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The confinement of light by Littrow blazed grating structures is explored for targeted device operation principles. For
passive devices these grating structures are explored in one and two-dimensional versions to study resonant pixel with
sizes of about ten grating periods (for 4.5 µm-side), which retain a CMOS compatible design. The resonances are found
to substantially enhance the weak silicon absorption at 940 nm, a wavelength of interest for e.g. distance ranging and
facial recognition, and to achieve a 7.5◦ angular tolerance. The addition of gain and loss in generic Littrow structures
that display an original dispersion made of crossing manifold is next considered, with a view to the issue of broad-area
laser modal control.

In this contribution, we explore the application of non-
Hermitian (NH) concepts to resonant photonic structures that
implement blazed Littrow gratings to perform light confine-
ment. When a grating has high reflection in the single back-
ward -1 order, it can serve primarily as a mirror, so that a
resonator can be built either by assembling two such mir-
rors, or by complementing a single such grating by specular
mirrors. The interest of these structures is to obtain a spe-
cial dispersion, characterized by "multiple slow light", that
we have explored earlier.1–6. In those papers, the photonic
band structure and its special dispersion, a kind of "multiple
slow light regime", and associated density-of-states were the
sole focus. Figure 1 depicts these core elements, for which an

FIG. 1. Principle of Littrow resonator; (a) real space, a waveguide
is made of two facing gratings operating at -1 order; (b) photonic
band structure with multiple flat bands as the main feature, when
blazed condition ensures slow group velocity; (c) the two studies of
this paper, the resonant pixel for CMOS application and the modal
control of gain in the spirit of parity-time symmetry.

analytical approach holds7,8. Initially, the existence of res-
onators between two photonic-crystal mirrors was detected
due to their special dispersion9, and the whole originality
of dispersion had been a leitmotiv. It is timely to explore
such special structures with added gain and loss, to see how
the teaching from simpler non-Hermitian systems are revis-
ited. We first explore CMOS compatible silicon pixels of 4–

5 µm side and same depth, with the aim of enhancing their
940 nm absorption10,11, typically by a factor of 2. This spe-
cific wavelength is of interest within light time-of-flight ap-
plications (e.g., from a modulated laser beam) for invisible
3D face recognition. The quality factor is a NH concept, and
its angular dependence combines dispersion and loss issues.
We discuss electromagnetic simulations in 2D and 3D, from
Fourier-Modal Method (FMM, denoted here with the usual
RCWA acronym, Rigorous Coupled Wave Approximation,
implemented in our homemade SimPhotonics package) or
Finite-Difference-Time-Domain (FDTD) tools. In a short sec-
ond part, we explore the more generic issue of endowing the
multimode flat photonic bands of Littrow resonators with gain
and loss, as has been revisited around the parity-time sym-
metry approach in optics, and in laser diodes recently12–14.
The rationale is that in devices such as broad laser diodes, im-
plementing injecting electrodes with ad hoc geometries could
distribute the gain and loss with a mesoscopic scale or modal
modulation. We could thus find specific ways and designs
for controlling the lasing or amplification in this domain often
where multimode instabilities are often hard to tame, prompt-
ing many efforts.15

To enhance the absorption of silicon in a CMOS pixel,
an early option has been resonant planar cavities16. How-
ever, they impose back-mirrors working at normal incidence,
a technological hurdle. Otherwise, vertically impinging light
must be deviated so as to lengthen the optical path, us-
ing controlled wavelength-scale structures such as nanocones,
nanoholes, "hourglass" shapes, pyramids, etc.10,17–20.

The good news is that most CMOS sensor architectures
have pixels separated by so-called DTI (Deep Trench Isola-
tion) low-index walls (silica), ensuring almost total internal
reflection in a large range of angles (though, the finite thick-
ness favors tunnel coupling around the ≃ 20◦ critical angle). If
a pixel becomes a resonant structure, then, according to Fabry-
Perot physics, the single-pass diffraction efficiency from nor-
mal incidence outside to tilted propagation inside can be low,
it is the resonant build-up that ensures energy transfer inside
and cancels reflection outside.
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The interest of our approach is to reconcile a bottom-up
path, exploiting the strong reflection inside silicon from DTI
(made of silica, with possible extra elements inside), with a
top-down view, based on non-Hermitian physics and blazed
Littrow gratings as the central element, which could operate
at selected angles even though we choose here 45◦ for the first
step. For resonant pixels structures, the photons may leak to
the adjacent pixels. Photon leakage obviously degrades the
modulation transfer function (MTF) of pixel arrays in imag-
ing system, and depends a lot on engineering constraints.10

But the physics of resonances may bring a different point of
view, as pixels should be viewed as coupled resonators experi-
encing a mixture of their losses. This aspect, combined to the
various degrees of freedom of array design could be helpful to
optimize their overall performances, e.g. their MTF. Our ap-
proach is thus distinct from those using longer side propaga-
tion of guided mode resonances (GMR) in larger and thinner
photodiodes,21 which are not fit for small pixel sizes (say < 5
µm).

Figure 2 describes the relevant pixel layout in a 2D view,
ignoring the 3rd dimension. Silicon (dark red) is surrounded
by silica on all sides, except the bottom which is a reflective
metal. The grating on top has two periods, and its sharp tri-
angular shape is inspired by the integrated optics version of
the same issue5,6, including the coexistence of the "double pe-
riod" scheme, to have coupling from the vertical direction to-
gether with blazed Littrow diffraction (diffraction efficiencies
≳ 80%), as could be checked on separate simulations of the
grating bounded by bulk environments.

The simulation of the absorption of these structures has
been modeled by RCWA and by FDTD, with standard indices
of CMOS materials for Si and silica in the 940 nm range. The
former is more able to explore the resonances, while the lat-
ter is a proven tool for pixel design.10,11.The silicon refractive
index is set at its 940 nm value, nSi = 3.6+ 0.0014i, and the
oxide refractive index is set at nSiO2 = 1.45 in the FDTD sim-
ulations. In the RCWA simulation, the silicon dispersion of
Table I was used for interpolation.

Figure 3 shows the comparison of both results for TM po-
larization (electric field in the xy plane, similar results hold
for TE). Peaks of width about 1 nm can be seen reaching 80%
absorption whereas the background is broadly fluctuating in
the 15–30% range. The ∼ 10nm spacing (free spectral range)
of the sharp resonant peaks indicates a ∼ 12 µm physical
path, in line with the inscribed 45◦-tilted square geometric
path. Both simulations confirm that the resonances have the
expected modal pattern, hence we have proposed an arrange-
ment of pixels that sustains quasi-normal modes with this de-
sign. The penetration in the silica wall (associated with the
DTIs), à la Goos-Hänchen, is likely to explain the difference,

TABLE I. Real and Imaginary part of silicon refractive index for the
RCWA method.

λ (nm) 900.0 918.4 953.7 991.9 1000.0
Re(n) 3.6180 3.6087 3.5926 3.5773 3.5740
Im(n) 0.0024 0.0018 0.0010 0.00074 0.00066

FIG. 2. The CMOS pixel layout (a) and schematic operation in the
ray picture (b).

FIG. 3. Comparison of TM Spectra from (a) FMM and (b) FDTD,
with corresponding |E| and |H| field patterns below ; (c) colormap
for the |E| and |H| field patterns.

and the field pattern is anyway starting to feel some confine-
ment and should not tightly fit to the geometric picture. The
path of the diffracted rays is however only

√
2 times larger

than the vertical ray round-trip (8 µm). Hence the factor of
4 in absorption enhancement is a result of the resonance, in
agreement with the observed rather low finesse F ≃ 10, very
plausibly accounting for the quantitative difference by a fac-
tor of ∼3. The attainment of 100% absorption is hampered by
the metal absorption at the bottom. Alternative layouts for the
pixel bottom could be envisioned but the CMOS community
is more prone to change layout of the top of the pixel.

An important issue is the angular dependence of the
response,22 because the ray picture tells us that the optical
path is modified for a nonzero incident angle. The study of
Fig.4 shows that the main resonances have a 4-5◦ angular ac-
ceptance (angles in the silica medium). The resonance shift
is step-wise, with ∼1 nm step, a logical signature of confine-
ment. This is an angle in silica, thus maintaining a reso-
nance condition in air would be possible till about 10◦ without
microlenses, with possible further improvements using mi-
crolenses or possibly, an equivalent quadratic phase portrait
based on a variation of the grating/metasurface atom.

We conclude this resonant-pixel study by the design of a
3D pixel with similar characteristics. The design space of a
2D grating is broad, we found by trial and error that the struc-
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ture of Fig.5(a) was adequate: It can be seen in the FDTD
simulation of Fig.5(b) that resonances are preserved, in width
and qualitatively in terms of spacing as well. A "tomography"
(not shown) of the resonant field confirms its similarity to that
of Fig.3 and/or its TE counterpart.

FIG. 4. Angular dependence of the resonance for (a) FMM and (b)
FDTD.

FIG. 5. (a) Pattern of a 2D Littrow grating with 2nd order grating for
a 3D pixel; (b) normal incidence resonant absorption spectrum.

The behavior of Parity-Time (PT ) symmetric systems in
optics, with their broken and unbroken phase, connected at an
exceptional point (EP) of the dispersion, is a remarkable fea-
ture of non-Hermitian systems that triggered several thought-
ful attempts at improving optical devices,23,24 with multimode
waveguides among them.25 Here, we show how the typical
dispersion feature of blazed Littrow waveguides, the "cross-
ing manifold" pattern, is affected by a generic, weak modula-
tion of gain and loss. Which spatial distribution of gain (on a
lossy background) exactly produces this modulation is left to
further work, but simple overlap integrals of gain patterns as-
sociated to wavevectors close to those involved in the Littrow
waveguide modes (4 vectors at 45◦) naturally tend to give low
frequency patterns in the spirit of beat notes.

So, in addition to (i) the diagonal dispersive terms (diagonal
HRealdiag

mm = ωm = ω0 ± [m∆ω + ck/neff] in Hamiltonian terms
with c/neff the light velocity, noting that we can take ω0 = 0
without loss of generality) that describes crossing manifolds
of equidistant modes, and to (ii) a constant coupling term κ

that couples all the forward and all the backward modes with
exactly the same strength adapted to flattened band (Hmn =
κδ (f,b) with index f,b for forward/backward modes coupled
to each others, and with the critical value κ = κc = ∆ω/π for
maximizing band flattening), we add (iii) an imaginary term
iγm on the diagonal.

The complex diagonal terms are thus expressed as Hmm =

HRealdiag
mm + iγm. Furthermore, we take γm ∝ κc cos(mπ/6),

hence evolving gradually from gain to loss over ∆m =12 ad-
jacent modes, with m spanning here -47 to 48. Such a choice
corresponds to a gain variation at relatively large scale (a few
wavelengths) and does not preclude technological feasibility
for semiconductor gain-based devices.

FIG. 6. Impact of slowly variable gain loss modulation: (a) Imagi-
nary part of eigenvalues (black and grey dots) across spectrum and
the related spectra of the mean of their absolute values ⟨|Im(ω̃ j)|⟩
for three values of the gain loss parameter γ ; (b) in the case
γm = κ cos(mπ/6), the dispersion of crossing manifolds adopts al-
ternate patterns of flat bands and crossing bands with the ∆m =12
mode period.

In this simplified setting [free from the twofold-
degeneracies hinted in Fig.5(b)], we can have a better idea
of the main impact of such a modulation, depending on the
modulation strength being less or more than κc cos(mπ/6): if
it is less, we expect that coupling may, at best, prevail over
gain, and conversely, for larger gain loss, symmetry may be
broken and coupled states with substantial gain and loss may
become the general rule. The eigenvalues obtained in this set-
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ting are shown in Fig.6(a) as blackish dots for the limit case
γm = κc cos(mπ/6). Among the various numerous patterns
induced by the underlying symmetries of the model, we pin-
point the broad modulation with a period of 6∆ω (for sim-
plicity, units are such that ∆ω = ∆k = 1 for the crossing un-
coupled manifolds). To underline the role of the modulation
strength, we plot as magenta circles the average of the abso-
lute values of imaginary parts of the Hamiltonian eigenval-
ues (frequencies) ⟨|Im(ω̃ j)|⟩. This "mean gain loss" displays
a wavy pattern spanning from nearly 0 to 0.2∆ω . Hence it
is possible to collectively go to the unbroken phase in this
case at the two lowest points. It can be seen that the same
analysis made on weaker or stronger modulations [γm = (0.6
or 2)κc cos(mπ/6)] shows two different behaviors: for the
smaller case, zeros are similar but maxima are limited to
∼ 0.12∆ω , while for the larger case, the symmetry is always
on the broken side on average, with a span of ⟨|Im(ω̃ j)|⟩ from
0.2 to 0.36∆ω . Hence the core picture of parity-time symme-
try can still be recognized. The correspondence with the mod-
ified band structure γm = κc cos(mπ/6), Fig.6(b), is clear: the
manifold evolves from flattened to "crossing" (non flattened)
with a 12∆ω period along both normalized k and ω dispersion
axis.

We suggest that this approach constitutes an interesting
modulation method for multimode systems. For instance, it
could help solving the still debated modal selection issues
that make broad area laser diodes often unstable, by applying
a proper gain pattern. This domain was recently addressed
for various kinds of lasers, broad-area ones or vertical cavity
ones (so-called VCSELs)26–28. Losses described in our setting
would typically be the background losses of a broad-area laser
diode, while gain could be modulated by structuring quan-
tum wells into adequate patches, using growth on patterned
substrates to avoid the caveats of etching damages. Seed-
ing quantum "dashes" at determined locations could also be
envisioned. In some sense, our approach extends the quests
made around "α-DFB"29,30 laser diodes that chiefly used the
real part of the index modulation while having the distinctly
different feature of modes stemming from the Blazed Littrow
geometry compared to the cited 1D and 2D index or gain mod-
ulation approaches26–28.

We have exploited the concept of blazed Littrow gratings
toward two issues: a more applied issue, that of resonant
CMOS pixel, as well as to an as yet less-applied issue, the
modal "gain-loss" control in ideal blazed Littrow resonators
inspired by concepts from Parity-Time symmetry in optics.
In the former case, we have shown that the degree of reso-
nance was compatible with CMOS design rules and relevant
to applications, with a path to 3D pixels clearly initiated. Is-
sues of coupling between pixels by the "DTIs" between them
and optimal processes for information retrieval in spite of the
crosstalk could be treated on the basis of non-Hermitian ap-
proaches. As for the generic modal control of these systems
in active devices such as laser diodes, our exploratory ap-
proach suggests a road from spatially shaping gain and loss in

these relatively broad structures, distinctly from current spa-
tial modulation proposals, and getting a deep spectral modu-
lation of the gain-loss pattern over a medium bandwidth, with
rich possibilities opened by the multiple geometric degrees of
freedom in comparison to planar modal gain control schemes.
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