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Abstract

We introduce and study decompositions of graphs into so-called highly irregular graphs, as
first introduced by Alavi, Chartrand, Chung, Erdés, Graham and Oellermann in the 1980s.
That is, given any graph, we are interested in colouring its edges with the least number of
colours possible, so that, in each colour, no vertex has two neighbours with the same degree
in that colour. We provide results of different natures on this problem. We first establish
connections with other notions of graph theory, including other decomposition problems,
from which we notably get first bounds on the associated chromatic parameter of interest.
We then study this parameter for several common classes of graphs, including graphs of
bounded degree, complete bipartite graphs and complete graphs, for which we establish
(sometimes close to) tight results. We also provide negative and positive algorithmic results,
showing that the problem of determining our new chromatic parameter is NP-complete in
general, but polynomial-time tractable in particular contexts. We conclude with questions
and problems for further work on the topic.

Keywords: highly irregular graph; graph decomposition; graph irregularity.

1. Introduction

A well-known concept in graph theory is that of regularity, where a graph is commonly
considered regular if all its vertices have the same degree. A legitimate concern is then to
wonder about possible antonyms to this notions of regularity, and, consequently, quite a
few such concepts have been investigated in literature. Perhaps the most natural way to
define graph irregularity is to consider that a graph is totally irregular (t.i. for short) if no
two of its vertices have the same degree. However, it is a well-known fact that, Ky apart,
no simple graph can be t.i. (just consider the degree sequence any such graph requires).

For this reason, several authors turned to weaker notions of graph irregularity. In par-
ticular, in the 1980s, Alavi, Chartrand, Chung, Erdds, Graham and Oellermann introduced
in 3] the concept of highly irregular graphs, where a graph is highly irreqular (h.i. for
short) if none of its vertices has two neighbours with the same degree (in other words, every
vertex can distinguish its neighbours degree-wise). In that line, another weaker notion of
graph irregularity was introduced more recently in [5], in which Baudon, Bensmail, Przy-
bylo and Wozniak say a graph is locally irregular (1.i. for short) if it has no two adjacent
vertices with the same degree. Obviously not all simple graphs are h.i. or Li.; however
one can easily come up with infinitely many examples of simple graphs that are h.i. or Li.,
thereby showing that these notions fit better with simple graphs. For the sake of keeping
the current introduction short and bearable, and because our investigations in this paper



are mainly on h.i. graphs (and on t.i. and Li. graphs to a lesser extent), we will not elab-
orate more on other notions of graph irregularity that have been considered in literature
here, but we inform the interested reader that such other notions do exist (see e.g. [1]).

Studying irregular graphs (w.r.t. some notion of irregularity) is an interesting topic
by itself, but it turns out that some of these graphs have also appeared in the study of
different, seemingly unrelated problems. For instance, phrased differently, the irreqularity
strength (introduced in [9]) of a simple graph G can be defined as the minimum k& > 1 such
that G can be turned into a t.i. multigraph by replacing each of its edges with at most &
parallel edges. Another example is the so-called 1-2-3 Conjecture (introduced in [13] and
proved in [14]), which, under our terminology, asks whether, in general, any graph can be
turned into a Li. multigraph by replacing each of its edges with at most 3 parallel edges.
A very similar concern, but for h.i. multigraphs, was investigated more recently in [7].

In the current work, we are more interested in decomposition problems, inspired by
those introduced and considered in [5]. Recall that, for a graph G, a decomposition D is
a partition (E1,..., Ex) of the edge set E(G). Equivalently, note that D can be regarded
as a k-edge-colouring ¢, by which every vertex v of G gets, for any i € {1,...,k}, some
i-degree d;(v), being the number of its incident edges assigned colour i (or, equivalently,
lying in E;). In [5], the authors observed that, in connection with the aforementioned
1-2-3 Conjecture, it might be useful, for some graph G, to determine the smallest number,
denoted x1;.(G), of 1i. graphs decomposing G (if such decompositions even exist). More
formally, x1; (G) can be defined as the smallest k > 1 (if it exists) such that G admits a
l.i. k-edge-colouring, i.e., a k-edge-colouring ¢ where every colour yields a Li. graph (that
is, if ¢(uv) =i for some edge uv, then d;(u) # d;(v)). In particular, all 1.i. graphs G satisfy
X1i.(G) = 1 and are in some sense the most convenient w.r.t. the 1-2-3 Conjecture (they
already stand, as is, as Li. multigraphs). The authors of [5] also identified other contexts
where 1.i. decompositions arise naturally when dealing with the 1-2-3 Conjecture (such as
when considering regular graphs). Since their introduction, 1.i. decompositions have been
studied in several works, see e.g. [4, 6, 8, 16, 17, 18, 19, 22, 23, 24, 25|; more details will
be given later in the current paper, as they connect to the results we provide.

Our goal in this work is to study such concerns in the context of h.i. graphs. For
a graph G, a h.i. decomposition (or equivalenty h.i. edge-colouring) is a decomposition
(resp. an edge-colouring) of G where each part (resp. colour) yields a h.i. graph. We
now define xp; (G) as the smallest k£ > 1 such that G admits a h.i. decomposition into k
parts, or, equivalently, a h.i. k-edge-colouring. Similarly as for L.i. decompositions, studying
h.i. decompositions can be motivated in several ways. In particular, the parameter yy, ; (G)
can be perceived as a measure of how far from being h.i. a graph G is, and, regarding [7],
determining xyp ;. (G) may be useful in determining how to turn G into a h.i. multigraph.
Let us emphasise that, as far as we are aware, these notions are new and have not been
introduced and considered in previous works; the current work is thus the very first one
dedicated to this topic.

This work is organised as follows. We start off in Section 2 by providing first insights
into h.i. decompositions. Namely, we recall known aspects of h.i. graphs, and provide first
observations and connections (with other graph theoretical notions) from which we proceed
to establish initial general lower and upper bounds on the parameter yy ;.. We then improve
on these bounds throughout Sections 3 and 4, in which we focus on complete bipartite
graphs and complete graphs, and provide dedicated decomposition methods leading to
tighter estimates on the parameter yy ;. Section 5 is dedicated to complexity aspects;
therein, we prove that the general problem of determining xy; (G) is NP-complete for



general graphs G, and linear-time solvable when G has bounded tree-width and bounded
maximum degree. We conclude in Section 6 with directions and questions for further work
on the topic.

2. First insights into h.i. decompositions

In this section, we mainly give preliminary observations and results on h.i. decompo-
sitions. We begin by surveying, in Subsection 2.1, the main previous works dedicated
to h.i. graphs. We then focus on h.i. decompositions through Subsections 2.2 and 2.3,
providing general upper and lower bounds on the parameter yy ;..

2.1. Studied aspects of h.i. graphs

As mentioned in the introductory section, h.i. graphs were introduced as early as in the
1980s, by Alavi, Chartrand, Chung, Erdés, Graham and Oellermann in [3]. In this seminal
work on the topic, the authors investigated several fundamental aspects of h.i. graphs, cov-
ering mainly existential and enumeration questions. In particular, they proved h.i. graphs
on n vertices exist for all values of n not in {3,5,7}. They also considered the largest size
(number of edges) of a h.i. graph with given order and provided first results which would
later be complemented by results due to Majcher and Michael in [20] (resulting in optimal
results, summarised in later Theorems 4.1 and 4.2).

In [3], the authors also considered questions such as the minimum order of a h.i. graph
containing (as an induced subgraph) any prescribed graph, the minimum order of a h.i. tree
with given maximum degree, the proportion of h.i. graphs with given order n (showing the
ratio of the number of h.i. graphs of order n over the number of graphs of order n tends to
0 as n grows to infinity), and the independence number of h.i. graphs. This last concern
was considered further in |2|, where the authors provided results on h.i. trees, bipartite
graphs and graphs with larger chromatic number.

Apart from these main matters, only a few more aspects of h.i. graphs have been
investigated in literature. For instance, Majcher and Michael studied the degree sequence
of h.i. graphs in [21]. We refer the interested reader to the literature listed above for more
results of perhaps lesser importance.

2.2. Upper bounds on the parameter xn.i.

It is worth noting that the smallest connected h.i. graphs are the path of length! 1
(with order 2), the path of length 3 (with order 4), and the graph (with order 6) obtained
from the path of length 5 by adding an edge joining the two vertices with a neighbour of
degree 1. As the order increases, h.i. graphs become very rare proportion-wise, and mainly
for this reason, it is not clear what h.i. decompositions look like in general. However,
the fact that the path of length 1 is h.i. ensures the existence of an h.i. edge-colouring
for every graph by assigning a distinct colour to each edge. In other words, there are
some connections between our new problem and the well-known notions of proper edge-
colourings and chromatic index of graphs; because the reader might not be quite familiar
with all these notions, we voluntarily establish these connections little by little in what
follows.

Observation 2.1. The parameter x.;.(G) is well defined for all graphs G. In particular,
for every graph G we have x.i.(G) < |E(G)|.

'Recall that the length of a path or cycle is its number of edges.



The latter part of the statement of Observation 2.1 is not that anecdotal. Recall indeed
that, regarding l.i. decompositions, there exist infinitely many graphs that do not admit
any l.i. decomposition [5], for example paths and cycles of odd length. Thus, although
Li. decompositions are in some sense easier to deal with (due to more local constraints,
as will be highlighted later on), a somewhat surprising fact is that no graph escapes the
notion of h.i. decompositions.

We can of course improve upon the simple upper bound in Observation 2.1 by remarking
that a h.i. graph does not have to be connected. This implies that any edge-colouring where
each colour induces a matching is h.i. Edge-colourings with this property are well known
in graph theory, and are commonly called proper edge-colourings. More formally, an edge-
colouring of a graph G is proper if no two adjacent edges (sharing a vertex) are assigned
the same colour. The smallest k£ > 1 such that G admits a proper k-edge-colouring is called
the chromatic index of G and is denoted x'(G).

It is a trivial fact that we have A(G) < x'(G) for every graph G, where A(G) is the
maximum degree of G, and, by Vizing’s Theorem [26], we also have x'(G) < A(G) +1. By
previous remarks, we thus get the following improvement upon Observation 2.1:

Theorem 2.2. For every graph G, we have x;.(G) < A(G) + 1.

Regarding Vizing’s Theorem, it is well known that graphs G of class 1 (i.e., with
X' (G) = A(GQ)) do exist, and similarly for those of class 2 (i.e., with X' (G) = A(G) +1).
Actually, for any k > 3, there is no polynomial-time characterisation of class-1 graphs G
with A(G) =k (unless P=NP), see [15]. Thus, we obtain a slightly better upper bound for
class-1 graphs G (xnh.i.(G) < A(G)), but in general it is not obvious what these graphs are
and it is also not obvious whether ;. (G) < A(G) also holds when G is a class-2 graph.

Actually, even for very simple graphs, we cannot improve upon Theorem 2.2:

Theorem 2.3. If G is an odd-length cycle, then xn;i (G) =3=A(G) + 1.

Proof. This follows mainly from the fact that the only two connected h.i. graphs with
maximum degree 2 are the paths of length 1 and 3, which have odd length, and thus that
any colour of a h.i. edge-colouring of G' must induce a collection of paths of length 1 and 3.
Now, if a h.i. 2-edge-colouring of G existed, then, along G, these paths of odd length would
alternate between colour 1 and 2, and we would have the same number of such paths in
colour 1 as in colour 2. This is impossible, since these paths would cover an even number
of edges, while G has an odd number of them. So, xnhi(G) > 3, and xp;(G) = 3 by
Theorem 2.2. O

There are other contexts where we can take advantage of the graph structure to de-
compose into longer h.i. paths, and improve upon Theorem 2.2. Recall that an Fulerian
walk in a graph is a walk traversing all edges exactly once, and that, by Euler’s Theorem,
a graph G admits such a walk if and only if it is connected and has at most two vertices
with odd degree.

Theorem 2.4. If G is a triangle-free graph admitting an Fulerian walk, then
1
wi(6) < |5+ BG)] |+ (@) mod 3).
Proof. Let ¢ be the edge-colouring of G obtained as follows. Traverse any Eulerian walk £

of G from start to finish, and, as going along, assign a new colour to any three successive
edges until there remain at most two uncoloured edges, to which we assign a new, distinct



colour each. Since G is triangle-free, note that, for any colour ¢ assigned to any three
successive edges uv, vw, and wz of £, u cannot be equal to z, and thus colour 7 induces a
path of length 3, thus a h.i. graph. Likewise, any colour 7 assigned to only one edge of G
(at most two such colours have been used) induces a path of length 1, thus a h.i. graph.
Thus, ¢ is h.i., and the number of colours it assigns is the one claimed in the statement. [

We finish this subsection by mentioning an obvious fact, being that if some graph G can
be decomposed into k graphs Gi,..., Gy, then a h.i. decomposition of G can be obtained
by just combining independent h.i. decompositions of G1,...,Gg:

Lemma 2.5. If G is a graph with a decomposition D = (Eq,...,Ey), then

k
Xni(G) < Z; xni (GEi])

where G[E;] = (V(GQ), E;) for all1<i<k.

2.8. Lower bounds on the parameter xn;.

Now that we have seen, through Theorem 2.2, that for any graph G the parameter
Xni.(G) cannot exceed A(G) + 1, one can naturally wonder whether this upper bound is
tight in general, or, put differently, how far from A(G) + 1 the value of xn; (G) can be.
Recall that we got a partial answer through Theorem 2.3 using a pathological case.

The next results rely on the following definitions.

Definition 2.6. Let G be a graph with a vertex v. For any x € {1,...,|[V(G)| -1}, we
denote by nb(v,x) the number of neighbours of v with degree x, and by nb=(v,x) the number
of meighbours of v with degree at most x.

We can now write the following simple lower bound, reached for instance by star graphs,
that is, complete bipartite graphs K ,, (for m > 1):

Observation 2.7. For every graph G, we have ma(%)nb(v, 1) < xni(G).
veV

Proof. Consider any h.i. edge-colouring ¢ of GG, and focus on any vertex v. Assume v has
d =nb(v,1) > 2 neighbours uq,...,uq with degree 1. Then note that, regardless the rest of
¢, all of vuq,...,vug must be assigned pairwise distinct colours since otherwise v, in some
colour, would have at least two neighbours with degree 1. Since this is true for all vertices
of the graph, the bound holds. O

By the arguments of the previous proof, Observation 2.7 can be generalised to:

Theorem 2.8. For every graph G, we have

[nbs(v, x)
max —
veV(Q) x

} < xni.(G).
we{l,..,A(G)}

Proof. Let ¢ be a h.i. edge-colouring of G. Consider any v € V(G), any z € {1,...,A(G)}
and set d = nb*(v,z). For any colour i the i-degree of any of the d neighbours u1,...,ug
of v with degree at most z, if non-zero, must lie in {1,...,z}. This implies that around v
colour i can be assigned to at most x of the edges vuq,...,vuq. Thus, due to v and x, the
number of required colours, if ¢ is indeed h.i., is at least [d/x]. Since this reasoning holds
for every v and z, the claimed lower bound holds. O



While the lower bound can be pretty bad in some cases (in the case of a regular graph
G, the lower bound obtained is 1 < xp;.(G)), in other cases it might be pretty useful.
For instance, we will highlight in Section 3 that it is more accurate for very unbalanced
complete bipartite graphs, which have the property to have only two possible values for the
degrees. For instance, in any complete bipartite graph K ,,,, there is a vertex v with degree
m neighbouring vertices of degree 2 only (that is, nb(v,2) = d(v) =m). This example and
generalisations result in the observation that yy; (G) being large for a graph G does not
require the minimum degree 0(G) to be small as one may think (for instance because of
Observation 2.7).

3. Complete bipartite graphs

In this section, we focus on h.i. decompositions of complete bipartite graphs K, ,,.
Regarding 1.i. decompositions, it was observed in [5] that we have x1; (Kpm) =1 if n #m,
and x1i (Kpnm) = 2 otherwise. As will be seen throughout, things are more complex when
it comes to h.i. decompositions.

A crucial tool we will use throughout this section, is the following notion.

Definition 3.1. A half" graph® is a bipartite graph with bipartition (U, V) such that no
two vertices of U have the same degree and no two vertices of V' have the same degree.

Observation 3.2. Every half™ graph is h.i.

Half" graphs already appeared in the study of h.i. graphs, since, notably, half" graphs
are, w.r.t. their order, the h.i. graphs with the most edges (see [3]). This property makes
half" graphs nice candidates to decompose graphs into, when establishing upper bounds
on the parameter xyp ;. In particular, a perfect use case is the upcoming particular one (in
which, note, the statement involves half graphs, not half" graphs).

In the next proof and later on, for a graph G and a set E of edges of G, we denote
by G \ E the graph (V(G), E(G) \ E) obtained by removing the edges of E from G (but
keeping the vertices these edges are incident to).

Lemma 3.3. Every complete bipartite graph K, ,, decomposes into two half graphs having
n vertices in both parts of the bipartition. As a consequence, xpni (Knn) = 2.

Proof. Since all vertices of K, , have degree n, note that if we have a spanning half graph
H c Ky, then K, ,\ E(H) is also a half graph. Let U = {u1,...,up} and V = {u1, ..., u,}
denote the two parts of the bipartition of K, ,, and consider the spanning subgraph H of
K, where

E(H)={uwvje E(Kyp):1<i<n,1<j<i}.

It is easy to see that H is indeed a spanning half graph of K, ,. Then, by assigning
colour 1 to all edges of E(K, )N E(H) and colour 2 to all other edges of K, ,,, we obtain
a h.i. 2-edge-colouring of K, ,,. Hence, xni (Knn) = 2. O

Apart from decomposing graphs into two half™ graphs as is, we will also use the fact
that performing some particular small and easy modifications to a half" graph preserves
properties of interest regarding h.i. decompositions. Namely:

2Be aware that the term half graph has been commonly used in literature to refer to balanced bipartite
graphs with the degree property described in Definition 3.1. Our half" graphs are slightly different in that
they are bipartite but not necessarily balanced.



Observation 3.4. If G is a half™ graph with bipartition (U,V') such that no vertex of U
has degree 0, then adding an isolated vertex to U results in a half™ graph. As a conse-
quence, every complete bipartite graph Ky pi1 has xni (Knne1) = 2, since xni (Knpn) = 2
by Lemma 3.5.

Observation 3.5. Let M be a perfect matching of a complete bipartite graph K, . Then
Ko N~ M decomposes into two half” graphs. Therefore, Xni.(Kpn ~ M) =2.

Proof. This can be proved similarly as Lemma 3.3. O

Observation 3.6. Let G be a graph obtained by adding a universal vertex to a balanced
complete bipartite graph with the edges of a perfect matching removed. Then, xni.(G) = 2.

Proof. Assume G is obtained from K, , by removing the edges of a perfect matching
M and adding a universal vertex w. By Observation 3.5, the edges of G \ {w} can be
coloured with colours 1 and 2 so that each colour yields a half™ graph, thus a h.i. graph
by Observation 3.2. We extend this 2-edge-colouring to the edges incident to w, so that
all edges incident to w going to U are assigned colour 1, while all those going to V' are
assigned colour 2, where (U,V) denotes the bipartitions of K, ,. As a result, note that
the 1-degrees of all vertices of U are increased by 1 and are still pairwise different, since
prior to extending the edge-colouring, colour 1 induced a half™ graph. Meanwhile, we have
dy(w) =n and w, through colour 1, is not adjacent to any vertex of V. Also the 1-degrees
of the vertices of V have not been altered and are thus all pairwise distinct with value at
most n — 1 (since A(K,, , \ M) =n-1). Since these observations also apply to colour 2,
the resulting 2-edge-colouring of G is h.i. O

We are now ready to study h.i. decompositions of complete bipartite graphs K,
(where n < m). As a first intuition, it should be clear that xp; (K ) should increase
as the difference between n and m increases; this is attested by Theorem 2.8 (case where
m —n is large) and Lemma 3.3 and Observation 3.4 (case where m —n is small). We first
provide results establishing this intuition formally; we start with an upper bound.

Theorem 3.7. For any two integers n,m with n>1 and m >n(n +1), we have

m
Xh.l.(Kn,m) <2 [m] .

Proof. Let (U,V') denote the bipartition of Ky, ,,, where |[U| = n and |V| = m. The result
is obtained mainly by showing that we can write m = k1(n + 1) + kan for some kq, ko > 0.
Indeed, for such k1 and ko, we can take an arbitrary partition of V' into ki sets of size n+1
and ko sets of size n. Then, if A is any of these sets, then the result follows from the fact
that the subgraph induced by (U, A) is isomorphic to either K, 41 or Ky ,, which both
decompose into two h.i. graphs, by either Lemma 3.3 or Observation 3.4. It then follows,
by Lemma 2.5, that xp.i. (Knm) < 2(k1 + k2).

We thus need to show that we can write m as desired, and that, regardless of k; and
k2, we obtain the claimed bound on xp.i (Kpm). For now, let us write m = g(n+1) +r,

where 0 <r<n and ¢ = [%J

e If 7 =0, then m = g(n+1); thus, k1 = g and kp = 0. Therefore, we obtain xp.i. (Knm) <
25 = 2[5 |

e Otherwise, since m > n(n+1) and ¢ > n, we can write m = (¢—n)(n+1)+(n+1)n+r,
and thus m = (¢—n+r)(n+1)+(n+1-r)n. Therefore, k1 = (g—n+7r) and ke =n+1-r.
We then obtain xni (Kpm) <2(¢g—-n+r+n+1-r)=2¢+2=2 [ﬁ]

n+1



Hence we derive the claimed bound in all cases. O
We now prove that the upper bound in Theorem 3.7 is tight up to a constant factor.

Theorem 3.8. For any two integers n,m with m >n > 1, we have

2
n+1

Proof. Let (U, V') be the bipartition of K, ,,, where |U| = n and [V'| = m. The result follows
mainly from the following observation:

] < Xni (Knm)-

Claim 3.9. Any h.i. subgraph of Ky, m has at most n(n+1)/2 edges.

Proof of the claim. Let E be a set of edges of K, ,, that induces a h.i. graph H. Let d
be the maximum degree in H of some vertex u of U. Then, all of its d neighbours in H
are in V' and have pairwise distinct degrees. Vertices in V' have degree n in K, ,,, and the
maximum degree, in H, of a vertex in V is at most n, hence d < n. Thus, any vertex of U
has degree at most n in H.

Since all neighbours of u have distinct degrees in V| it has at least one neighbour v € V
of degree at least d. Then, v has at least d neighbours in U, each with a distinct degree in
H. Since, in H, the maximum degree of a vertex in V(H)nU is d, vertex v has exactly

d neighbours in U with, in H, all degrees in {1,...,d}. There remain n — d vertices in U,
each having degree at most d in H. In total, E thus contains at most d(d+1)/2+ (n—-d)d
edges. This value is maximised when d = n, in which case |E| < n(n+1)/2. o

Back to the proof of Theorem 3.8, assume, towards a contradiction, that xn.i (Knm) <
[Qﬂ]. This implies K, ,, must have a h.i. subgraph with more than n(n +1)/2 edges,

n+1

which contradicts Claim 3.9. So, the bound claimed holds. O

Note that the context of a complete bipartite graph K, ,, makes the result of applying
Theorem 2.8 appropriate. Specifically, when n < m, we obtain xy; (Kpm) > [m/n], which
is less interesting than the lower bound provided in Theorem 3.8.

To finish this section, we determine (mainly through applying some previous ideas)
the exact value of xni (Kpm) when one of n and m is small, i.e., 2 or 3. Recall that
Xh.i.(K1,m) = m, by Observation 2.7.

Corollary 3.10. For every m > 2, we have xp;i (K2,m) =2 [%J + (m mod 3).

Proof. First, we have xni (K22) =2, xni(K23) =2 and xpi (K24) = 3. Indeed, none of
K39, K93 and K> 4 is h.i., so they do not admit h.i. 1-edge-colourings. By Theorem 3.8, we
also have xp.i.(K24) > 3. Now, we provide, in Figure 1, h.i. 2-edge-colourings of K32 and
K>3 and a h.i. 3-edge-colouring of K> 4, from which we deduce that the equalities hold.

When m > 5, where m = 3k + 4 for some k > 1 and i € {0,1,2}, we can (as we did in
the proof of Theorem 3.7) decompose Ka,, into copies of Kso, Ko3, and K4 so that,
from the equalities above, and from Lemma 2.5, we get an upper bound on xp i (K2,m).
Regarding lower bounds, we employ Theorem 3.8 in what follows.

o If m = 3k, then K, ,, decomposes into k copies of Ky 3; then xpi (K2.m) < 2k. By
Theorem 3.8, we obtain 2k < xn.i. (K2.m)-

o If m =3k +1, then K»,, decomposes into k -1 copies of K33 and one copy of K» 4;
then xn.i.(K2m) <2(k-1)+3 = 2k+1. By Theorem 3.8, we obtain 2k+§ < Xhi. (K2m)-



(d) K3’3 (e) K3,4

(f) K35

Figure 1: Optimal h.i. edge-colourings of small complete bipartite graphs.

If m = 3k +2, then K> ,, decomposes into k copies of K3 3 and one copy of K> 2; then
Xhi (K2,m) <2k +2. By Theorem 3.8, we obtain 2k + % < Xhi (K2.m).

The result then follows. OJ

Corollary 3.11. For every m >3, we have xy; (K3m) = [%]

Proof. The proof is similar to that of Corollary 3.10. First, it can be observed that
Xni (K33) = 2, xni(K34) = 2, xni(Ks5) = 3 and xni(Kse) = 3 (see Figure 1 again).

Now,

when m > 7, where m = 6k + i for some k> 1 and i € {0,...,5}, we decompose K3 p,

into copies of K33, K34, K35 and K36 so that Lemma 2.5 can be employed.

If m = 6k, then K3, decomposes into k copies of K3¢; then xn i (K3,m) < 3k.

If m =6k + 1, then K3 ,, decomposes into k -1 copies of K3¢, one copy of K34, and
one copy of K3 3; then xpni (K3m) <3(k—-1)+2+2=3k+1.

If m = 6k +2, then K3 ,, decomposes into k-1 copies of K3 and two copies of K3 4;
then xni (K3m) <3(k-1)+4=3k+1.

If m = 6k + 3, then K3,, decomposes into k copies of K3 and one copy of K3 3; then
Xhi (K3m) <3k +2.

If m = 6k +4, then K3, decomposes into k copies of K3 ¢ and one copy of K3 4; then
Xhi. (K3.m) <3k +2.

If m = 6k +5, then K3, decomposes into k copies of K3 ¢ and one copy of K3 5; then
Xhi.(K3.m) <3k + 3.

Again, fohe result ‘phen follows from Theorem 3.8, since, if m = 6k+i for any i € {0,...,5},
then [2%8] = 3k + [1] < xpi. (K3,m)- O



4. Complete graphs

We now focus on complete graphs. When it comes to l.i. decompositions, there is a
very nice way to prove that x1; (K, ) < 3 holds for all n > 4, see [5]. Essentially, this is done
by considering an initial 1.i. 3-edge-colouring of K4, and gradually extending this 3-edge-
colouring to larger complete graphs by repeatedly adding one vertex with all its incident
edges, all assigned the same well-chosen colour.

Unfortunately, such an approach is unlikely to work for h.i. decompositions, for the
simple reason that adding a universal vertex to a graph G can only result in a h.i. graph if
G is t.i., thus if G = K (assuming G is indeed simple). Thus, in order to establish upper
bounds on xy;. (K;,) for any complete graph K,,, one has to consider other approaches.

Before continuing with more promising methods, let us first discuss a natural one which,
unfortunately, leads to upper bounds that are not optimal. Let K, be a complete graph.
In order to produce a h.i. edge-colouring ¢ of K, with few colours, one could be tempted
to edge-colour K, so that every colour yields a h.i. graph with the largest number of edges
possible (for a graph with n vertices). It turns out that, in previous works, several authors
managed to determine this largest quantity. It depends on the parity of n:

Theorem 4.1 (Alavi et al., [3]). If G is a h.i. graph with even order n >4, then
n(n+2)
—

Theorem 4.2 (Majcher, Michael [20]). If G is a h.i. graph with odd order n =2k +1>9,
then

[E(G)] <

B(G)| < %k(k Py E(k . 1)J .

Let us mention that the authors of Theorems 4.1 and 4.2 also proved that their bounds
are sharp, in the sense that there exist h.i. graphs on n vertices with the stated maximum
number of edges. The construction provided for n even is the most obvious, as it is that of
half" graphs (with n/2 vertices in each part) similar to those we considered in Lemma 3.3.

Exploiting such structures, we can establish a logarithmic upper bound on yy ;. (K,)
for any n, which improves on the upper bounds we get from Observation 2.1 and Theo-
rem 2.2. Such an upper bound is not the best possible for complete graphs, as we will
see in Theorem 4.5; however, we think these ideas are interesting enough to be at least
explained. Consider any complete graph K, and split its vertices into two sets, U and V,
with about equal size n/2. Then the edges in the cut (U,V) form a (roughly) balanced
complete bipartite graph K 23, which decomposes into two h.i. graphs by Lemma 3.3 (or
by one of the subsequent observations we raised, in case it is not quite exactly balanced). It
then remains to decompose the rest of the graph, whose edges form two disjoint complete
graphs K and K’ on about n/2 vertices, for which we can repeat these arguments (taking
into account that, in a h.i. edge-colouring, we can use the same colours in K and K’ since
they do not share vertices). Eventually, we then end up with a h.i. edge-colouring of K,
that uses a number of colours that is a logarithmic function of n.

Before we proceed with our most meaningful result in this section, let us first point out
that Theorems 4.1 and 4.2 can also serve to establish lower bounds on xy ;. (K;,) for any
n. This follows from the following, more general (obvious) observation:

Lemma 4.3. Let G be a graph with order n. If we denote by m(n) the largest number of
edges in a h.i. graph on n vertices, then

{IE(G)I

]S xni (G).
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Figure 2: Part of the h.i. 4-edge-colouring of Ki2 described in the proof of Theorem 4.5. Red edges are
edges assigned colour 1, while blue edges are edges assigned colour 2.

Theorem 4.4. For every even n > 12 and odd n > 9, we have 4 < xp;.(K},).

Proof. This follows mainly from combining Lemma 4.3, by considering that |E(K,)| =
@ and that m(n), depending on the parity of n, is the extreme value indicated by
either Theorem 4.1 or Theorem 4.2. In particular, for even values of n, it can be checked
that the ratio in Lemma 4.3 is strictly larger than 3 when n > 12, and tends to 4 as n grows

large. For odd values of n > 9, the ratio is strictly larger than 3 but less than 4. O

We now prove that the bound indicated in Theorem 4.4 is indeed correct in terms
of magnitude. Let us mention that, in the upcoming proof, we draw inspiration from a
construction in [3], used to show that for any n > 3, the smallest order of a h.i. graph
containing K, as an induced subgraph is 4n — 4.

Theorem 4.5. For every n > 1, we have xpn; (Ky) <4.

Proof. The claim is obviously true when n < 3 (just assign a distinct colour to every edge to
obtain a h.l. 4-edge-colouring); thus, we focus on cases where n > 4. We first prove the claim
for values of n multiple of 4; by the end of the proof, we will then explain how to also derive

the result for the remaining values of n. Set K = K, and n = 4k. We denote by u1, ..., ug,

Vly.ooy Uk, UYL, ... uy, and v, ..., vy the vertices of K, and set U = {uy,...,ug,v1,..., 05}
A A l4 A

and V = {uf,...,up,v],..., 0}

To build a h.i. 4-edge-colouring of K, our goal is to assign colour 1 and 2 to some sets
E; and FEjs, respectively, of edges of K, so that K[F] and K[F5] are h.i. (see Figure 2
for an illustration), and K \ (E; U E») is a balanced complete bipartite graph K o with
a perfect matching removed, which decomposes into two h.i. graphs by Observation 3.5.
We first assign colour 1 to the following edges, forming FEi:

e all edges of K[{u1,...,ux}] and K[{u],...,u}}];

11



o u;u; for all ie{1,...,k};

e the edges w;vi,u;vy, ..., uvp_; for all ie {1,... k};

e the edges ujv],ujvy, ..., ujv,_, for all i e {1,... k}.
To make it clearer, F; thus contains, from U’s point of view, all edges ujvy,...,u1v5_1,
all edges uavy, ..., uovk_s, all edges usvy, ..., usvr_3, and so on. In particular, E; does not

contain edges of the form uv;. Similar observations can be made regarding V.
As a result, one can check that we have:

o di(uj)=di(uj)=(k-1)+1+(k-i)=2k—-idiforalie{l,....k};
[ ] dl(vi) = dl(vl’) =k-iforallice {1,.. ,k’}
In particular, we have

(di(u1)y...,dy(ug),di(v1),...,di(vg)) = (2k-1,...,0),

from which we can easily deduce that K[E;] is h.i.
We now assign colour 2 to the set Fy ¢ E(K) \ Ep of uncoloured edges of K:

e all edges of K[{v1,...,v;}] and K[{v],...,v;}];
e vu, forallie{1,....k};

e all edges in {uq,...,ug} x{vy,...,v} ~ En;

e all edges in {uf,...,up} x{v],..., v} \ Ey.

Put differently, E contains all edges joining u;’s and/or v;’s (and similarly for u;’s and v,’s)
that are not in Fy. In Ea, we also have the matching {viv1,...,v,0},}, so that all edges of
K of the form ulu; or vivz’» are in £ U E5. In particular, all edges not in £y U Fy form a
balanced complete bipartite graph K zn from which we removed a perfect matching, which,
by Observation 3.5, can have its edges coloured with colours 3 and 4 yielding h.i. graphs.

To be done with K, it remains to show that K[Fs] is h.i., which follows from the
following arguments. Note first that, for all ¢ € {1,...,k}, we have da(u;) = dy(u;) -
di(u;) +1=2k—(2k—-1) =i, and, similarly, da(u}) = dy (u}) —di(u}) +1 =2k - (2k - i) = .
Likewise, for all i € {1,...,k}, we have do(v;) =dy(v;) + 1 =dy(v;) =2k - (k—1i) =k +1, as
well as da(v]) =dy (v)) +1—di(v]) =2k — (k—1) = k+i. From this, we deduce that

(dg(ul), ey dg(uk), dz(vl), Ce ,dg(’[)k)) = (1, ey 2/{) s
and thus that K[F5] is indeed h.i. Hence, xi (K) < 4.

We now explain how to derive the same upper bound for the remaining values of n.

e For any n > 6 with n =2 mod 4, consider the exact same 4-edge-colouring as above,
but with v;, and v;, removed. As a result, note that the 1-degrees of the u;’s and u;’s
are not altered, while the 1-degrees of the v;’s and v;’s (other than v and v;) are
decreased by 1; thus, we still have that the u;’s (and u)’s) have different 1-degrees
larger than those (pairwise different) of the v;’s (and v.’s), from which we get the
edges assigned colour 1 still yield a h.i. graph. Likewise, all 2-degrees decreased
by 1 since we removed v, and v/,, from which we deduce the edges assigned colour 2
yield a h.i. graph. Now, the edges assigned colour 3 or 4 are part of a balanced
complete bipartite graph with a perfect matching removed, which we could recolour,
if necessary, with colours 3 and 4 in a h.i. way by Observation 3.5. Altogether, we
can thus design a h.i. 4-edge-colouring of K, for the specified values of n.

12



e For any odd n > 5, consider any vertex w of K,,. By earlier arguments, K, ~ {w} ad-
mits a h.i. 4-edge-colouring where the edges assigned colours 3 and 4 form a balanced
complete bipartite graph with a perfect matching removed. By Observation 3.6, this
edge-colouring can be extended, with colours 3 and 4, in a h.i. way to the edges
incident to w. Thus, here as well, a h.i. 4-edge-colouring of K, exists.

This concludes the proof. ]

Combining Theorems 4.4 and 4.5, we thus deduce that xy; (K, ) = 4 holds for all even
n > 12 and odd n > 9, which leaves the question open for small values of n. In what follows,
we give the exact value of xy,; (K,) for these remaining values of n, which we were able to
establish by hand or through computer programs.

First, we observed that for n=2,3,4,5,6,7,8,10, the maximum size (number of edges)
of a (not necessarily connected) h.i. graph with order n (and thus the maximum number of
edges assigned a given colour by a h.i. edge-colouring) is 1,1, 3,3,6,6, 10, 15, respectively.
From this we directly deduce that xy.i (K,) >4 for all n € {5,7,8,10}, and thus we have
Xh.i.(KS) = Xh.i.(K7) = Xh.i.(KS) = Xh.i.(Klo) =4 by Theorem 4.5. For Kﬁ, we were able
to check exhaustively, through computer programs, that there is no h.i. 3-edge-colouring;
so, again, we have xni (Kg) = 4. Finally, we have xp; (K4) = 2 (K4 is not h.i., and it
decomposes into two paths of length 3), xpni.(K3) =3 by Theorem 2.3, and xp; (K2) =1
since Ko is h.i.

Corollary 4.6. We have:

o xni(Ky)=1 forn=2;
o xni(Ky) =2 forn=4;
e xni(Ky) =3 forn=3;
e xni(K,) =4 otherwise, for all n > 5.

5. Complexity aspects

In this section, we investigate the computational complexity of determining xp.; (G)
for a given graph G. We first prove, in upcoming Theorem 5.4, that deciding whether
Xh.i.(G) < 2 holds for a given graph G is NP-complete. An important point behind our proof
of this result is that it also holds when restricted to bipartite graphs, which contrasts with
the complexity of determining whether y1; (G) < 2 holds for a given graph G. Indeed, that
latter problem was proved to be NP-complete for general graphs in [6], but its complexity
for bipartite graphs is still unknown to date. We then prove in Theorem 5.5 that, on the
other hand, determining xy;.(G) can be done in linear time for graphs G with bounded
maximum degree A(G) and tree-width tw(G). A corollary we derive is that determining
Xni(T) for a tree T' with bounded maximum degree can be done in linear time.

5.1. NP-completeness result

In Theorem 5.4 below, we prove that determining whether yy; (G) < 2 holds for a
bipartite graph G is NP-complete. Before we get to the proof, we need to introduce some
forbidding gadgets and point out some of their properties of interest w.r.t. h.i. 2-edge-
colourings. All these gadgets will have a root edge uv, where d(u) = 1 and v is called the
root verter. Given a graph G with a vertex w and a gadget H with root edge uv (where
d(u) = 1), by attaching H at w (through wv), we mean adding H to G, and identifying
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Figure 3: Examples of forbidding gadgets. “F}” inside a node indicates a k-forbidding gadget is attached
at some vertex. Edges in red and blue form a h.i. 2-edge-colouring omitting conflicts along uv (root edge).

u and w. The point is that our gadgets will forbid some values for d;(w) and do(w),
assuming the resulting graph admits h.i. 2-edge-colourings. An important point is thus
that, in a gadget to be attached, the i-degree of the non-root vertex u incident to the root
edge cannot be regarded as fixed, as u will probably be incident to edges assigned colour ¢
after the attachment. For these reasons, throughout what follows, when dealing with a
h.i. 2-edge-colouring ¢ of some forbidding gadget omitting conflicts along the root edge, we
mean what we do not pay attention to possible conflicts involving the vertex of degree 1
incident to the root edge.

The first gadget H we introduce is the 2-forbidding gadget, obtained as follows (see
Figure 3 (a)). Start from a path wvw of length 2, and attach two vertices z; and x2 of
degree 1 at w. The root edge of H is wv, while v is its root. Throughout the subsequent
discussion, we deal with the vertices and edges of H following this terminology.

Lemma 5.1. For any h.i. 2-edge-colouring ¢ of the 2-forbidding gadget H with ¢p(uv) =i:
L] dz(v) = 2,‘
e in colour i, vertex v is adjacent to one vertex (different from w) with i-degree 2.

Proof. Note that we cannot have ¢(wx1) = ¢p(wxs) as otherwise ¢ would not be h.i. Thus,
w.l.o.g. we must have ¢(wz1) =1 and ¢p(wzy) = 2. Now, if, say, ¢p(vw) =1, then d; (w) =2
and w, through wxy, is adjacent to a vertex, x1, with dy(2z1) = 1. Thus we must have
¢(uv) =1 so that we do not have a conflict in colour 1. As a result, we have d;(v) = 2, and
v, through vw (assigned colour 1), is adjacent to a vertex, w, with dj(w) = 2. Note as well
that we do not have a conflict in colour 2. Of course, these arguments and observations
apply if we permute colours 1 and 2 by ¢; thus the claim holds. O

The 3-forbidding gadget H is then obtained as follows (see Figure 3 (b)). Start from
a path wow of length 2, attach a 2-forbidding gadget F' at w (that is, recall, identify w
and the root vertex of F'), as well as two vertices x1 and z9 of degree 1, and finally attach
similarly at v two vertices y; and yo of degree 1. The root edge of H is uv, while v is its
root.
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Lemma 5.2. For any h.i. 2-edge-colouring ¢ (omitting conflicts along the root edge) of the
3-forbidding gadget H with ¢p(uv) =i:

(] dz(’U) = 3,’

e in colour i, vertex v is adjacent to two vertices (different from w) with all i-degrees

in {1,3}.

Proof. As earlier, note that wx; and wxrs must be assigned distinct colours by ¢, and
similarly for vy; and vys. Assuming now, w.l.o.g., that the root edge of F' is assigned
colour 1, by Lemma 5.2 we know that the root r of F" has 1-degree 2, and that r is adjacent,
through edges assigned colour 1, to a vertex (different from w) with 1-degree 2. Thus, so
that we do not have a conflict in colour 1, we must have ¢(vw) = 1 so that d;(w) = 3.
Likewise, since w is adjacent, through the edge wr, to a vertex (r) with 1-degree 2, we
must have ¢(uv) =1 so that we do not have a conflict in colour 1, which implies d; (v) = 3.
One can check as well that we do not have a conflict in colour 2. Thus the claim holds,
since all these arguments also hold upon permuting colours 1 and 2. O

The general form of k-forbidding gadgets for k > 4 is then as follows (see Figure 3 (c)
for an example). Let k >4 be a value such that i-forbidding gadgets have been constructed
for all i € {2,...,k —1}. We construct a k-forbidding gadget H as follows. Start from a
path uvw of length 2. The beginning of the construction then depends on the value of k.

o If £ =5, then we attach at w two vertices of degree 1, one 2-forbidding gadget F5,
two 3-forbidding gadgets F3 and G3, and one 4-forbidding gadget Fj.

e If k + 5, then we attach at w one vertex of degree 1, as well as one i-forbidding gadget
Fyforallie{2,...,k-1}.

Then, regardless of the value of k, we attach, at v, one vertex of degree 1, as well as one
i-forbidding gadget F} for all i € {2,...,k -1} ~ {k—2}. In both cases, the root edge of H
is ww, while v is its root.

Lemma 5.3. For any k > 4 and any h.i. 2-edge-colouring ¢ (omitting conflicts along the
root edge) of the k-forbidding gadget H with ¢(uv) =1i:

[ dl(’U) = k‘,’

e in colour i, vertex v is adjacent to k — 1 vertices (different from w) with all i-degrees

in {1,... k}~ {k-2}.

Proof. We prove the claim by induction on k. By previous Lemmas 5.1 and 5.2, and by
the induction hypothesis, recall that for any j-forbidding gadget F' attached at v or w, we
have the property that if the root edge of F' is assigned colour i, then the root of F' has
i-degree j and is adjacent, in colour ¢, to vertices (different from the attachment point)
with all i-degrees in {1,...,75} ~{j - 2}.

W.lLo.g., assume the root edge of F},_; is assigned colour 1 by ¢. We claim that dy (w) = k
and ¢(vw) = 1. Notice that, if k # 5, we claim all edges incident to w must be assigned
the same colour by ¢. Suppose towards a contradiction that this is not the case. In the
following explanations, we mostly assume k # 5 since the construction of Fy is slightly
different from the others; while some of the upcoming arguments also apply when k = 5, we
will voluntarily treat this case separately later on. In particular, this means, throughout
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what follows, that Fj_o is not F3 (which has a bit of a different behaviour, recall the last
item of Lemma 5.2).

By Lemmas 5.1 and 5.2 and the induction hypothesis, the root of Fj_; is adjacent, in
colour 1, to vertices (different from w) with all 1-degrees in {1,...,k-1}\{k-3}. Therefore,
since d(w) = k, it must be that di(w) = k — 3. Then, we must have da(w) = 3. Note also
that, since k # 5, the root edge of Fj_o cannot be assigned colour 1, as otherwise the root of
F}y_5 would be adjacent, in colour 1, to two vertices with 1-degree k — 3 (including w). So,
the root edge of Fj_o must be assigned colour 2 by ¢. Now, so that the root of Fj_s is not
adjacent, in colour 2, to two vertices with 2-degree 3, it must be that either (k-2)-2=3
or 3> k—2. That is, we get a contradiction to ¢ being h.i. in all cases but when k =7 and
k <5 (that is, when k = 4). Recall we also have to reconsider when k = 5.

e First, consider when k = 7; recall that, here, d(w) = 7. By arguments above, under
the assumption that the root edge of Fg is assigned colour 1 by ¢, we have di(w) =4
and dy(w) = 3. Now, still by arguments above, the root edge of F5 must be assigned
colour 2, and the root edge of Fy cannot be assigned colour 2, as otherwise the
root of F; would be adjacent, in colour 2, to two vertices with 2-degree 3 (including
w). Then the root edge of Fy is assigned colour 1 by ¢, implying, by the induction
hypothesis, that the root of Fy is adjacent, in colour 1, to two vertices (including w)
with 1-degree 4, a contradiction.

e Now consider when k = 4; here, d(w) = 4. By arguments above and Lemma 5.2,
assuming the root edge of F3 is assigned colour 1 w.l.o.g., we must have dj (w) = 2,
and, thus, da2(w) = 2. Then, by Lemma 5.1, regardless of the actual colour assigned
to the root edge of Fs, in that colour, i, there is necessarily a vertex (the root of Fy)
adjacent to two vertices (one of which is w) with i-degree 2. This is a contradiction.

e Last, consider when k =5, in which case d(w) = 7. By similar arguments as earlier,
note that the two pendant edges incident to w must be assigned distinct colours by
¢, and similarly for the root edges of F3 and G3. W.l.o.g., assume now the root edge
of Fy is assigned colour 1. Now observe that we must have d;(w) € {3,4,5}, and if
dy(w) is not 5, then we have a conflict in colour 1, due to the root of Fj having two
neighbours (including w) with 1-degree 3 or 4. This is, again, a contradiction.

Thus, as stated earlier, assuming ¢(vw) = 1, we must have dj(w) = k (as mentioned
earlier, if k£ # 5, this means all edges incident to w must be assigned colour 1), and, by
arguments above, it can be checked there is indeed a way to colour the edges incident to w
accordingly. Now, again, we claim all edges incident to v must be assigned colour 1. This
is simply because, even when k = 5, we have ¢(vw) =1 and in colour 1 vertex w is already
adjacent to vertices (different from v) with all 1-degrees in {1,...,k—1}. Thus to avoid any
conflict, and because d(v) = k, we must have dy (v) = k, which raises no conflict since only v
and w have 1-degree k. Note further, by Lemmas 5.1 and 5.2 and the induction hypothesis,
that since the root edges of the F/’s get assigned colour 1, necessarily v gets also adjacent,
in colour 1, to vertices (different from u) with all i-degrees in {1,...,k—1} ~{k—-2}. In the
case k = b, remark also that, by arguments above, we have dy(w) = 2, while, in colour 2,
the two neighbours of w have 2-degree 1 and 3, while none of these vertices have another
neighbour with 2-degree 2. O

An important point to raise, is that k-forbidding gadgets have a size that is a function
of k only. We are now ready to prove our main result, which is obtained by reduction
from some restriction of MONOTONE NOT-ALL-EQUAL 3SAT, which we recall now for
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Figure 4: Part of the reduction in the proof of Theorem 5.4. “F}” inside a node indicates a k-forbidding
gadget is attached at some vertex. Edges in red and blue form a (partial) h.i. 2-edge-colouring.

convenience. Remind that an instance of MONOTONE NOT-ALL-EQUAL 3SAT is a 3CNF
formula F' over clauses C1,...,Cy, and variables x1,...,x,, where every clause contains
exactly three distinct (positive) variables, and the question is whether we can satisfy F
in a nae way, i.e., so that every clause contains both a true variable and a false variable.
Obviously, it can be assumed that all variables of F' appear in at least two distinct clauses,
as otherwise the formula could be simplified (namely, for any formula F' A C' where C
contains a variable x that appears in C' only, any solution to F' can be extended to one
of FF'AC by setting = to some appropriate truth value, and wvice versa). It is known as
well that MONOTONE NOT-ALL-EQUAL 3SAT remains NP-complete when restricted to
instances where each variable appears in at most four distinct clauses [12].

Theorem 5.4. Determining whether x1.;.(G) < 2 holds for a given graph G is NP-complete.

Proof. Since the problem is obviously in NP, we focus on proving its NP-hardness, which
we do by reduction from MONOTONE NOT-ALL-EQUAL 3SAT. Let thus F' be any instance
of MONOTONE NOT-ALL-EQUAL 3SAT over clauses C1,...,Cy, and variables x1,...,xy,
where all clauses contain three distinct variables and all variables appear in either two,
three, or four distinct clauses. Note that, free to consider e.g. the equivalent formula
F AF AF, we can assume each variable x; of F appears in at most n; € {6,...,12} clauses
each. From F'| we construct, in polynomial time, a graph G such that F' can be satisfied
in a nae way if and only if G admits h.i. 2-edge-colourings.

We construct G as follows (see Figure 4 for an illustration). Start from the bipartite
graph modelling the structure of F', that is, having a variable vertex v; for every variable
x;, a clause vertex c; for every clause Cj, and a formula edge v;c; whenever variable z;
appears in clause (. Next, for every clause vertex c;, add two vertices a; and b;, attach
one 4-forbidding gadget at a; and one 4-forbidding gadget at b;, and finally add the edges
cjaj and c;bj. Last, for every variable vertex v;, assuming variable z; appears in n; > 6
clauses of F' (where, thus, 6 < n; < 12), attach a (n; + 3)-forbidding gadget at v;. In
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particular, since n; < 12, note that we employ forbidding gadgets with constant size; under
this, the whole construction of GG is achieved in polynomial time.

To see that we have the desired equivalence between F' and G, let us discuss how a
h.i. 2-edge-colouring ¢ of G should look like.

e Regarding any a; (or similarly any b;), if the root edge of the attached 4-forbidding
gadget is assigned, say, colour 1, then, by Lemma 5.3, in colour 1 vertex a; is adjacent
to a vertex having neighbours (different from a;) with all i-degrees in {1,3,4}. Then,
since d(a;) = 2, so that we do not have a conflict in colour 1, we must have ¢(a;c;) = 1
so that di(a;) = 2.

e For any clause vertex c;j, note that if the two edges c;ja; and c;b; are assigned the
same colour, say 1 w.l.o.g., then by arguments above we get a contradiction since c;
is then adjacent in colour 1 to two vertices with i-degree 2. Thus we must have, say,
#(cja;) =1 and ¢(cjbj) = 2. Then in colour 1 vertex ¢; is adjacent to a vertex, a;,
having, in colour 1, a neighbour (the root vertex of some 4-forbidding gadget) with
1-degree 4, while we have the same regarding b; w.r.t. colour 2. This implies all three
formula edges incident to ¢; cannot be assigned the same colour by ¢, as otherwise
we would get dy(c;) =4 or da(c;) =4, thus a conflict in a colour. Meanwhile, if not
all formula edges incident to ¢; are of the same colour, then {di(c;),d2(c;)} = {2, 3},
while a; and b; have no other neighbours with 1-degree or 2-degree in {2, 3}.

e For any variable vertex v;, assuming the attached (n; + 3)-forbidding gadget has its
root edge assigned colour, say, 1, because n; > 6 and thus n; + 3 > 9, we know by
Lemma 5.3 that, in colour 1, vertex v; has a neighbour adjacent, in colour 1, to
vertices (different from v;) with all 1-degrees in {1,...,n;+3} ~ {n; + 1}. Meanwhile,
d(v;) = n; + 1. From this, we deduce that we must have all n; formula edges incident
to v; assigned colour 1, so that no conflict arises in colour 1.

e By these arguments, every clause vertex c¢; must satisfy {di(c;),da2(c;)} = {2,3},
while every variable vertex v; must satisfy {di(v;),d2(v;)} = {0,n; + 1} with n; > 6.
Also, besides variable vertices, clause vertices are only adjacent to a;’s and b;’s, which
have 1-degree and 2-degree 0 and 2 (or wvice versa), while, besides clause vertices,
variable vertices are only adjacent to root vertices of d-forbidding vertices for d > 9
(thus with 1-degree and 2-degree 0 and d > 9, or vice versa). From this all, we deduce
no conflict can involve a clause vertex and an adjacent variable vertex in any colour.

Now, to see that we have the desired equivalence, just imagine that having ¢(c;v;) =1
for some formula edge c;jv; models that variable x; brings truth value true by some truth
assignment to clause C;, while having ¢(c;jv;) = 2 models that x; brings truth value false to
C;. The fact that not all formula edges incident to some clause vertex c¢; can be assigned
the same colour by ¢ thus models that C; is considered satisfied by a truth assignment
if and only if it has variables with distinct truth values. The fact that all formula edges
incident to some variable vertex v; must be assigned the same colour by ¢ thus models
that x; brings the same truth value to all clauses that contain it, by a truth assignment.
From this, it should be clear that we can derive a truth assignment to the variables of
F satisfying all clauses in a nae way, from a h.i. 2-edge-colouring of G. Conversely, it is
not too complicated to check, due to the previous lemmas and arguments, that a truth
assignment to the variables of F' satisfying all clauses in a nae way can be turned into a
h.i. 2-edge-colouring of G. Thus, the equivalence holds. O
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Since forbidding gadgets are trees, attaching (as done above) a tree to a bipartite
graph results in a bipartite graph, and we start from a bipartite graph in the reduction
above, it can be checked that, indeed, the reduced graphs we construct in the proof are
bipartite. Thus, Theorem 5.4 indeed holds for bipartite graphs. Also, as mentioned in the
proof, the fact that our reduction is performed from instances of MONOTONE NOT-ALL-
EQUAL 3SAT where variables appear in exactly four distinct clauses each, also implies
that Theorem 5.4 remains true when restricted to graphs of bounded maximum degree,
which complements upcoming Theorem 5.5.

5.2. Polynomial-time algorithms

In the previous section we mentioned that, in general, having bounded maximum degree
in a graph G does not guarantee that xp; (G) is easy to determine. In the next result,
we prove this holds true under the additional assumption that G has bounded tree-width
tw(G). In other words, we prove that determining xy,; (G) is an FPT problem when
parameterised by A(G) and tw(G).

The proof is based on monadic second-order (MSO2) logic, which allows quantification
over vertices, edges, subsets of vertices, and subsets of edges. We adhere to the syntax
and semantics defined by Cygan et al. in [10] to describe our formulas. In particular, an
atomic formula we will use is inc(u, €), which, in a graph G with a vertex v and an edge e,
is true if and only if e is incident to u. Recall that the celebrated Courcelle’s Theorem [11]
ensures the existence of an algorithm that, given a graph G and an MSO»-logic formula,
checks if G satisfies that formula in linear FPT time w.r.t. the tree-width of G and the
size of the formula.

Theorem 5.5. There is an algorithm that verifies if any graph G with order n can be
decomposed into k h.i. graphs in time f(k, A(G),tw(G))-n, for some computable function

f.

Proof. The problem is shown to be definable by an MSOs-logic formula whose size depends
on both k and a constant A, so that the result follows from Courcelle’s Theorem on graphs
with maximum degree at most A.

First, we introduce two auxiliary formulas: adj(u,v, E’) which verifies whether some
edge uv belongs to some edge set E’, and deg;(u, E") which verifies whether some vertex
u is incident to exactly i edges of E’, where i < A(G) is a constant. The first one is defined
as

adj(u,v, E') = (u #v) A eer (inc(u, e) Ainc(v,e)),

while the second one is defined as

deg;(u, ') = Hel,...,eiEE’(( N ej, * ej2) A ( A inc(u, ej))

1<j1<j2<i 1<<i

A VeHlsE’ /\ €j ¥ Cit1 | = —dnc(u,eiﬂ) .
1<j<i

Decomposable = 3g, g, cE (Partition(El, B a N\ HI(El)) ,

1<igk

Now, consider the formula

where Partition(Ey, ..., Ey) is a formula checking whether a collection (E1, ..., Ex) of sets
is indeed a partition of the edge set of G, and HI(E') is a formula that checks whether
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G(V,E") is h.i. These two formulas are defined as

Partition(El,...,Ek):VeeE(( \/ GEEZ')/\( /\ ﬁ(GEEiAGEEj)))

1<i<k 1<i<j<k

and

HI(E,) = Vu,veV( ((u # U) A \/ (degi(qu,) A degi(v’E,)))

1<i<A
= - (Elwev (adj(u,w, E") A adj(v,w, E'))) )

By the definitions of the above formulas, G £ Decomposable if and only if G has a
decomposition into k h.i. graphs. Since the size of the formula only depends on k and A,
by Courcelle’s Theorem there exists an algorithm that verifies if G can be decomposed into
k h.i. graphs in time f(k, A, tw(G))-n, where f is a computable function. O

A particular, notable case is that of trees, since their tree-width is 1.

Corollary 5.6. For any tree T' with fized mazimum degree, we can determine xy.;. (1) in
linear time.

Finally, since xni(G) < A(G) + 1 holds in any graph G (recall Theorem 2.2), the
algorithm of Theorem 5.5 can be used to compute the exact value of xi (G).

Corollary 5.7. There is an algorithm that, given a graph G with order n, computes xpn.i.(G)
in time g(A(GQ),tw(Q)) - n, for some computable function g.

6. Conclusion

In this work, we have introduced and studied the notion of h.i. decompositions. Our
first goal was, in the line of previous l.i. decompositions, to introduce a decompositional
point of view over a variant of the 1-2-3 Conjecture in [7|. Another one was, still in the line
of L.i. decompositions, to wonder about the similarities and discrepancies when considering
another notion of irregularity, namely that of h.i. graphs introduced by Alavi, Chartrand,
Chung, Erdgs, Graham and Oellermann. Throughout, we did our best to provide results
and observations allowing for a general understanding of h.i. decompositions and the related
parameter xp;, but also to get a better catch in more restricted contexts (such as for
complete bipartite graphs and complete graphs).

Our understanding of our new notions, and the results we came up with, lead to open
questions and problems which we believe could be worth investigating further; namely:

e Through Theorem 2.2 and Observation 2.7, we established that, for a graph G,
the maximum magnitude of xy; (G) is of order about A(G). More specifically, we
observed through Theorem 2.3 that x1.; (G) can reach the value A(G) + 1, but this
observation was made in the very specific context where A(G) = 2. This leads us
to wonder whether we can have xp,; (G) = A(G) + 1 for graphs G with A(G) > 3,
and we think this is an appealing question. On the one hand, as A(G) increases,
there should be more decomposition possibilities for G. However, on the other hand,
previous works, such as [3]|, have established that h.i. graphs with large maximum
degree tend to be very large; so having large maximum degree for a graph G is
somewhat helpful w.r.t. h.i. decompositions only when |V (G)] is large enough.

20



e Regarding this matter, as a starting point, we wonder about the more peculiar case
where A(G) = 3. An issue we encountered, is, as we discussed in Section 2, that we
only need to focus on class-2 subcubic graphs, a class of graphs that is not obvious
to comprehend in general, even when adding a 2-connectivity constraint (so that we
fall into the well-studied class of so-called snarks).

e Regarding our results in Section 3, recall that we have established a rather good
estimate over the parameter xy; for complete bipartite graphs K, , (through The-
orems 3.8 and 3.7), while we were able to determine its exact value only for specific
complete bipartite graphs, when n € {2,3} (recall Corollaries 3.10 and 3.11). These
last two corollaries actually highlight that our approach in the proof of Theorem 3.7
should indeed be the way to go: that is, provide tight results for “small” complete
bipartite graphs K, ,,, (i.e., assuming n < m, where m is somewhat close to n), and
then prove that every “larger” one (i.e., with n and m being more distant) decomposes
into a well-chosen combination of the smaller pieces. It seems to us, however, that
the notion of “small” is a function of n, which makes it unclear how a nice argument
should go. Maybe the numbers provided in the statement of Theorem 3.7 provide a
good hint on this question.

e From Theorem 5.4, we already get that determining xp,; (G) for a given graph G is
hard (unless P=NP). However, our result is derived specifically from the hardness
of determining whether a graph G admits a h.i. 2-edge-colouring. Consequently, we
wonder whether there is a nice way to prove that this also holds for h.i. k-edge-
colourings, for every fixed k > 3. Proving this is true would make our result more
convincing.

e Using Courcelle’s Theorem to prove Theorem 5.5 guarantees xp.i (G) can be deter-
mined in linear time for graphs G with bounded tree-width and bounded maximum
degree. The running time of a corresponding algorithm, however, while still linear,
would be very bad (in particular, the hidden constant is, in brief, a tower of exponen-
tials) and we wonder whether better algorithms can be designed, for instance using a
dynamic programming approach. In particular, an appealing setting for this context
is that of trees, i.e., graphs with tree-width 1.

e In the very same line, recall that Theorem 5.4 holds for graphs with bounded maxi-
mum degree, so unless P=NP we cannot drop the tree-width requirement from The-
orem 5.5. Omne can naturally wonder whether there are other (combinations of)
parameters catching the tractability of the problem.
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