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Natural products have long been an important source of 

inspiration for medicinal chemistry and drug discovery. In the 

cosmetic field, they remain the major elements of the 

composition and serve as marketing asset. Recent research 

showed the implication of salt-inducible kinases on the 

melanin production in skin via MITF regulation. Finding new 

potent modulators on such target could open the way to 

several cosmetic applications to attenuate visible signs of 

photoaging and improve the tan without sun.  

Since virtual screening can be a powerful tool for detecting hit 

compounds in the early stages of a drug discovery process, 

we applied this method on salt-inducible kinase 2 to discover 

potential interesting compounds. Here, we present the 

different steps from the construction of a database of natural 

products, to the validation of a docking protocol and the 

results of the virtual screening. Hits from the screening were 

tested in vitro to confirm their efficiency and results are 

discussed. 
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1 Introduction 

Skin is the largest organ of human body and acts as a 

waterproof physical barrier against the external environment 
[1]

. The products employed for skin care and protection 

belong to cosmetics; they provide their effect by topical 

administration directly on the skin. The global cosmetic 

market reached US$500 billion in 2017 and is expecting to 

exceed US$800 billion by 2023 
[2]

. Among this global market, 

skin care segment is the most important one, expected at 

$181.2 billion by the same year 
[3]

. 

Skin alteration can result from multiple intrinsic 

factors including aging, diet and hormonal influence. 

However, due to its location at the body's surface, the 

normal evolution of the skin appearance may be 

influenced, by other external factors, mainly ultraviolet 

radiation (UVR). The environmental factors will thus play 

an important role in skin degradation. UVR effects on the 

skin, referred as photoaging, are important. They might 

induce a variety of mutagenic and cytotoxic DNA lesions. 

UVR chronic exposition traits includes oxidative stress, 

pigmented spots, loss of skin tone, skin wrinkles, 

increased risks for skin cancer, etc. 
[4]

. As a defense, the 

organism secretes multiples pigments acting as 

absorbent filters to reduce the penetration through the 

epidermis of UV and thus reducing their damage 
[5]

. In 

mammalians, these pigments are known as melanin, a 

generic term employed to group the three different types 

existing: eumelanin, pheomelanin, and neuromelanin. 

However, only eumelanin and pheomelanin are found in 

human epidermis 
[6]

. The production of melanin 

(melanogenesis) results from a complex cascade 

pathway (Figure 1) and rises after the exposure of 

keratinocytes, the epidermis cells, to UVR. Damages 

done by UVR on keratinocytes DNA trigger p53-

mediated transcription of the proopiomelanocortin 

(POMC) gene 
[7]

. POMC peptide cleavage produces 

melanocyte-stimulating hormone (-MSH), which is 

afterward secreted from the keratinocytes. Once -MSH 

bound to the melanocortin 1 receptor (MC1R), located 

on the membrane of melanocytes, the level of cAMP 

increases via the activation of the adenylate cyclase. 

High level of cAMP activates protein kinase A (PKA), 

which phosphorylates the cAMP-responsive-element-

binding protein (CREB). This enhances the transcription 

of the microphthalmia-associated transcription factor 

(MITF) gene 
[8]

. This MITF induces the expression of 

tyrosinase catalysing the oxidation of L-tyrosine to L-

DOPA and then to dopaquinone, serving as a common 

precursor to both pheomelanin and eumelanin 
[9]

. Finally, 

once synthesized, the melanin is stored in melanosomes, 

which are transferred along melanocyte microtubules to 

basal keratinocytes 
[10]

. The visible result of 

melanogenesis is the darkening of the skin, commonly 

called tanning. 

Figure 1. Melanin production induced by UV radiation and 
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role of SIK kinase. 

Skin pigmentation deregulation might have a great 

impact on the wellness of individuals 
[11]

. Furthermore, 

with a rising demand in western culture for golden and 

uniform tan 
[12]

, being able to control (positively or 

negatively) the melanogenesis remains a great 

opportunity for the dermatological and cosmetic fields. 

Recent studies report that salt-inducible kinases (SIK) 

plays an important role in melanin production by 

regulating the activity of the transcription factor CREB 
[13–15]

. Thus, their inhibition can enhance melanogenesis 

and induce skin tanning without UVR damages. SIK are 

serine/threonine kinase belonging to AMP-activated 

protein kinase (AMPK) family with three distinct 

isoforms: SIK1, 2, and 3 
[16]

. The predominant isoform in 

melanocytes is SIK2 
[13]

.  

The trend observed nowadays is a rising demand for 

natural and organic products since consumers are more 

concerned about synthetic ingredients and chemical 

substances 
[17]

. Although natural products (NPs) were 

traditionally used since ancient time, they were gradually 

replaced in the last one and half century by synthetic 

compounds, exhibiting similar properties.
[18]

. However, 

thanks to the shift and the increasing request for natural, 

such substances are now becoming prevalent in modern 

cosmetic and cosmeceutical formulations 
[19]

. Several 

NPs are already known to prevent UV damage with UV 

absorption property 
[20]

. Some flavonoids are able to 

downregulate the melanogenesis or on the contrary to 

stimulate it 
[21,22]

. In any event, these previous results 

prove that the melanogenesis can therefore be 

modulated with NPs. The goal of this work is to identify 

new promising NPs for cosmetic application. A topical 

application of such substances could be an interesting 

alternative to UV-tanning.  

The application of structure-based virtual screening 

(VS) before experimental screening for discovering hit 

compounds on a target has been shown to be profitable 
[23]

. To avoid high false-positive rate and thus testing 

compounds with low affinity, the methodology must be 

carefully validated before running on a whole library of 

compounds. In this study, a VS strategy applied on SIK2 

kinase (Figure 2) was implemented. First, a group of 

several databases of NPs were selected and prepared to 

serve as a screening library. Second, a rigorous 

preparation of a 3D structure was made using homology 

modeling. Third, the docking strategy was validated by 

testing several software and methods. The docking was 

then applied to the curated NP dataset. Finally, after a 

careful selection, an experimental test was performed to 

confirm the hits and quantify the binding affinities.

 

Figure 2. Workflow of the different steps performed to found interesting molecules.

2 Methods 

The public NP databases used to constitute our own natural 

database were all seven downloaded from their website or 

by request to their administrators (Table 1). Two 

standardization protocols were tested to prepare the 

molecules before docking.  RDKit (version ‘2018-09-01’) was 

used to standardize compounds and add hydrogens before 

generating 3D conformation. The standardization protocol of 

VSPrep notably includes the filtration of unwanted 

compounds, the removal of duplicates, the generation of 

most distributed tautomers at physiological pH (7.4) and the 

enumeration of stereoisomers depending on the unassigned 

chiral centers. SMILES formulas were calculated using RDKit 

(version ‘2018-09-01’). Molecule conformations were 

calculated using ETKDG method 
[24]

 followed by an 

optimization step using the MMFF94 forcefield 
[25]

. 

All experiment and calculations on the molecules 

have been made with Python 3.6. We calculated the 

molecular descriptors using RDKit (version ‘2018-09-01’). 

The venn diagram was constructed using pyvenn 

(https://github.com/tctianchi/pyvenn).  

The homology model was built using modeler version 

9.16-1. It was prepared and refined for virtual screening 

with the “Structure Preparation” module from MOE 

(Chemical Computing Group, version 2018_01).  

The three docking software versions are GOLD 

5.2.2
[26]

, Glide 7.5
[27]

 and rDock 2013.1
[28]

. rDock is 

freely available at http://rdock.sourceforge.net/, the two 

others are commercial and need a license. The basic 

parameters of each program remained untouched. For 

consistency, the cavity was generated by the same way 

for all docking programs, by considering an area in a 6 Å 

spherical radius around the original co-crystallized 

ligand superposed on our model. Since no water 

molecule was involved in the binding mode, none was 

kept in the model. For rDock, we used the module 

“dock_solv” instead of the default setting “dock”. Once 

the cavity determined, we performed the redocking of 

the original ligand in the three software. The number of 

poses to return was ten in each case. To evaluate 

https://github.com/tctianchi/pyvenn
http://rdock.sourceforge.net/
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performances two parameters were verified: the ability to 

predict poses close to the experimental one (RMSD < 2 

Å) and their rank according to the native score function. 

If not ranked first, RMSD value of the first ranked pose 

were also verified. For Glide and rDock, the score 

function used, SP and S
inter

, are empirical meaning they 

were determined via regression analysis of experimental 

dataset of protein-ligand complexes 
[27–29]

. While for 

GOLD, the selected ASP fitness function  belongs to 

knowledge-based ones and is derived from an atom-

atom potential also calculated from a database of 

protein-ligand complexes 
[29]

. 

For the enrichment studies, the active molecules 

dataset came from ZINC15 database and decoys from 

DUD-E 
[30]

 and a random selection from dataset for JAK-

2 kinase. For the virtual screening, all the molecules 

were fully prepared with VSPrep
[31]

. RDKit and Pandas 

were used to treat the results and select the best 

molecules. Poses visualisation and interactions 

calculation were realized using MOE software (Chemical 

Computing Group, version 2018_01). The virtual 

screening of the entire database took about three days 

on a standard computer (Intel Core i7-950@3.07 GHz 

Quad-core, 6 Go RAM).  

Experimental tests were conducted by DiscoverX 

KINOMEScan™ assay at 10 μM. 

All the figures were made using matplotlib 
[32]

, 

seaborn 
[33]

 or MOE. Molecules were drawn with Biovia 

Draw 2018. 

3 Results 

3.1 Creation of a natural products database 

The primary goal was to obtain a database of NPs containing 

the information on the precise origin of the compounds and 

the different organisms from which they can be extracted. 

Nowadays, many databases of NPs are available and a non-

exhaustive list may be found on the ZINC15 database 

catalog (http://zinc15.docking.org/catalogs/subsets/biogenic/) 
[34]

. However, they may not be free or may not contain all 

necessary information desired on the origin of the 

compounds. Therefore, seven public curated databases 

were manually selected: BioPhytMol 
[35]

, KNApSAcK-3D 
[36]

, 

NuBBE 
[37]

, SANCDB 
[38]

, StreptomeDB 
[39]

, TCM 
[40]

 and TM-

MC 
[41]

. To appreciate the diversity of our dataset, a primary 

study was perfomed using several descriptors (see Table S1 

and Figure S1 of the Supporting Information). First, the 

characteristics of these databases are recapitulated in the 

Table 1. Most of the compounds come from plants, except 

for StreptomeDB which is exclusively composed of 

metabolites from bacteria. Three databases contain 

compounds from around the world (BioPhytMol, 

StreptomeDB and KNApSAcK-3D) while the other ones 

cover a restraint geographical area (Brasil for NuBBE, South 

Africa for SANCDB and Asian countries for the others). The 

number of molecules per database varies from 633 to 60,556 

but all databases exhibit a good diversity with molecular 

similarity mean between all compounds around 0.40. TM-MC 

is the database showing the best compound diversity with a 

molecular similarity mean of 0.31.

Table 1. Characteristics of each database 

Database Localisation Source Year Molecules 

Molecular 

similarity 

mean (SD) 
1 

URL 

BioPhytMol Worldwide Plant 2014 633 0.39 (0.17) 

http://ab-

openlab.csir.res.in/biophyt

mol/  

NuBBE Brasil Plant 2013 881 0.41 (0.19) 
http://nubbe.iq.unesp.br/po

rtal/nubbe-search.html  

StreptomeDB Worldwide Bacteria 2013 4,040 0.4 (0.15) 
http://132.230.56.4/strepto

medb2/  

SANCDB South Africa 
Plant, 

marine life 
2015 712 0.43 (0.18) https://sancdb.rubi.ru.ac.za/ 

KNApSAcK-3D Worldwide Plant 2012 51,179 0.44 (0.16) 
http://knapsack3d.sakura.n

e.jp/ 

TCM_Database@T

aiwan 
China 

Plant, 

mineral, 

animal  

2011 60,556 0.45 (0.16) http://tcm.cmu.edu.tw/ 
2 

TM-MC Northeast Asian Plant 2015 25,518 0.31 (0.18) 
http://informatics.kiom.re.k

r/compound/  

1. 
Calculated with MACCS keys (166 bits) and the Tanimoto coefficient.  

2. 
URL redirect to https://tm-mc.kr/, available via ZINC15: http://zinc15.docking.org/catalogs/tcmnp/ 

 

Second, each database’s physico-chemical 

properties distribution is shown in Figure 3. According to 

all descriptors used, databases present all similar 

profiles of distribution. A few databases contain heavy 

molecules (> 1,500 Da) but the average ranges from 327 

Da for TM-MC to 556 Da for TCM. The extreme value of 

each descriptor corresponds to either compounds 

belonging to tannin family such as macabertin or 

ellagitanin, either complex glycosides as albizoside A 

http://zinc15.docking.org/catalogs/subsets/biogenic/
http://ab-openlab.csir.res.in/biophytmol/
http://ab-openlab.csir.res.in/biophytmol/
http://ab-openlab.csir.res.in/biophytmol/
http://nubbe.iq.unesp.br/portal/nubbe-search.html
http://nubbe.iq.unesp.br/portal/nubbe-search.html
http://132.230.56.4/streptomedb2/
http://132.230.56.4/streptomedb2/
https://sancdb.rubi.ru.ac.za/
http://knapsack3d.sakura.ne.jp/
http://knapsack3d.sakura.ne.jp/
http://tcm.cmu.edu.tw/
http://informatics.kiom.re.kr/compound/
http://informatics.kiom.re.kr/compound/
http://zinc15.docking.org/catalogs/tcmnp/
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(saponin family), or peptides, as siamycin II, mainly in 

StreptomeDB. A representation of the heaviest molecule 

from all database (MW: 3,738.30 Da) is provided Figure 

S2 of the Supporting Information. 

 

Figure 3. Distributions of physicochemical properties of gathered database: (a) Number of hydrogen bond acceptors 

(HBA); (b) Number of hydrogen bond donors (HBD); (c) Number of rotatable bonds (NRB); (d) Number of heavy atoms 

(NHA); (e) Molecular weight (MW); (f) ClogP (calculated with RDKit); (g) Topological polar surface area (TPSA). 

 

The duplicates were eliminated based on the SMILES 

formula of molecules. Each database contained less 

than 5% of duplicates except TCM (16%). When 

compared two versus two (matrix depicted Figure S3 of 

the Supporting Information), all databases contain at 

least one common identical molecule. Not surprisingly, 

since they both contain the greatest number of 

molecules, Knapsack-3D and TCM possess the highest 

rate of similar molecules (2,394 in common, 2.4%). On 

another side, SANCDB and NuBBE only share five 

molecules, making sense since these two databases 

contain few molecules, which, moreover, come from 

geographically distant areas.  

Before preparing the molecules for the virtual 

screening, the last step carried out was to check their 

availability in Ambinter (http://www.ambinter.com/), a 

global chemical supplier, to ensure the possibility to 

purchase hits for further experimental testing. Ambinter 

also allowed us to incorporate its own natural product 

catalogue to our database (Ambinter_NP). We ended 

with a database of 4,534 unique natural compounds. The 

Venn diagram on the Figure 4 represents the 

overlapping between the databases of origin of these 

natural compounds. Among the seven databases 

selected, four little ones gathered into the label “Others” 

in Figure 4 provide 109 molecules. The biggest part of 

original molecules come from Ambinter_NP, followed by 

TM-MC and TCM databases. The database providing the 

fewest molecules is SANCDB, with only two compounds 

purchasable.

Figure 4. Venn diagram representing the compound overlap between the 8 NP databases forming the NP dataset. 
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“Others” groups the databases containing less than 100 compounds (NuBBE, SANCDB, StreptomeDB and 

Biophytmol). “Ambinter_NP” refers to Ambinter’s natural products.3.2 Preparation of SIK2’s structure

A comparison based on the physicochemical 

properties between our database and protein kinase 

inhibitors (PKI) from PKIDB 
[42]

 showed that the chemical 

space covered by our database is different from the one 

from PKI (see Figures S4 and S5 in the Supporting 

Information). 

In a VS project, two things are essential: a library of 

molecules and a 3D structure of the target. As no 

experimentally determined structure are available for SIK2 

human kinase in the PDB 
[43]

, we created one by homology 

modeling. Homology modeling is a technique allowing the 

prediction of a protein’s 3D structure from its sequence 

thanks to a template. Two prerequisites are important for a 

good model construction: a high sequence identity between 

the target and the template and a correct superposition 

between them. Since it has been shown that 3D structure of 

proteins in a family are more conserved than sequence itself, 

a good template needs to be a protein evolutionarily related 

to the target 
[44]

. 

Nowadays, several program are available for 

homology modeling 
[45]

. Our model was built using 

Modeller 
[46]

 and the SIK2 sequence retrieved from 

UniProt database (ID: Q9H0K1) 
[47]

. The reference 

template is a MAP/microtubule affinity-regulating kinase 

4 (PDB code: 5ES1, resolution of 2.8 Å) 
[48]

, having a 

sequence similarity of 57% with SIK2. We independently 

evaluated our model with SwissModel “Structure 

Assessment” module. We thus obtained a MolProbity 

score of 2.97 and the Ramachandran plot returned 

91.8% of favoured position of amino acids, with three 

outliers (Figure S6 of the Supporting Information) 
[49]

. 

The global RMSD (root mean square deviation) of our 

model with the template calculated on backbone is 0.38 

Å. 

Protein kinases are flexible and may adopt several 

conformations. The consideration for kinase 

conformations is critical in the development of targeted 

kinase inhibitors, especially according to the aimed type 
[50]

. Indeed, kinase inhibitors are classified into different 

types depending on the binding mode adopted and the 

conformation of the binding site 
[51]

. The configurations 

of the αC-helix and the conserved DFG motif into the 

ATP binding pocket were inspected to identify the 

conformation of our model. Depending on the positions 

of their amino acids, these motifs can either be in 

conformation “in” or in conformation “out”. When both 

are in conformation “in”, i.e. αC-in/DFG-in, the kinase is 

in active state. All other possible configurations, i.e. αC-

in/DFG-out, αC-out/DFG-in and αC-out/DFG-out 

represent the inactive states 
[52]

. Each conformation 

exhibits a unique shape allowing or not the binding of 

ATP and the access to a back pocket. The main 

characteristics of an active conformation are the opening 

of the binding site with the knockback of the activation 

loop, the orientation of the αC helix toward the active 

site and a ion-pair interaction between its conserved Glu 

and the Lys of the β3 strand. Another important feature 

is the orientation of the Phe from DFG motif inward 

toward an allosteric back pocket. In inactive 

conformation, the interaction between Lys and Glu 

disappears and Phe flips by ∼180° opening the way to 

the allosteric pocket 
[53]

.   

The catalysis of ATP requires the precise positioning 

of highly conserved motifs. Therefore, the kinase active 

state is also highly conserved 
[54]

. A comparison between 

our model and a reference structure (PDB code: 1ATP, 

chain E) 
[55]

 ensured that it was in active conformation 

and, as seen in Figure 5, it presents a αC-in/DFG-in 

conformation. Kinase inhibitors targeting the active 

conformation of a kinase are categorized type I or I
1/2

 
[56]

. 

 

Figure 5. Superposition of the model and a protein kinase in 

active conformation (PDB: 1ATP, chain E). The kinases 

family conserved motifs are highlighted: DFG motif in blue, 

αC-helix in purple, hinge region in yellow, P loop in green 

and catalytic loop in red. The RMSD between the conserved 

motifs is 1.1 Å. αC-helix’s Glu interacts with catalytic lysine 

and Phe from DFG is oriented toward (DFG-in, αC-helix in). 

3.3 Virtual screening 

3.3.1 Validation of the method 

The goal of this part was to find and select the best 

protocol to dock our natural product dataset. Three 

different docking software: Glide 
[27]

, GOLD 
[26]

 and 

rDock 
[28]

 were compared using two preparation methods 

of compounds: RDKIT and VSprep. To assess the 

enrichment in active molecules, a dataset composed of 

33 active compounds and 200 decoys (ratio: 0.17) was 

used. The performance was judged based on the ability 

of the software to discriminate active compounds from 

inactive ones by using a score, illustrated by the value of 

area under the receiver operating characteristic curve 

(AUC). The higher the value of AUC, the better the 

enrichment of the true positives compared to a random 

method, where AUC would be equal to 0.5. 

 

The results are summarized in the Table 2. We observed 

a higher AUC value for the three docking methods, 

meaning a better enrichment in true positives, when 

molecules are prepared with the VSprep protocol. 
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Furthermore, among the three docking methods and 

regardless the protocol used to prepare the compounds, 

Gold is the only docking software showing significant 

score difference between actives and decoys.  

 

 

Table 2. Median score and AUC values between the different software and preparation methods  

Software  

(score function) 

Preparation 

method of 

compounds 

Median score 

for actives 

Median score 

for decoys 
AUC 

GLIDE (SP) 

RDKit -4.27 -4.75 0.37 

VSPrep -5.22 -4.82 0.66 

rDock (S
inter

) 

RDKit -21.97 -21.51 0.51 

VSPrep -23.13 -23.46 0.55 

Gold (ASP) 

RDKit 35.97 32.08 0.74 

VSPrep 37.44 32.98 0.81 

 

 

Figure 6. Gold docking’s results between decoys (red) and actives (green) molecules prepared with VSprep: (a) 

docking score dispersion; (b) ROC-curve plot. 

 

To conclude, the protocol using VSPrep 
[31]

 to 

prepare the molecules for the virtual screening 

associated to GOLD software returned the best results 

with an AUC of 0.81 (Figure 7) and an enrichment factor 

at 1% of 7.03 (see Supporting Information for more 

details). 

3.3.2 Docking of our natural product database 

As the enrichment studies preconized, the molecules from 

the natural products database were prepared following the 

protocol with VSPrep. With the calculation of the different 

tautomeric forms, the total of molecules in our database rose 

to 10,939. At the rate of six poses returned per molecule, we 

ended with 65,586 poses meaning that GOLD was unable to 

perform calculation docking for eight compounds. The 

distribution range of score goes from -11.72 to 58.04 with an 

average of 22.94. The average difference of score between 

the six poses of a same molecule is 1.69, showing a 

consistency in GOLD scoring results.  

Three known synthetic inhibitors were randomly 

added as references: HG-9-91-01, YKL-06-061 and YKL-

06-062 
[15]

. Their best poses were all ranked in top 100 

with a score of 42.49 (47
th

), 42.04 (54
th

) and 41.78 (56
th

) 

respectively, proving the robustness of the docking 

method. Surprisingly, while inspecting the top 100
th

 

compound, a compound focused our attention. A 

synthetic kinase inhibitor not placed on purpose, the 

gefitinib, was retrieved on 35
th

 position with a score of 

43.43. After further investigation, it appeared that it 

came from the database TM-MC native from A. Radix 

(http://informatics.kiom.re.kr/compound/detail.do?id=gefit

inib). Even if this is not a natural product, it was also a 

proof that our method was able to score kinase inhibitors 
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at the top. In a way, this event could be compared to a 

successful double-blind test. However, this also serves 

as a reminder that even curated, a database can still 

contain mistakes and it remains important to check the 

data before and after their processing. 

Only the top 1,000 poses were considered for further 

analysis. For the hit selections, multiple parameters 

were checked including physico-chemical properties, 

interactions with the receptor but also marketing issue 

as the origin of the compound and the availability of 

intellectual property. Finally, after a rigorous visual 

inspection of remaining poses, 25 molecules were 

selected for experimental testing. Unfortunately, when 

purchasing the compounds, more than half of them were 

temporarily unavailable. All molecules sent for 

experimental test are recapitulated in Table 3. We also 

added two type I kinase inhibitors as positive test: 

bosutinib and dasatinib 
[42]

.

Table 3. Compounds selected for experimental test. Score indicates the GOLD ASP fitness function. 

ID Molecule CAS number MW CLogP HBA HBD Score Rank 

Fisetin 

 

528-48-3 286.05 2.28 6 4 44.25 23 

6-

geranylnaringen

in  

 

97126-57-3 408.19 5.74 5 3 37.17 148 

6,8-

diprenylnaringe

nin  

 

68236-11-3 408.19 5.52 5 3 37.93 122 

Kuraninone  34981-26-5 438.20 5.61 6 3 37.29 140 

Sanggenol- P  

 

1351931-30-0 492.25 6.96 6 4 41.33 62 

Fragarin 

 

574-57-2 468.08 -2.32 9 7 40.61 75 

Kushenol F 

 

34981-24-3 424.19 5.31 6 4 37.18 145 

Cyanidin-3-O-

galactoside 

 

27661-36-5 484.08 -2.61 10 8 40.14 80 
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Sigmoidin A 

 

176046-04-1 424.19 5.23 6 4 38.76 107 

Dasatinib  

 

302962-49-8 487.16  3.31 9 3 - - 

Bosutinib 

 

1391063-17-4 529.17 5.19 8 1 - - 

Table 4. Biological data of the eleven compounds used in this study. Binding affinities (percent control %Ctrl and Kd) were 

measured in the DiscoveRx KINOME scan® platform. Compounds were first screened at 10 M, and if % Ctrl < 50 %, Kd 

determinations were performed in duplicate using 11-point dose response curves (top concentration 30μM, 3-fold dilutions).  

ID 
SIK2 

(% Ctrl) 
BRAF (%Ctrl) BRAF V600E (%Ctrl) 

Fisetin 
24 (pKd: 6.6, Kd: 270 

nM±1) 

9.6 (pKd: 6.8, Kd: 150 

nM ±5) 
11 (pKd: 7.0, Kd: 110 nM±5) 

6-geranylnaringenin 100 97 95 

6,8-diprenylnaringenin 100 75 91 

Kuraninone 100 88 86 

Sanggenol- P 100 89 87 

Fragarin 100 82 93 

Kushenol F 100 88 86 

Cyanidin-3-O-galactoside 100 90 97 

Sigmoidin A 100 79 91 

Dasatinib
57

 0 (pKd: 8.2, Kd: 6.4 nM) 0 (pKd 6.3, Kd 500 nM) 0.3 (pKd: 6.2, Kd 570 nM) 

Bosutinib
57

 0 (pKd: 7.5, Kd: 29 nM) 
30 (pKd < 5.5, Kd > 

3000 nM) 
35 (pKd < 5.5, Kd > 3000 nM) 

Binding affinities (Kd) of the selected compounds 

were measured in the DiscoveRx KINOME scan® 

platform. Among the nine compounds identified by virtual 

screening and available for purchase, only the fisetin 

presented an acceptable rate of inhibition of 76% (Kd: 

270 nM) against SIK2. No other compounds tested 

returned acceptable results (Kd > 10,000 nM). The 

compounds used as positive tests, bosutinib and 

dasatinib, having a strong kinase inhibition on SIK2 

fulfilled their function with both 100% inhibition (Kd: 29 

nM et 6.4 nM respectively). 

The molecules were not only tested versus SIK2 

kinase but also on a panel of other kinases including 

BRAF and BRAFV600E, since it was shown that Fisetin 

has activity against melanoma 
[58]

. Against these targets, 

almost all molecules showed activity with around 10% 

inhibition. Fisetin presents the highest inhibition rate with 

90% on both kinases, followed with the 6,8-

diprenylnaringenin inhibiting BRAF at 25% and Kushenol 

F inhibiting BRAF V600E at 15%.  

4 Discussion and conclusion 

UVR is responsible for various physiological effects on the 

skin, resulting in pigmentation alterations. In response, the 

melanin secreted by the melanocytes acts as a 

photoprotective shield inducing skin tanning. Indoor tanning 

is based on UVR and therefore does not allow the avoiding 

of DNA damage contrarily to sunless tanning. Topical 

application of natural products enhancing the melanogenesis 

remains an opportunity for cosmetic products to reduce 
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visible sign of photoaging and keep a golden and uniform tan. 

SIK kinase family are targets of importance to trigger 

melanogenesis, their inhibition can independently activate 

the tanning pathway without suffering from the damaging 

effects of UV. 

The increase in the cost and time of the drug 

development process have led to greater usage of VS 

approaches. With the increase of the computing power 

and better consideration of receptor flexibility, these 

methods tend to become interesting alternatives to 

traditional screening methods for compounds 

prioritization. Before running a VS campaign, it is of 

major importance to prepare the ligand dataset. 

Molecular compounds should be cleaned from 

accompanying minor compounds or counter-ions. They 

should also be standardized with an appropriate 

protonation state at desired pH and the proper 

tautomeric forms accounted. Finally, a valid initial 3D 

conformation must be generated, especially if the 

chosen software for docking is not able to treat some 

conformational aspects as ring conformers. The target 

structure also needs preparation, including among 

others the assignment of hydrogen atoms, the 

determination of protonation states of amino acids and a 

step of minimization to prevent steric clashes. Here, 

several different protocols and multiple software were 

tested to retrieve the methodology returning best 

enrichment results. The best preparation step for 

molecular compounds was obtained with the VSPrep tool. 

Among the three docking software used, GOLD was the 

one giving the best results while Glide could not satisfy 

our validation request. The free software rDock showed 

interesting potential and proved it can be a promising 

tool for screening campaigns on protein kinase binding 

sites. 

Despite a carefully validated strategy and a manual 

selection of hits after the VS, experimental results did 

not meet our expectations. Indeed, our methodology 

failed to find new potential SIK2 inhibitors, the fisetin 

being already known as SIK inhibitor 
[57]

. Multiple factors 

can explain it, starting with the 3D structure of the target 

obtained by homology modeling and not experimentally, 

that might not be as accurate as an experimental 

structure. Moreover, since no structural information was 

available, the implication of water molecules in the 

binding site could not be checked and the VS campaign 

was performed without taking them into account. Another 

improvement could be to construct several models with 

different templates and compare them to get a 

consensus. Although our goal was to find type 1 

inhibitors, realizing a VS on other conformations of the 

kinase might confirm or reveal other hits. The other 

important feature that might explain the lack of inhibition 

is the skeleton of selected compounds for experimental 

test. Most of the flavonoid chosen scaffolds are flavan 

based and not flavone based as fisetin or quercetin. 

However it seems that flavon scaffold gives better 

results on SIK kinase family 
[59]

. Yet, the poor number of 

experimentally tested molecules (9) does not permit to 

conclude that our strategy is wrong. As soon as other 

molecules will be available for purchase, they will be 

tested to validate or not their inhibition. If proven, this 

strategy could be used on other kinases implicated in 

melanogenesis, as for example KIT, to discover natural 

product inhibitors 
[9]

.  

NPs remain an interesting class of compounds for 

marketing assets in the cosmetical field. The discovery 

of new NPs able to upstream regulate the 

melanogenesis would be valuable. Moreover, as seen in 

the study, they can cover a different chemical space 

than kinase inhibitors which is an important point since 

the intellectual property space of kinase inhibitors is 

crowded. However, the consideration for toxicity and 

safety for such compounds might raise interrogation. 

Previous results in mice over multiple months of 

treatment did not show any apparent associated 

toxicities 
[60]

. Furthermore, the increase of melanin, 

especially for fair-skinned people, could act as an extra-

protection again skin melanoma. Of note, even if some 

compounds exist for sunless tanning, they are not 

substitute to sunscreen which remains one of the most 

efficient tools for optimal skin protection against skin 

photoaging and damage from UVR. 
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