30, 2022, Revised
Selected Papers. p. 132–147. Springer-Verlag, Berlin, Heidel-
berg (2023). https://doi.org/10.1007/978-3-031-26236-4_11,
https://doi.org/10.1007/978-3-031-26236-4 11

5. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Longman Pub-
lishing Co., Inc., USA (2002)

6. Lamport, L., Schneider, F.B.: Verifying hyperproperties with
TLA. In: 34th IEEE Computer Security Foundations Sympo-
sium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. pp.
1–16. IEEE (2021). https://doi.org/10.1109/CSF51468.2021.00012,
https://doi.org/10.1109/CSF51468.2021.00012

7. Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger,
J., Becker, B.: A definition and classification of timing anoma-
lies. In: Mueller, F. (ed.) 6th Intl. Workshop on Worst-Case Exe-
cution Time (WCET) Analysis, July 4, 2006, Dresden, Germany.
OASIcs, vol. 4. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2006),
http://drops.dagstuhl.de/opus/volltexte/2006/671

