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Abstract

We introduce and study decompositions of graphs into so-called highly irregular graphs, as
first introduced by Alavi, Chartrand, Chung, Erdős, Graham and Oellermann in the 1980s.
That is, given any graph, we are interested in colouring its edges with the least number of
colours possible, so that, in each colour, no vertex has two neighbours with the same degree
in that colour. We provide results of different natures on this problem. We first establish
connections with other notions of graph theory, including other decomposition problems,
from which we notably get first bounds on the associated chromatic parameter of interest.
We then study this parameter for several common classes of graphs, including graphs of
bounded degree, complete bipartite graphs and complete graphs, for which we establish
(sometimes close to) tight results. We also provide negative and positive algorithmic results,
showing that the problem of determining our new chromatic parameter is NP-complete in
general, but polynomial-time tractable in particular contexts. We conclude with questions
and problems for further work on the topic.

Keywords: highly irregular graph; graph decomposition; graph irregularity.

1. Introduction

A well-known concept in graph theory is that of regularity, where a graph is commonly
considered regular if all its vertices have the same degree. A legitimate concern is then to
wonder about possible antonyms to this notions of regularity, and, consequently, quite a
few such concepts have been investigated in literature. Perhaps the most natural way to
define graph irregularity is to consider that a graph is totally irregular (t.i. for short) if no
two of its vertices have the same degree. However, it is a well-known fact that, K1 apart,
no simple graph can be t.i. (just consider the degree sequence any such graph requires).

For this reason, several authors turned to weaker notions of graph irregularity. In par-
ticular, in the 1980s, Alavi, Chartrand, Chung, Erdős, Graham and Oellermann introduced
in [2] the concept of highly irregular graphs, where a graph is highly irregular (h.i. for
short) if none of its vertices has two neighbours with the same degree (in other words, every
vertex can distinguish its neighbours degree-wise). In that line, another weaker notion of
graph irregularity was introduced more recently in [4], in which Baudon, Bensmail, Przy-
było and Woźniak say a graph is locally irregular (l.i. for short) if it has no two adjacent
vertices with the same degree. Obviously not all simple graphs are h.i. or l.i.; however
one can easily come up with infinitely many examples of simple graphs that are h.i. or l.i.,
thereby showing that these notions fit better with simple graphs. For the sake of keeping
the current introduction short and bearable, and because our investigations in this paper



are mainly on h.i. graphs (and on t.i. and l.i. graphs to a lesser extent), we will not elab-
orate more on other notions of graph irregularity that have been considered in literature
here, but we inform the interested reader that such other notions do exist.

Studying irregular graphs (w.r.t. some notion of irregularity) is an interesting topic by
itself, but it turns out that some of these graphs also appeared in the study of different,
seemingly unrelated problems. For instance, phrased differently, the irregular strength
(introduced in [8]) of a simple graph G can be defined as the minimum k ≥ 1 such that G
can be turned into a t.i. multigraph by replacing each of its edges with at most k parallel
edges. Another example is the so-called 1-2-3 Conjecture (introduced in [12] and proved
in [13]), which, under our terminology, asks whether, in general, any graph can be turned
into a l.i. multigraph by replacing each of its edges with at most 3 parallel edges. A very
similar concern, but for h.i. multigraphs, was investigated more recently in [6].

In the current work, we are more interested in decomposition problems, inspired by
those introduced and considered in [4]. Recall that, for a graph G, a decomposition D is
a partition (E1, . . . ,Ek) of the edge set E(G). Equivalently, note that D can be regarded
as a k-edge-colouring ϕ, by which every vertex v of G gets, for any i ∈ {1, . . . , k}, some
i-degree di(v), being the number of its incident edges assigned colour i (or, equivalently,
lying in Ei). In [4], the authors observed that, in connection with the aforementioned
1-2-3 Conjecture, it might be useful, for some graph G, to determine the smallest number,
denoted χl.i.(G), of l.i. graphs decomposing G (if such decompositions even exist). More
formally, χl.i.(G) can be defined as the smallest k ≥ 1 (if it exists) such that G admits a l.i.
k-edge-colouring, i.e., a k-edge-colouring ϕ where every colour yields a l.i. graph (that is,
if ϕ(uv) = i for some edge uv, then di(u) ≠ di(v)). In particular, all l.i. graphs G satisfy
χl.i.(G) = 1 and are in some sense the most convenient w.r.t. the 1-2-3 Conjecture (they
already stand, as is, as l.i. multigraphs). The authors of [4] also identified other contexts
where l.i. decompositions arise naturally when dealing with the 1-2-3 Conjecture (such as
when considering regular graphs). Since their introduction, l.i. decompositions have been
studied in several works, see e.g. [3, 5, 7, 15, 16, 17, 18, 21, 22, 23, 24]; more details will
be given later in the current paper, as they connect to the results we provide.

Our goal in this work is to study such concerns in the context of h.i. graphs. For
a graph G, a h.i. decomposition (or equivalenty h.i. edge-colouring) is a decomposition
(resp. an edge-colouring) of G where each part (resp. colour) yields a h.i. graph. We now
define χh.i.(G) as the smallest k ≥ 1 such that G admits a h.i. decomposition into k parts,
or, equivalently, a h.i. k-edge-colouring. Similarly as for l.i. decompositions, studying h.i.
decompositions can be motivated in several ways. In particular, the parameter χh.i.(G)
can be perceived as a measure of how far from being h.i. a graph G is, and, regarding [6],
determining χh.i.(G) may be useful in determining how to turn G into a h.i. multigraph.

This work is organised as follows. We start off in Section 2 by providing first insights
into h.i. decompositions. Namely, we recall known aspects of h.i. graphs, and provide
first observations and connections (with other graph theoretical notions) from which we
proceed to establish initial general lower and upper bounds on the parameter χh.i.. We
then improve on these bounds throughout Sections 3 and 4, in which we focus on com-
plete bipartite graphs and complete graphs, and provide dedicated decomposition methods
leading to tighter estimates on the parameter χh.i.. Section 5 is dedicated to complexity
aspects; therein, we prove that the general problem of determining χh.i.(G) is NP-complete
for general graphs G, and polynomial-time solvable when G has bounded tree-width and
bounded maximum degree. We conclude in Section 6 with directions and questions for
further work on the topic.
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2. First insights into h.i. decompositions

In this section, we mainly give preliminary observations and results on h.i. decomposi-
tions. We begin by surveying, in Subsection 2.1, the main previous works dedicated to h.i.
graphs. We then focus on h.i. decompositions through Subsections 2.2 and 2.3, providing
general upper and lower bounds on the parameter χh.i..

2.1. Studied aspects of h.i. graphs
As mentioned in the introductory section, h.i. graphs were introduced as early as in

the 1980s, by Alavi, Chartrand, Chung, Erdős, Graham and Oellermann in [2]. In this
seminal work on the topic, the authors investigated several fundamental aspects of h.i.
graphs, covering mainly existential and enumeration questions. In particular, they proved
h.i. graphs on n vertices exist for all values of n not in {3,5,7}. They also considered
the largest size (number of edges) of a h.i. graph with given order and provided first
results which would later be complemented by results due to Majcher and Michael in [19]
(resulting in optimal results, summarised in later Theorems 4.1 and 4.2).

In [2], the authors also considered questions such as the minimum order of a h.i. graph
containing (as an induced subgraph) any prescribed graph, the minimum order of a h.i.
tree with given maximum degree, the proportion of h.i. graphs with given order n (showing
the ratio of the number of h.i. graphs of order n over the number of graphs of order n tends
to 0 as n grows to infinity), and the independence number of h.i. graphs. This last concern
was considered further in [1], where the authors provided results on h.i. trees, bipartite
graphs and graphs with larger chromatic number.

Apart from these main matters, only a few more aspects of h.i. graphs have been
investigated in literature. For instance, Majcher and Michael studied the degree sequence
of h.i. graphs in [20]. We refer the interested reader to the literature listed above for more
results of perhaps lesser importance.

2.2. Upper bounds on the parameter χh.i.

It is worth noting that the smallest connected h.i. graphs are the path of length 1 (with
order 2), the path of length 3 (with order 4), and the graph (with order 6) obtained from
the path of length 5 by adding an edge joining the two vertices with a neighbour of degree
1. As the order increases, h.i. graphs become very rare proportion-wise, and mainly for
this reason, it is not clear what h.i. decompositions look like in general. However, the fact
that the path of length 1 is h.i. ensures the existence of an h.i. edge-colouring for every
graph by assigning a distinct colour to each edge.

Observation 2.1. The parameter χh.i.(G) is well defined for all graphs G. In particular,
for every graph G we have χh.i.(G) ≤ ∣E(G)∣.

The latter part of the statement of Observation 2.1 is not that anecdotal. Recall indeed
that, regarding l.i. decompositions, there exist infinitely many graphs that do not admit
any l.i. decomposition [4], for example paths and cycles of odd length. Thus, although l.i.
decompositions are in some sense easier to deal with (due to more local constraints, as will
be highlighted later on), a somewhat surprising fact is that no graph escapes the notion of
h.i. decompositions.

We can of course improve upon the simple upper bound in Observation 2.1 by remarking
that a h.i. graph does not have to be connected. This implies that any edge-colouring where
each colour induces a matching is h.i. Edge-colourings with this property are well known
in graph theory, and are commonly called proper edge-colourings. More formally, an edge-
colouring of a graph G is proper if no two adjacent edges (sharing a vertex) are assigned
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the same colour. The smallest k ≥ 1 such that G admits a proper k-edge-colouring is called
the chromatic index of G and is denoted χ′(G).

It is a trivial fact that we have ∆(G) ≤ χ′(G) for every graph G, where ∆(G) is the
maximum degree of G, and, by Vizing’s Theorem [25], we also have χ′(G) ≤∆(G)+ 1. By
previous remarks, we thus get the following improvement upon Observation 2.1:

Theorem 2.2. For every graph G, we have χh.i.(G) ≤∆(G) + 1.

Regarding Vizing’s Theorem, it is well known that graphs G of class 1 (i.e., with
χ′(G) = ∆(G)) do exist, and similarly for those of class 2 (i.e., with χ′(G) = ∆(G) + 1).
Actually, for any k ≥ 3, there is no polynomial-time characterisation of class 1 graphs G
with ∆(G) = k (unless P=NP), see [14]. Thus, we obtain a slightly better upper bound for
class-1 graphs G (χh.i.(G) ≤∆(G)), but in general it is not obvious what these graphs are
and it is also not obvious whether χh.i.(G) ≤∆(G) also holds when G is a class-2 graph.

Actually, even for very simple graphs, we cannot improve upon Theorem 2.2:

Theorem 2.3. If G is an odd-length cycle, then χh.i.(G) = 3 =∆(G) + 1.

Proof. This follows mainly from the fact that the only two connected h.i. graphs with
maximum degree 2 are the paths of length 1 and 3, which have odd length, and thus that
any colour of a h.i. edge-colouring of G must induce a collection of paths of length 1 and 3.
Now, if a h.i. 2-edge-colouring of G existed, then, along G, these paths of odd length
would alternate between colour 1 and 2, and we would have the same number of such
paths in colour 1 as in colour 2. This is impossible, since these paths would cover an even
number of edges, while G has an odd number of them. So, χh.i.(G) ≥ 3, and χh.i.(G) = 3
by Theorem 2.2.

There are other contexts where we can take advantage of the graph structure to de-
compose into longer h.i. paths, and improve upon Theorem 2.2. Recall that an Eulerian
walk in a graph is a walk traversing all edges exactly once, and that, by Euler’s Theorem,
a graph G admits such a walk if and only if it is connected and has at most two vertices
with odd degree.

Theorem 2.4. If G is a triangle-free graph admitting an Eulerian walk, then

χh.i.(G) ≤ ⌊
1

3
⋅ ∣E(G)∣⌋ + (∣E(G)∣mod 3) .

Proof. Let ϕ be the edge-colouring of G obtained as follows. Traverse any Eulerian walk E
of G from start to finish, and, as going along, assign a new colour to any three successive
edges until there remain at most two uncoloured edges, to which we assign a new, distinct
colour each. Since G is triangle-free, note that, for any colour i assigned to any three
successive edges uv, vw, and wx of E , u cannot be equal to x, and thus colour i induces a
path of length 3, thus a h.i. graph. Likewise, any colour i assigned to only one edge of G
(at most two such colours have been used) induces a path of length 1, thus a h.i. graph.
Thus, ϕ is h.i., and the number of colours it assigns is the one claimed in the statement.

We finish this subsection by mentioning an obvious fact, being that if some graph G can
be decomposed into k graphs G1, . . . ,Gk, then a h.i. decomposition of G can be obtained
by just combining independent h.i. decompositions of G1, . . . ,Gk:

Lemma 2.5. If G is a graph with a decomposition D = (E1, . . . ,Ek), then

χh.i.(G) ≤
k

∑
i=1

χh.i.(G[Ei])

where G[Ei] = (V (G),Ei) for all 1 ≤ i ≤ k.
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2.3. Lower bounds on the parameter χh.i.

Now that we have seen, through Theorem 2.2, that for any graph G the parameter
χh.i.(G) cannot exceed ∆(G) + 1, one can naturally wonder whether this upper bound is
tight in general, or, put differently, how far from ∆(G) + 1 the value of χh.i.(G) can be.
Recall that we got a partial answer through Theorem 2.3 using a pathological case.

The next results rely on the following definitions.

Definition 2.6. Let G be a graph with a vertex v. For any x ∈ {1, . . . , ∣V (G)∣ − 1}, we
denote by nb(v, x) the number of neighbours of v with degree x, and by nb≤(v, x) the number
of neighbours of v with degree at most x.

We can now write the following simple lower bound, reached for instance by star graphs,
that is, complete bipartite graphs K1,m (for m ≥ 1):

Observation 2.7. For every graph G, we have max
v∈V (G)

nb(v,1) ≤ χh.i.(G).

Proof. Consider any h.i. edge-colouring ϕ of G, and focus on any vertex v. Assume v has
d = nb(v,1) ≥ 2 neighbours u1, . . . , ud with degree 1. Then note that, regardless the rest of
ϕ, all of vu1, . . . , vud must be assigned pairwise distinct colours since otherwise v, in some
colour, would have at least two neighbours with degree 1. Since this is true for all vertices
of the graph, the bound holds.

By the arguments of the previous proof, Observation 2.7 can be generalised to:

Theorem 2.8. For every graph G, we have

max
v∈V (G)

x∈{1,...,∆(G)}
⌈
nb≤(v, x)

x
⌉ ≤ χh.i.(G).

Proof. Let ϕ be a h.i. edge-colouring of G. Consider any v ∈ V (G), any x ∈ {1, . . . ,∆(G)}
and set d = nb≤(v, x). For any colour i the i-degree of any of the d neighbours u1, . . . , ud
of v with degree at most x, if non-zero, must lie in {1, . . . , x}. This implies that around v
colour i can be assigned to at most x of the edges vu1, . . . , vud. Thus, due to v and x, the
number of required colours, if ϕ is indeed h.i., is at least ⌈d/x⌉. Since this reasoning holds
for every v and x, the claimed lower bound holds.

While the lower bound can be pretty bad in some cases (in the case of a regular graph
G, the lower bound obtained is 1 ≤ χh.i.(G)), in other cases it might be pretty useful.
For instance, we will highlight in Section 3 that it is more accurate for very unbalanced
complete bipartite graphs, which have the property to have only two possible values for the
degrees. For instance, in any complete bipartite graph K2,m, there is a vertex v with degree
m neighbouring vertices of degree 2 only (that is, nb(v,2) = d(v) =m). This example and
generalisations result in the observation that χh.i.(G) being large for a graph G does not
require the minimum degree δ(G) to be small as one may think (for instance because of
Observation 2.7).

3. Complete bipartite graphs

In this section, we focus on h.i. decompositions of complete bipartite graphs Kn,m.
Regarding l.i. decompositions, it was observed in [4] that we have χl.i.(Kn,m) = 1 if n ≠m,
and χl.i.(Kn,m) = 2 otherwise. As will be seen throughout, things are more complex when
it comes to h.i. decompositions.

A crucial tool we will use throughout this section, is the following notion.
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Definition 3.1. A half graph is a bipartite graph with bipartition (U,V ) such that no two
vertices of U have the same degree and no two vertices of V have the same degree.

Observation 3.2. Every half graph is h.i.

Half graphs already appeared in the study of h.i. graphs, since, notably, half graphs
are, w.r.t. their order, the h.i. graphs with the most edges (see [2]). This property makes
half graphs nice candidates to decompose graphs into, when establishing upper bounds on
the parameter χh.i.. In particular, a perfect use case is the following particular one:

Lemma 3.3. Every balanced complete bipartite graph Kn,n decomposes into two half graphs.
As a consequence, χh.i.(Kn,n) = 2.

Proof. Since all vertices of Kn,n have degree n, note that if we have a spanning half graph
H ⊂Kn,n, then Kn,n ∖E(H) is also a half graph. Thus, it suffices to show that, for every
n, we can assign colour 1 to some edges of Kn,n so that these edges form a half graph (in
such a way that, in every part of the bipartition, at most one vertex has 1-degree 0). We
prove this by induction on n, through the following slightly stronger hypothesis: we can
assign colour 1 to some edges of Kn,n so that the 1-degrees of the vertices in one part of
the bipartition are pairwise distinct and at least 1, and similarly for the other part.

For n = 1, note that assigning colour 1 to the unique edge u1v1 results in d1(u1) =
d1(v1) = 1, thus what is desired. We now focus on proving the general case. Assume
that, for some n, we can assign colour 1 to the edges of Kn−1,n−1 so that, in both parts
{u1, . . . , un−1} and {v1, . . . , vn−1} of the bipartition, the 1-degrees form exactly the set
{1, . . . , n − 1}. Starting from this partial edge-colouring of Kn−1,n−1, we simply add one
vertex in each of the two parts, un in the former part and vn in the latter, each joined to
all vertices in the other part, and assign colour 1 to all edges incident to un. As a result,
u1, . . . , un−1 retain their 1-degrees (forming {1, . . . , n − 1}) and d1(un) = n. Meanwhile,
all vertices in {v1, . . . , vn−1} have their 1-degrees increased by 1, thus forming the set
{2, . . . , n}, and d1(vn) = 1. Thus the resulting partial edge-colouring of Kn,n is as desired
and the claim holds by Lemma 2.5 and Observation 3.2.

Apart from decomposing graphs into two half graphs as is, we will also use the fact
that performing some particular small and easy modifications to a half graph preserves
properties of interest regarding h.i. decompositions. Namely:

Observation 3.4. If G is a half graph with bipartition (U,V ) such that no vertex of U has
degree 0, then adding an isolated vertex to U results in a half graph. As a consequence, every
complete bipartite graph Kn,n+1 has χh.i.(Kn,n+1) = 2, since χh.i.(Kn,n) = 2 by Lemma 3.3.

Throughout what follows, for a graph G and a set E of edges of G, we denote by G∖E
the graph (V (G),E(G) ∖ E) obtained by removing the edges of E from G (but keeping
the vertices these edges are incident to).

Observation 3.5. Le M be a perfect matching of a complete bipartite graph Kn,n. Then
Kn,n ∖M decomposes into two half graphs. Therefore, χh.i.(Kn,n ∖M) = 2.

Proof. This can be proved similarly as Lemma 3.3.

Observation 3.6. Let G be a graph obtained by adding a universal vertex to a balanced
complete bipartite graph with the edges of a perfect matching removed. Then, χh.i.(G) = 2.
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Proof. Assume G is obtained from Kn,n by removing the edges of a perfect matching
M and adding a universal vertex w. By Observation 3.5, the edges of G ∖ {w} can be
coloured with colours 1 and 2 so that each colour yields a half graph, thus a h.i. graph
by Observation 3.2. We extend this 2-edge-colouring to the edges incident to w, so that
all edges incident to w going to U are assigned colour 1, while all those going to V are
assigned colour 2, where (U,V ) denotes the bipartitions of Kn,n. As a result, note that the
1-degrees of all vertices of U increased by 1 and are still pairwise different, since prior to
extending the edge-colouring, colour 1 induced a half graph. Meanwhile, we have d1(w) = n
and w, through colour 1, is not adjacent to any vertex of V . Also the 1-degrees of the
vertices of V have not been altered and are thus all pairwise distinct with value at most
n − 1 (since ∆(Kn,n ∖M) = n − 1). Since these observations also apply to colour 2, the
resulting 2-edge-colouring of G is h.i.

We are now ready to study h.i. decompositions of complete bipartite graphs Kn,m

(where n ≤ m). As a first intuition, it should be clear that χh.i.(Kn,m) should increase
as the difference between n and m increases; this is attested by Theorem 2.8 (case where
m − n is large) and Lemma 3.3 and Observation 3.4 (case where m − n is small). We first
provide results establishing this intuition formally; we start with an upper bound.

Theorem 3.7. For any two integers n,m with n ≥ 1 and m ≥ n(n + 1), we have

χh.i.(Kn,m) ≤ 2 ⌊
m

n + 1
⌋ + 2t

where t = 1 if m /≡ 0 mod n + 1 and t = 0 otherwise.

Proof. Let (U,V ) be the bipartition of Kn,m, where ∣U ∣ = n and ∣V ∣ =m. Consider the set

Sn,m = {2(k1 + k2 + k3) ∣m = k1(n + 1) + k2n + k3(n − 1), k1, k2, k3 ≥ 0} .

Set x = minSn,m, and notice that χh.i.(Kn,m) ≤ x. Indeed, let k1, k2, k3 be three integers
such that m = k1(n + 1) + k2n + k3(n − 1) and consider an arbitrary partition of V into k1
sets of size n + 1, k2 sets of size n, and k3 sets of size n − 1. Let A be any of these sets,
and notice that the subgraph induced by (U,A) is isomorphic to either Kn,n+1, Kn,n or
Kn,n−1. In all cases, this graph decomposes into two h.i. graphs, by either Lemma 3.3 or
Observation 3.4. It follows, by Lemma 2.5, that χh.i.(Kn,m) ≤ 2(k1 + k2 + k3), and thus, by
minimality of x, we have χh.i.(Kn,m) ≤ x.

We now establish an upper bound on x. Let us write m = q(n + 1) + r, where 0 ≤ r ≤ n
and q = ⌊ m

n+1⌋. If r = 0, then x ≤ 2 m
n+1 . Otherwise, since m ≥ n(n + 1) and thus q ≥ n, we

can write m = (q − n)(n + 1) + n(n + 1) + r, and then

m = (q − n)(n + 1) + r(n + 1) + (n + 1 − r)n.

We then obtain x ≤ 2(q − n + r + n + 1 − r) = 2q + 2, and the result holds.

We now prove that the upper bound in Theorem 3.7 is tight up to a constant factor.

Theorem 3.8. For any two integers n,m with m ≥ n ≥ 1, we have

2
m

n + 1
≤ χh.i.(Kn,m).

Proof. Let (U,V ) be the bipartition of Kn,m, where ∣U ∣ = n and ∣V ∣ =m. The result follows
mainly from the following observation:
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(a) K2,2 (b) K2,3 (c) K2,4

(d) K3,3 (e) K3,4

(f) K3,5 (g) K3,6

Figure 1: Optimal h.i. edge-colourings of small complete bipartite graphs.

Claim 3.9. Any h.i. subgraph of Kn,m has at most n(n + 1)/2 edges.

Proof of the claim. Let E be a set of edges of Kn,m that induces a h.i. graph H. Let d
be the maximum degree in H of some vertex u of U . Then, any of its d neighbours in H
are in V and have pairwise distinct degrees. Vertices in V have degree n in Kn,m, and the
maximum degree, in H, of a vertex in V is n, hence d ≤ n. Thus, any vertex of U has
degree at most n in H.

Let d ≤ n be the maximum degree of a vertex u ∈ U in H. Since all neighbours of u
have distinct degrees in V , it has at least one neighbour v ∈ V of degree at least d. Then,
v has at least d neighbours in U , each with a distinct degree in H. Since the maximum
degree of a vertex in H[U] is d, vertex v has exactly d neighbours in U with, in H, all
degrees in {1, . . . , d}. There remain n − d vertices in U , each having degree at most d in
H. In total, E thus contains at most d(d + 1)/2 + (n − d)d edges. This value is maximised
when d = n, in which case ∣E∣ ≤ n(n + 1)/2. ◇

Back to the proof of Theorem 3.8, assume, towards a contradiction, that χh.i.(Kn,m) <

2 m
n+1 . This implies Kn,m must have a h.i. subgraph with more than n(n+1)/2 edges, which

contradicts Claim 3.9. So, the bound claimed holds.

Note that the context of a complete bipartite graph Kn,m makes the result of applying
Theorem 2.8 appropriate. Specifically, when n ≤m, we obtain χh.i.(Kn,m) ≥ ⌈m/n⌉, which
is less interesting than the lower bound provided in Theorem 3.8.

To finish this section, we determine (mainly through applying some previous ideas)
the exact value of χh.i.(Kn,m) when one of n and m is small, i.e., 2 or 3. Recall that
χh.i.(K1,m) =m, by Observation 2.7.

Corollary 3.10. For every m ≥ 2, we have χh.i.(K2,m) = 2 ⌊
m
3
⌋ + (mmod 3).

Proof. First, we have χh.i.(K2,2) = 2, χh.i.(K2,3) = 2 and χh.i.(K2,4) = 3. Indeed, none of
K2,2, K2,3 and K2,4 is h.i., so they do not admit h.i. 1-edge-colourings. By Theorem 3.8,
we also have χh.i.(K2,4) ≥ 3. Now, we provide, in Figure 1, h.i. 2-edge-colourings of K2,2

and K2,3 and a h.i. 3-edge-colouring of K2,4, from which we get the equalities hold.
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When m ≥ 5, where m = 3k + i for some k ≥ 1 and i ∈ {0,1,2}, we can (as we did in the
proof of Theorem 3.7) decompose K2,m into copies of K2,2, K2,3, and K2,4 so that, from
the equalities above, and from Lemma 2.5, we get an upper bound on χh.i.(K2,m).

• If m = 3k, then K2,m decomposes into k copies of K2,3; then χh.i.(K2,m) ≤ 2k.

• If m = 3k + 1, then K2,m decomposes into k − 1 copies of K2,3 and one copy of K2,4;
then χh.i.(K2,m) ≤ 2(k − 1) + 3 = 2k + 1.

• If m = 3k+2, then K2,m decomposes into k copies of K2,3 and one copy of K2,2; then
χh.i.(K2,m) ≤ 2k + 2.

Through analysing the parameters and playing with Theorem 3.8, we deduce that these
upper bounds on χh.i.(K2,m) are actually tight. The result then follows.

Corollary 3.11. For every m ≥ 3, we have χh.i.(K3,m) = ⌈
m
2
⌉.

Proof. The proof is similar to that of Corollary 3.10. First, it can be observed that
χh.i.(K3,3) = 2, χh.i.(K3,4) = 2, χh.i.(K3,5) = 3 and χh.i.(K3,6) = 3 (see Figure 1 again).
Now, when m ≥ 7, where m = 6k + i for some k ≥ 1 and i ∈ {0, . . . ,5}, we decompose K3,m

into copies of K3,3, K3,4, K3,5 and K3,6 so that Lemma 2.5 can be employed.

• If m = 6k, then K3,m decomposes into k copies of K3,6; then χh.i.(K3,m) ≤ 3k.

• If m = 6k + 1, then K3,m decomposes into k − 1 copies of K3,6, one copy of K3,4, and
one copy of K3,3; then χh.i.(K3,m) ≤ 3(k − 1) + 2 + 2 = 3k + 1.

• If m = 6k + 2, then K3,m decomposes into k − 1 copies of K3,6 and two copies of K3,4;
then χh.i.(K3,m) ≤ 3(k − 1) + 4 = 3k + 1.

• If m = 6k+3, then K3,m decomposes into k copies of K3,6 and one copy of K3,3; then
χh.i.(K3,m) ≤ 3k + 2.

• If m = 6k+4, then K3,m decomposes into k copies of K3,6 and one copy of K3,4; then
χh.i.(K3,m) ≤ 3k + 2.

• If m = 6k+5, then K3,m decomposes into k copies of K3,6 and one copy of K3,5; then
χh.i.(K3,m) ≤ 3k + 3.

Again, the result then follows from Theorem 3.8.

4. Complete graphs

We now focus on complete graphs. When it comes to l.i. decompositions, there is a
very nice way to prove that χl.i.(Kn) ≤ 3 holds for all n ≥ 4, see [4]. Essentially, this is
done by considering an initial l.i. 3-edge-colouring of K4, and gradually extending this
3-edge-colouring to larger complete graphs by repeatedly adding one vertex with all its
incident edges, all assigned the same well-chosen colour.

Unfortunately, such an approach is unlikely to work for h.i. decompositions, for the
simple reason that adding a universal vertex to a graph G can only result in a h.i. graph if
G is t.i., thus if G = K1 (assuming G is indeed simple). Thus, in order to establish upper
bounds on χh.i.(Kn) for any complete graph Kn, one has to consider other approaches.
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Before continuing with more promising methods, let us first discuss a natural one which,
unfortunately, leads to upper bounds that are not optimal. Let Kn be a complete graph.
In order to produce a h.i. edge-colouring ϕ of Kn with few colours, one could be tempted
to edge-colour Kn so that every colour yields a h.i. graph with the largest number of edges
possible (for a graph with n vertices). It turns out that, in previous works, several authors
managed to determine this largest quantity. It depends on the parity of n:

Theorem 4.1 (Alavi et al., [2]). If G is a h.i. graph with even order n ≥ 4, then

∣E(G)∣ ≤
n(n + 2)

8
.

Theorem 4.2 (Majcher, Michael [19]). If G is a h.i. graph with odd order n = 2k + 1 ≥ 9,
then

∣E(G)∣ ≤
1

2
k(k + 1) + ⌊

1

5
(k + 1)⌋ .

Let us mention that the authors of Theorems 4.1 and 4.2 also proved that their bounds
are sharp, in the sense that there exist h.i. graphs on n vertices with the stated maximum
number of edges. The construction provided for n even is the most obvious, as it is that of
half graphs (with n/2 vertices in each part) similar to those we considered in Lemma 3.3.

Exploiting such structures, we can establish a logarithmic upper bound on χh.i.(Kn)

for any n, which improves on the upper bounds we get from Observation 2.1 and Theo-
rem 2.2. Such an upper bound is not the best possible for complete graphs, as we will
see in Theorem 4.5; however, we think these ideas are interesting enough to be at least
explained. Consider any complete graph Kn, and split its vertices into two sets, U and V ,
with about equal size n/2. Then the edges in the cut (U,V ) form a (roughly) balanced
complete bipartite graph Kn

2
,n
2
, which decomposes into two h.i. graphs by Lemma 3.3 (or

by one of the subsequent observations we raised, in case it is not quite exactly balanced). It
then remains to decompose the rest of the graph, whose edges form two disjoint complete
graphs K and K ′ on about n/2 vertices, for which we can repeat these arguments (taking
into account that, in a h.i. edge-colouring, we can use the same colours in K and K ′ since
they do not share vertices). Eventually, we then end up with a h.i. edge-colouring of Kn

that uses a number of colours that is a logarithmic function of n.

Before we proceed with our most meaningful result in this section, let us first point out
that Theorems 4.1 and 4.2 can also serve to establish lower bounds on χh.i.(Kn) for any
n. This follows from the following, more general (obvious) observation:

Lemma 4.3. Let G be a graph with order n. If we denote by m(n) the largest number of
edges in a h.i. graph on n vertices, then

⌈
∣E(G)∣

m(n)
⌉ ≤ χh.i.(G).

Theorem 4.4. For every even n ≥ 12 and odd n ≥ 9, we have 4 ≤ χh.i.(Kn).

Proof. This follows mainly from combining Lemma 4.3, by considering that ∣E(Kn)∣ =
n(n−1)

2 and that m(n), depending on the parity of n, is the extreme value indicated by
either Theorem 4.1 or Theorem 4.2. In particular, for even values of n, it can be checked
that the ratio in Lemma 4.3 is strictly larger than 3 when n ≥ 12, and tends to 4 as n grows
large. For odd values of n ≥ 9, the ratio is strictly larger than 3 but less than 4.
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Figure 2: Part of the h.i. 4-edge-colouring of K12 described in the proof of Theorem 4.5. Red edges are
edges assigned colour 1, while blue edges are edges assigned colour 2.

We now prove that the bound indicated in Theorem 4.4 is indeed correct in terms
of magnitude. Let us mention that, in the upcoming proof, we draw inspiration from a
construction in [2], used to show that for any n ≥ 3, the smallest order of a h.i. graph
containing Kn as an induced subgraph is 4n − 4.

Theorem 4.5. For every n ≥ 4, we have χh.i.(Kn) ≤ 4.

Proof. We first prove the claim for values of n multiple of 4; by the end of the proof, we
will then explain how to also derive the result for the remaining values of n. Set K = Kn

and n = 4k. We denote by u1, . . . , uk, v1, . . . , vk, u′1, . . . , u
′
k, and v′1, . . . , v

′
k the vertices of

K, and set U = {u1, . . . , uk, v1, . . . , vk} and V = {u′1, . . . , u
′
k, v
′
1, . . . , v

′
k}.

To build a h.i. 4-edge-colouring of K, our goal is to assign colour 1 and 2 to some sets
E1 and E2, respectively, of edges of K, so that K[E1] and K[E2] are h.i. (see Figure 2
for an illustration), and K ∖ (E1 ∪E2) is a balanced complete bipartite graph Kn

2
,n
2

with
a perfect matching removed, which decomposes into two h.i. graphs by Observation 3.5.

We first assign colour 1 to the following edges, forming E1:

• all edges of K[{u1, . . . , uk}] and K[{u′1, . . . , u
′
k}];

• uiu
′
i for all i ∈ {1, . . . , k};

• the edges uiv1, uiv2, . . . , uivk−i for all i ∈ {1, . . . , k};

• the edges u′iv
′
1, u
′
iv
′
2, . . . , u

′
iv
′
k−i for all i ∈ {1, . . . , k}.

To make it clearer, E1 thus contains, from U ’s point of view, all edges u1v1, . . . , u1vk−1,
all edges u2v1, . . . , u2vk−2, all edges u3v1, . . . , u3vk−3, and so on. In particular, E1 does not
contain edges of the form ukvi. Similar observations can be made regarding V .

As a result, one can check that we have:
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• d1(ui) = d1(u
′
i) = (k − 1) + 1 + (k − i) = 2k − i for all i ∈ {1, . . . , k};

• d1(vi) = d1(v
′
i) = k − i for all i ∈ {1, . . . , k}.

In particular, we have

{d1(u1), . . . , d1(uk), d1(v1), . . . , d1(vk)} = {0, . . . ,2k − 1} ,

from which we can easily deduce that K[E1] is h.i.
We now assign colour 2 to the set E2 ⊂ E(K) ∖E1 of uncoloured edges of K:

• all edges of K[{v1, . . . , vk}] and K[{v′1, . . . , v
′
k}];

• viv
′
i for all i ∈ {1, . . . , k};

• all edges in {u1, . . . , uk} × {v1, . . . , vk} ∖E1;

• all edges in {u′1, . . . , u
′
k} × {v

′
1, . . . , v

′
k} ∖E1.

Put differently, E2 contains all edges joining ui’s and/or vi’s (and similarly for u′i’s and v′i’s)
that are not in E1. In E2, we also have the matching {v1v′1, . . . , vnv

′
n}, so that all edges

of K of the form uiu
′
i or viv

′
i are in E1 ∪E2. In particular, all edges not in E1 ∪E2 form

a balanced complete bipartite graph Kn
2
,n
2

from which we removed a perfect matching,
which, by Observation 3.5, can have its edges coloured with colours 3 and 4 yielding h.i.
graphs.

To be done with K, it remains to show that K[E2] is h.i., which follows from the
following arguments. Note first that, for all i ∈ {1, . . . , k}, we have d2(ui) = dU(ui) −
d1(ui) + 1 = 2k − (2k − i) = i, and, similarly, d2(u′i) = dV (u

′
i) − d1(u

′
i) + 1 = 2k − (2k − i) = i.

Likewise, for all i ∈ {1, . . . , k}, we have d2(vi) = dU(vi) + 1 − d1(vi) = 2k − (k − i) = k + i, as
well as d2(v

′
i) = dV (v

′
i) + 1 − d1(v

′
i) = 2k − (k − i) = k + i. From this, we deduce that

{d2(u1), . . . , d2(uk), d2(v1), . . . , d2(vk)} = {1, . . . ,2k} ,

and thus that K[E2] is indeed h.i. Hence, χh.i.(K) ≤ 4.

We now explain how to derive the same upper bound for the remaining values of n.

• For any n ≥ 6 with n ≡ 2 mod 4, consider the exact same 4-edge-colouring as above,
but with vk and v′k removed. As a result, note that the 1-degrees of the ui’s and
u′i’s are not altered, while the 1-degrees of the vi’s and v′i’s (other than vk and v′k)
decreased by 1; thus, we still have that the ui’s (and u′i’s) have different 1-degrees
larger than those (pairwise different) of the vi’s (and v′i’s), from which we get the
edges assigned colour 1 still yield a h.i. graph. Likewise, all 2-degrees decreased
by 1 since we removed vn and v′n, from which we deduce the edges assigned colour 2
yield a h.i. graph. Now, the edges assigned colour 3 or 4 are part of a balanced
complete bipartite graph with a perfect matching removed, which we could recolour,
if necessary, with colours 3 and 4 in a h.i. way by Observation 3.5. Altogether, we
can thus design a h.i. 4-edge-colouring of Kn for the specified values of n.

• For any odd n ≥ 5, consider any vertex w of Kn. By earlier arguments, Kn ∖ {w} ad-
mits a h.i. 4-edge-colouring where the edges assigned colours 3 and 4 form a balanced
complete bipartite graph with a perfect matching removed. By Observation 3.6, this
edge-colouring can be extended, with colours 3 and 4, in a h.i. way to the edges
incident to w. Thus, here as well, a h.i. 4-edge-colouring of Kn exists.
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This concludes the proof.

Combining Theorems 4.4 and 4.5, we thus deduce that χh.i.(Kn) = 4 holds for all even
n ≥ 12 and odd n ≥ 9, which leaves the question open for small values of n. In what follows,
we give the exact value of χh.i.(Kn) for these remaining values of n, which we were able to
establish by hand or through computer programs.

First, we observed that for n = 2,3,4,5,6,7,8,9,10, the maximum size (number of
edges) of a (not necessarily connected) h.i. graph with order n (and thus the maximum
number of edges assigned a given colour by a h.i. edge-colouring) is 1,1,3,3,6,6,10,11,15.
From this we directly deduce that χh.i.(Kn) ≥ 4 for all n ∈ {5,7,8,10}, and thus we have
χh.i.(K5) = χh.i.(K7) = χh.i.(K8) = χh.i.(K10) = 4 by Theorem 4.5. For K6, we were able
to check exhaustively, through computer programs, that there is no h.i. 3-edge-colouring;
so, again, we have χh.i.(K6) = 4. Finally, we have χh.i.(K4) = 2 (K4 is not h.i., and it
decomposes into two paths of length 3), χh.i.(K3) = 3 by Theorem 2.3, and χh.i.(K2) = 1
since K2 is h.i.

Corollary 4.6. We have:

• χh.i.(Kn) = 1 for n = 2;

• χh.i.(Kn) = 2 for n = 4;

• χh.i.(Kn) = 3 for n = 3;

• χh.i.(Kn) = 4 otherwise, for all n ≥ 5.

5. Complexity aspects

In this section, we investigate the computational complexity of determining χh.i.(G)
for a given graph G. We first prove, in upcoming Theorem 5.4, that deciding whether
χh.i.(G) ≤ 2 holds for a given graph G is NP-complete. An important point behind our proof
of this result is that it also holds when restricted to bipartite graphs, which contrasts with
the complexity of determining whether χl.i.(G) ≤ 2 holds for a given graph G. Indeed, that
latter problem was proved to be NP-complete for general graphs in [5], but its complexity for
bipartite graphs is still unknown to date. We then prove in Theorem 5.5 that, on the other
hand, determining χh.i.(G) can be done in polynomial time for graphs G with bounded
maximum degree ∆(G) and tree-width tw(G). A corollary we derive is that determining
χh.i.(T ) for a tree T with bounded maximum degree can be done in polynomial time.

5.1. NP-completeness result
In Theorem 5.4 below, we prove that determining whether χh.i.(G) ≤ 2 holds for a

bipartite graph G is NP-complete. Before we get to the proof, we need to introduce some
forbidding gadgets and point out some of their properties of interest w.r.t. h.i. 2-edge-
colourings. All these gadgets will have a root edge uv, where d(u) = 1 and v is called the
root vertex. Given a graph G with a vertex w and a gadget H with root edge uv (where
d(u) = 1), by attaching H at w (through uv), we mean adding H to G, and identifying
u and w. The point is that our gadgets will forbid some values for d1(w) and d2(w),
assuming the resulting graph admits h.i. 2-edge-colourings. An important point is thus
that, in a gadget to be attached, the i-degree of the non-root vertex u incident to the root
edge cannot be regarded as fixed, as u will probably be incident to edges assigned colour i
after the attachment. For these reasons, throughout what follows, when dealing with a
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Figure 3: Examples of forbidding gadgets. “kF” inside a node indicates a k-forbidding gadget is attached
at some vertex. Edges in red and blue form a h.i. 2-edge-colouring omitting conflicts along uv (root edge).

h.i. 2-edge-colouring ϕ of some forbidding gadget omitting conflicts along the root edge, we
mean what we do not pay attention to possible conflicts involving the vertex of degree 1
incident to the root edge.

The first gadget H we introduce is the 2-forbidding gadget, obtained as follows (see
Figure 3 (a)). Start from a path uvw of length 2, and attach two vertices x1 and x2 of
degree 1 at w. The root edge of H is uv, while v is its root. Throughout the subsequent
discussion, we deal with the vertices and edges of H following this terminology.

Lemma 5.1. For any h.i. 2-edge-colouring ϕ (omitting conflicts along the root edge) of
the 2-forbidding gadget H with ϕ(uv) = i:

• di(v) = 2;

• in colour i, vertex v is adjacent to one vertex (different from u) with i-degree 2.

Proof. Note that we cannot have ϕ(wx1) = ϕ(wx2) as otherwise ϕ would not be h.i. Thus,
w.l.o.g. we must have ϕ(wx1) = 1 and ϕ(wx2) = 2. Now, if, say, ϕ(vw) = 1, then d1(w) = 2
and w, through wx1, is adjacent to a vertex, x1, with d1(x1) = 1. Thus we must have
ϕ(uv) = 1 so that we do not have a conflict in colour 1. As a result, we have d1(v) = 2, and
v, through vw (assigned colour 1), is adjacent to a vertex, w, with d1(w) = 2. Note as well
that we do not have a conflict in colour 2. Of course, these arguments and observations
apply if we permute colours 1 and 2 by ϕ; thus the claim holds.

The 3-forbidding gadget H is then obtained as follows (see Figure 3 (b)). Start from a
path uvw of length 2, attach a 2-forbidding gadget F at w, as well as two vertices x1 and
x2 of degree 1, and finally attach similarly at v two vertices y1 and y2 of degree 1. The
root edge of H is uv, while v is its root.

Lemma 5.2. For any h.i. 2-edge-colouring ϕ (omitting conflicts along the root edge) of
the 3-forbidding gadget H with ϕ(uv) = i:

• di(v) = 3;
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• in colour i, vertex v is adjacent to two vertices (different from u) with all i-degrees
in {1,3}.

Proof. As earlier, note that wx1 and wx2 must be assigned distinct colours by ϕ, and
similarly for vy1 and vy2. Assuming now, w.l.o.g., that the root edge of F is assigned
colour 1, by Lemma 5.2 we know that the root r of F has 1-degree 2, and that r is adjacent,
through edges assigned colour 1, to a vertex (different from w) with 1-degree 2. Thus, so
that we do not have a conflict in colour 1, we must have ϕ(vw) = 1 so that d1(w) = 3.
Likewise, since w is adjacent, through the edge wr, to a vertex (r) with 1-degree 2, we
must have ϕ(uv) = 1 so that we do not have a conflict in colour 1, which implies d1(v) = 3.
One can check as well that we do not have a conflict in colour 2. Thus the claim holds,
since all these arguments also hold upon permuting colours 1 and 2.

The general form of k-forbidding gadgets for k ≥ 4 is then as follows (see Figure 3 (c)
for an example). Let k ≥ 4 be a value such that i-forbidding gadgets have been constructed
for all i ∈ {2, . . . , k − 1}. We construct a k-forbidding gadget H as follows. Start from a
path uvw of length 2. The beginning of the construction then depends on the value of k.

• If k = 5, then we attach at w two vertices of degree 1, one 2-forbidding gadget F2,
two 3-forbidding gadgets F3 and G3, and one 4-forbidding gadget F4.

• If k ≠ 5, then we attach at w one vertex of degree 1, as well as one i-forbidding gadget
Fi for all i ∈ {2, . . . , k − 1}.

Then, regardless of the value of k, we attach, at v, one vertex of degree 1, as well as one
i-forbidding gadget F ′i for all i ∈ {2, . . . , k − 1} ∖ {k − 2}. In both cases, the root edge of H
is uv, while v is its root.

Lemma 5.3. For any k ≥ 4 and any h.i. 2-edge-colouring ϕ (omitting conflicts along the
root edge) of the k-forbidding gadget H with ϕ(uv) = i:

• di(v) = k;

• in colour i, vertex v is adjacent to k − 1 vertices (different from u) with all i-degrees
in {1, . . . , k} ∖ {k − 2}.

Proof. We prove the claim by induction on k. By previous Lemmas 5.1 and 5.2, and by
the induction hypothesis, recall that for any j-forbidding gadget F attached at v or w, we
have the property that if the root edge of F is assigned colour i, then the root of F has
i-degree j and is adjacent, in colour i, to vertices (different from the attachment point)
with all i-degrees in {1, . . . , j} ∖ {j − 2}.

W.l.o.g., assume the root edge of Fk−1 is assigned colour 1 by ϕ. We claim that d1(w) = k
and ϕ(vw) = 1. Notice that, if k ≠ 5, we claim all edges incident to w must be assigned
the same colour by ϕ. Suppose towards a contradiction that this is not the case. In the
following explanations, we mostly assume k ≠ 5 since the construction of F5 is slightly
different from the others; while some of the upcoming arguments also apply when k = 5, we
will voluntarily treat this case separately later on. In particular, this means, throughout
what follows, that Fk−2 is not F3 (which has a bit of a different behaviour, recall the last
item of Lemma 5.2).

By Lemmas 5.1 and 5.2 and the induction hypothesis, the root of Fk−1 is adjacent, in
colour 1, to vertices (different from w) with all 1-degrees in {1, . . . , k−1}∖{k−3}. Therefore,
since d(w) = k, it must be that d1(w) = k − 3. Then, we must have d2(w) = 3. Note also
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that, since k ≠ 5, the root edge of Fk−2 cannot be assigned colour 1, as otherwise the root of
Fk−2 would be adjacent, in colour 1, to two vertices with 1-degree k − 3 (including w). So,
the root edge of Fk−2 must be assigned colour 2 by ϕ. Now, so that the root of Fk−2 is not
adjacent, in colour 2, to two vertices with 2-degree 3, it must be that either (k − 2)− 2 = 3
or 3 > k − 2. That is, we get a contradiction to ϕ being h.i. in all cases but when k = 7 and
k < 5 (that is, when k = 4). Recall we also have to reconsider when k = 5.

• First, consider when k = 7; recall that, here, d(w) = 7. By arguments above, under
the assumption that the root edge of F6 is assigned colour 1 by ϕ, we have d1(w) = 4
and d2(w) = 3. Now, still by arguments above, the root edge of F5 must be assigned
colour 2, and the root edge of F4 cannot be assigned colour 2, as otherwise the
root of F4 would be adjacent, in colour 2, to two vertices with 2-degree 3 (including
w). Then the root edge of F4 is assigned colour 1 by ϕ, implying, by the induction
hypothesis, that the root of F4 is adjacent, in colour 1, to two vertices (including w)
with 1-degree 4, a contradiction.

• Now consider when k = 4; here, d(w) = 4. By arguments above and Lemma 5.2,
assuming the root edge of F3 is assigned colour 1 w.l.o.g., we must have d1(w) = 2,
and, thus, d2(w) = 2. Then, by Lemma 5.1, regardless of the actual colour assigned
to the root edge of F2, in that colour, i, there is necessarily a vertex (the root of F2)
adjacent to two vertices (one of which is w) with i-degree 2. This is a contradiction.

• Last, consider when k = 5, in which case d(w) = 7. By similar arguments as earlier,
note that the two pendant edges incident to w must be assigned distinct colours by
ϕ, and similarly for the root edges of F3 and G3. W.l.o.g., assume now the root edge
of F4 is assigned colour 1. Now observe that we must have d1(w) ∈ {3,4,5}, and if
d1(w) is not 5, then we have a conflict in colour 1, due to the root of F4 having two
neighbours (including w) with 1-degree 3 or 4. This is, again, a contradiction.

Thus, as stated earlier, assuming ϕ(vw) = 1, we must have d1(w) = k (as mentioned
earlier, if k ≠ 5, this means all edges incident to w must be assigned colour 1), and, by
arguments above, it can be checked there is indeed a way to colour the edges incident to w
accordingly. Now, again, we claim all edges incident to v must be assigned colour 1. This
is simply because, even when k = 5, we have ϕ(vw) = 1 and in colour 1 vertex w is already
adjacent to vertices (different from v) with all 1-degrees in {1, . . . , k−1}. Thus to avoid any
conflict, and because d(v) = k, we must have d1(v) = k, which raises no conflict since only v
and w have 1-degree k. Note further, by Lemmas 5.1 and 5.2 and the induction hypothesis,
that since the root edges of the F ′i ’s get assigned colour 1, necessarily v gets also adjacent,
in colour 1, to vertices (different from u) with all i-degrees in {1, . . . , k−1}∖{k−2}. In the
case k = 5, remark also that, by arguments above, we have d2(w) = 2, while, in colour 2,
the two neighbours of w have 2-degree 1 and 3, while none of these vertices have another
neighbour with 2-degree 2.

An important point to raise, is that k-forbidding gadgets have a size that is a function
of k only. We are now ready to prove our main result.

Theorem 5.4. Determining whether χh.i.(G) ≤ 2 holds for a given graph G is NP-complete.

Proof. Since the NPness of the problem is obvious, we focus on proving its NP-hardness,
which we do by reduction from Monotone Not-All-Equal 3SAT. Remind that an in-
stance of this problem is a 3CNF formula F over clauses C1, . . . ,Cm and variables x1, . . . , xn,
where every clause contains exactly three distinct (positive) variables, and the question is
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whether we can satisfy F in a nae way, i.e., so that every clause contains both a true
variable and a false variable. Note that, free to consider e.g. the equivalent formula
F ∧F ∧F ∧F ∧F ∧F , we can assume all variables of F appear in at least six clauses each.
From F , we construct, in polynomial time, a graph G such that F can be satisfied in a nae
way if and only if G admits h.i. 2-edge-colourings.

We construct G as follows. Start from the bipartite graph modelling the structure of
F , that is, having a variable vertex vi for every variable xi, a clause vertex cj for every
clause Cj , and a formula edge vicj whenever variable xi appears in clause Cj . Next, for
every clause vertex cj , add two vertices aj and bj , attach one 4-forbidding gadget at aj
and one 4-forbidding gadget at bj , and finally add the edges cjaj and cjbj . Last, for every
variable vertex vi, assuming variable xi appears in ni ≥ 6 clauses of F , attach a (ni + 3)-
forbidding gadget at vi. Note that, in the general setting, ni does not have to be bounded
by a constant, which might result in the use of forbidding gadgets with non-polynomial
size (recall an earlier remark). However, it is known that Monotone Not-All-Equal
3SAT remains NP-complete when restricted to instances where each variable appears in
at most four distinct clauses [11]. Through this additional constraint on F , we can further
assume that ni ≤ 24, thus that we employ forbidding gadgets with constant size; under
this, the whole construction of G is achieved in polynomial time.

To see that we have the desired equivalence between F and G, let us discuss how a h.i.
2-edge-colouring ϕ of G should look like.

• Regarding any aj (or similarly any bj), if the root edge of the attached 4-forbidding
gadget is assigned, say, colour 1, then, by Lemma 5.3, in colour 1 vertex aj is adjacent
to a vertex having neighbours (different from aj) with all i-degrees in {1,3,4}. Then,
since d(aj) = 2, so that we do not have a conflict in colour 1, we must have ϕ(ajcj) = 1
so that d1(aj) = 2.

• For any clause vertex cj , note that if the two edges cjaj and cjbj are assigned the
same colour, say 1 w.l.o.g., then by arguments above we get a contradiction since cj
is then adjacent in colour 1 to two vertices with i-degree 2. Thus we must have, say,
ϕ(cjaj) = 1 and ϕ(cjbj) = 2. Then in colour 1 vertex cj is adjacent to a vertex, aj ,
having, in colour 1, a neighbour (the root vertex of some 4-forbidding gadget) with
1-degree 4, while we have the same regarding bj w.r.t. colour 2. This implies all three
formula edges incident to cj cannot be assigned the same colour by ϕ, as otherwise
we would get d1(cj) = 4 or d2(cj) = 4, thus a conflict in a colour. Meanwhile, if not
all formula edges incident to cj are of the same colour, then {d1(cj), d2(cj)} = {2,3},
while aj and bj have no other neighbour with 1-degree or 2-degree in {2,3}.

• For any variable vertex vi, assuming the attached (ni + 3)-forbidding gadget has its
root edge assigned colour i, because ni ≥ 6 and thus ni+3 ≥ 9, we know by Lemma 5.3
that, in colour i, vertex vi has a neighbour adjacent, in colour i, to vertices (different
from vi) with all i-degrees in {1, . . . , ni + 3} ∖ {ni + 1}. Meanwhile, d(vi) = ni + 1.
From this, we deduce that we must have all ni formula edges incident to vi assigned
colour i, so that no conflict arises in colour i.

• By these arguments, every clause vertex cj must satisfy {d1(cj), d2(cj)} = {2,3},
while every variable vertex vi must satisfy {d1(vi), d2(vi)} = {0, ni + 1} with ni ≥ 6.
Also, besides variable vertices, clause vertices are only adjacent to ai’s and bi’s, which
have 1-degree and 2-degree 0 and 2 (or vice versa), while, besides clause vertices,
variable vertices are only adjacent to root vertices of d-forbidding vertices for d ≥ 9
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(thus with 1-degree and 2-degree 0 and d ≥ 9, or vice versa). From this all, we deduce
no conflict can involve a clause vertex and an adjacent variable vertex in any colour.

To see now we have the desired equivalence, just imagine that having ϕ(cjvi) = 1 for
some formula edge cjvi models that variable xi brings truth value true by some truth
assignment to clause Cj , while having ϕ(cjvi) = 2 models that xi brings truth value false
to Cj . The fact that not all formula edges incident to some clause vertex cj can be assigned
the same colour by ϕ thus models that Cj is considered satisfied by a truth assignment
if and only if it has variables with distinct truth values. The fact that all formula edges
incident to some variable vertex vi must be assigned the same colour by ϕ thus models
that xi brings the same truth value to all clauses that contain it, by a truth assignment.
From this, it should be clear that we can derive a truth assignment to the variables of
F satisfying all clauses in a nae way, from a h.i. 2-edge-colouring of G. Conversely, it is
not too complicated to check, due to the previous lemmas and arguments, that a truth
assignment to the variables of F satisfying all clauses in a nae way can be turned into a
h.i. 2-edge-colouring of G. Thus, the equivalence holds.

Since forbidding gadgets are trees, attaching (as done above) a tree to a bipartite
graph results in a bipartite graph, and we start from a bipartite graph in the reduction
above, it can be checked that, indeed, the reduced graphs we construct in the proof are
bipartite. Thus, Theorem 5.4 indeed holds for bipartite graphs. Also, as mentioned in the
proof, the fact that our reduction is performed from instances of Monotone Not-All-
Equal 3SAT where variables appear in exactly four distinct clauses each, also implies
that Theorem 5.4 remains true when restricted to graphs of bounded maximum degree,
which complements upcoming Theorem 5.5.

5.2. Polynomial-time algorithms
In the previous section we mentioned that, in general, having bounded maximum degree

in a graph G does not guarantee that χh.i.(G) is easy to determine. In the next result,
we prove this holds true under the additional assumption that G has bounded tree-width
tw(G). In other words, we prove that determining χh.i.(G) is an FPT problem when
parameterised by ∆(G) and tw(G).

The proof is based on MSO2 logic, which allows quantification over vertices, edges,
subsets of vertices, and subsets of edges. We adhere to the syntax and semantics defined
by Cygan et al. in [9] to describe our formulas. In particular, an atomic formula we will
use is inc(u, e), which, in a graph G with a vertex u and an edge e, is true if and only if e
is incident to u. Recall that the celebrated Courcelle’s Theorem [10] ensures the existence
of an algorithm that, given a graph G and an MSO2 formula, checks if G satisfies that
formula in linear FPT time w.r.t. the treewidth of G and the size of the formula.

Theorem 5.5. There is an algorithm that verifies if any graph G with order n can be
decomposed into k h.i. graphs in time f(k,∆(G), tw(G)) ⋅n, for some computable function
f .

Proof. The problem is shown to be MSO2-definable by a formula whose size depends on
both k and a constant ∆, so that the result follows from Courcelle’s Theorem on graphs
with maximum degree at most ∆.

First, we introduce two auxiliary formulas: adj(u, v,E′) which verifies if some edge uv
belongs to some edge set E′, and degi(u,E

′) which verifies if some vertex u is incident to
exactly i edges of E′, where i is a constant.

adj(u, v,E′) = u ≠ v ∧ ∃e∈E′inc(u, e) ∧ inc(v, e)
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degi(u,E
′
) = ∃e1,...,ei∈E′

⎛

⎝
⋀

1⩽j1<j2⩽i
ei1 ≠ ei2

⎞

⎠
∧
⎛

⎝
⋀

1⩽j⩽i
inc(u, ej)

⎞

⎠

Now, consider the formula

Decomposable = ∃E1,...,Ek⊆E Partition(E1,⋯,Ek) ∧ ⋀
1⩽i⩽k

HI(Ei),

where Partition(E1, ...,Ek) is a formula checking whether a collection (E1, ...,Ek) of sets
is indeed a partition of the edge set of G, and HI(E′) is a formula that checks whether
G(V,E′) is h.i. These two formulas are defined as follows.

Partition(E1, ...,Ek) = ∀e∈E ( ⋁
1⩽i⩽k

e ∈ Ei) ∧
⎛

⎝
⋀

1⩽i<j⩽k
¬(e ∈ Ei ∧ e ∈ Ej)

⎞

⎠

HI(E′) = ∀u,v∈V (u ≠ v ∧ ⋁
1⩽i⩽∆

degi(u,E
′
) ∧ degi(v,E

′
))

⇒ ¬ (∃w∈V adj(u,w,E′) ∧ adj(v,w,E′))

By definition of those formulas, G ⊧ Decomposable if and only if G has a decom-
position into k h.i. graphs. Since the size of the formula only depends on k and ∆, by
Courcelle’s Theorem there exists an algorithm that verifies if G can be decomposed into k
h.i. graphs in time f(k,∆, tw(G)) ⋅ n, where f is a computable function.

A particular, notable case is that of trees, since their tree-width is 1.

Corollary 5.6. For a tree T with fixed maximum degree, we can determine χh.i.(T ) in
polynomial time.

Finally, since χh.i.(G) ≤ ∆(G) + 1 holds in any graph G (recall Theorem 2.2), the
algorithm of Theorem 5.5 can be used to compute the exact value of χh.i.(G).

Corollary 5.7. There is an algorithm that, given a graph G with order n, computes χh.i.(G)
in time f(∆(G), tw(G)) ⋅ n, for some computable function f .

6. Conclusion

In this work, we have introduced and studied the notion of h.i. decompositions. One
first source of motivations was, in the line of previous l.i. decompositions, to introduce
a decompositional point of view over a variant of the 1-2-3 Conjecture in [6]. Another
one was, still in the line of l.i. decompositions, to wonder about the similarities and
discrepencies when considering another notion of irregularity, namely that of h.i. graphs
introduced by Alavi, Chartrand, Chung, Erdős, Graham and Oellermann. Throughout, we
did our best to provide results and observations allowing for a general understanding of
h.i. decompositions and the related parameter χh.i., but also to get a better catch in more
restricted contexts (such as for complete bipartite graphs and complete graphs).

Our understanding of our new notions, and the results we came up with, lead to open
questions and problems which we believe could be worth investigating further; namely:
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• Through Theorem 2.2 and Observation 2.7, we established that, for a graph G,
the maximum magnitude of χh.i.(G) is of order about ∆(G). More specifically, we
observed through Theorem 2.3 that χh.i.(G) can reach the value ∆(G) + 1, but this
observation was made in the very specific context where ∆(G) = 2. This leads us
to wonder whether we can have χh.i.(G) = ∆(G) + 1 for graphs G with ∆(G) ≥ 3,
and we think this is an appealing question. On the one hand, as ∆(G) increases,
there should be more decomposition possibilities for G. However, on the other hand,
previous works, such as [2], have established that h.i. graphs with large maximum
degree tend to be very large; so having large maximum degree for a graph G is
somewhat helpful w.r.t. h.i. decompositions only when ∣V (G)∣ is large enough.

• Regarding this matter, as a starting point, we wonder about the more peculiar case
where ∆(G) = 3. An issue we encountered, is, as we discussed in Section 2, that we
only need to focus on class-2 subcubic graphs, a class of graphs that is not obvious
to comprehend in general, even when adding a 2-connectivity constraint (so that we
fall into the well-studied class of so-called snarks).

• Regarding our results in Section 3, recall that we have established a rather good
estimate over the parameter χh.i. for complete bipartite graphs Kn,m (through The-
orems 3.8 and 3.7), while we were able to determine its exact value only for specific
complete bipartite graphs, when n ∈ {2,3} (recall Corollaries 3.10 and 3.11). These
last two corollaries actually highlight that our approach in the proof of Theorem 3.7
should indeed be the way to go: that is, provide tight results for “small” complete
bipartite graphs Kn,m (i.e., assuming n ≤ m, where m is somewhat close to n), and
then prove that every “larger” one (i.e., with n and m being more distant) decomposes
into a well-chosen combination of the smaller pieces. It seems to us, however, that
the notion of “small” is a function of n, which makes it unclear how a nice argument
should go. Maybe the numbers provided in the statement of Theorem 3.7 provide a
good hint on this question.

• From Theorem 5.4, we already get that determining χh.i.(G) for a given graph G is
hard (unless P=NP). However, our result is derived specifically from the hardness of
determining whether a graph G admits a h.i. 2-edge-colouring. Consequently, we
wonder whether there is a nice way to prove that this also holds for h.i. k-edge-
colourings, for every fixed k ≥ 3. Proving this is true would make our result more
convincing.

• Using Courcelle’s Theorem to prove Theorem 5.5 guarantees χh.i.(G) can be de-
termined in polynomial time for graphs G with bounded tree-width and bounded
maximum degree. The running time of a corresponding algorithm, however, while
still polynomial, would be very bad and we wonder whether better algorithms can
be designed, for instance using a dynamic programming approach. In particular, an
appealing setting for this context is that of trees, i.e., graphs with tree-width 1.

• In the very same line, recall that Theorem 5.4 holds for graphs with bounded maxi-
mum degree, so unless P=NP we cannot drop the maximum degree requirement from
Theorem 5.5. One can naturally wonder whether there are other (combinations of)
parameters catching the tractability of the problem.
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