
HAL Id: hal-04662277
https://hal.science/hal-04662277v1

Preprint submitted on 31 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PyFigures: A Python-based tool for Rapid Creation of
Publication-Quality Scientific Figures

Benoît Aigouy, Benjamin Prud’homme

To cite this version:
Benoît Aigouy, Benjamin Prud’homme. PyFigures: A Python-based tool for Rapid Creation of
Publication-Quality Scientific Figures. 2024. �hal-04662277�

https://hal.science/hal-04662277v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Title: "PyFigures: A Python-based tool for Rapid Creation of

Publication-Quality Scientific Figures"

Benoit Aigouy1* and Benjamin Prud’homme1

1 Aix Marseille Univ, CNRS, IBDM, Marseille, France

Keywords : Figure, Scientific Visualization, Automated Layout, Python

Contact details :

Benoit Aigouy*

benoit.aigouy@univ-amu.fr

1

Author summary:

Scientists often spend hours arranging their data into complex figures for research papers. This

process is especially challenging when dealing with microscope images, where maintaining the

correct size and shape is crucial for proper interpretation.

We've developed PyFigures, a new tool that acts as a smart assistant for scientists creating figures

for their research papers. It's a computer program that helps arrange images and graphs in a neat,

organized way.

PyFigures is particularly useful for scientists working with microscope images. It ensures that these

images keep their correct proportions and scale, essential for accurate comparisons. The program

automatically labels different parts of a figure and can remember layouts, allowing scientists to

easily create a consistent style across all their figures.

One of PyFigures' key features is its flexibility. Scientists can use it for simple tasks, like putting a

few images side by side, or for more complex projects involving multiple images and graphs. It

works with many types of image files and can save figures in various formats suitable for

publications or presentations.

Built using Python, a popular programming language, PyFigures can tap into a vast array of existing

scientific tools. This allows scientists to create custom graphs or perform complex data analyses

within the program.

By automating many tedious aspects of figure creation, PyFigures aims to save scientists time and

reduce errors, allowing them to focus more on their research and less on image formatting

technicalities. It offers a user-friendly way to create professional-looking scientific figures for both

seasoned researchers and students.

To learn more about PyFigures or to try it out, visit our GitHub page:

https://github.com/baigouy/PyFigures

2

https://github.com/baigouy/PyFigures

Summary

Modern scientific publications often require complex figures with multiple panels and

graphs, demanding consistent formatting across diverse data types. Crucial to this formatting is the

precise handling of scale, pixel size, and aspect ratio, especially for microscopy and imaging data

where these factors are key to accurate representation and comparison of results. Hence, creating

figures can be time-consuming and tedious. We present PyFigures, a Python-based software

designed to streamline the process of creating scientific figures, particularly for microscopy and

imaging data. PyFigures offers automated layout handling, flexible figure structuring, automated

lettering, and template creation. It supports multi-dimensional images, various input formats, and

multiple export options. The tool's integration with Python[1] and Matplotlib[2] allows for custom

data visualization, while its text-based serialization ensures long-term compatibility. PyFigures aims

to simplify daily figure creation tasks while providing the flexibility needed for publication-quality

images.

Introduction

Visual representation of scientific data is crucial for effective communication of research

findings. Well-designed figures can convey complex information and enhance the impact of

scientific publications. However, creating high-quality figures that meet journal requirements is

often time-consuming and technically challenging for researchers.

Existing tools for figure creation often lack the balance between automation and flexibility

needed by researchers. Many resort to using general-purpose graphics software, which, while

powerful, lack specialized features for scientific figure creation. A handfull of specialized scientific

visualization tools exist, but are often too complex or lack adaptability for diverse research needs.

3

To address these challenges, we have developed PyFigures (Figure 1), a Python-based

toolkit designed to automate and simplify the process of creating scientific figures. PyFigures aims

to strike a balance between ease of use for everyday tasks and the flexibility required for

publication-quality figures. By leveraging the power of Python and integrating with popular

scientific computing libraries, PyFigures provides a versatile platform for researchers across various

scientific disciplines.

In this paper, we present the key features of PyFigures, including its automated layout

handling, support for multi-dimensional scientific images, and integration with Matplotlib for

custom data visualization. We also discuss the tool's technical implementation and compare it with

existing solutions.

Software description

Technical Implementation and Dependencies

PyFigures is a Python tool that employs QtPy[3] to build a flexible graphical user interface,

compatible with both PySide and PyQt frameworks[4], ensuring cross-platform functionality on

Windows, MacOS, and Linux operating systems. Conveniently, these frameworks also offer tools

for reading and writing vector graphics files (SVG, PDF).

For image handling, format support and export, PyFigures integrates several powerful

libraries: Pillow[5] and SciPy[6] for general images, tifffile[7] for TIFF file support, czifile[8] for

Zeiss microscopy files, read-lif[9] for Leica microscopy files, and Python-bioformats[10] for broad

microscopy file format support. These libraries collectively enable PyFigures to open, convert, and

export a wide array of scientific image formats to and from NumPy[11] arrays.

4

Figure Creation and Layout Management

PyFigures simplifies and enhances figure creation with its intuitive, streamlined, and

distraction-free drag-and-drop interface, significantly improving both visibility and efficiency for

users. The software enables users to easily add images to their workspace with a simple drag-and-

drop action. The software's innovative layout system allows for the creation of complex,

hierarchical structures. Objects can be combined into rows or columns by dragging them onto each

other, forming the fundamental building blocks of scientific figures, while images can be easily

removed from these structures by simply dragging them to an empty region of the workspace,

providing a fluid and intuitive method for both assembling and disassembling figure components.

Recognizing that a simple row-column structure may be too limiting for many scientific

figures, PyFigures allows for nested layouts. Rows and columns can contain multiple sub-rows and

sub-columns, which can themselves be further subdivided (Figure 1A-D). This recursive structure

enables the creation of intricate, multi-level layouts, accommodating even the most complex figure

requirements.

For operations that extend beyond the scope of drag-and-drop functionality, such as channel

splitting for multi-channel images, PyFigures offers context-sensitive right-click menus. These

menus provide quick access to advanced features, ensuring that all tools are readily available when

needed.

The synergy of intuitive drag-and-drop functionality, hierarchical layout capabilities, and

context-sensitive menus makes figure construction in PyFigures not just efficient, but intuitive,

significantly reducing the time and effort required to create complex scientific figures.

Layout Flexibility and Reusability

5

PyFigures offers layout flexibility and reusability, enhancing the efficiency of scientific

figure creation. A key feature is its automatic layout adaptation; when a figure is resized, the

software intelligently adjusts the layout to fit the new dimensions, maintaining the relative

proportions and arrangements of all elements. This ensures that figures remain visually coherent

regardless of size changes.

The tool's user-friendly interface extends to layout manipulation. Users can easily rearrange

rows and objects within them using simple keyboard arrow commands, allowing for quick and

intuitive adjustments to figure composition.

PyFigures includes an automated lettering system that assigns sequential labels (e.g., A, B,

C) to panels within a figure. This feature saves time and ensures consistent labeling across complex

multi-panel figures. The labeling system is flexible and can be customized to match specific journal

requirements or personal preferences.

To further streamline the figure creation process, PyFigures allows users to convert existing

figures into reusable templates. These templates preserve layout, styling, annotations, and other

parameters, significantly reducing the time and effort required for repetitive tasks. This feature is

particularly valuable for creating standardized figures across multiple datasets, such as in lab

reports, grant applications, or journal submissions.

Image Annotation

PyFigures features a robust image annotation system to enhance scientific figure clarity.

Double-clicking an image opens the annotation editor, offering tools to refine image presentation.

Users can select specific channels, spatial, or temporal dimensions, and edit channel coloring using

various look-up tables (LUTs, see also Figure 1E) to optimize visual contrast. The editor supports

6

maximum intensity projections for multi-dimensional data. Additionally, it facilitates the addition of

essential scientific imagery elements such as scale bars, regions of interest (ROIs, see also Figure

1A), and cropping and rotation tools for optimal image composition. Furthermore, users can create

insets to showcase magnified views of critical details. All these elements along with custom text

labels can be strategically placed at various positions on the image to provide necessary context or

explanations. Importantly, PyFigures maintains the layout of these annotative elements

automatically, ensuring that the relative positioning and proportions are preserved even if the

overall figure dimensions are altered. This automatic layout maintenance significantly reduces the

time and effort required for figure revisions, allowing researchers to focus on content rather than

formatting. The annotation editor's design balances user-friendliness with a comprehensive feature

set, making PyFigures an effective tool for creating informative and visually appealing scientific

images.

Save and Export

PyFigures employs text-based serialization for saving figures in a human-readable format

that ensures long-term compatibility, allowing figures to remain accessible even as software

evolves. The text-based nature of the serialization facilitates easy tracking of changes over time

using standard version control systems, and its transparency allows users to inspect and manually

edit the file if needed, offering an additional layer of control.

PyFigures offers diverse export options to meet various publication and presentation needs.

Users can export high-resolution raster images in formats such as PNG and JPEG, which are ideal

for web display and presentations or when file size is a concern. Additionally, the TIFF and vector

graphics formats (PDF, SVG) are available for those who require high-resolution images with

lossless compression, making it suitable for print and publication purposes. Users can also set the

7

desired dpi (dots per inch) when saving the image to ensure optimal print quality. These options

ensure figures are suitable for both print and digital media, meeting the requirements of different

journals and presentation formats.

To streamline collaboration and ensure long-term accessibility, PyFigures includes a project

consolidation feature. This functionality collects all input files associated with a figure, including

images and data files, and stores them in a single, organized folder. This approach simplifies the

sharing of complete figure project with colleagues and ensures all necessary components are

preserved for future reference or modifications.

Collectively, these save and export capabilities enhance the usability, shareability, and

longevity of figures created with PyFigures, supporting efficient scientific communication and

collaboration.

Color Accessibility Features

PyFigures incorporates comprehensive tools to ensure figures are accessible to individuals

with color vision deficiencies. The software enables users to split multi-channel images into

individual grayscale channels or merge them into color-blind friendly magenta-green pairs of

channels. These features enable researchers to create figures that effectively convey information to

all viewers, regardless of their color perception abilities.

Moreover, PyFigures offers a color-blind assistant, which can be accessed through the help

menu. This tool provides real-time color information for any region under the user's cursor,

displaying the grayscale version of each original color. This feature is especially useful for visually

impaired users, as it enables them to design figures with a clear understanding of colors and how

they will be perceived by others.

8

Scripting Capabilities and Advanced Data Visualization

PyFigures offers powerful scripting functionality, significantly expanding its capabilities

beyond basic image handling. Users can execute custom Python scripts within the tool, enabling a

wide range of advanced applications. This feature proves invaluable for loading non-natively

supported image formats, applying complex image processing steps, or creating sophisticated data

visualizations (Figure 1F).

A key strength of this scripting system is its ability to generate graphs and plots from various

data sources, including CSV, TXT, Excel, or SQLite files. Users can adapt their existing Python

scripts with minimal modifications to work within PyFigures.

The scripting feature supports multiple formats, including NumPy arrays, Matplotlib figures,

and QSvgRenderer, offering flexibility in visualization types. This versatility allows for the creation

of diverse visual elements such as genomic data plots, DNA vector diagrams, Matplotlib figures,

and virtually any type of visual element or data representation that can be generated through Python

scripting, seamlessly integrating them into the main figure.

PyFigures enhances transparency, reproducibility, and traceability by saving and storing

custom scripts within the figure file itself. This approach ensures that all data processing and

visualization steps are preserved alongside the final figure, allowing for easy verification and

replication of results. The software video demonstrations provide practical guidance for utilizing

this powerful scripting feature opening up virtually limitless possibilities for figure creation,

enabling researchers to produce complex, data-rich visualizations tailored to their specific needs

while maintaining a clear record of the processes involved.

Installation and Accessibility

9

PyFigures can be easily installed as a Python package from PyPI using pip. Detailed

installation instructions, source code, documentation and videos are available on our GitHub

repository https://github.com/baigouy/PyFigures. Our user-friendly guide provides step-by-step

instructions for users with varying levels of technical expertise, making it easy for anyone to get

started with PyFigures.

Comparison to Existing Tools

PyFigures offers distinct advantages over existing scientific figure creation tools. This

comparison analyzes key aspects of various tools, highlighting PyFigures' unique position in the

scientific figure creation landscape.

PyFigures stands out in image handling and layout by offering a flexible approach that

accommodates images with varying aspect ratios without requiring cropping. This capability

provides users with greater freedom in composing their figures. In contrast, tools like FigureJ[12]

and QuickFigures[13] are optimized for working with pre-cropped images, particularly when

arranging rows of images with different aspect ratios. Omero-figure[14] occupies a middle ground;

while it doesn't mandate cropping, adjusting images with different aspect ratios within its interface

is primarily achieved through cropping or manual positioning. This distinction underscores

PyFigures' versatility in handling diverse image types and sizes without compromising the original

image content.

PyFigures distinguishes itself through its robust Python integration, offering superior

graphing capabilities and support for diverse plot types, including matplotlib graph, genomic and

DNA plots. This integration provides a significant advantage over other tools in terms of graphing

and data visualization, while ensuring extensibility and compatibility with a wide range of scientific

computing tools. In contrast, other tools face various limitations. QuickFigures has constrained

graphing capabilities due to the limitations of Java plotting libraries. ScientiFig[15] and EzFig[16]

10

https://github.com/baigouy/PyFigures

rely on R integration for graphing, which can be challenging to maintain and often yields

suboptimal results. FigureJ's graph integration is restricted to a script that forces graph sizes to fit

the destination layout, limiting flexibility. Notably, Omero-figure lacks built-in functionality for

easy graph addition, requiring users to prepare graphs externally before importing them into the

figure. PyFigures' Python foundation not only allows for the creation of diverse plot types but also

positions it as a powerful and future-proof solution for scientific figure creation.

PyFigures, ScientiFig, and EzFig share a common foundation in their approach to figure

creation, utilizing similar underlying algorithms. However, PyFigures significantly expands upon

this shared base by introducing nested image capability, a feature absent in its counterparts. This

addition markedly enhances the complexity and sophistication of figures that can be produced.

Moreover, while ScientiFig and EzFig imposed limitations on the number and variety of annotation

elements, PyFigures removes these constraints.

In terms of export functionality, PyFigures offers raster, SVG, and PDF options, satisfying

most scientific and publishing requirements, while QuickFigures supports additional formats like

PowerPoint and Adobe Illustrator scripts, which may be advantageous in specific workflows.

Although QuickFigures may have a slight speed advantage for certain tasks such as channel

splitting, PyFigures' overall versatility for complex layouts gives it an edge. It's worth noting that

while ScientiFig and EzFig offered journal guideline support, its practical utility was limited and

subsequently omitted from PyFigures. In contrast to these desktop-based tools, Omero-figure stands

apart with its server-based architecture. While this approach offers certain advantages, it may

present accessibility challenges due to complex installation requirements and the need for specific

infrastructure, potentially limiting its accessibility. Finally, a crucial differentiating factor among

these tools is their approach to data persistence. PyFigures and Omero-figure utilize text-based

serialization for saving figures, a method that ensures better long-term accessibility and cross-

platform compatibility. This approach also facilitates easier debugging and manual editing if

11

necessary. In contrast, EzFig, ScientiFig, FigureJ and QuickFigures rely on binary serialization that

can lead to compatibility issues across different versions of the software or different operating

systems, and may pose challenges for long-term data preservation.

In conclusion, PyFigures emerges as a local, versatile, user-friendly tool that addresses many

limitations of existing software in the scientific figure creation landscape. Its Python foundation not

only enhances its capabilities but also positions it as a comprehensive and adaptable solution for the

diverse needs of scientific figure creation.

Discussion

PyFigures addresses a critical need in the scientific community for a flexible, efficient, and

feature-rich tool for figure creation. By automating many tedious aspects of figure preparation while

maintaining the flexibility of general-purpose drawing software, PyFigures allows researchers to

focus more on data analysis and interpretation rather than figure formatting. This shift in focus has

the potential to accelerate scientific progress and improve the overall quality of visual

communication in research publications.

The tool's seamless integration with the Python ecosystem is a particularly powerful feature,

especially for researchers already using Python for data analysis. The ability to execute custom

scripts within PyFigures enables the incorporation of sophisticated data processing and visualization

techniques directly into the figure creation workflow. This integration not only streamlines the

research process but also promotes reproducibility by maintaining a direct link between raw data

and the final figure.

PyFigures' innovative approach to layout management, with its automatic adaptation to

figure resizing and support for complex, nested structures, addresses limitations found in many

existing tools. This flexibility allows researchers to create intricate, multi-panel figures that

12

effectively communicate complex scientific concepts and data relationships. The automated

lettering system and reusable templates further enhance consistency and efficiency in figure

production.

The tool's robust save and export functionalities, including text-based serialization and

support for various output formats, ensure long-term accessibility and compatibility with different

publication requirements. The project consolidation feature facilitates collaboration and long-term

storage of figure projects, addressing important aspects of data management and sharing in

scientific research.

Future development of PyFigures will focus on expanding its capabilities based on user

feedback and evolving needs in scientific communication. Potential areas for enhancement include

further integration with data analysis pipelines, support for interactive elements in digital

publications, and expanded collaboration features for multi-author projects.

In conclusion, PyFigures represents a significant advancement in scientific figure creation

tools, offering a powerful combination of automation, flexibility, and integration with the scientific

Python ecosystem. By streamlining the figure creation process and providing features tailored to the

needs of researchers, PyFigures has the potential to save time, improve consistency, and enhance

the quality of scientific publications across various disciplines.

Acknowledgements

This work was supported by CNRS. BA designed the software and authored the manuscript with

assistance from ChatGPT and ClaudeAI. Both BA and BP reviewed the manuscript.

References

13

1. The Python Tutorial. (n.d.). Python documentation. Retrieved July 16, 2024, from

https://docs.python.org/3/tutorial/index.html

2. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &

Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

3. spyder-ide/qtpy. (2024, July 15). Python, Spyder IDE. Retrieved from

https://github.com/spyder-ide/qtpy

4. Qt for Python. (n.d.). Retrieved July 16, 2024, from https://doc.qt.io/qtforpython-6/

5. Pillow. (n.d.). Pillow (PIL Fork). Retrieved July 16, 2024, from

https://pillow.readthedocs.io/en/stable/index.html

6. Jones, E., Oliphant, T., Peterson, P., & others. (2001). SciPy: Open source scientific tools for

Python. Retrieved from http://www.scipy.org/

7. Gohlke, C. (2024, July 14). cgohlke/tifffile. Python. Retrieved from

https://github.com/cgohlke/tifffile

8. czifile: Read Carl Zeiss(r) Image (CZI) files. (n.d.). Python. Retrieved from

https://www.lfd.uci.edu/~gohlke/

9. read-lif: A Python module for loading lif file as numpy array. (n.d.). Retrieved from

https://github.com/yangyushi/read_lif

10. python-bioformats: Read and write life sciences file formats. (n.d.). Java, Python. Retrieved

from http://github.com/CellProfiler/python-bioformats/

11. Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,

… Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.

https://doi.org/10.1038/s41586-020-2649-2

12. Mutterer, J., & Zinck, E. (2013). Quick-and-clean article figures with FigureJ. Journal of

Microscopy, 252(1), 89–91. https://doi.org/10.1111/jmi.12069

13. Mazo, G. (2021). QuickFigures: A toolkit and ImageJ PlugIn to quickly transform microscope

images into scientific figures. PLOS ONE, 16(11), e0240280.

https://doi.org/10.1371/journal.pone.0240280

14. ome/omero-figure. (2024, July 11). JavaScript, Open Microscopy Environment. Retrieved

from https://github.com/ome/omero-figure

14

15. Aigouy, B., & Mirouse, V. (2013). ScientiFig: a tool to build publication-ready scientific

figures. Nature Methods, 10(11), 1048–1048. https://doi.org/10.1038/nmeth.2692

16. baigouy. (2021, November 25). EZFig. Retrieved from https://github.com/baigouy/EZFig

17. The Cell Image Library. (n.d.). Retrieved July 16, 2024, from

http://www.cellimagelibrary.org/home

15

Figures

Figure 1: The PyFigures software interface

Screenshot demonstrating a figure created using PyFigures. a) Displays an original image from the

CellImageLibrary[17]. Regions of Interest (ROIs) have been defined using the PyFigures interface.

b-d) Show corresponding crops automatically generated from the ROIs defined in (a). e) Presents

the green channel of image (a) with a rainbow lookup table applied by PyFigures, enhancing visual

contrast. f) Depicts a histogram of the green channel intensity distribution, generated using

PyFigures' built-in Python scripting capability. This figure showcases key features of PyFigures,

16

including ROI selection, image cropping, channel manipulation, color mapping, and data

visualization through scripting.

17

