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ABSTRACT
Attack paths represent the sequences of network nodes compro-
mised by attackers while exploiting their respective vulnerabilities.
Current methods for predicting such attack paths largely depend
on existing human expertise or established heuristics. These tra-
ditional methods are time-consuming and require highly skilled
threat-hunting analysts to identify these attack paths and proac-
tively apply security measures. However, the task becomes chal-
lenging when facing large-scale and highly vulnerable networks. In
this paper, we propose an alternative approach leveraging Deep Re-
inforcement Learning (DRL) techniques aiming to approximate the
decision-making of attackers. Our approach embodies the attacker’s
perspective and tactics to leverage discovered paths for proactive
security analysis and establish defense strategies. We introduce a
novel re-formulation of the problem with a local view for the DRL
agent, representing the source and target node of the attack at each
timestep. Additionally, our training methodology involves a diverse
set of network topologies of different sizes and exploitable vulner-
abilities, demonstrating the ability of DRL algorithms to navigate
topologies, identify attack paths, and compromise nodes. Results
highlight the capability of the learned policies to generalize within
entirely new topologies, arriving to discover 80% ± 0.08% of the
attack paths in 1500 steps.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Net-
work security; • Computing methodologies→ Planning un-
der uncertainty; Sequential decision making.
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1 INTRODUCTION
Intrusion and attack detection are among the oldest and most com-
mon problems in cyber security tasks [27]. However, these ap-
proaches are only reactive to observed patterns or learned detection
models. Proactive and predictive methods can be more valuable in
reacting to attacks before they happen. In particular, both detec-
tion systems and proactive security measures gain efficiency when
knowing the attack paths that may be used by attackers to gain
access to a network. By identifying the sequences of vulnerabili-
ties and attack techniques that attackers exploit to achieve their
objectives, these systems can enhance their effectiveness.

A relevant challenge in attack path prediction [27] is its depen-
dency on the expertise of professionals skilled in penetration testing
(PT), security analysis, and threat hunting. This reliance on human
expertise not only constrains the assessment’s efficiency but also its
scalability when facing large-scale and highly vulnerable networks.
In such situations, the security analysts are overwhelmed and the
task of prioritizing the vulnerabilities to fix becomes challenging. At-
tack prediction tools may provide network security teams insights
about potential future attacks or malicious activities, to prepare
defense strategies [14]. Specifically, the process of forecasting an
attacker’s steps during attack propagation or multi-stage attacks is
also known as intrusion prediction [1].

Recent advances are studying howMachine Learning (ML) meth-
ods can approximate the strategic behavior of an attacker, trying
to encapsulate the decision-making process of this behavior within
the parameters of an ML-based model. Among the different cat-
egories of methods, time-series analysis models, Markov models
[13], Bayesian networks [45], and Deep Learning (DL) models [16]
are showcasing great potential in predicting future cyber-attacks
[27].

With these approaches, studies want to prove the potential of
a function approximator to execute the appropriate exploits and
move through the network, aiming at discovering and/or taking
control over its devices. The resulting model may enhance cyber-
situational awareness [27], crucial for both assessing the current
resilience of the network, but also to determining how to strengthen
network security by identifying the most common or critical nodes
and paths. However, many of these existing techniques still have
scalability and generalization issues, in particular for predicting
attack paths in large-scale and highly vulnerable networks.
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Recently, Reinforcement Learning (RL) [50], an ML paradigm
that appears to be suited for modeling the sequential nature of
cyber-attack discovery, has been used for attack path prediction
with automated penetration testing or exploring attack graphs to
find paths that may be exploited by attackers. However, there is
limited knowledge regarding the performance of the available RL
techniques in such tasks, how their models can be generalized, and
how they can be evaluated comprehensively and reliably.

In this paper, we leverage RL techniques and specifically their
DL variants to train an agent for learning a policy able to iden-
tify attack paths in unseen vulnerable networks during its training
phase. The RL agent maps states to actions, to maximize cumulative
rewards over time while using a Markov Decision Process (MDP)
[44]. A MDP provides a formal framework to capture the sequential
decision-making, characterized by a series of states (representing
the topology’s configurations at given time points), actions (possi-
ble interventions or movements that the attacker might execute),
and rewards (outcomes of actions aimed at evaluating their effec-
tiveness). By integrating DL [17] techniques, we leverage neural
networks (NNs) [20] as function approximators capable of discern-
ing complex patterns representations in the state and action spaces,
shifting to the paradigm of deep RL (DRL), and potentially getting
closer to approximate complex decision strategies, typical of skilled
attackers. In the RL framework, the agent must interact with its
environment to learn, in a manner that conforms to the structure
of a MDP.

One possible approach to automate the identification of attack
paths involves creating an attack tree model from the topology
and the identified vulnerabilities, and then using RL to identify
the most effective branches for attack [26]. However, this method
heavily depends on the presence of a graph that is either manu-
ally created by humans or generated by another software, such
as MulVAL [40]. Additionally, it assumes complete knowledge of
the network’s overall topology, which may be infeasible in prac-
tice for large and complex networks. Thus, we followed in this
work the direction of studies based on recent tools [51] [31] [5]
[23] that target the full automation of the vulnerability assessment
process, eliminating the dependency on pre-existing attack graphs
or comprehensive knowledge of the network’s topology. This shift
in methodology transforms the classic MDP into a Partially Observ-
able MDP (POMDP) [29]. With this modification, the simulation
will provide partial observations that reflect the current state of
the network discovery process. In real-world scenarios, attackers
also possess a limited and evolving understanding of the topology,
gradually expanding their knowledge during the process.

1.1 Key Contributions
This paper aims to reformulate and refine the application of DRL for
predicting cyber-attack paths, with a particular focus on improving
the model’s generalization capabilities across different network
topologies. This enhancement brings the model closer to practical
deployment. The following points provide a detailed summary of
the key contributions of this paper:

• A topology independent approach with an attacker’s
local view: Our approach involves a novel reformulation of
the conventional choices for state and action spaces used in

previous research studies for this task [4] [19] [55] [42]. This
enables the training and evaluation of a single NN-based
cyber-attacker agent across diverse topologies of varying
sizes. To achieve this, we propose a local view of the agent’s
state space, using a source and target node instead of a global
view of the overall topology. This modification also simpli-
fies the action space by requiring the agent to choose only
the vulnerability to exploit between the two nodes or a move-
ment action for the two anchors, rather than selecting the
nodes of interest as well. Therefore, there is no need to adjust
the number of neurons in the NN input and output layers
as the size of the graph changes. This offers a more flexible
DRL paradigm that enables training and evaluation without
being limited to a specific fixed topology size. As a result of
this advancement, there is no longer a need to retrain a new
agent for each topology scenario.

• A more generalizable training & evaluation approach:
We propose a more versatile training and evaluation ap-
proach using a periodic switchingmodule, allowing the agent
to be exposed to multiple topologies representing various
scenarios with different topology sizes, vulnerabilities, fire-
wall conditions, and starting nodes. These scenarios’ param-
eters are selected from predefined probability distributions,
ensuring systematic variation in training and evaluation con-
ditions. By doing so, our approach aims to significantly im-
prove the agent’s ability to generalize across diverse environ-
ments, thereby trying to bridge the gap between simulated
scenarios and real-world complexities. Unlike traditional ap-
proaches that have trained agents on a single static topology
with a fixed starting node, this approach aims to avoid bias
and enables robust evaluation of the agent’s strategy.

• Performance evaluation across episodes: By periodically
varying both the topology and the starting node, we influ-
ence the agent’s maximum achievable performance in each
episode and its subsequent evaluation. To handle this vari-
ability, we propose new graph abstractions that assess the
complexity of each topology for a DRL agent, while also
determining the same complexity for a specific starting node.
This approach allows us to compute the maximum achiev-
able score for the agent under each starting condition and
ensure a proper result integration across multiple starting
conditions during evaluation.

• Tool modifications and enhanced evaluation frame-
work: We are releasing an enhanced version of Microsoft
CyberBattleSim [51], a tool that provides structured environ-
ments for training and evaluating RL-driven attackers. The
tool modifications alongside the network topologies utilized
in the study, are comprehensively linked within the paper
[52] [53]. This update incorporates the enhancements men-
tioned in the previous points and introduces an interface for
utilizing Stable-Baselines3 (SB3) [46] algorithms and RLiable
[2] indicators. Combining the previous modifications with
the integration of these well-established RL libraries enables
a thorough evaluation of DRL algorithms in the cyber-attack
path prediction task. Additionally, we introduce domain-
specific metrics related to individual actions and identified
attack paths to further enrich the evaluation framework.
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The rest of this paper is organized as follows. Section 2 pro-
vides an overview of RL and the algorithms employed in our study.
Section 3 reviews existing literature on the application of RL to
automated cyber-attack prediction. In Section 4, we outline our
proposed methodology. Section 5 presents a comprehensive experi-
mental setup, while Section 6 conducts a benchmarking analysis
to evaluate and compare algorithms’ performances. Section 7 dis-
cusses the potential deployment pipeline and its limitations for
network analysts, while Section 8 concludes with the implications
of our findings and suggests directions for future research.

2 REINFORCEMENT LEARNING
In this section, we provide background information on RL and the
characteristics of the algorithms covered in the study. RL, alongside
supervised and unsupervised learning, is one of the paradigms in
the general context of ML.

RL Agent

Environment

Action A(t)

State S(t+1)

Reward R(t+1)
State S(t)

Reward R(t)

Figure 1: Overview of the main RL elements: agent, environ-
ment, states, actions, and rewards.

The main components of the RL paradigm (Figure 1) include the
agent, environment, rewards, actions, and states. At each time step
𝑡 , the agent exists in a state 𝑆 (𝑡 ) , takes an action 𝐴(𝑡 ) , and receives
from the environment a transition to a new state 𝑆 (𝑡+1) and the
reward 𝑅 (𝑡+1) associated with the action taken in the previous
state. Learning occurs via a process of trial and error, using the
reward feedback from the environment in response to the actions
it executes across various input states. This loop empowers the
agent to discover optimal behavior within the environment by
interacting with it. In the RL realm, an episode represents a "game
trial" of the learning agent interacting with the environment. It
starts with the agent in an initial state, involves a series of actions
taken by the agent, transitions between states, and concludes when
a termination condition is met (e.g. all reachable nodes have been
owned) or a cut-off of steps is reached. A policy is defined to be
optimal if it selects actions that maximize the cumulative expected
rewards over the entire time horizon.

2.1 Markov Decision Process
The environment is typically represented as an MDP, an extension
of a Markov Process (MP) [39]. The MDP formulation is given by

the components highlighted in Tuple 1.

MDP: (S,A,P,R, 𝛾) (1)
S : State space (2)
A : Action space (3)
P : S × A → S, State transition function (4)
R : S × A → R, Reward function (5)
𝛾 : Discount factor (6)

Additionally, a trajectory (𝜏) is defined as a sequence of states,
actions, and rewards that an agent experiences as it interacts with
an environment. Specifically, a trajectory can be represented as a
sequence (𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, . . .). As previously mentioned, the objec-
tive of the agent is to maximize the expected cumulative reward,
known also as the return, for the trajectory. The return from a
state at time 𝑡 over a trajectory 𝜏 (assuming an episode of finite
length 𝑁 ) is defined as delineated in Equation 7. This calculation
aggregates the rewards accumulated at every timestep throughout
the trajectory.

𝑅(𝜏) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + . . . =
𝑁∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (7)

Equation 7 also underscores the significance of the discount factor
𝛾 (Equation 6), a scalar value that determines the importance of
future rewards compared to immediate rewards in the optimization
process. It plays a crucial role in the agent’s decision-making by
influencing how much weight is given to future rewards.

2.2 Partially Observable Markov Decision
Process

A POMDP extends the MDP framework to scenarios where agents
have limited information about the environment’s state. Defined by
the tuple (S,A,P,R,Ω,O, 𝛾), a POMDP incorporates in addition:

• Ω, a finite set of observations that the agent can perceive,
providing partial information about the current state of the
environment.

• O, the observation probability function, which specifies the
probability of observing a particular observation given an
action and the resulting state.

Unlike MDPs, in POMDPs, agents receive observations rather than
full-state information, necessitating learning agents that can handle
uncertainty and partial knowledge to make decisions.

2.3 Model-based vs Model-free Methods
Model-based methods [38] [50] aim to directly approximate the
state transition function, denoted as P (Equation 4), and the reward
function,R (Equation 5). Given the complexity of accurately predict-
ing these functions, which knowledge leads to the solution of the
MDP, direct approximation of these functions for real-world tasks
is challenging. Consequently, this complexity often leads to the
utilization of model-free methods [50] in real-world tasks, which
overcomes the need to directly approximate P and R by focusing
on other strategies that learn policies or value functions. Model-free
methods include several classes of algorithms:
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• Value-based methods, such as Deep Q-Networks (DQNs) [37],
focus on learning a value function. Typically, the Q function
is learned, 𝑄 (𝑠, 𝑎) (Equation 8), which quantifies the value
of taking an action 𝑎 in a given state 𝑠 . This function enables
the selection of actions that maximize the return.

𝑄 (𝑠, 𝑎) = E𝜏∼(𝑠,𝑎) [𝑅(𝜏) | 𝑠0 = 𝑠, 𝑎0 = 𝑎] (8)

• Policy-based methods, including Proximal Policy Optimiza-
tion (PPO) [49] and Trust-Region PolicyOptimization (TRPO)
[48], directly learn a policy function 𝜋 that approximates a
probability distribution on the action space for each state
(Equation 9), still aiming for a policy that maximizes the
return.

𝜋 (𝑎 |𝑠) = 𝑃 (𝑎𝑡 = 𝑎 |𝑠𝑡 = 𝑠) (9)

• Actor-critic methods, like the Advantage Actor-Critic (A2C)
[36], combine both value-based and policy-based approaches
by maintaining two models: one for the policy (the actor)
and another for the value function (the critic).

Given the complexity involved in predicting cyber-attacks, we will
directly utilize model-free methods for this task, in line with the
approach taken by all existing studies on the topic.

3 RELATEDWORK
Current techniques for forecasting cyber-attacks fall into various
categories, including discrete, continuous, ML-based, and other
strategies [27]. In the group of discrete techniques, graph models
are predominant, especially ones leveraging attack graphs, Bayesian
networks, or Markov models.

RL-based approaches lie at the intersection between Markov
models and the larger category of ML-based approaches. More re-
cently, these RL-based techniques have been adopted in several
works for cyber-attack prediction, in particular for autonomous PT
to discover how attackers could make intrusions on a given com-
puter network. Initial studies on autonomous PT [24][54] started
with the assumption of the availability of the topology of the net-
work or an attack tree, with solutions for which input data may
be impractical to acquire in real-world scenarios for large-scale
complex networks. More recent works are going towards a black-
box approach, focusing on dynamically discoverable environments,
allowed by simulation platforms like CyberBattleSim. Given the
challenges in accessing data on network vulnerabilities due to se-
curity and privacy concerns, there is a growing need for these
simulation tools capable of generating network topologies embed-
ded with vulnerabilities [7]. Additional environments that merit
mention include CybORG [5], CyGIL [31], and AutoPentest-DRL
[23]. Each of these platforms offers an interface compatible with
OpenAI Gym [9], facilitating the training of RL agents. In this
work, CyberBattleSim is employed as the simulation tool of choice,
due to its support to the realistic evolving representation of the
attack process and its support for various scalable communication
topologies.

In the recent research outcomes, a notable gap exists regarding
the utilization of state and action space representations specifically
aimed to be topology independent, as well as the training/evaluation
on different topologies in a scalable fashion. The two problems are

strictly connected, since a topology-dependent NN cannot be ap-
plied on different topologies, requiring to retrain a different model
for each topology. A commonly adopted approach for structuring
the input layer of the NN involves translating the network topology
into an array, which length is proportional to the quantity of nodes.
These nodes are sequenced based on the order in which they are
discovered. This approach results in a topology-dependent input
layer’s size, where also the ordering of the input changes based
on the unpredictable sequence of node discovery, deteriorating
learning valuable mappings from the input data. Similar imple-
mentations and similar challenges are present in the output layer,
which typically includes the selection of nodes and the attack. This
approach also presents practical challenges as the topology size
increases, since the input and output space will vary. It leads to
scalability issues and instability in research findings, as conclusions
may vary largely with changes in the input and output layers’ di-
mensions. Significant challenges are present as well in using NNs to
transfer learned behaviors across various topologies, due to the lack
of consistent semantics in the ordering of nodes. Furthermore, this
approach does not account for dynamic changes in topology size, a
characteristic common in highly dynamic environments like the
Internet of Things (IoT), becoming a critical limitation in applying
these NN-based models to real-world environments. The current
solutions in the literature and the remaining existing drawbacks
have been described in more detail in Table 1. Finding a solution to
these problems may facilitate model migration, generalization, and
consequent deployment.

Solutions like masking actions and padding to standardize in-
put/output sizes among topologies have been proposed [19] [32],
yet they fail to address the issue of inconsistent node ordering
semantics among topologies. Moreover, present studies primarily
focus on a training process applied within a singular network topol-
ogy and from the same starting node compromised by an attacker.
A limited number of papers have begun to examine the agent’s
transferability across diverse topologies [32] [4] [19]. However,
there remains a significant gap in research dedicated to achieving
this in a scalable manner, either across a large number of diverse
topologies or through robust evaluation methods.

Our source-target approach for the attacker’s local view cou-
pled with a scalable training/evaluation strategy wants to cover
the existing drawbacks by making the RL agent learning process
more topology independent and trying to approximate general
knowledge in the agent.

Moreover, different sources of non-determinism, such as extrin-
sic factors (e.g. hyper-parameters) and intrinsic factors (e.g. random
seeds and the number of runs), may strongly affect RL results [10]
[21]. Relying on less statistically robust metrics can lead to con-
siderable variations in research findings, hence we leverage more
reliable alternatives to mean and standard deviation for more accu-
rate assessments [2].

Furthermore, it has been noted that variations in the implemen-
tation of identical algorithms can lead to vastly different outcomes
[10]. To reduce this variability and improve the reproducibility of
findings, this study has chosen to use reliable implementations
from the SB3 library [46]. Moreover, existing research might ex-
hibit statistical biases due to the insufficient exploration of hyper-
parameters in DRL algorithms. Recognizing this gap, our study has
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Table 1: Summary of challenges and approaches in recent papers and implementations regarding the application of RL for
attack prediction.

Approach Using the Approach Still Present Drawback
Topology-dependent state and/or action space [4], [19], [55], [42] Challenges in scalability (for large topologies), evalua-

tion (different results varying input and output layers’
sizes), and transferability on different topologies.

Encoding in state and action spaces dependent
on node discovery order

[4], [19], [55], [42] Difficulty in learning order-invariant patterns across
topologies or across several episodes where the order
of discovery is different.

Masking invalid actions in the action space [19], [32] May deteriorate learning since the invalidity of actions
is dependent on the order of nodes’ discovery.

Padding techniques to fix a maximum number
of nodes in state and action space

[19], [32] Trade-off between upper limit’s size and the inefficiency
of unused capacity.

Single node encoding and global features as
state

AgentWrapper Implementation
of CyberBattleSim tool, [33]

Agent with limited view on the target of the attack,
potentially not being able to learn a full mapping.

Transfer learning on new topologies [32] [4] [19] Gap in scalable evaluation across diverse topologies or
robust evaluation methods.

incorporated an initial phase of hyper-parameters optimization,
before proceeding to the comparative analysis of the algorithms.

4 METHODOLOGY
In this section, we discuss our topology independent and scalable
MDP formulation, as well as the process of generation of the en-
vironment used, along with the training and evaluation pipeline
followed.

4.1 Markov Decision Process with a Local
Perspective

The MDP framework implemented in the work adopts a source-
target node strategy, enabling transferability across varying net-
work topologies and independence on the node ordering in the
topology and across topologies. The progression of the episode is
managed through three primary lists: the owned list, the discovered
list, and the credential cache. The owned list contains nodes that the
agent has successfully compromised throughout the episode. The
discovered list includes nodes that have been identified, typically
through exposure of their node IDs via vulnerabilities. Lastly, the
credential cache stores credentials obtained by exploiting vulnera-
bilities, and they are assumed to be (nodeID, port, password) tuples.
At the beginning of each episode, the owned and discovered lists in-
clude only the starter node, while the credential cache starts empty.
The game will allow interactions between the source node (initially
the starter node) and the target node (initially replaced by a dummy
blank node). As the game progresses, the agent’s actions (initially
only with local actions as valid) lead to the discovery of nodes,
credentials, and the compromise of nodes, dynamically updating
the lists and the potential choices for the source and target nodes.

4.1.1 Action Space. The action space, defined within the MDP’s
local perspective, includes:

• Local Vulnerabilities: An action corresponding to each
local vulnerability, targeting the source node.

• Remote Vulnerabilities: An action for every remote vul-
nerability, targeting the target node.

Source
Node

Target
Node

Global 
Features

RL Agent

Action
Space

Local Vulnerability
Local 1

Local M

.....

Remote Vulnerability

Port Connection

Source Node Switch

Target Node Switch

Observation
Space

2 1 3

4 5

6 7 8

Discovered Nodes

Owned Nodes

Action

Next Observation
&

Reward

Environment

Credential Cache

Figure 2: A more detailed view of the RL process: the agent
selects the optimal action based on the observation.

• Port Connections: Actions for establishing connections
from the source to the target node, one per available port.
We operate under the assumption that, upon the agent’s
selection of a port, it will subsequently attempt access using
all matching credentials stored in the cache.

• Navigational Actions:
– Source node switching, both forward and backward within
the owned list.

– Target node switching, forward and backward within the
discovered list.

The agent will start to explore nodes in the topology via the source-
target approach and take action on them, potentially enlarging the
list of discovered nodes and owned nodes if the right actions have
been taken. The simulation’s environment dynamically updates the
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configuration of the game treating the lists as circular queues for
switching actions.

4.1.2 Observation Space. The observation of an agent at any given
time step is delineated by the following components:

• Source Node Representation: Attributes of the source
node.

• Target Node Representation:Attributes of the target node.
• Global Features Array: A set of summarized metrics re-
flecting the previous lists, comprising:
– Number of Discovered Nodes: Total nodes identified by the
agent.

– Number of Owned Nodes: Nodes that have been compro-
mised by the agent.

– Number of Discovered Credentials: The count of unique
credentials discovered, indicating the size of the credential
cache.

– Average Node Value: The average value across all discov-
ered nodes. It may suggest the agent switching the target
node if it may be less valuable than the others available.

– Exploitable Vulnerabilities: The number of yet-to-be-exploited
vulnerabilities within the owned nodes. It may suggest
focusing more on already compromised nodes rather than
exploring new nodes.

– Accessible Ports: Count of ports known to be accessible in
discovered nodes (information obtained from the creden-
tial cache via lookup). It may suggest focusing more on
port connections to already discovered nodes.

A compact representation of the MDP is presented in Figure 2.
Details on the node representation will be provided in Section 4.2.

4.1.3 Reward function. While learning, the RL agent should learn
to optimize several objectives, such as the number of nodes that
have been discovered or compromised, the credentials gathered,
or the number of actions taken. The reward function 𝑅 used in
this study is based on CyberBattleSim and represents the weighted
linear combination of the outcomes of a certain action a in a given
state s, showcasing the control gained by the agent as a consequence
of the exploitation of a vulnerability (Equation 10). The weights
within the reward function can be adjusted to emphasize different
objectives, such as discovery, control, or node-specific targets.

𝑅(𝑠, 𝑎) = ©«
∑︁

𝑖∈nodes owned(s,a)
𝐾value · value(𝑖)

ª®¬
+ 𝐾node discover · |nodes discovered(s,a)|
+ 𝐾credential discover · |credentials discovered(s,a)|
− 𝐾cost · 𝑐𝑜𝑠𝑡 (𝑎)
+ 𝐾first success · first success(s,a)
− 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑎) (10)

The components of the reward function take into account all the
possible outcomes of the agent’s interactionwith the current source-
target node pair. The first term accounts for the sum of values of
the nodes owned as a result of the action taken. The other terms
encourage nodes’ discovery and credentials gathering, penalize the

costs associated with exploiting vulnerabilities, and reward first-
time successful actions. The vulnerability cost could be quantified
in terms of time needed, computational effort, or increased risk
of detection. It ensures that the agent considers the efficiency and
risks associated with different actions. This term also allows for the
adjustment of cost weights for local and remote vulnerabilities, as
well as differentiation based on the protocol of each vulnerability.
The penalty term is determined based on whether the action taken
adheres to a predefined set of patterns, such as suspicious activity,
failed exploits, or repeated actions.

4.1.4 Threat Model. In our methodology, our primary goal is to
identify goal-agnostic attack paths. To achieve this objective, we
have tailored the reward function coefficients (detailed in Section
4.1.3) to guide the agent toward maximizing general control over
nodes throughout the topology, without targeting specific nodes
(further discussion on the specific coefficient values used is present
in Appendix A.2). In fact, if the agent is intended to gather general
defense insights without prior knowledge of specific attacker goals
— knowledge that is often unrealistic a priori — training it for goal-
agnostic paths is preferable [30].

4.1.5 Normalization strategy. To enhance the stability and effec-
tiveness of the training process, both the observation vector and
reward signal received at each iteration by the agent are normalized
using z-score normalization, which has been well demonstrated to
facilitate more consistent training outcomes and improved algo-
rithm performance [25]. This approach is based on the VecNormalize
technique from the SB3 library.

4.2 Node Representation
In this subsection, we expand upon the previously outlined local
MDP framework utilized in this work, specifically focusing on
the observation representation which includes encodings for both
source and target nodes. Table 2 details the attributes that define the
node representation of our methodology. These attributes will be
encoded to fully represent a specific node in the topology and will
work as the array representation of a node for the agent. The partial
observability characteristic emphasizes attributes that modify the
agent’s visibility into each node, changing depending on whether
the node has been compromised, introducing an extra layer of
partial observability within an inherently partially observable envi-
ronment. This adaptation has been done on the assumption that, in
a practical deployment scenario, some attributes might be obtained
through scanning tools like Nmap [34]. However, detecting certain
vulnerabilities could necessitate higher access permissions to the
host, becoming visible only after the node is fully compromised.
We assume that details such as the node’s value and the availability
weights of services, which may not be directly derivable through
existing tools in a potential deployment phase, could be approxi-
mated by the agent based on contextual factors. In this study, they
are replaced by respectively a random value in the range [0, 100]
and default importance weights set by the simulation tool.

4.2.1 Approaching the Markovian Ideal. To ensure the environ-
ment’s Markovian property, stating that future states depend solely
on the current state, additional properties have been incorporated
(Table 2). These properties help differentiate between scenarios
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Table 2: Encoding attributes of the communication networks’ nodes and their properties.

Attribute Description Partial Observability Additional Markovian Property
Initial Node Identifies if this node was the starting

point for the current episode.
X X

Node Value A numerical value reflecting the node’s
intrinsic importance in the topology.

X X

Listening Ser-
vices Array

Array with elements identified by a
port identifier, each including status and
weight of importance.

X Each entry with a property indicating
if the port is accessible with the current
credentials.

Vulnerability
Array

Array with elements characterized by
type (local/remote), outcome (nodes dis-
covery, etc.), and exploitation cost.

Each entry is hidden until a correct
exploitation attempt is made or the
node is fully compromised.

Each entry with a property indicating
if it was already exploited or tried (to
avoid the agent repeating redundant ac-
tions).

Node Status Indicates the node’s current operational
state (running, stopped).

X X

Privilege Level Denotes whether the node has been
compromised.

X X

Service Avail-
ability

Represents the node’s importance in
network service levels.

X X

Firewall Set-
tings

Rules specifying ALLOW or BLOCK ac-
tions for each protocol and direction.

X X

where the observation representation might appear identical yet
lead to divergent outcomes due to unseen information. This assump-
tion is crucial for the convergence of most of the well-known RL
algorithms. Indeed, as it is going to be detailed by the vulnerability
assignment in Section 4.3.2, the game inherently lacks Markovian
properties. For example, a granted connection to a specific port
depends on previous actions, such as exploiting a vulnerability on
an adjacent node to obtain valid credentials for that port. Including
the extra Markovian property can enhance learning stability by
incorporating information that may be invisible otherwise.

4.3 Topologies Generation
This section will delineate the methodologies employed to generate
the network topologies used for training, a clearer picture of the
resulting MDP framework, and additional abstractions added to the
foundational model to discuss the complexity of a topology for the
RL agent and to determine the potential impact of the agent on the
topology from each starter node.

4.3.1 Communication graph. The environment constructs a net-
work communication graph using a set of protocols available for
communication among nodes. For every protocol, there exists a
designated block of clients and servers of customizable sizes. The
connections between nodes belonging to the two groups are de-
termined by probability distributions. Two types of Beta distribu-
tions [28] are used to model the likelihood of network connections:
an intra-beta distribution and an inter-beta distribution. Charac-
terized by two shape parameters, 𝛼 and 𝛽 , the Beta distribution’s
shape varies depending on these parameters. It exhibits a posi-
tively skewed distribution when 𝛼 < 𝛽 and a negatively skewed
distribution when 𝛼 > 𝛽 .

• The inter-beta distribution determines the probability of con-
nections between different groups, such as an RDP client
communicating with an RDP server.

• The intra-beta distribution estimates the probability of con-
nections within the same group, for instance, that an RDP
client establishes connectionswith another RDP client, hence
also serving as an RDP server. This probability distribution
ensures an overlapping among the two groups.

4.3.2 Vulnerability assignment. Starting from the communication
graph containing protocol edges among nodes, vulnerabilities are
assigned among every pair of nodes according to a set of prob-
abilities reflecting the potential vulnerabilities inherent to each
protocol. The assigned vulnerabilities could result in the exposure
of neighbors’ node IDs, thereby unveiling their connected nodes,
or the disclosure of neighbors’ credentials, thus enabling the agent
to access the neighbor nodes on the specific protocol. The specific
vulnerability probabilities modeled in our study will be discussed in
Section 5.1 and Appendix A.1. Additional probabilities will model
realistic real-world scenarios:

• Probability of password change, that can invalidate creden-
tials leaked through earlier probabilities.

• Probability of password reuse, that can enable the agent
to apply the same credentials across different nodes and
protocols.

• Probability of incoming and outgoing firewall BLOCK rules,
designed to test the agent’s resilience and adaptability in
navigating and overcoming network restrictions.

In an ideal scenario, the agent is expected to learn to adopt a
strategic pattern involving the exploitation of local or remote vul-
nerabilities generated through these probabilities. This strategy
will allow credential gathering and node discovery. This should be
concurrent to a dynamic interchange of source and target nodes
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until a port connection can be established with the current creden-
tials in the cache and the firewall conditions, ultimately leading to
the ownership of the target node. This newly conquered node then
transforms into the agent’s new source node.

4.3.3 Discovery and access graphs. The difficulty level of discov-
ering and compromising a topology is conceptualized as a multi-
parametric function that integrates various elements: the afore-
mentioned probabilities, the count of nodes for each protocol, and
the Beta distributions characterizing the probabilities of protocol
presence. Determining the complexity of the topology based on all
these parameters may be a difficult task. Obtaining this information
is crucial, particularly before training an agent on the topology, as it
provides insights into the maximum level of performance the agent
might achieve in breaching the network topology. For this reason,
two new graph abstractions and a graph metric are proposed in this
paper to determine the complexity of a topology for the RL agent.
The discovery graph (Equation 11) is defined as a graph with the
same node set V of the communication graph, with edges between
nodes 𝑢 and 𝑣 if there exists at least one vulnerability in 𝑢 that
reveals the node ID of 𝑣 , thus making it discoverable.

𝐺discovery = (𝑉 , 𝐸discovery) where
𝐸discovery = {(𝑢, 𝑣) ∈ 𝑉 ×𝑉 | ∃

vulnerability in𝑢 exposing ID(𝑣)}
(11)

Analogously, the access graph (Equation 12) is defined as a graph
with the same node set and with edges between nodes 𝑢 and 𝑣
if there exists at least one vulnerability in 𝑢 that exposes a valid
credential to 𝑣 , thus making it accessible.

𝐺access = (𝑉 , 𝐸access) where
𝐸access = {(𝑢, 𝑣) ∈ 𝑉 ×𝑉 | ∃

vulnerability in𝑢 exposingCredential(𝑣)}
(12)

We also introduce a connectivity metric (Equation 13), denoted as C,
which ranges between 0 and 1. This metric is designed to quantify
the ease of navigating a graph from any given starting point.

𝐶 = 1 − 𝐿

2 · (𝑁 − 1) (13)

Here, 𝐿 represents the average shortest path length across all node
pairs, and 𝑁 is the total number of nodes in the network. The
shortest path between two non-reachable nodes is set to twice the
maximum, 2 · (𝑁 − 1). C achieves a value close to 1 if, starting
from any node within the graph, the shortest path required to reach
any other node is 1, while the metric falls to 0 in scenarios where,
regardless of the chosen starting node, no other nodes within the
graph can be reached. Values of C between these two extremes
reflect intermediate degrees of connectivity. To evaluate the overall
complexity of a network’s topology, we employ a weighted linear
combination of the connectivity metrics derived from both the
discovery and access graphs of the topology (Equation 14).

Topology Connectivity = 𝛼 ·𝐶 (𝐺access) + 𝛽 ·𝐶 (𝐺discovery) (14)

Thus, if a vulnerability exists that allows direct discovery or access
from the starting node to any other node within the graph, it results
in a high value of C. Otherwise, if traversing the graph is necessary
to reach other nodes, the connectivity score diminishes based on the

extent of traversal required, approaching a value closer and closer
to zero if many nodes cannot be discovered or accessed. Figure 3
summarizes the generation of a topology starting from the creation
of the communication graph of a topology based on the protocols’
parameters (Step 1), then used with the vulnerability probabilities
to the generation of the discovery and access graphs (Step 2) of the
same topology.

RDP

# of clients

# of servers

SMB

HTTP

cached_rdp_password_probability

cached_smb_password_probability

firewall_rule_outgoing_probability

......

Communication graph
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Figure 3: A summarized view of the generation of topologies:
protocols’ parameters generate the communication graph.
The latter, paired with vulnerability probabilities, will deter-
mine the vulnerability assignment.

4.4 Training Pipeline
To enhance the agent’s ability to generalize beyond the limitations
of training on a single network topology and starting from a fixed
node in each episode, this paper introduces a new training and
evaluation pipeline designed to improve the agent’s generalization
capabilities, and redefine the evaluation strategy, as illustrated in
Figure 4. The local MDP re-formulation indeed enables the same
NN to be reused for training on new topologies. A wide array of
network topologies has been created through the adjustment of
hyper-parameters associated with the communication graph—such
as the number of clients and servers, along with the parameters of
Beta distributions for each protocol, as detailed in Section 4.3.1—and
the vulnerability assignment, which includes varying the proba-
bilities outlined in Section 4.3.2. Each hyper-parameter will vary
in a certain range (more details in Appendix A.1), and each set of
hyper-parameters values will produce a unique topology character-
ized by its specific level of connectivity C (Step 1). Creating diverse
topologies with varying probabilities can bridge the gap between
simulations and the real world, allowing agents trained on multiple
configurations to develop more generalizable behaviors.

To explore the impact of topology connectivity on the perfor-
mance of agents, we generated 500 network graphs, each containing
between 50 and 100 nodes. The networks were categorized into
five distinct groups based on their connectivity values, with each
group consisting of 100 graphs (Step 2). The groups were organized
according to connectivity ranges: [0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6,
0.8], and [0.8, 1.0]. The generation process was carefully controlled
to populate each group with graphs whose connectivity scores
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Figure 4: A summarized view of the training & evaluation
pipeline: topologies are generated, segmented into groups,
and each group undergoes training and evaluation.

were evenly distributed within the specified ranges. However, to
maintain the integrity and interpretability of the results, we chose
to exclude networks with extremely low connectivity (group [0,
0.2]) from our analysis. This decision was taken due to the absence
of significant vulnerabilities within such topologies, which could
skew the understanding of the agent’s performance, leaving us
with 4 distinct groups for the study. For each group, representing a
specific level of difficulty that could be seen as a different level of
a game, each RL algorithm has been subjected to 20 training runs.
This choice was adopted based on insights from existing research
in RL [10], suggesting that this number is the minimum need to
achieve statistically reliable results when employing bootstrap con-
fidence intervals (CIs) [12], the technique used by the indicators of
the RLiable library.

At each run, the group of topologies is divided into a training
set (60%), a set of topologies used to train the agent (Step 3.1), a
validation set (20%), a set of topologies hidden and used periodically
during training to evaluate generalization capabilities of the agent,
and test set (20%), set of topologies used post-training to evaluate
the capabilities of the agent. The validation set will be used to derive
the best checkpoint of the agent’s NN (Step 3.2), then evaluated on
the test set, reserved a-posteriori as a different set to reduce the
bias introduced (Step 3.3). The division of each group in these three
sets will change every run.

Given a group with a connectivity range, the agent is run (trained
or evaluated) across the multiple topologies simultaneously, alter-
nating between them based on a fixed interval (denoted as switch
interval) with the possibility of revisiting previously encountered
topologies due to the replacement strategy. Switching with replace-
ment ensures that a topology may be re-drawn later, a mitigation
to the potential presence of catastrophic forgetting [15], typical of
NNs when exposed to new experience.

Within each topology, kept for several episodes as defined by
switch interval, the starting node is randomly changed with replace-
ment every episode. Nodes that are unable to connect to a minimum
threshold of the topology (set to 10%) are considered isolated and

excluded from this random selection. The episode will conclude
when a cut-off in terms of number of iterations is reached, or if
the agent successfully reaches the termination condition: the agent
captures all nodes accessible from its starting position. Achieving
this goal triggers the agent with a bonus, a winning reward that
will be added to the general reward, providing information about
the conclusion with the success of the game.

5 EXPERIMENTAL SETUP
This section outlines the experimental setup that laid the ground-
work for the results detailed in Section 6. It will cover the topologies
generated by CyberBattleSim, describe the DRL algorithms and the
NN used, and discuss the strategy for hyperparameter optimization
that was employed to fine-tune each algorithm’s hyper-parameters
before training.

5.1 CyberBattleSim
The simulation of the network topologies used in this work lever-
ages CyberBattleSim, a tool created by Microsoft, designed to pro-
vide an abstraction of communication networks with planted vul-
nerabilities appropriate for RL training and the MDP framework.
The tool supports the node attributes highlighted in Table 2, and
the modifications explained in Section 4 have been embedded to
support our MDP re-formulation. Three different protocols have
been used for the generation of the communication graphs, in par-
ticular the Remote Desktop Protocol (RDP), the Server Message
Block (SMB), and the Hypertext Transfer Protocol (HTTP). HTTP
works as a dummy protocol in this environment, meaning that no
credentials or vulnerabilities associated with HTTPwill be revealed,
making it functionally irrelevant. The inclusion of HTTP is designed
to test if the agent can learn to disregard actions associated with
redundant outcomes. Regarding the vulnerability assignment, the
range of probabilities used for assigning vulnerabilities, alongside
the ones for password invalidity, reuse, and firewall configurations,
are detailed in Appendix A.1. Based on the sampled probabilities,
the generated vulnerabilities will be as follows:

• ScanWindowsCredentialManagerForRDP : This local vulnera-
bility allows the agent to search for RDP credentials within
the Windows Credential Manager on the node. Exploiting
this vulnerability exposes the node IDs and passwords on
the RDP port of neighboring RDP nodes, in proportion to
cached rdp password probability.

• ScanWindowsCredentialManagerForSMB: This local vulner-
ability enables the agent to search for SMB credentials in
the Windows Credential Manager of the node. Utilizing this
vulnerability reveals the node IDs and passwords on the SMB
port of neighboring SMB nodes, according to cached smb
password probability.

• ScanWindowsExplorerRecentFiles: This local vulnerability al-
lows the agent to identify network shares of a node by exam-
ining Windows Explorer’s recent files. This action leaks only
the node IDs of SMB neighbors, with the quantity based on
cached accessed network shares probability.
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• Traceroute: This remote vulnerability enables the agent to
attempt to discover network nodes using Traceroute. Exploit-
ing this vulnerability exposes the node IDs of RDP and SMB
neighbors, proportional to traceroute discovery probability.

Some of the planted vulnerabilities may overlap or become irrele-
vant due to factors like password reuse, invalidity, and the imple-
mentation of firewalls. The redesigned action space now includes
three local vulnerabilities—ScanWindowsCredentialManagerForRDP,
ScanWindowsCredentialManagerForSMB, and ScanWindowsExplor-
erRecentFiles— the single Traceroute remote vulnerability, along
with three port connection options—RDP, SMB, andHTTP ports—and
the switching actions to move the anchor nodes.

5.2 Selected DRL Algorithms
This study involves some of the main DRL algorithms known in
the literature: DQN, PPO, TRPO, and A2C. This choice has been
considered to have at least one representative from each class of
model-free methods. We also study the behavior of Recurrent PPO
(RPPO) [43], an extension of PPO embedding memory capabilities
via Long-Short Term Memory (LSTM) layers [22], providing the
agent with the capability of remembering the history of sequence
steps to determine whether this could improve the agent capa-
bilities. Quantile Regression Deep Q-Network (QRDQN) [11], an
extension of the DQNmethod, has also been considered in the study.
This algorithm focuses on predicting a distribution of Q-values for
each action versus the approach taken by a traditional DQN that
estimates the expected Q-value directly. Researchers have shown
that distributional approaches to RL, such as QRDQN, can lead
to better convergence properties compared to methods that only
estimate expected values [6].

5.3 Neural Network Architecture
All DRL algorithms considered in this study adhere to the pipeline
mentioned in Section 4.4 and utilize a consistent NN architecture.
This uniformity ensures that differences in performance among the
algorithms are not attributable to disparities in the expressiveness
of the NN architectures employed. The selected NN architecture
contains three layers, arranged in descending order of [256, 128,
64] neurons to decrease the dimensionality of learned features,
employing a LeakyReLU activation function at each layer for en-
suring non-linearity. Training will be conducted using the Adam
optimizer, utilizing its default hyper-parameters of the SB3 library
for optimization. Considering the two extended algorithms, RPPO
will incorporate an extra LSTM layer with 32 neurons into the NN
architecture, allowing its memory capabilities. On the other hand,
QRDQN will model the distribution by employing 200 quantiles,
adhering to the default setting in SB3.

5.4 Hyper-parameters Selection
The selection of hyper-parameters for each algorithm was guided
by an optimization strategy aimed at identifying the most suited
values across the key hyper-parameters and their ranges. To en-
sure an unbiased approach in the hyper-parameters optimization
process towards a specific group of connectivity, these parameters
were evaluated across a diverse set of 200 network topologies, with
connectivity values uniformly spread within the range of [0.2, 1.0].

The optimization goal was to maximize the Area Under the Curve
(AUC) of the average reward during validation, a metric chosen for
its ability to simultaneously evaluate the model’s generalization
to unseen data and its convergence efficiency. More details of the
hyper-parameters optimization process are present in Appendix
A.3.

6 EXPERIMENTAL RESULTS
This section presents the experimental results, obtained by ag-
gregating the outcomes across all four groups of topologies, or
experiments, to facilitate a comparative analysis of the algorithms
regardless of the difficulty level of the topologies. Aggregating per-
formances across all experiments allows us to compare algorithmic
performances irrespective of the probabilities of vulnerabilities
encountered, thus providing a more generalized view of average
performances. Subsequently, the DRL algorithm demonstrating the
highest likelihood of superior performance is selected to determine
the best training group and to simulate the role of a cyber-attacker.

6.1 Comparative Analysis of DRL Algorithms
This section combines the outcomes from the 20 runs conducted
on each of the experiments. In particular, each algorithm under-
went training across 20 runs for each experiment, with every run
extending over 250,000 iterations. Episodes within these runs had
a cut-off at 500 iterations or concluded prematurely if meeting the
termination criteria. For each RL algorithm under consideration, we
will then rely on 4x20 final summary metrics’ curves. We compare
results using indicators from the RLiable library, which enhances
the reliability of metrics in scenarios with a limited number of
runs. Several papers [2] [41] have demonstrated the superiority
of aggregating performance metrics using stratified bootstrap CIs,
over traditional methods such as standard deviation during RL com-
parison. By employing bootstrapping, which involves resampling
with replacement, we can more accurately estimate the true dis-
tribution of performance metrics. For this reason, we utilize 95%
stratified bootstrap CIs with 10,000 resamples for all the subsequent
indicators.

6.1.1 Unified evaluation metric. Given the variance in scoring
scales, like the scale of the average reward, across different groups
of topologies—attributable to differences in factors such as the num-
ber of discoverable or ownable nodes—we adopt a unified metric for
comparing all RL algorithms averaging across all experiments. This
metric is the average percentage of nodes owned relative to those
reachable from the starting node at each episode, with the AUC of
this metric on the validation set used as a key point of comparison.
This metric can be obtained from the access graph of each topology
and provides a relative performance measure better suited for ag-
gregation, reducing biases associated with using a simple average
percentage of owned nodes. Such biases might arise, for example,
from the ease with which groups with higher connectivity, can
achieve higher scores due to a greater spread of vulnerabilities and
more nodes being reachable. Using this metric on the validation
set allows us to consider the generalization capabilities of each
resulting agent, and the AUC takes into consideration the overall
evolution of this metric during training. Furthermore, this score
has been normalized using min-max normalization against two
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Figure 5: RLiable metrics for the comparison of DRL algorithms averaging the results on the four groups of topologies.

benchmarks: the minimum performance of a random agent and
the optimal performance value of 100%, which corresponds to the
maximum number of nodes ownable from the starter node of the
episode.

6.1.2 Comparison results. To enhance the robustness of our con-
clusions, we report several statistical interval estimates of the score
chosen (Figure 5a), including the median, mean, inter-quartile mean
(IQM)—which excludes the top and bottom 25% of runs—and an
indicator assessing the difficulty progression (DP25), which focuses
on the mean scores of the lowest 25% of runs. Employing these
diverse indicators mitigates the disadvantages and biases of each
of the aggregation measures. Figure 5b shows the performance
profiles of the normalized score distributions, showcasing the pro-
portion of runs exceeding specific normalized scores. These profiles
offer an unbiased estimator of performance variability and can in-
dicate dominance between methods when one curve consistently
lies above another. However, intersecting curves or CIs at various

points among RL algorithms suggest that dominance is not absolute
and varies across different performance thresholds. To facilitate a
deeper understanding of algorithm comparisons, rank plots in Fig-
ure 5c visualize the probability for each method to achieve a given
rank across all experiments. Using this method shifts the typical ap-
proach of binary comparisons by reflecting the probabilistic nature
of algorithms’ comparison. Additionally, we present results based
on the Mann-Whitney U statistic [35] (Figure 5d) that depict the
likelihood of one algorithm to overcome another, for each pair of
algorithms with overlapping CI of the performance profiles, which
may have a non-trivial understanding of their relative difference.

6.1.3 Comparison Highlights. The results demonstrate that policy-
based methods generally achieve superior performance on conquer-
ing accessible devices across all the indicators, also dominating the
probability space for the top three rankings. On the other hand, A2C
shows greater variability, particularly between the DP25 and IQM
indicators, with the DP25 indicator also showing that more than 25%
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of the runs achieve a score below the threshold of a random agent,
highlighting the inconsistency in performance across different runs.
The superiority of policy-based methods likely comes from the
probabilistic nature of the environment, where value-based meth-
ods, which tend to converge to deterministic policies, struggle to
adapt. Specifically, PPO emerges as the front-runner, with TRPO and
RPPO following behind. The inclusion of historical data achieved
by RPPO, which uses memory capabilities to remember previous
hacking attempts between source-target pairs, seems to deteriorate
the performances of the PPO algorithm. Among the value-based
approaches, enhancing the DQN agent with the capability to es-
timate the full distribution of Q values via QRDQN, improves its
performance in navigating the uncertain and probabilistic aspects
of the environment.

6.2 Exploring the Front-runner Algorithm
The PPO method has been depicted as the front-runner algorithm,
dominating the majority of the probability space for the top rank
(see Figure 5c). It also demonstrates a superior likelihood of outper-
forming TRPO, its closest competitor, as evidenced by the higher
probability of improvement (depicted in Figure 5d). For this reason,
PPO has been used in this section for further analysis.

6.2.1 Evaluating training and testing groups of topologies. Table 3
highlights the performance of the PPO algorithm when trained on
a given group of topologies and tested on the test set of another
group of topologies, providing an understanding of whether the best
strategy should involve training the agent on topologies with more
or less planted vulnerabilities or obstacles. For each group, we use
the optimal model—determined via the validation set—to compute
performance metrics across the different 20 runs. For each run,
these metrics were then averaged across 100 episodes on the test
set (of the same group or the one of another group, according to the
column), employing a switch interval of 5 episodes. PPO stands out
for its stability and consistent performance across training groups,
with a slight improvement observed when trained on connectivity
ranges of [0.4, 0.6], suggesting an optimal performance in this
intermediate range.

6.2.2 Final evaluation. Considering the best algorithm and best
group suited for training in order to guarantee generalization, a
series of metrics are presented in Table 4 to conclude the analysis.

Trajectories of the PPO agent on the test set of the best group
suited for training (range [0.4, 0.6]) have been generated for 100
episodes and each run, resulting in 2000 different attack paths. All
score distributions are present in the case of episodes of length 500,
1000, and 1500 timesteps, showcasing how the results vary while
increasing the budget of actions allowed to the agent in an episode.
As the agent is allocated more steps, there is a noticeable increase
in the discovery of attack paths (defined as the edges of the access
graph) and the percentage of nodes owned relative to the maximum
possible. However, this expansion comes at the cost of a reduced
length optimality factor (minimum actions needed to reach the
owned nodes versus the actual actions executed), indicating a less
efficient utilization of steps over time. Additionally, the frequency
at which the agent revisits source and target nodes increases with a

larger step budget, suggesting more repetitive exploration in longer
games, especially considering the re-utilization of source nodes.

7 PRACTICAL IMPLICATIONS AND
LIMITATIONS

In this section, we outline a practical pipeline designed for network
analysts to extract actionable insights from the results produced
by the DRL agent execution on a topology. We also address and
discuss the current limitations of the pipeline.

7.1 Agent Deployment Pipeline
Following the delineation of the training and evaluation pipelines
of the DRL agent (Section 4.4), the experimental section (Section 5
and Section 6) has illustrated a comprehensive evaluation process.
This process enables us to identify the optimal training strategy,
resulting in a NN that is ready for deployment. The deployment
process can be divided into the following steps:

(1) Vulnerability and topology discovery using scanning
tools: Network analysts employ scanning tools such as Nmap
[34] for service scanning, OpenVAS [18] for vulnerability
scanning, and a firewall analyzer for firewall scanning. This
process results in a graph representation of the topology,
where nodes are populated with features extracted from
these tools and encoded as detailed in Section 4.2.

(2) Topology mapping: Network analysts must map out the
network topology, assigning importance values to each node
based on how critical it is. The values indicated by the analyst
should then be embedded into the node feature vectors of
the graph, encoded as detailed in Section 4.2.

(3) Agent execution: The agent should be sequentially exe-
cuted across the entire graph of the topology for multiple
episodes. These episodes can start from a fixed starter node
or a selected set of starter nodes, such as assets with public-
facing applications. This process generates critical trajecto-
ries as output since the DRL agent has ideally learned to
optimize vulnerability selection within the network. Adjust-
ing the number of episodes allows for balancing statistical
significance with execution time efficiency.

(4) Statistical analysis: After generating critical trajectories,
statistical analysis is applied to unlock insights for the net-
work analyst. While the research community can innovate
with customized approaches, we propose several options to
gain insights:
• Vulnerability-level frequency analysis: Examining the
frequency of vulnerability selections to identify the most
critical vulnerabilities. This aids analysts in prioritizing
vulnerabilities for patching or reallocating services within
the network topology.

• Node-level frequency analysis: Focusing on nodes fre-
quently traversed by attack paths to refine firewall and
Intrusion Detection Systems (IDS) [47] rules.

(5) Optional re-iteration: The pipeline can be iteratively re-
run after applying defensemechanisms thatmodify the topol-
ogy. Our tool can then serve as an evaluator of these defenses
bymeasuring how the agent’s performance deteriorates after
their application.
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Table 3: Mean and 95% bootstrapped CI of the average percentage of nodes owned among the reachable ones by the PPO agent
in 500 steps. Scores are computed across 20 runs when trained on a group’s training set and tested on another group’s test set.
Bold numbers indicate the top-performing training group for each testing group.

Training/Test groups 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 Average
0.2-0.4 0.566 ± 0.016 0.556 ± 0.015 0.607 ± 0.013 0.599 ± 0.012 0.582 ± 0.014
0.4-0.6 0.552 ± 0.017 0.578 ± 0.015 0.614 ± 0.014 0.645 ± 0.011 0.597 ± 0.013
0.6-0.8 0.536 ± 0.016 0.513 ± 0.015 0.608 ± 0.013 0.641 ± 0.012 0.575 ± 0.014
0.8-1.0 0.524 ± 0.016 0.537 ± 0.014 0.603 ± 0.013 0.665 ± 0.012 0.582 ± 0.014

Table 4: Mean and 95% CI of PPO distribution metrics on the
test set with connectivity in the range [0.4, 0.6].

Metric 500 steps 1000 steps 1500 steps
Discovered at-
tack paths

0.613± 0.011 0.740± 0.009 0.799± 0.008

Owned nodes
among reach-
able

0.588± 0.015 0.645± 0.016 0.687± 0.016

Length optimal-
ity factor

0.284± 0.005 0.214± 0.004 0.181± 0.004

Source node re-
visiting ratio

0.385± 0.011 0.504± 0.013 0.549± 0.014

Target node re-
visiting ratio

0.380± 0.010 0.396± 0.010 0.403± 0.011

7.2 Limitations
The previously proposed pipeline can be implemented using our
DRL agent. However, ourmethodology still faces certain constraints,
primarily related to scalability, which may also impact the deploy-
ment of the agent:

• Dependency on the vulnerability set: The trained DRL
agent optimizes the vulnerability selection limited to the
vulnerabilities within its action space. As new vulnerabil-
ities arise in the network topology — such as through the
introduction of new services into nodes that may bring new
vulnerabilities — the agent must be re-trained by integrating
these vulnerabilities into its action set.

• Scalability concerning vulnerabilities: An increase in
the size of the vulnerabilities set can pose scalability chal-
lenges. A larger set requires more exploration by the agent
to find optimal action sequences and as a consequence, the
agent may require more training time and longer episode
iterations. To manage this challenge, we propose reducing
the re-training time by fine-tuning only the last NN layer.

• Scalability concerning the local view: In scenarios in-
volving local source-target node pairs, additional switching
actions are required to cover all possible target nodes. Al-
though our model’s topology independence enhances ver-
satility in evolving environments, it may result in longer
episode iterations on specific larger topologies compared to
approaches using a global view tuned to a single topology.

8 CONCLUSIONS
This paper delved into the application of DRL for the training of a
cyber-attacker model. The learned policy can be subsequently used
for generating attack paths on input topologies, offering valuable
insights to network analysts into potential defense strategies.

8.1 Research Highlights
By reformulating the MDP, this work introduces a topology inde-
pendent NN framework capable of being used on diverse topologies.
This is followed by a comprehensive training and evaluation strat-
egy that involves a variety of topologies, each with a different size
or planted set of vulnerabilities, to ensure the trained agent’s ability
to generalize across different scenarios. We provided, in this work,
the definition of additional metrics and graph abstractions that as-
sess the relative complexity of topology from the perspective of an
RL agent. A comparative analysis of various representative RL algo-
rithms, each fine-tuned with a set of optimized hyper-parameters
and a benchmark NN, has been conducted. Results from the uti-
lization of the RLiable library highlight the higher potential of
policy-based methods in navigating the stochastic nature of the
probabilistic network environments used in this study, compared
to other classes of RL methods. A further analysis of PPO reveals its
superior capability for generalizing across topologies. The empiri-
cal data demonstrates the agent’s proficiency in achieving control
over a significant portion of the nodes (69% ± 2%) and discovering
a large set of possible attack paths (80% ± 1%) on a reserved set of
test topologies, when the agent is provided with a limited span of
1500 actions. Training such models can facilitate the development
of more robust defense mechanisms by analyzing the strategies
taken by a learned attacker policy.

8.2 Future Work
Future directions will involve the extension of the training and
evaluation scenarios to encompass a broader, more diverse set of
vulnerabilities, and enhancing the simulation by incorporating re-
alistic data. Moreover, we aim to determine more realistic reward
functions, whichmight also bemore expressive than a goal-agnostic
weighted linear combination of action outcomes.
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A APPENDIX
A.1 Topology Generation
Environment generation using the CyberBattleSim tool was carried
out with the creation of several topologies with hyper-parameters
varying in proper ranges. The vulnerabilities integrated within each
simulated network environment are determined according to the
probabilities outlined in Table 6. These probabilities cover various
aspects, including specific network protocols, firewall configura-
tions, credential reuse across different nodes, and the potential
for previously valid passwords to become invalid. For each topol-
ogy, the described probabilities along with other relevant hyper-
parameters were systematically sampled using a random sampling
method. The sampling ranges were defined as detailed in Table 5,
ensuring a diverse set of configurations to robustly test the network
simulations under varied conditions.

Table 5: Topology parameters varied in order to generate
topologies and the corresponding range used.

Parameter Range
Number of Clients [40, 70]
Number of Servers [10, 30]
𝛼 of the inter-beta distribution [1, 200]
𝛽 of the inter-beta distribution [1000, 5000]
𝛼 of the intra-beta distribution [1, 200]
𝛽 of the intra-beta distribution [1000, 5000]
cached_rdp_password_probability [0.4, 0.8]
cached_smb_password_probability [0.4, 0.8]
cached_accessed_network_shares
_probability

[0.2, 0.5]

traceroute_discovery_probability [0.3, 0.7]
cached_password_has_changed
_probability

[0.01, 0.1]

probability_two_nodes_use
_same_password_to_access
_given_resource

[0.1, 0.33]

firewall_rule_incoming_probability [0.0, 0.2]
firewall_rule_outgoing_probability [0.0, 0.2]

A.2 Prioritization Coefficients
Considering the reward function outlined in Section 4.1.3, the co-
efficients for the linear combination were adjusted to prioritize
node control over information gathering. To achieve this balance,

Table 6: Descriptions of the probabilities of vulnerability
assignment used in CyberBattleSim.

Name Description Outcome
cached_rdp_
password_
probability

Probability of RDP
credential leakage.

Node ID and
password
leaked to RDP
neighbor.

cached_smb_
password_
probability

Probability of SMB
credential leakage.

Node ID and
password
leaked to SMB
neighbor.

cached_accessed_
network_
shares_probability

Probability of node
ID leakage via SMB.

Node ID leaked
to SMB neigh-
bor.

traceroute_
discovery_
probability

Probability of node
ID leakage via SMB
or RDP.

Node ID leaked
by SMB or RDP
neighbor.

cached_password_
has_
changed_probability

Probability that a
previously leaked
password has
changed.

Leaked pass-
word becomes
invalid for port
connection.

probability_two_
nodes_use_
same_password_
to_access_
given_resource

Probability of
credential re-use
among nodes’
ports.

Credential valid
for multiple
nodes.

firewall_rule_
incoming_
probability

Probability of a
BLOCK rule on
incoming ports.

BLOCK rule ap-
plied to each
incoming listen-
ing port.

firewall_rule_
outgoing_
probability

Probability of a
BLOCK rule on
outgoing ports.

BLOCK rule ap-
plied to each
outgoing port.

taking into account the scale of values influenced, the coefficients
within the linear combination of the reward function were carefully
chosen as outlined below:

𝐾value = 5
𝐾node discover = 5
𝐾credential discover = 3
𝐾cost = 1
𝐾first success = 7

These coefficients determine a reward function scale that redirects
the behavior of the RL agents, encouraging them to adopt strategies
that improve information gathering, but with the primary goal of
enhancing overall control over network nodes based on a general
strategy rather than targeting specific nodes. Additionally, oper-
ational costs are associated with the actions, which are set to the
default values provided by CyberBattleSim. Additionally, in the
computation of the connectivity metric used to assess the complex-
ity of a topology (Section 4.3.3), the prioritization assigned as well
greater importance to ease of access over ease of discovery within
the network. The assigned coefficients have been 𝛼 = 0.75 for the
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accessibility term and 𝛽 = 0.25 for the discovery term in the metric.
This assignment results in higher connectivity values for topologies
that are more accessible than discoverable, emphasizing as well
ease of access as a priority over the ease of discovery within the
network.

A.3 Hyper-parameters Optimization
The optimization of RL algorithms’ hyper-parameters aimed at
maximizing the AUC of the average reward on the validation set.
We executed 50 trials per algorithm, with each trial consisting of
three runs under consistent seed settings. These trials utilized the
Tree-structured Parzen Estimator [8] algorithm implemented via
the Optuna framework [3]. The hyper-parameters search spaces
are delineated in Table 7. To simplify the process, hyper-parameters
optimization was conducted on the fundamental versions of the
algorithms, and the derived hyper-parameters were subsequently
applied as well to their more sophisticated counterparts, RPPO and
QRDQN, ensuring also fairness when comparing each fundamental
and sophisticated version. The optimal hyper-parameter configura-
tions for each algorithm will be documented in a yaml file situated
in the logs folder (attached to the paper) corresponding to each
algorithm.

Table 7: Hyper-parameters’ search space across DRL algo-
rithms including general and model-specific parameters.

Hyper-parameter Values
Learning Rate [0.0001, 0.001, 0.01]
Batch Size [64, 128, 256]
Discount Factor (𝛾 ) [0.9, 0.95, 0.99]
Experience Replay Buffer Size
(DQN)

[5000, 10000, 20000]

Tau 𝜏 (DQN) [0.1, 0.5, 1.0]
Policy Clip Range (PPO) [0.1, 0.2, 0.3]
Number of Steps per Update
(PPO, TRPO)

[1024, 2048, 4096]

Number of Steps per Update
(A2C)

[5, 10, 20]

Maximum Gradient Norm (PPO,
A2C)

[0.3, 0.5, 0.7]

Entropy Coefficient (PPO, A2C) [0.01, 0.1, 0.2]
Value Function Coefficient
(PPO, A2C)

[0.5, 1.0, 1.5]

Target KL Divergence (TRPO) [0.01, 0.05, 0.1]
GAE Lambda (TRPO, A2C) [0.9, 0.95, 0.99]
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