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Abstract: Artificial intelligence (AI) has gained significant traction in the field of drug discovery, 10 

with deep learning (DL) algorithms playing a crucial role in predicting protein-ligand binding af-11 

finities. Despite advancements in neural network architectures, system representation, and training 12 

techniques, the performance of DL affinity prediction has reached a plateau, prompting the ques-13 

tion of whether it is truly solved or if the current performance is overly optimistic and reliant on 14 

biased, easily predictable data. Like other DL related problems, this issue seems to stem from the 15 

training and test sets used when building the models. In this work, we investigate the impact of 16 

several parameters related to the input data on the performance of neural network affinity predic-17 

tion models. Notably, we identify the size of the binding pocket as a critical factor influencing the 18 

performance of our statistical models; furthermore, it is more important to train a model with as 19 

much data as possible, than to restrict the training on only the high quality datasets. Finally, we 20 

also confirm the bias in the typically used current test sets. Therefore, several types of evaluation 21 

and benchmarking are required to understand models decision-making process and accurately 22 

compare the performance of models. 23 

Keywords: protein-ligand; binding affinities; deep learning 24 

 25 

1. Introduction 26 

The importance of in silico work in the drug discovery pipeline has been growing for 27 

several decades. Since the 1980’s, numerous drugs have been successfully marketed after 28 

being initially designed with the help of computers [1]. Approaches for computer-aided 29 

drug design, aiming to identify lead compounds, have steadily improved over time. In 30 

structure-based drug design (SBDD), docking is a method that predicts the mode of 31 

binding of a molecule into a pocket protein and the affinity of such molecules for the 32 

protein target using a scoring functions. This method helps in identifying molecular hits 33 

in drug design projects.. A cornerstone step in this process is to evaluate accurately the 34 

binding affinity of the protein-ligand complexes. To this end, various scoring functions, 35 

such as knowledge-based, empirical, and force field-based methods, have been devel-36 

oped [2]. The development of scoring functions has advanced further with the integra-37 

tion of machine learning models for bioactivity assessment. Recently, neural networks 38 

have gained attention for predicting binding affinity of protein-ligand complexes. With 39 

the advent of big data and the access to increased computing power, DL algorithms have 40 

emerged as promising tools for prediction purposes. These algorithms harness the 41 

structural information of protein-ligand complexes to predict binding affinities, often 42 

outperforming other scoring functions [3]. There are also alternative methods for calcu-43 

lating absolute binding free energies, including MMGB(PB)SA [4] and LIE [5]. Addition-44 

ally, TI and FEP [6] can provide highly accurate predictions, typically within one order of 45 
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magnitude in affinity, although it is primarily used for relative binding free energy cal-46 

culations. However, these methods rely on computationally expensive molecular dy-47 

namics simulations. Therefore, in virtual screening scenarios, less computationally in-48 

tensive approaches like deep learning (DL) models are favored. Nevertheless, despite the 49 

implementation of new deep neural networks, the performance of the statistical models 50 

is stagnating [7]. 51 

The performance with DL algorithms relies heavily on the amount of data available 52 

to train the statistical models. Unfortunately the amount of data available for the predic-53 

tion of binding affinity is relatively low in comparison to other application domains 54 

where DL has been successfully applied, like computer vision [8]. Indeed, for binding 55 

affinity predictions, models can be trained with the 3D structure of protein-ligand com-56 

plexes, which are determined by crystallography, NMR or cryogenic electron microscopy 57 

(cryo-EM). On top of this, it is required to perform biophysical experiments, like surface 58 

plasmon resonance (SPR) or isothermal titration calorimetry (ITC), or more common bi-59 

ochemical assays, in order to evaluate the binding affinity of the complexes. All these 60 

experiments require extensive work therefore complicating the generation of new relia-61 

ble data in this field. 62 

We decided to evaluate the different variables related to the data to assess their 63 

impact on the performance. First of all, a crucial question is to evaluate the minimum 64 

amount of data necessary to achieve satisfactory performance. Would 10,000 complexes 65 

be enough or at least 100,000 are required etc.? To add to these considerations, it is im-66 

portant to keep in mind that increase in the data complexity, leads to higher data size 67 

requirements. This is especially true for 3D structural data, which are of higher com-68 

plexity in comparison to most usual deep learning applications. The current state of the 69 

art structural-based affinity prediction models are typically trained on the PDBbind [9] 70 

dataset. This dataset comprises 3D structures of protein-ligand complexes with known 71 

binding affinity (Kd, Ki or IC50). In the case that several forms of binding data were 72 

available for a complex, Kd was selected over Ki, and Ki was selected over IC50. This da-73 

taset contains 19,443 complexes in its current version (v.2020). Despite the size of the 74 

PDBbind increasing every year, having more data is not translated into better perfor-75 

mance for the underlying models [7]. One of the main reasons is that the data lacks large 76 

series of molecules targeting the same protein, as well as having the same molecule in 77 

complex with several proteins. It is proposed that the sparsity of the protein-ligand ma-78 

trix makes it harder for DL to learn from interactions. On top of this, some teams decided 79 

to focus on training on complexes of better quality instead of training on all the data 80 

available. In order to validate this approach, we analyzed previously reported models 81 

trained on the whole PDBbind, and solely PDBbind’s high quality subset known as the 82 

refined set. Furthermore, we have trained several models with Pafnucy [10], a 83 

well-known CNN for the prediction of binding affinities, on both datasets. 84 

Protein-ligand complexes are dynamic, and the binding free energy as ligand passes 85 

from solvent to protein represents the energy difference between the ensemble of bound 86 

and solvated states. To accurately predict the binding affinity of a complex, several fac-87 

tors have to be taken into account like the association/dissociation kinetic constants for 88 

the prediction of Kd as well as the dynamic interactions between the ligands and the 89 

proteins. Several studies were performed to predict Kd or koff using molecular dynamics 90 

simualtions ([11,12]). Therefore, the models are only based on partial information, they 91 

are single snapshots that although capture some experimentally favorable state, may still 92 

be incomplete. Since models use only the interactions between the ligands and the pro-93 

teins, they are generally trained on proteins’ pockets instead of using the whole protein. 94 

Pockets have already been calculated for the complexes contained in the PDBbind and 95 

are readily available when downloading the database. This removes the need for users to 96 

detect new pockets by themselves. Nonetheless, binding affinity will be impacted by 97 

conformational information from the ligand and protein local environment [7,13]. 98 

Therefore, pockets of different sizes can contain more or less information useful for get-99 
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ting performant models. Here, we investigated the impact of the pocket’s size on the 100 

binding affinity prediction. 101 

Other considerations related to the data are also investigated in this study. Notably, 102 

the difficulty to predict the binding affinity of peptides and the impact on the DL models 103 

performance of using a training dataset including peptides or not. These difficulties stem 104 

from the higher degrees of freedom of peptides in comparison to small molecules. This 105 

leads to increased complexity of the entropic part when calculating free energies [14]. 106 

When training on the PDBbind, it appears that predicting the affinity of peptides be-107 

comes a challenging task. Therefore, some published models were developed by training 108 

only on nonpeptide ligands [15]. Nonetheless, some non-structural datasets are specifi-109 

cally designed for antibacterial peptides, and models trained on these datasets have 110 

shown good performance [16]. 111 

Another aspect pointed out in several recent publications [7,17] is related to DL 112 

models memorizing ligand and protein information instead of learning from the interac-113 

tions. Here we have decomposed this, by training neural networks only on proteins or 114 

ligands and carrying out the prediction, to evaluate the bias in their predictions. We 115 

compared the performances of 3 well-known DL model predicting binding affinities, 116 

GraphBar, Pafnucy and OctSurf. 117 

Overall, we find that it is important to train on as much data as possible, while even 118 

using complexes deemed of lower quality. Moreover, the size of the pocket does matter 119 

for the ability of the model to predict the binding affinity. The performance improves 120 

upon reaching a certain size (12 Å around the ligand); increasing pocket size further more 121 

will not improve the performance. On top of this it is difficult to predict peptides, even by 122 

training only on peptides. Finally, we point out that there is a big discrepancy on the 123 

ability of neural networks to learn from the interaction. Some models will heavily drop in 124 

performance by removing one of the 2 partners from the complex, while other rely on the 125 

memorization of bias in the data to carry out a prediction. 126 

2. Materials and Methods 127 

2.1. Datasets 128 

The PDBbind dataset (http://www.pdbbind.org.cn) [9] was used to train the differ-129 

ent models. It contains protein-ligand complexes with known binding activity. In its 130 

current version (v.2020), 19,443 complexes are available. In this publication, three ver-131 

sions of the PDBbind were used: 132 

 The version 2016 that contains 13,308 protein-ligand complexes 133 

 The version 2018 that contains 16,151 protein-ligand complexes 134 

 The version 2019 that contains 17,679 protein-ligand complexes 135 

The complexes present in the PDBbind are selected from the Protein Data Bank 136 

(http://www.rcsb.org/) [18]. Several modifications are added to these complexes, e.g., the 137 

biological assembly of complexes are recreated, ligands’ atoms and bonds are corrected; 138 

for the detail of all modifications, please refer to the “readme” provided with the 139 

PDBbind. 140 

The PDBbind encompasses three sets of data: the general set, the refined set and the 141 

core set. The general set contains the totality of the dataset. The refined set is a subset 142 

made of 4,852 complexes (for the version 2019) selected on the basis of the following 143 

quality criteria [19]: 144 

 Crystallographic structures, with a resolution of 2.5 Å maximum 145 

 Complete ligands/pockets (without missing atoms) and without steric clash with the 146 

protein 147 

 Noncovalently bound complexes, no nonstandard residues at a distance <5 Å from 148 

the ligand 149 

 No other ligands are present in the binding site, e.g., cofactors or substrates 150 

http://www.pdbbind.org.cn/
http://www.rcsb.org/
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 Binding affinity evaluated in Ki or Kd, and with a pKi between 2 and 12 151 

 Ligands with a molecular weight of less than 1000, less than 10 residues for peptides 152 

 With ligands made only of the following atoms: C, N, O, P, S, F, Cl, Br, I, and H 153 

 The buried surface area of the ligand is higher than 15% of the total surface area of 154 

the complex 155 

The core set is broadly used as a test set to compare models’ performance. Only two 156 

versions are available, the version 2013 which is composed of 195 complexes [20,21] and 157 

the version 2016 comprising 285 complexes [22]. Both core set have 107 complexes in 158 

common. The core set 2016 is made of 57 clusters of 5 complexes belonging to the same 159 

protein family. These groups are obtained by clustering complexes based on sequence 160 

similarity of 90% minimum. 161 

In this study, peptides were flagged among the ligands coming from PDBbind’s 162 

complexes. We detected the peptides by looking for ligands having in their mol2 files at 163 

least one atom named “CA”, “CB”, “CD”, “CE”, “CG”, “CZ”, “CA1”, “CA2”, “CB1”, 164 

“CB2”, “CD1”, “CD2”, “CE1”, “CE2”, “CG1”, “CG2”, “CZ1” or “CZ2”. On top of this, we 165 

analyzed the PDBbind list of ligand names and flagged as peptides all the ligands con-166 

taining “mer” in their name. Finally, ligands wrongly labeled as peptides were removed, 167 

by keeping only ligands matching with the following smart, which represent a peptide 168 

bond: [$([NX3H2,NX4H3+]),$([NX3H](C)(C))][CX4H]([*])[CX3](=[OX1])[OX2H,OX1-,N]. 169 

By doing so, we were able to detect 2,915 peptides in the PDBbind (v.2019). The list of 170 

peptides curated from the PDBbind v.2019 was made available as a supplementary ma-171 

terial (Table S1). 172 

We used the pockets provided by the PDBbind to evaluate the impact on the per-173 

formance of: 174 

 The dataset sizes (general set or refined set) 175 

 The types of ligands (peptide or nonpeptide) 176 

 Using only ligand or only protein 177 

We also created our own pockets using Pymol. Residues around the ligands were 178 

selected to create pockets. The pockets were constructed with different sizes: 6 Å, 8 Å, 10 179 

Å, 12 Å and 14 Å. Two types of pockets were created, by selecting residues at a specific 180 

distance from: 181 

 All the atoms of the ligands 182 

 The center of geometry (CoG) of the ligands (Figure 1) 183 

 184 
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Figure 1. Pockets created and visualized with Pymol. The ligand is displayed in green. Residues are 185 

colored in cyan, purple, yellow, red and blue, according to their distance from the CoG of the lig-186 

and, respectively at 6 Å, 8 Å, 10 Å, 12 Å and 14 Å. 187 

2.2. neural neworks 188 

Protein-ligand complexes can be used to train statistical models in many ways. The 189 

3D representations of these complexes can be either 3D structures or 3D surfaces [23], 190 

which can be implemented in various ways, including 3D grids, point clouds, 3D graphs, 191 

or mesh [23,24]. Several types of neural networks were developed to handle these rep-192 

resentations of the data, such as the convolutional neural networks (CNN) and the graph 193 

neural networks (GNN). The CNN are used on 3D grids which discretize the space in 194 

voxels of around 1 Å3. Then CNN perform convolutions over these voxels to extract the 195 

meaningful information for the prediction of binding affinities. The GNN are applied on 196 

graphs, where atoms serve as nodes and bonds as edges. In the case of graph convolu-197 

tional network, the useful information stored in nodes and edges is extracted by per-198 

forming graph convolutions. 199 

Only previously published binding affinity neural networks approaches were used 200 

in this work. For the purpose of this study, we selected two CNN: Pafnucy [10] and 201 

OctSurf [25], both employing grids to discretize 3D structures and 3D surfaces, respec-202 

tively. Additionally, we evaluated GraphBAR [26] that is a graph convolutional neural 203 

network. Here, we briefly describe each of them. The full description of the neural net-204 

works can be found in the original publications. 205 

Pafnucy is a 3D convolutional neural network published in 2018. It uses the 3D co-206 

ordinates of atoms, and performs convolutions on voxels of 1 Å3. In this paper, we gen-207 

erally used boxes of 21 Å, and modified the size of the box when different size of pockets 208 

were used. 19 features were used to describe an atom: 209 

 9 bits (one-hot or all null) encoding atom types: B, C, N, O, P, S, Se, halogen and 210 

metal 211 

 1 integer (1, 2, or 3) with atom hybridization: hyb 212 

 1 integer counting the numbers of bonds with other heavyatoms: heavy_valence 213 

 1 integer counting the numbers of bonds with other heteroatoms: hetero_valence 214 

 5 bits (1 if present) encoding properties defined with SMARTS patterns: hydropho-215 

bic, aromatic, acceptor, donor and ring 216 

 1 float with partial charge: partial charge 217 

 1 integer (1 for ligand, -1 for protein) to distinguish between the two molecules: 218 

moltype 219 

This neural network uses data augmentation by learning from systematic rotations 220 

of complexes. The systematic rotations are obtained by performing the 24 rotations of the 221 

cube on each structure. The data augmentation with systematic rotations allows the 222 

models to be more robust since the models are independent of the orientations of the 223 

ligands and the proteins. 224 

Here are the reported performance of Pafnucy trained on the pockets provided by 225 

the PDBbind 2016: 226 

 Core set 2013: correlation coefficient of 0.70 taken from Stepniewska-Dziubinska et 227 

al. [10]. 228 

 Core set 2016: correlation coefficient of 0.78 take from Stepniewska-Dziubinska et al. 229 

[10].  230 

We replicated the results of Pafnucy by using the code available here: 231 

https://gitlab.com/cheminfIBB/pafnucy. 232 

OctSurf is a 3D convolutional neural network published in 2021. It requires an 233 

elaborate data preparation before it can be used as input for the neural network. First, the 234 

3D coordinates of atoms are turned into point clouds [27] representing their van der 235 

https://gitlab.com/cheminfIBB/pafnucy
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Waals surfaces. Then the point clouds are rasterized into an octsurf which is a volumetric 236 

representation based on octree data structure [28]. An octsurf is composed of octants, on 237 

which are performed the convolutions. The octants can have variable sizes. This allows 238 

for having octants of different sizes in the same octsurf, describing more or less precisely 239 

different parts of the octsurf. Therefore, it is possible to have big octants in the solvent 240 

and smaller ones (of 1 Å for example) in contact of the proteins and ligands. This way, we 241 

can accelerate the convolution process, while keeping good performance. 242 

The description of octants uses the 19 features described in Pafnucy. On top of that 5 243 

more features were added to reach a total of 24 features: 244 

 The hydrogen atom type 245 

 Van der Waals atomic radius 246 

 A normal vector with three coordinates direction, describing surface curvature and 247 

shape complementarity 248 

Data augmentation was performed by randomly rotating and translating the surface 249 

points, reaching 40 octsurfs for each complex. 250 

In the publication, OctSurf reached a correlation coefficient of 0.79 [25] on the core 251 

set 2016 by training on the pockets provided by the PDBbind 2018. 252 

The code of OctSurf is available here: 253 

https://github.uconn.edu/mldrugdiscovery/OctSurf 254 

GraphBAR is a graph convolutional neural network published in 2021. Graphs were 255 

created with atoms as nodes, and bonds as edges. Node characterization reuses only 13 256 

features established by Pafnucy, therefore not using the 5 properties encoded by 257 

SMARTS patterns (hydrophobic, aromatic, acceptor, donor and ring). 258 

Bonds are summarized in an adjacency matrix having a size of NxN, with N being 259 

the number of nodes. In the adjacency matrix, the adjacent atoms are defined by a dis-260 

tance maximum of 4 Å for inter-molecular distances, and 2 Å for intra-molecular dis-261 

tances. It is possible to train the neural network with up to 8 adjacency matrices. If the 262 

number of adjacency matrices is increased, the distance range covered by each is re-263 

duced. For example, in the case of using only one matrix, this one would cover interac-264 

tions up to 4 Å. While in the case of using two adjacency matrices, the first one would 265 

account for the interactions up to 2 Å, and the other one deals with the interactions from 2 266 

to 4 Å. The model established with two matrices achieved the best performance. 267 

For data-augmentation purpose, docking was performed and best poses with less 268 

than 3 Å of RMSD were selected, up to 3 poses.  269 

GraphBAR was trained on the PDBbind 2016, while discarding the complexes 270 

(pocket + ligand) containing too many atoms (>200 atoms). The models achieved coeffi-271 

cient correlations of 0.76 on the core set 2016 and 0.70 on the core set 2013. The da-272 

ta-augmentation provided little improvements on the core set 2016 with a coefficient 273 

correlation of 0.78, and no improvement were measured for the core set 2013. 274 

Performance was replicated using the code available here: 275 

https://github.com/jtson82/graphbar 276 

We carried out each experiment by replicating the training 10 times. All model rep-277 

licates were performed in the same conditions, i.e. with the same neural network, the 278 

same hyper-parameters, the same input data, but different weights (randomized seeds) at 279 

the initialisation of the neural network. The results were averaged and the standard de-280 

viation was calculated, in order to compare the performance of each experiments. 281 

Models were trained with our laboratory cluster, on graphics processing unit (RTX 282 

2080 and RTX 3090). 283 

2.3. metrics 284 

The model performance was evaluated by predicting the binding affinity of each 285 

complexes of test sets and comparing the results with real values. Prediction error was 286 

measured with the root mean square error (RMSE). 287 

https://github.uconn.edu/mldrugdiscovery/OctSurf
https://github.com/jtson82/graphbar
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 (1) 

The correlation between predicted binding affinity and the experimentally meas-288 

ured binding affinity were assessed with the Pearson correlation coefficient (R) and its 289 

standard deviation (SD). 290 

  
               

                   
 (2) 

Statistical plots were performed with the library statannot 291 

(https://pypi.org/project/statannot/). Assuming normal distribution, all comparison were 292 

performed with independent sample Student t-test with Bonferroni correction. Following 293 

p-values correspond to the annotations on the plots: 294 

  ns: 5.00e-02 < p <= 1.00e+00 295 

   *: 1.00e-02 < p <= 5.00e-02 296 

  **: 1.00e-03 < p <= 1.00e-02 297 

 ***: 1.00e-04 < p <= 1.00e-03 298 

****: p <= 1.00e-04 299 

3. Results 300 

3.1. Impact of the amount of data on the performance 301 

To reach good performance with DL algorithms, it is expected that more data is 302 

beneficial and that a high amount of data is a requirement to begin. In PDBbind (v.2019), 303 

the general set contains 17,679 protein-ligand structures. The refined set is a subset of 304 

4,852 complexes selected from the general set based on quality criteria. A previously 305 

published study suggested that training on the general set of the PDBbind does not im-306 

prove the performance in comparison to training only on the refined set [7]. While other 307 

studies [29-31] pointed out that they achieved better performance by training on the 308 

general set rather than only on the refined one. 309 

In order to explore this further, we have trained Pafnucy [10] with the PDBbind 310 

general set and with only the refined set. Pafnucy was set up to perform convolutions 311 

over voxels of 1 Å3 and on a box of 21 Å3 centered on the ligand. 312 

The models were applied to 2 test sets comprised of 285 and 195 complexes and re-313 

ferred to as core set 2016 and core set 2013. The complexes from the test sets were not 314 

used in training. Nonetheless as reported in GIGN [32], all the proteins and a third of the 315 

ligands from the test set are also used in the training set. In other words, none of the test 316 

set complexes are present in the training set, but the models have encountered at least 317 

one of the binding partners during training. As a result, we can anticipate biased results 318 

when making predictions on the test sets. The models might rely on specific data patterns 319 

to make predictions. For instance, certain ligands may consistently display either high or 320 

low affinity, regardless of the partner protein. This pattern could be exploited by the 321 

model, leading to artificially inflated performance. Analyzing further these sets, we 322 

found out that the distribution of the molecular weight of ligands is similar for the test set 323 

and the training set (Figure A1). The same can be said about the shape of the ligands, 324 

although there is a lack of spherical ligands in the test set (Figure A2). In addition, ligands 325 

with extreme affinity are over-represented in the test set in comparison to the training set 326 

(Figure A3). This can be a possible explanation for why current networks [7] predict over 327 

a small affinity range and therefore tend to fail predicting extreme affinities values of the 328 

test set. 329 
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When assessing performance, we compare the correlation between predicted and 330 

experimental activity using the Pearson correlation coefficient (R). 331 
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o343 

m344 

p345 

a346 

r347 

i348 

s349 

o350 

n351 

 of the performance of Pafnucy [10], after being trained on the general or the refined set of the 352 

PDBbind 2019. 10 models were trained on each dataset. (a) Performance is evaluated on the core set 353 

2016; (b) performance is evaluated on the core set 2013. For both core sets, performance by training 354 

on the general set significantly outperform the performance by training on the refined set. Fol-355 

lowing p-values correspond to the annotations on the plots: 356 

  ns: 5.00e-02 < p <= 1.00e+00 357 

   *: 1.00e-02 < p <= 5.00e-02 358 

  **: 1.00e-03 < p <= 1.00e-02 359 

 ***: 1.00e-04 < p <= 1.00e-03 360 

****: p <= 1.00e-04 361 

Models trained on the general set perform better than the one trained on the refined 362 

set when applied to the frequently used test sets: core set 2016 and core set 2013, Figure 2. 363 

These results are in accordance with a previously published comparison of performance 364 

of 11 neural networks [29]. For all, these neural networks the RMSE and MAE is lower 365 

when trained on the general set instead of the refined set. Likewise, the neural networks 366 

PointTransformer [30], DeepAtom [31] and the GNINA CNN v2018 [33] perform better 367 

by training the general set. These results differ a bit with 3D fusion [13], which is a model 368 

composed of a 3D-CNN and of a spatial graph CNN (SG-CNN). In this case, it seems that 369 

3D-CNN perform better by training on the refined set only, unlike the SG-CNN. Overall, 370 

this confirms that having more data, albeit of lower quality, gives better performance. 371 

One might question whether the observed performance enhancement obtained by train-372 

ing on the general set can be attributed to proper learning. Did the model develop a more 373 

profound comprehension of the interactions, or simply enhance its ability to memorize 374 

patterns within ligands and proteins?  375 

These results also showcase that there might be a misunderstanding in the field of 376 

cheminformatics about the quality of data. Indeed, having data of high quality is very 377 

important for carrying out good predictions. Therefore, several teams have decided to 378 

train their models only with the refined set, which is considered to be of higher quality. 379 

Contrary to that belief, we think that the data that is not in the refined set can be still 380 

considered as useful data. Indeed, we can compare this data to fuzzy images in image 381 

recognition. These images are essential for the robustness of the models in real-life con-382 

dition, since in this case not all images presented to the model would be clear. For image 383 

recognition, the saying “garbage in, garbage out” indicate that the images have been 384 

 
                   (a)                        (b) 
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badly labeled; therefore impeding the training process and resulting into models with 385 

worse performance. In the case of protein-ligand binding affinity predictions, the labeling 386 

task of the data has been handled by the team that conceived and update the PDBbind. 387 

They have been manually looking into publications to report the experimentally evalu-388 

ated binding affinities of complexes [34]. On top of this, the binding affinities obtained 389 

were compared to those gathered from MOAD [35], which is another database compris-390 

ing protein-ligand complexes with binding affinities, in order to reduce the error rate. 391 

3.2. Size of pockets 392 

The GNN are ideally designed to handle the data representing protein-ligand com-393 

plexes. Indeed, this data is made of nodes (atoms or residues) and bonds (interactions 394 

between molecules or intramolecular interactions). Thanks to this design, GNN focus on 395 

the important information, being therefore efficient from a computational point of view. 396 

This is not the case for CNN that are quite computationally intensive as convolutions are 397 

performed on all the voxels of the 3D images. A lot of these voxels do not contain any 398 

information about the protein or the ligand, as they are located in the solvent. This in-399 

creases the calculation time for no performance gain. Although some methodologies have 400 

been developed to avoid these hindrances [25], the most common way to reduce the 401 

computational requirements while maintaining good performance, is to only train mod-402 

els from the pockets instead of using the whole proteins. 403 

The PDBbind provides pockets to the users for conveniences. They are constituted of 404 

all residues within a distance of 10 Å from the ligand. As the amount of data available for 405 

the training increases with the size of the ligand and therefore the size of the pockets, we 406 

have investigated the influence of the pocket size on the performance of trained models. 407 

For this purpose, we have created pockets of different sizes and trained 10 models per 408 

size with Pafnucy. We calculated 2 types of pockets by selecting the residues located 409 

within a specific distance measured from all the atoms, or from the center of geometry 410 

(CoG), of the ligands. The size of pockets was defined by the residue detection distances, 411 

ranging from 6 to 14 Å. The size of the box used in Pafnucy is equal to 2*detection dis-412 

tance + 1 Å3. 413 

 
                (a)                  (b) 

 

Figure 3. Comparison of the performance of models trained with different sizes and types of 414 

pockets. For each size, 10 models were trained and tested on the core set 2016. (a) Models trained 415 

with pockets made of residues located within a specific distance from the center of geometry of the 416 

ligands; (b) models trained with pockets created with residues located within a specific distance 417 

from all atoms of the ligands. 418 
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For both type of pockets, there is a significant difference in the performance of 419 

models trained on pockets of 6 Å and pockets of 14 Å (Figure 3). This is mostly due to the 420 

fact that there is more information available in bigger pockets. Therefore, it is advised to 421 

use pockets of 10 Å over pockets of 6 Å for training models, regardless of the type of 422 

pockets used. 423 

Nonetheless, there is very little improvement in term of performance between 10 to 424 

14 Å. Thus, there is no interest in using bigger pockets than 10 Å. A compromise is re-425 

quired between using small pockets that do not contain enough information and big 426 

pockets that are computationally more expensive, while not adding useful information. 427 

Most of the interaction types fall within a range of 6 Å, thus it is difficult to under-428 

stand why a pocket size of 6 Å is not sufficient to predict accurately the binding affinity. 429 

We think that this can be due to the bias in the data, in which case increasing pocket size, 430 

and therefore adding more amino acids would help the model in memorizing and rec-431 

ognizing pattern in the protein. We could be tempted to think that if we keep increasing 432 

the size of pockets, the performance would continuously improve. Although this does 433 

not appear to be the case. Hence there might be a limit to how much the bias in the data 434 

can artificially improve the performance. 435 

Apart from the hypothesis of increased bias in the input data, there is an alternative 436 

explanation related to the featurization of protein-ligand interactions [36]. Pafnucy de-437 

scribes ligand and protein atoms using 19 atomic features, and the interactions are not 438 

explicitly encoded. In this case, the model could detect a hidden influence of amino acids 439 

that are not in direct contact with the ligands. Therefore, the model would be able to in-440 

terpret some long-distance indirect interactions that are not easy for humans to decipher. 441 

In this case, the limit in performance reached by using pockets of 10 Å would mean that 442 

the amino acids added with bigger pockets are too distant from the ligand to influence it 443 

in an indirect fashion. Further investigations are required to confirm or refute these hy-444 

pothesis.  445 

Our limitation in interpreting such results is mostly due to the black box nature of 446 

DL algorithm. We do not know the underlying reasons for a given prediction. By using 447 

these algorithms on the FEP dataset [37], which contains chemical series of highly similar 448 

molecules targeting the same protein with different affinities, it should help in inter-449 

preting model performance. Additionally, some methods were developed to alleviate the 450 

black box issue, like the layer-wise relevance propagation [38,39], gradient based meth-451 

ods [40], or by masking atoms [41]. Such methods would be useful to better understand 452 

the decisions taken by the model which leads to the prediction. 453 

3.3. Peptide vs nonpeptide 454 

Some neural networks were applied on protein-ligand complexes containing spe-455 

cific types of ligands. PointTransformer [30] was trained on the PDBbind 2016 of which 456 

590 complexes, labeled as involving peptides, were removed. 457 

Ahmed et al. developed a model by training only on proteins in complex with 458 

nonpeptides [15]. They created their own dataset by looking into the PDB for pro-459 

tein-ligand complexes with: 460 

 Crystallographic complexes with a resolution lower than 2.5 Å 461 

 Known binding affinity (Kd/Ki) 462 

 Ligand that does not have protein chain, and are not DNA/RNA 463 

This selection resulted in a dataset of 4,041 complexes. By using their neural network 464 

called DEELIG, they obtained a model that achieved a correlation coefficient of 0.889 on 465 

the PDBbind 2016 core set. These results are encouraging, and it seems worth looking 466 

into training models with only peptides and without them. 467 

To evaluate the impact of training only with or without peptides, we flagged the 468 

complexes with peptide from the PDBbind. Indeed, among the numerous rules that the 469 

PDBbind established in order to select protein-ligand complexes, it has been decided that 470 
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peptides having 20 residues or less would be considered as ligands [42]. Therefore, we 471 

have detected 2,915 complexes interacting with peptides among the 17,679 complexes of 472 

the PDBbind (v.2019).  473 

By using Pafnucy, models were trained with complexes interacting with peptides or 474 

with complexes interacting with nonpeptides. As the dataset of protein-nonpeptide (PN) 475 

complexes is larger than the dataset of protein-peptide (PP) complexes, we randomly 476 

subsampled the dataset of PN complexes in order to have datasets of same size. We 477 

trained models by training on each of the even size datasets. We obtained a model trained 478 

on the PN dataset, and a model trained on the PP dataset. The performance of models 479 

was evaluated on the core set 2013 and 2016 (Figure A4). Performance was significantly 480 

better by training on PN complexes. Subsequently, we compared the performance of 481 

models by evaluating them on each type of molecules from the core set 2016. Therefore, 482 

we tested them only on the PN complexes, and only on the PP complexes (Figure 4). 483 

Unsurprisingly, in comparison to the prediction on the whole core set 2016, we see 484 

that the prediction gap increases a bit when predicting only on PN complexes. This can 485 

be also explained by the fact that all proteins from the PN test set are present in the PN 486 

training set, while 40% of them are not in the PP complexes training set. On top of it, 30% 487 

of ligands from the PN test set are in the PN training set, and there are none in the PP 488 

training set. 489 

As for the prediction carried only on the PP complexes, although the performance of 490 

models trained with PP complexes lowers a bit, the drop in performance is more drastic 491 

for the model trained on PN complexes. Therefore, it seems that there is information 492 

contained in the dataset of PP complexes useful to predict the PP complexes from the 493 

core set 2016, albeit the predictions were carried out only on 19 complexes. We can point 494 

out that 50% of the ligands are in the PP training set, while none are in the PN training 495 

set. 496 

 497 

 
                 (a)                             (b) 

 

Figure 4. Comparison of the performance of models trained with peptide-protein complexes and 498 

with nonpeptide-protein complexes. Models were trained with Pafnucy on 2,383 complexes and 499 

validated on 492 complexes. (a) Performance evaluated on 266 complexes with nonpeptides from 500 

the core set 2016; (b) performance evaluated on 19 complexes with peptides from the core set 2016. 501 

We explored the chemical space of the PDBbind to better understand the difference 502 

in performance between models trained on PN and PP complexes, by performing a 503 

principal component analysis (PCA) on the ligand of the complexes from the PDBbind 504 

dataset. This allows us to compare the distribution of peptides and nonpeptide ligands 505 
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(Figure 5). The descriptors used to characterize the ligands were selected based on the 506 

literature [43], then the correlated descriptors were removed. The following 5 descriptors 507 

were used to carry out the PCA: hydrophobicity (LogP), Topological Polar Surface Area 508 

(TPSA), Fraction of SP3 hybridized Carbon (FCSP3), Number of Aromatic Rings (NAR), 509 

and Molecular Weight (MW). 510 

 511 

 
                 (a)                             (b) 

 

Figure 5. Principal component analysis applied on the ligands of the PDBbind dataset. Peptides 512 

were colored in red, while the rest of the ligands are displayed in blue. (a) Plot of the individuals; 513 

(b) correlation circle. 514 

The PCA displays 87% of the variance of the data. It appears that the 2 populations 515 

of ligands are well separated. These results showcase the difference between peptides 516 

and small molecules, which help explain the lower performance from training with 517 

complexes involving only one type of ligand and predicting on the other type. Further-518 

more, the peptides are known to have high degrees of freedom especially due to the 519 

peptide bonds [14]. This increased flexibility results into high level of entropic energy, 520 

which needs to be taken into account when carrying out free energy prediction. Conse-521 

quently, the evaluation of such values is very challenging. This can be an explanation for 522 

the poor performance of models in predicting the binding affinity for PP complexes. 523 

We also evaluated the performance of models trained only on PN in comparison to 524 

training with both ligands mixed. Contrary to what we expected, it seems that training 525 

only on PN complexes does not improve the performance of the models (Figure A5). This 526 

comes as a surprise as we anticipated to obtain better performance in a similar fashion to 527 

DEELIG [15]. An explanation for the very high performance (R=0.889) obtained by 528 

DEELIG is that 68% of the test set complexes were used for the training, therefore skew-529 

ing the evaluation of performance. 530 

Nonetheless, even if it is better to train on the maximum amount of data as possible, 531 

there are promises to develop some local models focused on specific type of ligands. This 532 

is a practice less common than creating local models based on the type of proteins in-533 

volved, but that can lead to interesting results. Moreover, it would be worth investigating 534 

transfer learning on such cases. For example, general models would be developed by 535 

learning general rules on the maximum amount of data, and then be specialized on pre-536 

dicting the binding affinities of peptides for example. 537 

Once again, these results should be interpreted with caution, as there are strong in-538 

dications of bias in the test set. For example, as we pointed out previously, all the protein 539 

families from the test are also present in the train set. The same issue applies to the lig-540 

ands from the test set, with at least 30% of them being also in the train sets but bound to 541 

different proteins. 542 

3.4. Replication of results 543 

Most neural networks are non-deterministic. This behavior leads to variation in the 544 

performance of models trained with the same neural network and the same data. Indeed, 545 

several factors influence the variability, one of them being that initial weights are as-546 

signed randomly across the neural network at the beginning of the training. Due to the 547 
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randomized assignment of weights, the model is more likely to fall into certain local 548 

minima, creating uncertainty for the estimation. One way to overcome this issue is to 549 

modify the learning rate during the training, by using learning rate scheduler, and 550 

therefore getting out of local minima. The other solution is to train several model repli-551 

cates, to increase the chances of having a model that did not fall into a local minimum. In 552 

any case, it is still necessary to carry out ensemble approaches [44] in order to accurately 553 

evaluate model performance and replicability. This implies training several models, av-554 

eraging their performance and evaluating the standard deviation. This was done in the 555 

publication of OctSurf, where each value was averaged from 5 models. For this study, we 556 

replicated the results of 3 neural networks (Pafnucy [10], GraphBAR [26] and OctSurf 557 

[25]) and evaluated their averaged performance by training 10 models each time (Table 558 

1). 559 

Table 1. Replication of results from 3 neural networks (Pafnucy, GraphBAR and OctSurf) com-560 

pared to the results presented in their respective publications. Models are evaluated based on their 561 

correlation coefficients and RMSE on the PDBbind core set 2016 (test set of 285 complexes). 562 

Neural networks Results from publication Results from replication 

Pafnucy R = 0.78 1 RMSE = 1.42 1 
R = 0.77 

SD = 0.01 1 

RMSE = 1.41 

SD = 0.01 1 

GraphBAR R = 0.76 1 RMSE = 1.44 1 
R = 0.76 

SD = 0.02 3 

RMSE = 1.43 

SD = 0.03 3 

OctSurf R = 0.79 ± 0.01 2 
RMSE = 1.45 ± 

0.02 2 

R = 0.79 

SD = 0.01 2 

RMSE = 1.46 

SD = 0.03 2 

Training on: 1 PDBbind v2016 (13,308 complexes); 2 PDBbind v2018 (16,151 complexes); 3 PDBbind 563 

v2019 (17,679 complexes) 564 

We were able to reproduce the performance displayed in the publication of each 565 

neural networks. 566 

All the standard deviations (SD) have low values like 0.01 or 0.02. Nonetheless, a SD 567 

of 0.02 means that, with GraphBAR, it is as likely to get models with a correlation coeffi-568 

cient of 0.74 as of 0.78 on a similar test set. As this is relatively a big difference in term of 569 

performance, we think that deep ensemble averaging [45] should always be applied 570 

when publishing the results of training models with a neural network. Although this is 571 

computationally intensive, it gives more reliable expectations for people re-using the 572 

same neural network, as well as preventing bias like selecting the best model and pub-573 

lishing its results as representative of the neural network performance. 574 

Another use of model replicates is to build ensemble models. Instead of measuring 575 

the coefficient correlation for each model and calculating the mean and the standard de-576 

viation, it is possible to calculate the mean prediction for each sample and then to calcu-577 

late the correlation coefficient. This methodology has already been applied for several 578 

deep learning models like PIGNet [46] and in Francoeur et al. [33]. It leads to some small 579 

gain of performance, for example by using this methodology, Pafnucy and GraphBAR 580 

get an R = 0.79. As for their RMSE, Pafnucy improve from 1.41 to 1.38 and GraphBAR 581 

from 1.43 to 1.37. Such consensus methods are therefore a good way of improving per-582 

formance while being less subject to variations. 583 

3.5. Learning from ligand only, protein only or interactions 584 

Achieving good performance on a test set is the primary goal in model development, 585 

but it is also necessary to verify if such high performance is not due to learnt biases from 586 

the data. As mentioned previously, the PDBbind core set is heavily biased, with both 587 

proteins (all) and ligands (~30%) represented in the training set. Therefore, models will 588 

tend to shortcut learning by using easily learnable biases which might be not present in 589 

other datasets. This is what is called a noncausal bias, where there is correlation but no 590 

causation. As mentioned in Sieg et al. [47] models can artificially achieve good predictions 591 
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by learning patterns that are not related to meaningful physico-chemical mechanisms for 592 

binding. For example, it appears that most of the reported binding affinity prediction 593 

models only memorize ligand and protein information instead of learning from their in-594 

teractions [7]. This appears to be a major issue in the field, as it leads to poor generaliza-595 

tion power. 596 

A number of strategies have been suggested to compel neural networks to learn 597 

from interactions for virtual screening purpose [48,49]. For instance, decoy poses have 598 

been generated by modifying the position of ligands. These decoys poses were obtained 599 

by redocking active compounds and selecting a low energy poses with a high RMSD 600 

from the initial position. Even simpler methods like rotating and translating the ligands 601 

have been applied. In a similar way, we propose that this could be applied on the 602 

PDBbind dataset, by either redocking, rotating or translating high affinity ligands. The 603 

resulting decoy poses would be labeled with low affinity. Consequently, when trained on 604 

such datasets, models will encounter several occurrences of the same complexes, with 605 

different ligand positions and different binding affinities. Therefore, we anticipate that 606 

these models could adapt from primarily performing QSAR to potentially gaining a 607 

deeper comprehension of protein-ligand interactions. Previous works were published on 608 

the topic of data augmentation with docking for scoring functions [26,33,50,51]. To the 609 

best of our knowledge, all of them focused on selecting poses similar to the crystallo-610 

graphic one, and assigning similar binding affinities. Another idea would be to dock 611 

ligands with low affinity from the CHEMBL, especially the ones that are structurally 612 

similar to high affinity ligands from the PDBbind. In the case that these ligands interact 613 

with the same proteins, we would add the notion of activity cliff to the models. These 614 

data augmentation methods would help the models generalize by making it focus on the 615 

interactions rather than memorizing the bias inside the dataset. However, it is essential to 616 

exercise caution when combining experimental and synthetic data. We have not used the 617 

aforementioned methods in this study and we will discuss this in more detail in future 618 

work. 619 

As mentioned previously, there are several visualization tools that reveal which 620 

parts of a structure are important when carrying out a prediction. In Hochuli et al. [41] 621 

those methods were applied on GNINA CNN v2017 [49] in order to understand its un-622 

derlying reasoning for the classification of active and inactive molecules. Another way to 623 

uncover if a model truly learnt from the protein-ligand interactions, is to train other 624 

models by removing either the protein or the ligand. Subsequently, the models trained on 625 

partial data are evaluated on the test set with the same partners removed. This evaluation 626 

helps us understand the performance difference between learning and predicting with 627 

the entire complex compared to learning and predicting with only the ligand or protein. 628 

To facilitate this comparison, we calculate the prediction gap between learning on the full 629 

complexes and learning on one of the 2 partners. The bigger the gap in prediction is, the 630 

better the model’s understanding of the interactions. However, these considerations are 631 

relatively recent. Only a few neural networks have been evaluated for their ability to 632 

learn from interactions, and not only memorize structural patterns in proteins or ligands. 633 

For this purpose, at the Figure 6, we have evaluated the ability of learning on interactions 634 

for two already published neural networks: a convolutional neural network (Pafnucy) 635 

and graph convolutional neural network (GraphBAR). 636 
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Figure 6. Comparison of the performance of Pafnucy and GraphBAR without either the protein or 637 

the ligand. The performance of models was evaluated on the core set 2016. Learning on the whole 638 

complexes lead to significantly better performance. (a) The mean prediction gap between training 639 

on whole complexes or training on ligands alone is at 0.12 of coefficient correlation for Pafnucy; (b) 640 

while it is only at 0.03 for GraphBAR by training only on the ligands. 641 

With both neural networks, training on the whole complexes give significantly bet-642 

ter performance than training on the ligand or protein structures alone. Nonetheless, we 643 

can see disparities between the two neural networks as the difference in correlation coef-644 

ficient by training only on the ligands compared to the whole complexes is 0.12 for 645 

Pafnucy, while it is only at 0.03 for GraphBAR. This means that Pafnucy does a better job 646 

at analyzing the interactions made between the proteins and the ligands, while 647 

GraphBAR seems to more heavily rely on learning patterns from ligands and then cor-648 

relate them to binding affinities. 649 

In the publication of OctSurf the performance was also evaluated by training only on 650 

ligands and only on proteins. A correlation coefficient of 0.79 was reported for the full 651 

complex, while reaching 0.73 with ligands, and 0.65 with proteins. Thus, the prediction 652 

gap is at 0.06, which is between Pafnucy and GraphBAR. 653 

Other binding affinity models have been tested for their ability to learn from the 654 

interactions, by training only on proteins or only on ligands. All these results have been 655 

summarized in Table 2. The results of the Modular MPNN [7] are in accordance with 656 

previously evaluated neural networks. Nonetheless Deep Fusion [13] and 657 

PointTransformer [30] achieve a bigger prediction gap by removing either the ligand or 658 

the protein. It goes up to 0.41 for PointTransformer when learning only on ligands. 659 

Table 2. Comparison of performance of several neural networks, on the PDBbind core set 2016 (test 660 

set of 285 complexes) with/without protein/ligand. 661 

Neural networks 
Whole complex (R, 

RMSE) 

Only ligand (R, 

RMSE) 

Only protein (R, 

RMSE) 

Pafnucy 1 0.77, 1.41 0.65, 1.67 0.66, 1.64 

GraphBAR 2 0.76, 1.43 0.73, 1.51 0.59, 1.77 

OctSurf 1 0.79, 1.45 0.73 (n.a.) 0.64 (n.a.) 

Modular MPNN 2 [7] 0.81, 1.51 0.75, 1.57 0.73, 1.57 

Deep Fusion 3 [13] 0.81, 1.31 0.49, 3.01 0.5, 4.00 

PointTransformer 4 [30] 0.86, 1.19 0.45 (n.a.) 0.2 (n.a.) 
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Type of neural networks: 1 3D convolutional neural network (3D-CNN); 2 Graph neural network 662 

(GNN); 3 3D-CNN + spatial graph CNN (SG-CNN); 4 Transformer, n.a. not available 663 

From these results, it seems that the ability of neural networks to learn from the in-664 

teractions can vary importantly. The PDBbind 2019 was used as training data for both 665 

Pafnucy and GraphBAR, and both used similar descriptions of atoms. Therefore, the 666 

main factor differencing the two is the underlying structure of the networks, and the 667 

ensuing way of handling the data and carrying out prediction. 668 

Accordingly, Deep Fusion reuse the same preparation protocol as Pafnucy, in terms 669 

of atomic description for example. Furthermore, it combines a 3D-CNN and a spatial 670 

graph CNN; this unique approach might be the reason for the model ability to better 671 

understand the protein-ligand interactions. 672 

PointTransformer is a point cloud based neural network, like OctSurf. Therefore, we 673 

expected this tool to have similar prediction gap to OctSurf. On the contrary, the predic-674 

tion gap was much more important with PointTransformer. 675 

3.6. Other test sets 676 

As shown throughout this paper, there are numerous biases contained in the core 677 

sets from the PDBbind. Due to this, we think it is important to use other types of 678 

benchmark datasets to accurately validate the new models developed. Indeed, the eval-679 

uation of models across several test sets grants a higher confidence when comparing 680 

performance. Across time, several other tests set have been developed to evaluate the 681 

scoring and ranking power of models. The scoring and ranking power are, respectively, 682 

the model ability to predict accurately the binding affinity and its ability to correctly rank 683 

ligands by using the predicted binding affinity. 684 

There are test datasets that have already been used in numerous of publications [2]. 685 

For example, the Astex diverse set [52] was used to validate Pafnucy [10], DeepAtom [31] 686 

and RosENet [53]. It includes 85 protein-ligand complexes, 74 of which have known 687 

binding affinity. There are, as well, other test sets called the CSAR-NCS HiQ set 1 and set 688 

2 [54] which are composed of 176 and 167 complexes from the Binding MOAD [35] and 689 

the PDBbind. After removing the complexes overlapping with usual training set, around 690 

50 and 40 complexes remain for both test sets (Table A6). They have been used to evalu-691 

ate Kdeep [55], RosENet [53], OnionNet-2 [56], graphDelta [57], GraphBAR [26], PIGNet 692 

[46], BAPA [58], CAPLA [59] and GIGN [32]. 693 

The FEP dataset [37] originally used in free energy perturbation studies has also 694 

been applied to evaluate the binding affinity predictions of several models [53,55,57]. It is 695 

used to test the ability of a model to discriminate between several similar ligands with 696 

different binding affinities for the same protein. It is composed of 8 proteins: BACE, 697 

CDK2, JNK1, MCL1, p38, PTP1B, Thrombin and Tyk2. Each protein family is represented 698 

by one structure. There are 200 ligands obtained from a small number of scaffolds. Their 699 

3D positions in the binding site are provided. Their affinities have been obtained ex-700 

perimentally. This information is summarized in the Table A7. 701 

Hold-out test sets have also been developed to evaluate performance of models on 702 

recent data. These test sets are obtained by performing a temporal split over a dataset, i.e. 703 

training models on complexes released before a specific date, and testing them on com-704 

plexes released afterward. The hold-out test sets are generally big sized, with complexes 705 

that were not cherry-picked and thus are less likely to be biased. 706 

 An example of such dataset can be found in Volkov et al. [7], where a modular 707 

MPNN and Pafnucy were trained on PDBbind 2016 and were evaluated by pre-708 

dicting on a 2019 hold-out set. To create this test set, they selected 3,386 complexes 709 

from the PDBbind 2019 that are not in the PDBbind 2016. Instead of using the files 710 

provided by the PDBbind, they downloaded the structures from the Protein Data 711 

Bank [18]. The complexes were curated and processed with Protoss v.4.0 [60] and 712 

IChem [61], e.g. protonation was optimized. Subsequently Isert et al. [62] reused 713 



Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 17 of 30 
 

 

these data to train models with electron density-based geometric neural networks, 714 

and they validated their binding affinity predictions on the same 2019 hold-out set. 715 

 Another 2019 hold-out set of 4,366 complexes was used to evaluate GIGN [32]. They 716 

compared their results against a dozen of neural networks, including OnionNet [63], 717 

Pafnucy and GNN-DTI [64]. It is worth mentioning that the protein overlap rate 718 

between test and training sets is of 69% instead of 100% for the core set 2016. As for 719 

the ligand overlap rate, it goes down to 25% when it was at 38% for the core set 2016.  720 

 Due to similar consideration, Deep Fusion [13] was evaluated on a test set of 222 721 

complexes that was developed from the 2019 hold-out set, by removing complexes 722 

with ligand or protein already present in the PDBbind 2016. Deep Fusion, Kdeep 723 

and Pafnucy were trained on the PDBbind 2016, and evaluated on this test set. 724 

 AK-score [65] was trained on the refined set of the PDBbind 2016 and it was evalu-725 

ated by predicting the binding affinity of 534 complexes newly released in the re-726 

fined set of the PDBbind 2018. For comparison purposes, they also evaluated the 727 

performance of other scoring functions, namely X-score [66] and ChemPLP [67]. 728 

 The atomic convolutional neural network (ACNN) [68] was trained and tested on 729 

several different splits of the PDBbind dataset. On top of a temporal split, they used 730 

a stratified split based on the pKi value of complexes and a ligand scaffold split. The 731 

stratified split allowed to select complexes covering all binding affinities in the train 732 

and test sets. In the case of the scaffold split, ligands with unusual scaffold were 733 

placed in the test set, therefore preventing the effect of QSAR in the prediction. 734 

 In a similar way, MoleculeNet [69] has been trained and tested on PDBbind dataset 735 

with a temporal split. As for PotentialNet [70], they performed cross-validation by 736 

performing a pairwise structural homology split and a sequence similarity split. 737 

Both splits are explained in detail in Li & Yang [71]. They were carried out via an 738 

agglomerative hierarchical clustering, on the PDBbind 2007 refined set, resulting in a 739 

test set of 118 and 101 samples, respectively. 740 

The PDE10A dataset [72] have been recently released, with 1,162 docked or 741 

co-crystalized PDE10A inhibitors. These data are sourced from a former project of Roche, 742 

thus the binding affinity (IC50) were obtained in a consistent way. There are 77 PDE10A 743 

complex structures obtained by crystallography, and the rest of the complexes were 744 

generated through multi-template docking. The test sets were obtained by using tem-745 

poral and binding mode splits. There are three temporal split test sets, the 2011, 2012 and 746 

2013 test sets, with 250, 141 and 73 complexes respectively. Similarly there are three 747 

binding mode split test sets, the aminohetaryl_c1_amide, c1_hetaryl_alkyl_c2_hetaryl 748 

and the aryl_c1_amide_c2_hetaryl test sets, composed of 452, 291 and 419 complexes re-749 

spectively. They compared their 2D3D ML methods against PotentialNet [70] and ACNN 750 

[68]. Isert et al. [62] also benchmarked their neural networks on these test sets. 751 

Apart from the scoring and the ranking power, there are other criteria that can be 752 

used to evaluate drug-target interactions models, like the virtual screening (VS) power. 753 

This criterion defines the ability of a model to discriminate between decoys and active 754 

molecules. As brought up in PIGNet [46], in order to accurately access the performance of 755 

a model, it is advised to evaluate not only its scoring power but also its virtual screening 756 

power. For evaluating such ability, datasets incorporating decoys have also been used as 757 

test set. Nonetheless, warnings must be raised about using these datasets. Indeed most of 758 

them are also biased [47], especially when splitting one of them in training and test sets, 759 

which usually leads the underlying models achieving artificially high performance. On 760 

the contrary when training a scoring function on the PDBbind and predicting on VS da-761 

tasets the results are usually lower. The performance of models evaluated on VS datasets 762 

are measured by calculating the area under the ROC curve (AUC), which increases when 763 

active molecules are predicted with higher binding affinities than decoys. Furthermore, it 764 

is possible to evaluate scoring functions by calculating the enrichment factor (EF) from 765 
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the ROC curve. The EF is obtained by measuring the true positive rate (TPR) for a given 766 

false positive rate (FPR). Therefore, it is possible to evaluate the model ability to find ac-767 

tive molecules over decoys for its best scored docking poses. Hence, The EF is more rep-768 

resentative of the use of VS tools in real condition, as users are mostly interested by the 769 

ligands with the highest score. 770 

Examples of such datasets are the DUD [73] (directory of useful decoys) and DUD-E 771 

(enhanced DUD) [74]. They are used for benchmarking molecular docking by providing 772 

active molecules and decoys (assumed inactive) for given targets. They have been de-773 

veloped to deal with usual dataset problems, like “artificial enrichment” which corre-774 

spond to having decoys that are very different from active molecules, and “false negative 775 

bias” referring to decoy turning out to be active after being tested experimentally. The 776 

DUD-E is an enhanced version of the DUD with increased amount of data. It is designed 777 

to address the “analogue bias” of having highly similar active molecules. The DUD and 778 

DUD-E are composed respectively of 2,950 and 22,886 active molecules, as well as 95,326 779 

and 1,411,214 decoys (up to 50 decoys per active molecule charge states), for 40 and 102 780 

targets. Unfortunately, there are still biases present in the DUD-E [75]. Especially, an an-781 

alogue bias intra and inter target was detected. These biases add up with the decoy bias, 782 

which is the similarity of decoy from the same target. When trained on a part of the 783 

DUD-E and evaluated on the other part, models obtain the same high performance (AUC 784 

> 0.9) if we keep the whole complexes or only use the structure of the ligand. Therefore, it 785 

leads to similar issues as the ones related to the PDBbind core set. 786 

 The DUD-E was used to train AtomNet [76] and to evaluate its virtual screening 787 

power. AtomNet is the first CNN applied on 3D grids to predict protein-ligand 788 

binding affinities. 30 targets from DUD-E were used as test set, while the remaining 789 

72 targets were used as the training set. On top of using DUD-E dataset, a derived 790 

dataset, called “ChEMBL-20 PMD”, has been compiled to further benchmark 791 

AtomNet. It was created based on several quality criteria and it is composed of 792 

78,904 actives, 2,367,120 property-matched decoys (PMD), and 290 targets. That da-793 

taset is composed of decoy structurally different from the active molecules to pre-794 

vent the false negative bias issue which on the other hand results in an artificial en-795 

richment issue. Therefore, another dataset, called “ChEMBL-20 inactives”, was de-796 

veloped in order to evaluate AtomNet’s ability to classify experimentally-verified 797 

active and inactive molecules. ChEMBL-20 inactives was obtained by replacing the 798 

PMD by 363,187 molecules known to be inactive. 799 

 In Lim et al. [64], they used the DUD-E and the PDBbind in order to constitute a 800 

training set and a test set. Molecules were docked with Smina [77], resulting in a 801 

dataset of docked poses for DUD-E’s 21,705 active molecules and 1,337,409 decoys. 802 

As for PDBbind, the molecules were re-docked with Smina. If the pose had a RMSD 803 

< 2 Å from the crystallographic pose, then it was classified it as a positive sample 804 

and if the pose was at > 4 Å from crystallographic pose, then it was classified it as a 805 

negative sample. Therefore, 2,094 positives and 12,246 negatives samples were ob-806 

tained. The training set was subsequently created with the docked poses of 72 pro-807 

teins from the DUDE and 70% of PDBbind redocked dataset. The test set consisted of 808 

the docked poses from the remaining 25 proteins from the DUDE and 30% of 809 

PDBbind redocked dataset. PDBbind split of data was based on a split of the targets, 810 

so no proteins would be in the training and test sets. Thereafter another test set was 811 

developed by selecting, from the CHEMBL, molecules with known binding affinity 812 

for the 25 proteins from the DUDE test set. The affinity threshold was put to an IC50 813 

of 1.0 μM, splitting the test set in 27,389 active and 26,939 inactive molecules. 814 

Similarly to the DUD/DUD-E, the DEKOIS 2.0 [78] dataset was developed to evalu-815 

ate scoring functions for their virtual screening power. It is composed of 81 benchmark 816 

sets for 80 protein targets (one target having 2 different binding sites and benchmark 817 

sets). There are 40 active molecules per benchmark set. For each active molecule, 30 818 
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structurally diverse decoys were selected, resulting into 1,200 decoys per benchmark set. 819 

The DEKOIS dataset is constituted of decoys that have not been tested experimentally, 820 

therefore decoys were selected by matching the properties of the active molecules in or-821 

der to avoid artificial enrichment. Furthermore, the selection of the decoy has been tai-822 

lored to prevent the occurrence of latent actives in the decoy set (LADS). LADS are mol-823 

ecules supposed to be decoy, which actually have an activity for the target. This issue was 824 

previously referred to in the study as false negative bias. Only 4 targets out of the 81 of 825 

the DEKOIS dataset are in common with the DUD-E [79], but 26 targets have at least 95% 826 

of sequence identity with DUD-E targets [80]. As pointed out in Ballester paper [81], 827 

several machine learning scoring functions [79,80,82] were trained on DUD-E and eval-828 

uated on DEKOIS. 829 

The Maximum unbiased validation (MUV) is another dataset developed to bench-830 

mark virtual screening tools. It is composed of active and inactive molecules experi-831 

mentally tested for 17 target proteins. For each target proteins, there are 30 actives and 832 

15,000 decoys with known binding affinities. In a similar fashion, Riniker and Landrum 833 

[83] created a dataset from CHEMBL comprising 50 targets, with 100 diverse active 834 

molecules per target and 2 decoys per active molecule leading to 10,000 decoys. The 835 

GNN-DTI from Lim et al. [64] was evaluated on the MUV dataset. GNINA CNN v2017 836 

[49] and the DenseNet CNN from Imrie et al. [84] were evaluated on a part of both the 837 

MUV dataset and the ChEMBL dataset from Riniker and Landrum. The active molecules 838 

and decoys were docked with smina [77] or AutoDock [85]. For the MUV dataset, out of 839 

the 17 target proteins, 9 were used in the test set. Therefore, leading to 1,913 poses asso-840 

ciated with the 270 actives molecules and 1,177,989 poses associated with the 135,000 841 

decoys. As for the CHEMBL dataset, 13 targets among the 50 targets were used, leading 842 

to 11,406 poses associated with 1,300 active compounds and 663,671 poses associated 843 

with 10,000 decoys. 844 

In the CASF update [22], the scoring power, the ranking power, the docking power 845 

and the screening power of several scoring functions were evaluated on the core set 2016. 846 

The docking power correspond to the ability of a scoring functions, to identify the native 847 

ligand binding pose among several decoy poses of the same ligand. More than 30 scoring 848 

functions were evaluated for these criteria. 849 

 To assess the docking power, decoy poses were generated by redocking PDBbind’s 850 

ligands in their binding site. For each complex, up to 100 decoy poses were selected, 851 

by setting up 10 bins of 1 Å based on their RMSD values (0-10 Å) to the initial pose. 852 

For each bin, ligand poses were clustered based on their conformation, and up to 10 853 

poses were selected. This leads to a dataset composed of 22,492 decoy poses. 854 

 In order to evaluate virtual screening power, the ligands were cross-docked. The 855 

dataset is composed of 16,245 protein–ligand interaction pairs, by docking 285 lig-856 

ands into 57 proteins. The docking was performed on the protein structure with 857 

highest affinity for each cluster. 100 poses were selected for each protein–ligand in-858 

teraction pair. Overall, 1,624,500 decoy poses make up this dataset. 859 

In Francoeur et al. [33] several docking datasets have been compiled in order to train 860 

and test their neural networks. They obtained a test set of 4,618 poses by redocking 280 861 

complexes from the PDBbind core set 2016 and selecting up to 20 poses per complex. In a 862 

similar fashion they redocked 3,805 complexes from the refined set and 11,324 from the 863 

general set, leading to respectively 66,953 and 201,839 poses. Thereafter, they created the 864 

CrossDocked2020 dataset, by crossdocking complexes from the Protein Data Bank [18] 865 

that were selected based on the similarity of the binding pockets. They trained their 866 

neural networks on a first version of this dataset, then selected wrongly predicted poses 867 

as data augmentation for retraining the model. This iterative reinforcement learning 868 

method led to a dataset of 22,584,102 poses (786,960 redocked poses and 21,797,142 869 

cross-docked poses) from 18,450 complexes. 42% of these complexes have known binding 870 

affinities from the PDBbind. From there, the BigBind dataset [86] was created, by map-871 
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ping CHEMBL activities to the 3D structures of protein pockets in CrossDocked. By do-872 

ing so, the number of pockets was reduced from 2,922 (in CrossDocked2020) to 1,067. The 873 

resulting dataset contains 11,430 3D structures, with 851,359 activities spanning 531,560 874 

unique compounds. 875 

In the GNINA CNN v2017 publication [49], the docking power was evaluated by 876 

redocking the 2013 PDBbind core (195 complexes). They obtained 98 low RMSD poses (<2 877 

Å from the crystallographic pose) among a total of 897 poses. The training was carried on 878 

redocked complexes from the CSAR-NRC HiQ data set [54] and the CSAR HiQ Update. From 879 

the initial 466 complexes, they redocked 377 complexes having a binding affinity > 5 pK. 880 

Poses at less than 2 Å from crystallographic poses, were labeled as positive, while the one 881 

at more than 4 Å were labelled as negative. The one between 2 and 4 Å were discarded. 882 

This leads to a dataset composed of 745 positive poses (from 327 complexes) and 3,251 883 

negative poses (from 300 complexes). 884 

Famous datasets like the PDBbind/CASF, the DUD-E or the MUV have been applied 885 

to train and evaluate many models. Unfortunately, it appears that most of the famous 886 

datasets are biased. Although they may still be relevant to some extend for comparison 887 

purpose, we have seen the development of a myriad of new benchmark datasets. Many 888 

papers presenting new neural networks, demonstrated their performance on custom test 889 

sets. For example, six papers developed their own training and test sets by performing a 890 

temporal split. For a better comparison of models, it would be preferable to evaluate their 891 

performance on a common benchmark dataset obtained through temporal split. 892 

Overall, we think that it is important to evaluate the scoring power of models on 893 

several benchmark datasets, to get an accurate evaluation of their performance. On top of 894 

that, we advise for the evaluation of their ranking, docking and screening powers. By 895 

doing so, we can get a better idea of their usefulness in real case scenario. 896 

4. Conclusion 897 

For some years now, deep learning models have been developed to predict pro-898 

tein-ligand binding affinity using structural data. The scientific community has been 899 

trying to establish guidance on how to use these tools. Data plays a central role in train-900 

ing DL models. Therefore, we have been investigating how the data can impact the per-901 

formance of models, as well as the intrinsic biases from the PDBbind. Among all the 902 

problems related to the data, the question of quality and the quantity of the data used to 903 

train DL algorithms seems crucial. For instance, another study has delved into the in-904 

fluence of the quantity and quality of non-structural data on predicting binding affinities 905 

using deep learning [87]. Additionally, in structure-based affinity prediction, a lot of 906 

neural networks have been trained only on the PDBbind’s refined set, instead of the to-907 

tality of the data available. The refined set is made of complexes selected based on quality 908 

criteria. The reasoning for training on only the refined set is to avoid the “garbage in, 909 

garbage out” issue. We have evaluated this factor by training Pafnucy, a well-known 910 

CNN for the prediction of protein-ligand binding affinity, on the refined set only and on 911 

the entire dataset. We found out that the performance was lower by training on the re-912 

fined set. Therefore, we think that it is important to train on most of the data available, as 913 

long as the data has been accurately labelled. 914 

The PDBbind database groups several types of ligands together, with peptides and 915 

small molecules being the main populations involved in protein-ligand complexes. As 916 

only a few neural networks [15] have focused on training on complexes involving a spe-917 

cific type of ligand, we trained Pafnucy on the protein-peptide and protein-nonpeptide 918 

complexes of the PDBbind. We compared the performance by training on similar sized 919 

datasets and found out that models trained with peptides were able to better predict the 920 

binding affinity of protein-peptide complexes. Therefore, it would be interesting to in-921 

vestigate transfer learning on such type of data, to reach good performance for the pre-922 

diction of binding affinity of protein-peptide complexes. 923 
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Due to the computational expensive nature of CNN and their high requirement on 924 

RAM, it is not possible to train models on the whole protein structure. Indeed, before-925 

hand it is required to create pockets around the ligands. We have evaluated performance 926 

of models trained on pockets made of the amino acids detected at 6, 8, 10, 12 and 14 Å 927 

from the ligand. By increasing the size of pockets, we see performance increase until 10 928 

Å, thereafter performance stagnate. This performance trend, increasing with pocket size 929 

until reaching a certain value, aligns with OnioNet 2 [56], which showed performance 930 

improvement up to 15 Å. As most protein-ligand interactions should be already consid-931 

ered at a distance of 6 Å from the ligand, we propose that the increase in performance is 932 

due to the bias in the data. In other word, adding more information about the proteins, 933 

would not add any useful physical information but just help the models to overfit. An-934 

other possible explanation would be related to the existence of some long distance in-935 

fluences of these amino acids on the ligand, which would impact the affinity of the com-936 

plexes. Therefore, the AI would detect these indirect interactions that would be hard to 937 

notice for a human. 938 

Following on the topic of biases in the PDBbind core set, we evaluated different 939 

types of neural networks for their ability to learn from the interactions instead of memo-940 

rizing the biases in the data. From these results, it seems that GraphBar does mostly 941 

QSAR since it has nearly the same performance with and without the proteins, or in other 942 

words Pafnucy seems to better understand the interaction between the protein and the 943 

ligand. On that topic, published work [13,30] reported even bigger performance gaps. 944 

Finally, we pointed out some flaws inside PDBbind 2016 core set. For example, 30% 945 

of the ligands from the test set are also in PDBbind general set. As for the proteins, this 946 

value goes up to 100%. In the GNINA CNN v2017 publication [49], this was mitigated by 947 

removing test targets with more than 80% sequence similarity with a target from the 948 

training set. In a similar fashion, PIGNet [46] exclude, from the CSAR NRC-HiQ, the 949 

complexes that have at least 60% of sequence similarity with a target from the training 950 

set. Following these examples, Yang et al. [17] advocate for the removal, from test sets, of 951 

complexes with structurally similar proteins and ligands in comparison to training sets. 952 

Although doing as such prevents the evaluation of models in the situation of drug re-953 

purposing and hit to lead optimization [7]. Therefore, we recommend evaluating models 954 

on several test sets to better assess their ability to generalize and to accurately predict the 955 

binding affinity. On top of the CASF and the CSAR NRC-HIQ, we can list the Astex di-956 

verse set, the FEP dataset and the holdout test sets. Several neural networks have already 957 

evaluated their performance on such datasets, allowing for easier comparison with the 958 

newly developed methodologies. 959 

For a thorough evaluation of the models, we also advise evaluating their screening 960 

power. To measure that criterion, it is required to dock active molecules and decoys, be-961 

fore evaluating their binding affinities and ranking the molecules. Some datasets propose 962 

list of decoys and active molecules, like the DUD-E [74], DEKOIS [78], MUV [88] or the 963 

“Riniker and Landrum CHEMBL” [83]. The difference between these datasets depends 964 

mostly on the way they define decoys, and how they tried to prevent the appearance of 965 

biases. Unfortunately, biases can still be found in these datasets. In the end, models 966 

trained on the PDBbind did not outperform docking software in term of VS power when 967 

applied on the DUD-E [75]. Nonetheless, if it is possible to obtain better VS power, even 968 

at the expense of lowering scoring power performance on PDBbind core set, this would 969 

mean we are likely going in the right direction. This should be achievable by training 970 

models on a decoy poses augmented PDBbind dataset, which should force models to 971 

learn from the interactions instead of memorizing ligand and protein structures. How-972 

ever, by using decoy poses, we might not represent accurately the physico-chemical re-973 

ality of the interactions of a protein and a ligand. Indeed, the interactions between them 974 

are dynamic, thus the ligand might take several positions inside the binding site across 975 

time. As mentioned previously in the literature [89], it would be more suitable to perform 976 

data augmentation with molecular dynamics simulations. For example, snapshots could 977 
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be extracted from the simulations and fed to neural networks. This way, we can expect to 978 

improve models understanding of protein-ligand interactions. 979 

Supplementary Materials: Table S1: The dataset of peptides curated from the PDBbind v.2019 is 980 

provided as a CSV file.  981 
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Appendix A 998 

 999 

 1000 

Figure A1. Distribution of PDBbind’s ligands in function of their molecular weight. The training 1001 

and validation set are plotted together in blue, the test sets are colored in pink and green, corre-1002 

sponding to the core set 2013 and core set 2016 respectively. 1003 

 1004 

 1005 



Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 23 of 30 
 

 

 1006 

Figure A2. Distribution of PDBbind’s ligands in function of their shape. The normalized PMI ratio 1007 

(NPR) are calculated from the principal moment of inertia (PMI) of the ligands. The ligands located 1008 

at the top right of the plot are spherical, while the one at the top left are rod-like. Lastly, the ligands 1009 

in the bottom of the plot are with the shape of a disc. The training and validation set are plotted 1010 

together in blue. While the test sets are in pink and green, corresponding to the core set 2013 and 1011 

core set 2016 respectively. 1012 

 1013 

 1014 

Figure A3. Distribution of PDBbind’s complexes in function of their affinity. The training and 1015 

validation set are plotted together in blue. While the test sets are in pink and green, corresponding 1016 

to the core set 2013 and core set 2016 respectively. 1017 

 1018 

 1019 

 1020 
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Figure A4. Comparison of the performance of models trained with peptide-protein complexes and 1021 

with nonpeptide-protein complexes. Models were trained with Pafnucy on 2,383 complexes and 1022 

validated on 492 complexes. (a) Performance is evaluated on the core set 2016; (b) performance are 1023 

evaluated on the core set 2013. 1024 

 1025 

 
                 (a)                             (b) 

 

Figure A5. Comparison of the performance of models trained on the whole PDBbind and with only 1026 

nonpeptide-protein complexes (trained on 13,403 complexes and validated on 1000 complexes). 1027 

Models were trained with Pafnucy. Performance is evaluated on the core set 2016 (285 complexes). 1028 

(a) The performance is evaluated with the coefficient correlation; (b) The performance are evalu-1029 

ated with the root mean square error (RMSE). 1030 

Table A6. Number of complexes of the CSAR NRC-HiQ set 1 & 2, used in each publication. In 1031 

GIGN, the sets were merged together. 1032 

Neural networks CSAR NRC-HiQ set1 CSAR NRC-HiQ set2 

Kdeep [55] 55 49 
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RosENet [53] 33 10 

OnionNet-2 [56] 55 49 

graphDelta [57] 53 49 

GraphBAR [26] 51 36 

PIGNet [46] 48 & 37 37 & 22 

BAPA [58] 50 44 

CAPLA [59] 51 36 

GIGN [32] 47 

 1033 

Table A7. Summary of the FEP dataset from Kdeep [55] and Wang et al. [37]. This table displays 1034 

the target (protein family), the reference PDB id used, the number of ligands positioned in 3D in 1035 

each structure and the experimental affinity range of complexes belonging to the same protein 1036 

family. 1037 

Target PDB ID Number of ligands 
Affinity range 

(kcal/mol) 

MCL1 4HW3 42 4.2 

BACE 4DJW 36 3.5 

p38 3FLY 34 3.8 

PTP1B 2QBS 23 5.1 

JNK1 2GMX 21 3.4 

CDK2 1H1Q 16 4.2 

Tyk2 4GIH 16 4.3 

Thrombin 2ZFF 11 1.7 
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