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Abstract

BACKGROUND—Maternal obesity prior to or during pregnancy influences fetal growth, 

predisposing the offspring to increased risk for obesity across the life-course. Placental epigenetic 

mechanisms may underlie these associations. We conducted an epigenome-wide association study 

to identify placental DNA methylation changes associated with maternal pre-pregnancy body mass 

index (BMI) and rate of gestational weight gain at first (GWG1), second (GWG2) and third 

trimester (GWG3).

METHOD—Participants of the NICHD Fetal Growth Studies with genome-wide placental DNA 

methylation (n=301) and gene expression (n=75) data were included. Multivariable-adjusted 

regression models were used to test the associations of 1kg/m2 increase in pre-pregnancy BMI or 

1kg/week increase in GWG with DNA methylation levels. Genes harboring top differentially 

methylated CpGs (FDR P<0.05) were evaluated for placental gene expression. We assessed 

whether DNA methylation sites known to be associated with BMI in child or adult tissues were 

also associated with maternal pre-pregnancy BMI in placenta.

RESULTS—Pre-pregnancy BMI was associated with DNA methylation at cg14568196[EGFL7], 

cg15339142[VETZ] and cg02301019[AC092377.1] (FDR P<0.05, P ranging from 1.4×10−10 to 
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1.7×10−9). GWG1 or GWG2 was associated with DNA methylation at cg17918270[MYT1L], 

cg20735365[DLX5] and cg17451688[SLC35F3] (FDR P<0.05, P ranging from 6.4×10−10 to 

1.2×10−8). Both pre-pregnancy BMI and DNA methylation at cg1456819 [EGFL7] were 

negatively correlated with EGFL7 expression in placenta (P<0.05). Several CpGs previously 

implicated in obesity traits in children and adults were associated with pre-pregnancy BMI in 

placenta. Functional annotations revealed that EGFL7 is highly expressed in placenta and the 

differentially methylated CpG sites near EGFL7 and VEZT were cis-meQTL targets in blood.

CONCLUSIONS—We identified placental DNA methylation changes at novel loci associated 

with pre-pregnancy BMI and GWG. The overlap between CpGs associated with obesity traits in 

placenta and other tissues in children and adults suggests that epigenetic mechanisms in placenta 

may give insights to early origins of obesity.

Keywords

obesity; gestational weight gain; DNA methylation; EWAS; gene expression; placenta; DOHaD

INTRODUCTION

Approximately 40 million pregnant women were overweight and obese globally in 2014, of 

which 1.1 million pregnant women with obesity were in the United States.1 One in two 

pregnant women (~47%) were reported to gain more than the recommended amount of 

gestational weight gain (GWG).2 Higher maternal pre-pregnancy body mass index (BMI) 

and inadequate or excessive GWG are associated with aberrant fetal growth,3 and increased 

risk of obesity across the life course.4, 5 The observed associations of maternal adiposity-

related factors with fetal growth and adiposity in later life can be mediated through changes 

in epigenetic regulation of specific genes.6, 7 Epigenetic regulation occurs through a number 

of processes including DNA methylation, the addition of a methyl group to cytosines in 

cytosine-guanine dinucleotide (CpG) sites.8 DNA methylation can regulate gene expression, 

playing crucial roles essential for cell fate, differentiation, and tissue integrity and 

embryonic development.6–8

The placenta, a transient organ at the maternal-fetal interface with endocrine and substrate 

transport functions,9 is sensitive to in-utero environmental influences. Maternal pre-

pregnancy obesity and inadequate or excessive GWG lead to compromised placental 

function by increasing oxidative stress, vascular endothelium thickening, and maternal 

inflammatory lesions.3, 10, 11 Previous studies of maternal obesity and placental DNA 

methylation examined global DNA methylation levels or a few candidate genes. Global 

DNA methylation in human placentas was found to be more abundant in obese compared to 

lean pregnant women.12 Another study found increased epigenetic alterations of 

transcription regulators in placentas among women with inadequate GWG compared to 

women with normal GWG.13 A study that measured global methylation using long 

interspersed nuclear elements 1 (LINE-1) found no association between maternal pre-

pregnancy BMI or GWG and methylation in either placenta or cord blood.14 To our 

knowledge, there is no published placental epigenome-wide association study (EWAS) of 

pre-pregnancy BMI or GWG.

Shrestha et al. Page 2

Int J Obes (Lond). Author manuscript; available in PMC 2020 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the present study, we performed EWAS to identify placental DNA methylation CpG sites 

associated with maternal pre-pregnancy BMI and trimester-specific rate of GWG. We also 

tested correlations between the DNA methylation levels of the top significant CpG sites and 

expression of the corresponding genes. Finally, we examined our data to determine 1) 

whether CpG sites in placenta, cord blood and adolescent blood, which were previously 

known to be associated with maternal adiposity traits, were also associated with maternal 

pre-pregnancy BMI and trimester specific rate of GWG in placenta, and 2) whether DNA 

methylation sites previously known to be associated with child or adult BMI were also 

associated with maternal pre-pregnancy BMI in placenta.

METHODS

The study protocol was reviewed and approved by institutional review boards at the Eunice 
Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and 

each of the participating clinical sites. Written informed consent was obtained from all 

participants. The study was conducted in accordance with the principles of the Helsinki 

Declaration for human research.

Study population

The present analysis involved pregnant women from the NICHD Fetal Growth Studies-

Singletons cohort who provided placenta samples at delivery (n=312). The NICHD Fetal 

Growth Studies – Singletons is a prospective longitudinal cohort of 2 802 pregnant woman 

from four self-reported race/ethnic groups recruited between July 2009 and January 2013 

from 12 clinical sites in the US. Details of the cohort profile have been previously reported.
15 Gestational age was determined using the date of the last menstrual period and confirmed 

by ultrasound between 8–13 weeks and 6 days of gestation. None of the 312 pregnant 

women smoked cigarettes and only two women reported alcohol consumption in the past six 

months prior to pregnancy.

Measures of maternal pre-pregnancy BMI and rate of gestational weight gain

Women’s pre-pregnancy BMI was calculated using self-reported pre-pregnancy weight in 

kilograms divided by measured height in meters squared (kg/m2). Women’s weight during 

pregnancy was recorded at each research visit and abstracted from prenatal care records. The 

rates of GWG in the first trimester (GWG1: 0 to 13 weeks and 6 days), second trimester 

(GWG2: 14 to 27 weeks and 6 days) and third trimester (GWG3: 28 weeks to delivery) were 

estimated in kg/week as previously described.16

Placenta sample collection, DNA methylation measurement and quality control

Placental parenchymal biopsies were collected from the fetal side approximately 5 cm from 

the umbilical cord insertion site within one hour of delivery. Samples were placed in 

RNALater and frozen at −80°C for molecular analysis. DNA was extracted from the 

placental biopsies and was assayed using Illumina’s Infinium Human Methylation450 

Beadchip (Illumina Inc., San Diego, CA) array. SNP genotyping was done using 

HumanOmni2.5 Beadchips (Illumina Inc., San Diego, CA), followed by initial data 

processing using Illumina’s Genome Studio, as previously described.17 A total of 11 
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samples showing sex discrepancies between the phenotype and the genotype (n=4), that 

were outliers from the distribution of the samples’ genetic clusters based on multi-

dimensional scaling plots (n=6), and with a mismatching sample identifier (n=1) were 

excluded. A total of 301 placental samples that passed the quality control filters were 

included in the EWAS.

Standard Illumina protocols were followed for background correction, normalization to 

internal control probes, and quantile normalization. The resulting intensity files were 

processed with Illumina’s Genome Studio, which generated average beta-values for each 

CpG site (i.e., the fraction of methylated sites per sample by taking the ratio of methylated 

and unmethylated fluorescent signals) and detection P values that characterized the chance 

that the target sequence signal was distinguishable from the negative controls. The method 

was corrected for the probe design bias in the Illumina Infinium HumanMethylation450 

BeadChip and achieved between-sample normalization.18 Normalization was performed 

using the modified Beta MIxture Quantile dilation (BMIQ) method to correct the probe 

design bias in the Illumina Infinium Human Methylation450 Beadchip and achieve between-

sample normalization. After BMIQ normalization, missing CpGs were imputed by the k-

nearest neighbors method setting k=10. Beta values with an associated detection P ≥ 0.05 

were set to missing. In addition, probes with mean detection P ≥ 0.05 (n=36), cross-reactive 

(n=24 491), non-autosomal (n=14 589), and CpG sites located within 20 base pair from 

known single nucleotide polymorphisms (SNPs) (n=37 360) were removed.19 After these 

QC procedures, methylation data with 409 101 CpGs were available for analysis. As 

recommended by Du et al.,20 methylation beta values were logit transformed to M-value 

scale before analysis and the effect estimates were reported as the change in methylation 

beta value for a 1 kg/m2 increase in BMI or 1kg/week increase in GWG.

RNA extraction and quantification

RNA was extracted from 80 placentas using TRIZOL reagent (Invitrogen, MA), and 

sequenced using the Illumina HiSeq2000 system as previously described.17 Participants with 

both DNA methylation and RNA sequence data (n=75) were included to test correlation 

between DNA methylation and gene expression.

Statistical analysis of association between CpG sites and obesity traits

Epigenome-wide analyses were performed by fitting robust linear regression models for 

each CpG site as the response variable on the M-value scale and each of pre-pregnancy BMI, 

GWG1, GWG2, and GWG3 as a predictor as implemented in the R/Bioconductor package 

limma, version 3.24.15. So far, there is no reference for placental cell type composition; 

therefore, we used the ComBat function from the surrogate variable analysis (SVA) package 

to account for heterogeneity in cell-type composition.21 Placental genome-wide SNP data 

were used to estimate 10 genotype-based principal components (PCs) representing 

population structure. All analyses included maternal age (continuous), race/ethnicity 

(Hispanic, Black, White, Asian), offspring sex (male, female), methylation sample plate 

(n=5), ten genotype-based PCs, three methylation-based PCs, and components representing 

putative cell-mixture as adjustment factors in the models. The differentially methylated CpG 

sites were mapped to the nearby gene using R/Bioconductor package with a background 
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reference comprising the whole set of genes present in the Illumina 450k platform. The 

analyses were controlled for false discovery rate (FDR) at 5% using the Benjamini-

Hochberg method. To minimize genomic inflation (λ) and bias, a Bayesian method available 

as an R/Bioconductor package (BACON) was applied and used to correct the nominal P 
values.22 Quantile-Quantile (Q-Q) plots of P values and the corresponding λ were compared 

before and after BACON correction. All λs were close to 1 after BACON adjustments 

(Supplementary Figure S1, A–H). Associations with BACON-corrected FDR P<0.05 were 

considered statistically significant.

Correlation between DNA methylation and gene expression in placenta

The correlations between DNA methylation at the top differentially methylated CpG sites 

and expression of the corresponding genes in placenta were tested using the Pearson 

correlation test. We further evaluated associations between expression of genes mapping to 

the top differentially methylated CpGs and pre-pregnancy BMI or GWG using linear 

regression adjusted for maternal race/ethnicity, fetal sex and ten genotype-based PCs as 

implemented in DEseq2.23

Evaluation of CpG sites known to be associated with obesity traits

PubMed literature search was done to identify EWASs of obesity traits published between 

January 2013 and February 2019 (see details in Supplementary Table S1). A total of 19 

publications met our inclusion criteria.6, 24–41 These included two EWAS of pre-pregnancy 

BMI in cord, child and adolescent blood 6, 24, two whole blood EWAS of childhood obesity,
25, 26 13 whole blood EWAS of adult obesity,27–39 and two adipose tissue EWAS of adult 

obesity.40, 41 No studies included placental EWAS of maternal pre-pregnancy BMI or GWG.

Pathway enrichment analysis

To understand the biological functions of genes annotated to the top CpG sites associated 

with maternal pre-pregnancy BMI or GWG in our study (FDR P<0.01), we looked for 

enrichment of biological pathways using the Ingenuity Pathway Analysis (IPA) 

bioinformatics resource (IPA, Qiagen, Redwood City, CA, USA). Pathways that were 

significantly enriched at Benjamini-Hochberg corrected FDR P<0.05 were considered to be 

significant.

Functional annotation

The top-significant CpG sites (BACON-adjusted FDR P<0.05) were queried in the 

methylation quantitative loci (meQTL) database (http://www.mqtldb.org/) that documents 

meQTL at serial time points across the life-course, in order to identify single nucleotide 

polymorphisms (SNPs) that may influence DNA methylation at the CpG sites. The meQTL 

SNPs identified through the query were annotated using Haploreg v4.1 (https://

pubs.broadinstitute.org/mammals/haploreg/haploreg.php), Functional Mapping and 

Annotation of Genome-Wide Association Studies (FUMA, https://fuma.ctglab.nl/), and the 

Human Protein Atlas, version 18.1 (HPA, https://www.proteinatlas.org/) tools and databases 

to understand their functional importance, tissue-specific gene expression, and relevance in 
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diseases based on published GWAS. All analysis was carried out using R/Bioconductor 

version 3.8.

RESULTS

Participants’ characteristics

The 301 pregnant women who participated in this study included 102 self-identified 

Hispanics, 77 non-Hispanic Whites, 72 non-Hispanic Blacks, and 50 Asians. The mean 

(s.d.) of women’s age was 27.7 (6.0) years, pre-pregnancy BMI was 25.1 (4.5) kg/m2, 

GWG1 was 0.2 (0.2) kg/week, GWG2 was 0.3 (0.2) kg/week, and GWG3 was 0.4 (0.2) kg/

week. Further details of study participants are presented in Table 1.

Associations of maternal pre-pregnancy BMI and GWG with DNA methylation in placenta

Each 1 kg/m2 increase in maternal pre-pregnancy BMI was associated with 0.09% (95% 

confidence interval (CI): 0.06, 0.12) higher methylation at cg14568196 [EGFL7]; 0.13% 

(0.07, 0.19) higher methylation at cg15339142 [VEZT], and 0.07 % decrease in methylation 

at cg02301019 [AC092377.1] (BACON-corrected FDR P<0.05; nominal P ranging from 

3.4×10−10 to 1.7×10−9). Further, a 1kg/week increase in GWG1 was associated with 24.32% 

(14.15, 34.48) higher methylation at cg17918270 [MYT1L] and 1.01% (−1.47, −0.55) lower 

methylation at cg20735365 [DLX5] (BACON-corrected FDR P<0.05; nominal P ranging 

from 1.4×10−9 to 3.3×10−9). Each 1 kg/week increase in GWG2 was associated with 

28.91% (18.08, 39.73) higher methylation at cg17918270 [MYT1L] and 13.01% (−17.52, 

−8.49) lower decrease in methylation at cg17451688 [SLC35F3] (BACON-corrected FDR P 
< 0.05; nominal P ranging from 6.4×10−10 to 1.2×10−8) (Table 2, Supplementary Figure S2).

Correlation between DNA methylation and gene expression in placenta

We tested the correlations between DNA methylation at each of the six CpG sites we 

identified to be associated with pre-pregnancy BMI or GWG and expression of the 

corresponding annotated genes. DNA methylation at cg1456819 (which was 

hypermethylated with higher pre-pregnancy BMI) was negatively correlated with EGFL7 
expression in placenta (r=−0.23; P=0.04). DNA methylation at cg17451688 (which was 

hypomethylated with higher GWG2) was positively correlated with SLC35F3 expression in 

placenta (r=0.38, P=0.0007) (Figure 1). Gene expression analysis found that higher pre-

pregnancy BMI was associated with reduced expression of EGFL7 in placenta (log2FC=
−0.03, P=0.02) (Table 3).

Offspring CpG sites previously associated with maternal obesity traits

196 out of 1834 CpG sites in cord blood and 17 out of 143 CpG sites in adolescent blood, 

associated with maternal pre-pregnancy BMI in previous EWASs,6, 24 were also associated 

with maternal pre-pregnancy BMI in placenta in our study (P<0.05). The associations in 

placenta at 66 out of the 196 CpG sites (36.3%) and at 3 out of the 17 CpG sites (15.1%) 

were directionally consistent with the published findings (Supplementary Table S2).
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CpG sites previously associated with child and adult obesity traits

15 out of 120 CpG sites in whole blood associated with childhood obesity,25, 26 152 out of 

941 CpG sites in whole blood associated with adult obesity,27–39 and 641 out of 4606 CpG 

sites in adipose tissue 41 associated with adult obesity in previous EWASs were also 

associated with maternal pre-pregnancy BMI in placenta in our study (P < 0.05). The 

associations in placenta at 8 out of the 15 CpG sites in children blood, 84 out of the 152 

CpG sites in adult blood and 414 out of the 641 CpG sites in adipose tissue were 

directionally consistent with the published findings (Supplementary Table S2).

Enrichment of pathways

Pathway enrichment analyses included 64 genes for pre-pregnancy BMI, 9 genes for GWG1, 

8 genes for GWG2, and 5 genes for GWG3 (Supplementary Tables S3). The top canonical 

IPA networks included disease and function networks related to connective tissue disorders, 

skeletal and muscular disorders, cell cycle, cellular assembly and organization, DNA 

replication, lipid metabolism and metabolic diseases (Table 4). The 3-phosphoinositide 

degradation IPA canonical pathway was significantly enriched (FDR P<0.05) with pre-

pregnancy BMI-associated genes in placenta (Supplementary Table S4).

Functional annotation results

In the meQTL database, 26 SNPs in the EGFL7 and AGPAT2 genes were cis-meQTL with 

the cg14568196 [EGFL7] locus that was associated with pre-pregnancy BMI in our study. In 

addition, 130 SNPs in the VEZT, NDUFA12, NR2C1, and FGD6 genes were cis-meQTL 

with the cg15339142 [VEZT] locus that was associated with pre-pregnancy BMI in our 

study. The EGFL7 gene had the highest expression in placenta (Supplementary Figure S3–

S4, Supplementary Table S5).

DISCUSSION

To our knowledge, this is the first placental EWAS of maternal pre-pregnancy BMI and 

trimester-specific rate of GWG. We identified novel differentially methylated CpG sites 

associated with increased maternal pre-pregnancy BMI and rate of GWG at first and second 

trimester. Pre-pregnancy BMI-associated genes in placenta were enriched in 3-

phosphoinositide degradation canonical pathway. The 3-phosphoinositides are particularly 

important in signaling cascades that influence a wide variety of cellular functions. 

Disruption of these signaling pathways plays a key role in pathophysiological conditions of 

metabolic diseases.42 Functional annotations revealed that the differentially methylated CpG 

sites near EGFL7 and VEZT genes that were found to be associated with maternal pre-

pregnancy BMI were cis-meQTL targets in blood across the life course, suggesting genetic 

regulation on DNA methylation of the genes across the life course. Moreover, we found that 

several CpG sites previously implicated in obesity traits in children and adults were 

significantly associated with maternal pre-pregnancy BMI in placenta,6, 24–39, 41 providing 

clues for specific epigenetic markers of obesity in early life.

Notably, we found that higher pre-pregnancy BMI was associated with increased 

methylation at cg14568196 [EGFL7] and with reduced expression of the EGFL7 gene in 
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placenta. Moreover, higher DNA methylation at the CpG site was significantly correlated 

with decreased EGFL7 expression. These findings suggest that down-regulation of EGFL7 
gene expression attributed to maternal adiposity may be mediated via epigenetic alteration at 

cg14568196. EGFL7 has the highest gene expression in placenta and encodes a protein that 

regulates vasculogenesis and promotes endothelial cell adhesion to the extracellular matrix 

in humans.43 In the homozygous Egfl7-knockout mice, vascular development is delayed in 

many organs despite normal endothelium cells proliferation, and 50% of the knockout 

embryos die in utero. Along with poor feto-placental perfusion, Egfl7 knockout resulted in 

reduced placental weight, 50% reduction in fetal blood space and fetal growth restriction.44 

In the BPH/5 mouse model with preeclampsia, downregulation of Egfl7 in compromised 

placentas occurs prior to the onset of characteristic maternal signs of preeclampsia.43 An in 
vivo study suggested that there is a correlation between reduced expression of EGFL7 and 

inadequate trophoblast invasion observed in placentopathies.45 Another study showed that 

EGFL7 gene expression is regulated by hypoxia in trophoblast and EGFL7 expression was 

increased in maternal blood in women with early onset preeclampsia.46 However, the role of 

EGFL7 in placental development largely remains unknown. Future studies focused on this 

gene may give clues on mechanisms linking maternal obesity with placental vascular 

functional changes and altered fetal growth and development.

The relationship between DNA methylation and obesity traits is complicated by DNA 

sequence variation, which may contribute to both traits.47 Many obesity-associated SNPs 

were previously reported to be associated with proximal gene regulation.48 We found genetic 

loci in EGFL7 and AGPAT2 genes and loci in the VEZT, NDUFA12, NR2C1, and FGD6 
genes that were cis-meQTL with two CpG sites associated with pre-pregnancy BMI in our 

study. The genes annotated to the cis-meQTL SNPs have functional relevance to obesity and 

related comorbidities. For example, AGPAT2 plays a role in regulation of growth and 

development of adipocytes, 49 NDUFA12 is down-regulated in obesity, 50 NR2C1 is highly 

expressed in adipose tissue and is associated with infant obesity, insulin resistance and 

inflammation, 51 and VEZT is highly expressed in the germ cell line and contributes to 

morphogenesis of preimplantation in the mouse embryo.52

DNA methylation changes in placenta may be relevant to understanding the developmental 

programming of human body weight regulation. Our study found overlapping CpG sites 

associated with pre-pregnancy BMI in cord and adolescent blood and with child and adult 

BMI in blood and adipose tissues,6, 24–41 consistent with a recent meta-analysis finding that 

reported consistent associations between higher maternal pre-pregnancy BMI and risk of 

obesity in early- mid- and late-childhood.53 Several CpG sites in genes such as FASN 
(adipose), HIF3A (adipose and blood), PHGDH (adipose and blood) were found to be 

significantly associated with maternal pre-pregnancy BMI in our data.54 For example, the 

hypoxia inducible factor 3 subunit alpha (HIF3A) gene expression is linked with vascular 

response to changes in oxygen tension, energy expenditure, metabolism and obesity 39 and 

adipose tissue dysfunction.55 CpG methylation annotated to HIF3A has been associated with 

birth weight and BMI at birth.56 Therefore, maternal adiposity-induced placental 

dysfunction may lead to hypoxia and oxidative stress in placenta 57 via epigenetic 

dysregulation of HIF3A expression, and the resulting fetal developmental response may be 

relevant for early programming obesity risk in later life.
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Our study did not identify loci associated with GWG3. This may be due to the relatively 

smaller variation in GWG3 in our data (i.e., while mean GWG3 was larger than GWG1 and 

GWG2, the variation in GWG3 was not proportionally larger than that of GWG1 and 

GWG2). Fetal organogenesis occurs in early gestation during which the fetal epigenome is 

susceptible to environmental stimuli.58 Therefore, our findings may also be related to the 

possibility that maternal adiposity status in pre-pregnancy and early gestational weeks is 

more predictive of DNA methylation changes in placenta.53

An important limitation of our study is that because of absence of reference data for cell 

proportion in placenta, the findings may be confounded by unmeasured cellular 

heterogeneity. To counter this limitation, we implemented a validated reference-free 

adjustment for cell type proportion variation implemented in SVA.27 Furthermore, a 

Bayesian method was applied to correct the P-values for false positive rate and inflation.22 

We were able to adjust for genotype-based ancestry estimates that have been found to be 

more robust in minimizing spurious associations due to population stratification.59 Another 

limitation was that the findings were not replicated in an independent population cohort 

because similarly designed studies are not common. Despite this limitation, we were 

reassured by the consistent corroboration of our EWAS findings with the results of the gene 

expression and in-silico annotations. The use of self-reported weight to calculate the pre-

pregnancy BMI of the pregnant women may introduce inaccuracies. Finally, although large 

methylation changes associated with the maternal obesity traits could be identified by our 

EWAS, we acknowledge that studies with larger sample sizes are needed to detect CpGs of 

small effects associated with maternal obesity traits.

In conclusion, this is the first EWAS that identified placental DNA methylation loci 

associated with maternal pre-pregnancy BMI and GWG. Notably, the findings suggest that 

DNA methylation changes at the EGFL7 locus are associated with pre-pregnancy BMI may 

mediate down-regulation of the expression of placental EGFL7 gene. Placental epigenetic 

changes due to increase in maternal BMI may explain in-utero mechanisms in the 

developmental origins of obesity in the offspring and may be useful targets for early 

intervention.

Supplementary Material
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Figure 1. 
Correlation between DNA methylation at top significant CpG sites and expression of the 

corresponding gene. A. EFGL7 B. VETZ C. DLX5 D. SLC35F3 E. MYT1L
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