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RECOVERY OF AN INCLUSION IN PHOTOACOUSTIC IMAGING

YAVAR KIAN AND FAOUZI TRIKI

Abstract. In photoacoustic imaging the objective is to determine the optical properties of biological tissue
from boundary measurement of the generated acoustic wave. Here, we propose a restriction to piecewise
constant media parameters. Precisely we assume that the acoustic speed and the optical coe�cients take two
di�erent constants inside and outside a star shaped inclusion. We show that the inclusion can be uniquely
recovered from a single measurement. We also derive a stability estimate of Lipschitz type of the inversion.
The proof of stability is based on an integral representation and a new observability inequality for the wave
equation with piecewise constant speed that is of interest itself.

1. Introduction

Photoacoustic imaging (PAI) [3, 23, 28, 42, 4, 11, 10] is an imaging technique that couples acoustic and
optical waves to achieve high-resolution imaging of optical properties of biological tissues. In a typical (PAI)
experiment, near infra-red (NIR) photons are radiated into the biological tissue which is heated up due to
the absorption of the electromagnetic energy. The heating then results in the expansion of the tissue which
causes the generation of a pressure wave. The measurement of this later on the boundary is then used to
reconstruct the optical absorption and di�usion coe�cients of the tissue.

The inversion procedure in (PAI) proceeds in two steps. In the �rst step, the initial pressure �eld
which is proportional to the local absorbed energy inside the tissue, is recovered from pressure wave bound-
ary data. Mathematically speaking, if the acoustic speed is known, this is a linear inverse source problem
for the acoustic wave equation [1, 2, 13, 15, 16, 17, 20, 22, 24, 32, 33, 34, 37]. In the second step, we
reconstruct the optical absorption and di�usion coe�cients using internal data recovered from the �rst in-
version [7, 30, 31, 35, 9, 39, 8, 40].

Photoacoustic imaging provides both contrast and resolution. The contrast in (PAI) is mainly due to
the sensitivity of the optical absorption and di�usion coe�cients of the tissue in the near infra-red regime.
For instance, di�erent biological tissues absorb NIR photons di�erently. The resolution in (PAI) comes in
when the acoustic waves propagate inside the biological tissue without attenuation, and therefore the corre-
sponding wavelength provides a good resolution (usually submillimeter).

Due to the lack of information on the spatial distribution within heterogeneous biological tissue and
since more than 80% of the tissue is formed by water the acoustic speed in (PAI) is assumed to be a constant
equal to the acoustic speed of the water (such as 1540 m/s). However, in practice the true speed changes
as the acoustic waves propagate through di�erent types of soft tissues. Indeed experimental studies suggest
that the acoustic velocity in biological tissues may have variations of up to 10% of the acoustic velocity in
water [43, 44]. Failure to compensate the acoustic speed variations in heterogeneous biological tissue leads
to aberration artefacts deteriorating the (PAI) image quality. Few mathematical works already proposed to
address this issue by simultaneously determining the acoustic speed and the initial pressure [38, 21, 29, 19].
However the inverse problem to recover both the speed and the initial state for wave equations without
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additional measurements seem to be severely ill-posed [38]. Most of the existing results show the uniqueness
of solution to the inverse problem by assuming additional technical conditions on both the acoustic speed
and the initial pressure [21, 29, 19].

In this work we are interested in solving the inverse problem with non-smooth parameters. In particular
we assume that the acoustic speed and optical coe�cients are piecewise constant functions with the same set
of discontinuities. This was established in [41, Chapter 3], by considering the biological tissue as a mixture
of blood and water. The acoustic velocity in water being di�erent from the acoustic velocity in blood, the
velocity of the biological tissue then depends on the spatial distribution of water and blood in the mixture.
Furthermore, the optical absorption in the mixture will be mainly caused by hemoglobin (as in a biologi-
cal tissue), and will therefore also depend on the location of blood in the mixture. We assume here that
the blood occupies a bounded inclusion, and the initial state is a function of the characteristic function of
such inclusion. Since the value of the velocity of the blood and water are known the (PAI) inverse problem
becomes a problem of identi�cation an inclusion from the measurement of the acoustic wave on the boundary.

The paper is organized as follows. In section 2, we introduce the (PAI) inverse problem and announce
the main results of the paper. Assuming that the initial state which represents the absorption map of the
biological tissue, satis�es some reverse inequality with respect to the set of discontinuity of the acoustic
speed, we obtain a Lipschitz stability estimate. The main result is summarized in Theorem 2.1. The well-
posedness of the forward problem is studied in section 3. Precisely, the existence and uniqueness of solution
are provided in Proposition 3.1. In section 4, we derive a new observability inequality for the wave equation
with piecewise constant speed that is of interest itself. The proof of the stability estimate is based on an
integral representation formula of the pressure wave exposed in Theorem (5.1). The derivation of this latter
is detailed in section 5. Finally, section 6 is devoted to the proof of the main stability estimate of Theorem
2.1.

2. Statement of the problem and main result

In this section we introduce the (PAI) inverse problem and announce the main results of the paper.

Let Ω be a C3 connected bounded open set of R3. Let a be a �xed constant within ( 12 , 1) and consider

ω an open set of R3 such that ω ⊂ Ω, and de�ne

c := 1 + (a− 1)1ω, (2.1)

where 1ω is the characteristic function of the inclusion ω. We consider the following initial boundary value
problem  c−2∂2t p−∆xp = 0, in (0,+∞)× Ω,

p(0, ·) = f, ∂tp(0, ·) = g, in Ω,
∂νp+ β∂tp = 0, on (0,+∞)× ∂Ω,

(2.2)

where β ∈ C2(∂Ω; (0,+∞)) represents the damping of the acoustic transducers on the boundary. We assume
here that f ∈ H2(Ω), g ∈ H1(Ω), and they satisfy the following compatibility conditions∫

Ω

c−2gdx+

∫
∂Ω

βfdσ(x) = 0, ∂νf + βg = 0 on ∂Ω. (2.3)

We will assume here that the initial condition f depends on the acoustic speed c, that is f = f(c, ·) ∈
H2(Ω).

Under assumption (2.3), we show in Proposition 3.1 the unique existence of a solution p of (2.2) that lies
in C([0,+∞);H2(Ω))∩C2([0,+∞);L2(Ω)), and we consider the (PAI) inverse problem to determine simul-
taneously the sound speed c and the initial pressure f from the knowledge of the pressure data p|∂Ω×(0,T ),
with T > 0 su�ciently large. The objective of this paper is to derive stability estimate for this inverse
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problem.

We �x M > 0 and we introduce the subset F of L∞(Ω)×H2(Ω)×H1(Ω) such that for all (c, f, g) ∈ F
the following conditions are ful�lled:
(i) the map c takes the form (2.1).
(ii) g ∈ H1(Ω) solves ∆g = 0 in Ω and satis�es the boundary condition g = −β−1∂νf on ∂Ω [36].
(iii) c → f(c, ·) is a measurable function on L∞(Ω), and satis�es the following bound for almost every
c ∈ L∞(Ω) with ∥c∥L∞(Ω) ⩽ 1:

∥f(c, ·)∥H2(Ω) ⩽M. (2.4)

(iv) For j = 1, 2 and for all cj of the form (2.1) with ω = ωj , there exists d > 0 independent of a such that

∥f(c1, ·)− f(c2, ·)∥H1(Ω) ⩾ d ∥1ω1
− 1ω2

∥L∞(Ω) , (2.5)

and we have f(c1, ·) = f(c2, ·) and ∂νf(c1, ·) = ∂νf(c2, ·) on ∂Ω.

Remark 2.1. Notice that since the normal derivative of the initial pressure stays the same for all c of the
form (2.1), we deduce from condition (ii) that g is independent of c. The reverse inequality (2.5) indiquates
that one can determine in a stable way the set of discontinuity of the optical coe�cients which is the same
as of the acoustic speed from the knowledge of absorption map [31].

The following stability estimate is the principal result of this article.

Theorem 2.1. For j = 1, 2, let (cj , f(cj , ·), g) ∈ F , with cj of the form (2.1) with ω = ωj, and denotes by
pj the solution of (2.2). We �x T = 4diam(Ω) and we assume that ω2 is star shaped. Then, there exists a
constant a0 = a0(β,Ω,M) ∈ ( 12 , 1) such that for any a ∈ (a0, 1) we can �nd C = C(β,Ω,M, a) > 0 such that
the following stability estimates hold

∥c1 − c2∥L∞(Ω) ⩽ C∥p1 − p2∥H1((0,T )×∂Ω), (2.6)

∥f(c1, ·)− f(c2, ·)∥H1(Ω) ⩽ C
(
∥p1 − p2∥

H
3
2 ((0,T )×∂Ω)

+ ∥t− 1
2 (∂tp1 − ∂tp2)∥L2((0,T )×∂Ω)

)
. (2.7)

Remark 2.2. Notice that the assumption a ∈ (a0, 1) is in agreement with the physical setting. Indeed the
acoustic speed in the biological tissue can vary up to 10% from the constant acoustic velocity in water [43, 44].
Here the acoustic speed in the water is normalized to one and variation in the acoustic speed is bounded by
1− a0.

3. Forward problem

In this section we study the well-posedness of the problem (2.2). For equation with smooth coe�cients,
the well-posedness of (2.2) can be deduced by following the analysis of [26]. Nevertheless, since we deal
here with non-smooth sound speeds coe�cients c ∈ L∞(Ω), such properties need to be considered more
carefully. In addition, we show in our results that the solution of (2.2) can be estimated independently of
the parameter a appearing in (2.1).

We denote by L2(Ω; c−2dx) the space of measurable functions h satisfying∫
Ω

c−2|h|2dx <∞.

We associate with L2(Ω; c−2dx) the scalar product

⟨u, v⟩L2(Ω;c−2dx) =

∫
Ω

c−2uvdx
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and we recall that L2(Ω; c−2dx) is an Hilbert space. Using the fact that 0 < a ⩽ c ⩽ 1, we deduce that
L2(Ω; c−2dx) = L2(Ω) with equivalent norms. We denote by H the linear subspace of H1(Ω)×L2(Ω; c−2dx)
of elements of (u0, u1) ∈ H1(Ω)× L2(Ω; c−2dx) satisfying the condition∫

Ω

c−2u1dx+

∫
∂Ω

βu0dσ(x) = 0. (3.1)

We can prove the following.

Lemma 3.1. There exists a constant C > 0 depending only on β and Ω such that, for all (u0, u1) ∈ H, we
have

∥u0∥2H1(Ω) + ∥u1∥2L2(Ω;c−2dx) ⩽ C

∫
Ω

(|∇u0|2 + c−2|u1|2)dx. (3.2)

Proof. It is clear that the proof will be completed if we can show that

∥u0∥2L2(Ω) ⩽ C

∫
Ω

(|∇u0|2 + |u1|2)dx. (3.3)

For this purpose, let us �x γ ∈ C1(Ω;R3) and β̃ ∈ C2(Ω) satisfying γ = ν and β̃ = β on ∂Ω. Then, applying
the Green formula, we obtain∫

∂Ω

βu0dσ(x) =

∫
Ω

div(β̃u0γ)dx

=

∫
Ω

β̃∇u0 · γdx+

∫
Ω

u0div(β̃γ)dx.

(3.4)

Using the fact that β̃ > 0, we deduce that∫
Ω

div(β̃γ)dx =

∫
∂Ω

βγ · νdσ(x) =
∫
∂Ω

βdσ(x) > 0.

Therefore, applying the Poincaré-Wirtinger inequality, we deduce that∥∥∥∥∥u0 −
∫
Ω
u0div(β̃γ)dx∫
Ω
div(β̃γ)dx

∥∥∥∥∥
2

L2(Ω)

⩽ C

∫
Ω

|∇u0|2dx, (3.5)

with C > 0 depending only on β and Ω. On the other hand, combining (3.4) with (3.1), using the fact that
1
2 ⩽ a ⩽ c ⩽ 1 and applying the Cauchy-Schwarz inequality, we obtain∣∣∣∣∫

Ω

u0div(β̃γ)dx

∣∣∣∣2 ⩽ 2

(∣∣∣∣∫
Ω

β̃∇u0 · γdx
∣∣∣∣2 + ∣∣∣∣∫

Ω

c−2u1dx

∣∣∣∣2
)

⩽ C

∫
Ω

(|∇u0|2 + |u1|2)dx,

with C > 0 depending only on β and Ω. Combining this with (3.5), we obtain

∥u0∥2L2(Ω) ⩽ 2C

∫
Ω

|∇u0|2dx+ 2

∣∣∣∣∣
∫
Ω
u0div(β̃γ)dx∫
Ω
div(β̃γ)dx

∣∣∣∣∣
2

⩽ C

∫
Ω

(|∇u0|2 + |u1|2)dx,

with C > 0 depending only on β and Ω. This proves (3.3) and it completes the proof of the lemma. □

According to Lemma 3.1, one can check that the space H endowed with the scalar product

⟨(u0, u1), (v0, v1)⟩ =
∫
Ω

∇u0 · ∇v0dx+

∫
Ω

c−2u1v1dx

is an Hilbert space. Let us also consider the following density results on H.

Lemma 3.2. Consider the space K de�ned by

K := {(u0, u1) ∈ H2(Ω)×H1
0 (Ω) : ∂νu0 = 0 on ∂Ω}.

Then K ∩H is dense on H.
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Proof. Let us �rst show that the K is dense on H1(Ω) × L2(Ω; c−2dx). Since H1
0 (Ω) is clearly dense in

L2(Ω; c−2dx), we only need to prove that the space {h ∈ H2(Ω) : ∂νu0 = 0 on ∂Ω} is dense in H1(Ω). For
this purpose, consider −∆N the Laplacian with Neumann boundary condition acting on L2(Ω) and recall
that, since Ω is C3, D(−∆N ) = {h ∈ H2(Ω) : ∂νu0 = 0 on ∂Ω}. Then, recalling that −∆N is the unique
selfadjoint operator associated with the sesquilinear hermitian form

b(u, v) =

∫
Ω

∇u · ∇vdx, u, v ∈ H1(Ω),

with domain H1(Ω), we deduce that D(−∆N ) is dense in H1(Ω). This proves that K is dense on H1(Ω)×
L2(Ω; c−2dx). Now recalling that that H is the kernel of a continuous linear form acting on H1(Ω) ×
L2(Ω; c−2dx), one can check that K ∩H is dense on H. □

We denote by A the operator

A =

(
0 1
c2∆ 0

)
acting on the space H with domain

D(A) := {(u0, u1) ∈ H : (u1, c
2∆u0) ∈ H1(Ω)× L2(Ω; c−2dx), ∂νu0 + βu1 = 0 on ∂Ω}.

Let us observe that for all (u0, u1) ∈ D(A) we have A(u0, u1) ∈ H. Indeed, for all (u0, u1) ∈ D(A), �xing
(v0, v1) = A(u0, u1), we obtain∫

Ω

c−2v1dx+

∫
∂Ω

βv0dσ(x) =

∫
Ω

∆u0dx+

∫
∂Ω

βu1dσ(x)

=

∫
Ω

∂νu0dσ(x) +

∫
∂Ω

βu1dσ(x) = 0.

This proves that (v0, v1) ∈ H. Using the properties described above we will state our �rst result of existence
of strong solution of (2.2) as follows.

Proposition 3.1. Let (f, g) ∈ H2(Ω) ×H1(Ω) be such that the compatibility conditions (2.3) are ful�lled.
Then problem (2.2) admits a unique solution p ∈ C2([0,+∞);L2(Ω))∩C1([0,+∞);H1(Ω))∩C([0,+∞);H2(Ω))
and there exists C > 0 depending only on β, T and Ω such that

∥p∥C2([0,+∞);L2(Ω)) + ∥p∥C1([0,+∞);H1(Ω)) + ∥p∥C([0,+∞);H2(Ω)) ⩽ C ∥(f, g)∥H2(Ω)×H1(Ω) . (3.6)

Proof. This lengthy proof will be divided into four steps.
Step 1: in this step we will show that D(A) embedded continuously into H2(Ω)×H1(Ω). For this purpose,
let us �rst observe that for (u0, u1) ∈ D(A), we have u0, u1 ∈ H1(Ω), ∆u0 ∈ L2(Ω) and ∂νu0dx + βu1 = 0

on ∂Ω. It follows that u0 ∈ H1(Ω), satis�es ∆u0 ∈ L2(Ω) and ∂νu0 = −βu1 ∈ H
1
2 (∂Ω) and applying [14,

Theorem 2.4.1.3] we deduce that u0 ∈ H2(Ω) and, in view of Lemma 3.1, we obtain

∥u0∥H2(Ω) + ∥u1∥H1(Ω) ⩽ C
(
∥∆u0∥L2(Ω) + ∥u0∥H1(Ω) + ∥u1∥H1(Ω) + ∥∂νu0∥

H
1
2 (∂Ω)

)
⩽ C

(∥∥c2∆u0∥∥L2(Ω;c−2dx)
+ ∥u0∥H1(Ω) + ∥u1∥H1(Ω) + ∥βu1∥

H
1
2 (∂Ω)

)
⩽ C(

∥∥c2∆u0∥∥L2(Ω;c−2dx)
+ ∥u0∥H1(Ω) + ∥u1∥H1(Ω))

⩽ C(∥A(u0, u1)∥H + ∥(u0, u1)∥H)

⩽ C ∥(u0, u1)∥D(A) ,

with C > 0 depending only on β and Ω. Here we have used the fact that 1
2 ⩽ a ⩽ c ⩽ 1. This proves that

D(A) embedded continuously into H2(Ω)×H1(Ω) and we deduce that

D(A) := {(u0, u1) ∈ H ∩H2(Ω)×H1(Ω) : ∂νu0 + βu1 = 0 on ∂Ω}.
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Step 2: In this step we will prove that the operator A generates a semigroup etA. Recalling that the
space K∩H, with K de�ned in Lemma 3.2, embedded into D(A) and, in view of Lemma 3.2, we deduce that
D(A) is dense in H. Fix (u0, u1) ∈ D(A) and notice that, integrating by parts, we obtain

R ⟨A(u0, u1), (u0, u1)⟩ = R

(∫
Ω

∇u1 · ∇u0dx+

∫
Ω

∆u0u1dx

)
= R

(∫
∂Ω

∂νu0u1dσ(x)

)
= −

∫
∂Ω

β(x)−1|∂νu0|2dσ(x) ⩽ 0.

(3.7)

Thus, applying [12, Proposition 2.4.2], we deduce that A is dissipative. Now let us prove that A is maximal
dissipative. For this purpose, according to [12, Proposition 2.2.6], it is enough to show that for any F =
(F0, F1) ∈ H the equation Av − v = F admits a solution v = (v0, v1) ∈ D(A). Let us �rst prove that
Ran(A−Id) is a closed subspace ofH. For this purpose, let us consider a sequence (gn)n∈N of Ran(A−Id) that
converges in the sense of H to g. Then, there exists a sequence (hn)n∈N of D(A) such that gn = (A− Id)hn,
n ∈ N. Then, for all m,n ∈ N, we have

∥gn − gm∥2H = ∥(A− Id)hn − (A− Id)hm∥2H
= ∥hn − hm∥2H + ∥Ahn −Ahm∥2H − 2R ⟨hn − hm, A(hn − hm)⟩ .

Combining this with (3.7), we deduce that

∥hn − hm∥2H + ∥A(hn − hm)∥2H ⩽ ∥gn − gm∥2H , m, n ∈ N,
which implies that (hn)n∈N is a Cauchy sequence of D(A). Combining this with the fact that D(A) embedded
continuously into H2(Ω)×H1(Ω), we deduce that there exists h ∈ D(A) such that (hn)n∈N converges to h in
the sense of D(A) and we have g = (A− Id)h which proves that Ran(A− Id) is closed. Using this property
and applying a density argument, it would be enough to show that for any F = (F0, F1) ∈ H ∩ H2(Ω)2

the equation Av − v = F admits a solution v = (v0, v1) ∈ D(A). For this purpose, let us observe that the
equation Av − v = F can be rewritten as c2∆v0 − v0 = F0 + F1, in Ω,

v1 = F0 + v0, in Ω,
∂νv0 + βv0 = −βF0, on ∂Ω.

(3.8)

Using the fact that β ∈ C2(∂Ω; (0,+∞)), we deduce that for any F = (F0, F1) ∈ H ∩H2(Ω)2 the problem
(3.8), which is an elliptic equation with Robin boundary condition with respect to v0, admits a solution
v0, v1 ∈ H2(Ω) satisfying ∂νv0 + βv1 = 0 on ∂Ω. Moreover, using the fact that F = (F0, F1) ∈ H ∩H2(Ω)2,
we obtain ∫

∂Ω

βv0dσ(x) =

∫
∂Ω

βv1dσ(x)−
∫
∂Ω

βF0dσ(x)

=

∫
∂Ω

βv1dσ(x) +

∫
Ω

c−2F1dx

=

∫
∂Ω

βv1dσ(x) +

∫
Ω

∆v0dx−
∫
Ω

c−2(v0 + F0)dx

=

∫
∂Ω

(∂νv0 + βv1)dσ(x)−
∫
Ω

c−2v1dx

= −
∫
Ω

c−2v1dx.

This proves that (v0, v1) ∈ H∩H2(Ω)×H1(Ω) and ∂νv0+βv1 = 0 on ∂Ω, which implies that (v0, v1) ∈ D(A).
Therefore, A is maximal dissipative with a domain dense in H and applying the Hille-Yoshida theorem (see
e.g. [12, Theorem 3.1.1.]) we deduce that it generates a semigroup etA.

Step 3: In this step we complete the proof of existence of solutions of (2.2). In view of (2.3) we have
(f, g) ∈ D(A) and, applying [12, Theorem 3.1.1.], we deduce the map t 7→ etA(f, g) ∈ C([0,+∞);D(A)) ∩
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C1([0,+∞);H). Combining this with the continuous embedding D(A) ⊂ H2(Ω) × H1(Ω), we deduce that
problem (2.2) admits a solution p ∈ C2([0,+∞);L2(Ω)) ∩ C1([0,+∞);H1(Ω)) ∩ C([0,+∞);H2(Ω)) given
by (p(t), ∂tp(t)) = etA(f, g). Moreover, applying [12, Theorem 3.1.1] and the fact that D(A) embedded
continuously into H2(Ω) ×H1(Ω), we deduce that there exists C > 0 depending only on β, T and Ω such
that

∥p∥C2([0,+∞);L2(Ω)) + ∥p∥C1([0,+∞);H1(Ω)) + ∥p∥C([0,+∞);H2(Ω)) ⩽ C ∥(p, ∂tp)∥C([0,+∞);D(A))

⩽ C ∥(f, g)∥D(A)

⩽ C ∥(f, g)∥H2(Ω)∩H1(Ω) .

From this estimate we obtain (3.6).
Step 4: In this step, we prove the uniqueness of solutions of (2.2). For this purpose, let us consider the

energy E de�ned by

E(t) =

∫
Ω

c−2|∂tp(·, t)|2 + |∇p(·, t)|2dx, t ∈ [0,+∞). (3.9)

Assuming that p ∈ C2([0,+∞);L2(Ω))∩C1([0,+∞);H1(Ω))∩C([0,+∞);H2(Ω)) solves (2.2) with f = g ≡ 0,
we deduce that E ∈ C1([0,+∞)) and, integrating by parts, we get

E′(t) = 2R

∫
Ω

(c−2∂2t p∂tp+∇p · ∇∂tp)dx

= 2R

∫
Ω

(c−2∂2t p−∆p)∂tpdx+ 2R

∫
∂Ω

∂νp∂tpdσ(x)

= −2

∫
∂Ω

β|∂tp|2dσ(x) ⩽ 0.

Therefore, the map E is non-increasing and, using the fact that E(0) = 0, we deduce that E ≡ 0. Thus, p
is a constant function and using the fact that p(·, 0) ≡ 0 we deduce that p ≡ 0. This completes the proof of
the uniqueness of solutions p ∈ C2([0,+∞);L2(Ω))∩C1([0,+∞);H1(Ω))∩C([0,+∞);H2(Ω)) of (2.2) and it
completes the proof of the proposition.

□

We can extend this result as follows.

Proposition 3.2. Let (f, g) ∈ H2(Ω)×H1(Ω) be such that the following condition

∂νf + βg = 0 on ∂Ω, (3.10)

is ful�lled. Then problem (2.2) admits a unique solution p ∈ C2([0,+∞);L2(Ω)) ∩ C1([0,+∞);H1(Ω)) ∩
C([0,+∞);H2(Ω)). Moreover, there exists a constant C > 0 depending on β, Ω such that (3.6) is ful�lled.

Proof. Let us consider λ ∈ C, de�ned by

λ =

∫
Ω
c−2gdx+

∫
∂Ω
βfdσ(x)∫

∂Ω
βdσ(x)

.

It is clear that (f − λ, g) ∈ H and we deduce that (f − λ, g) ∈ D(A). Therefore, noticing that constant
functions solve (2.2), with f constant and g ≡ 0, we deduce that p = λ+ v, with v ∈ C2([0,+∞);L2(Ω)) ∩
C1([0,+∞);H1(Ω)) ∩ C([0,+∞);H2(Ω)) given by (v(t), ∂tv(t)) = etA(f − λ, g), solves (2.2) and p ∈
C2([0,+∞);L2(Ω)) ∩ C1([0,+∞);H1(Ω)) ∩ C([0,+∞);H2(Ω)). For the estimate (3.6) and the uniqueness
of such solutions of (2.2) we refer to Proposition 3.1.

□
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4. Observability

In this section, we consider ω a star-shaped domain and we recall that there exists x0 ∈ ω such that for
all x ∈ ω the interval [x0, x] is contained into ω. As a consequence of this result, �xing n the outward unit
normal vector of ω, we �nd

n · (x− x0) ⩾ 0, x ∈ ∂ω. (4.1)

We de�ne also the following constant

C(x0) = sup
x∈Ω

|x− x0|. (4.2)

Now let us consider the solution of the following initial boundary value problem c−2∂2t u−∆xu = F (t, x), in (0, T )× Ω,
u(0, ·) = u0, ∂tu(0, ·) = u1, in Ω,
u = 0, on (0, T )× ∂Ω.

(4.3)

with T > 0, u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω; c−2dx), F ∈ L2((0, T ) × Ω) and c of the form (2.1). Following the

argumentation of [18, Lemma 2.34 and Lemma 2.39], we can prove that (4.3) admits a unique solution
u ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) satisfying ∂νu|(0,T )×∂Ω ∈ L2((0, T )× ∂Ω)). We prove the following
observability inequality which is an extension of some known results to our class of equations with non-smooth
coe�cients [45, 5, 6].

Proposition 4.1. Let (u0, u1) ∈ H1
0 (Ω) × L2(Ω) and T > 2C(x0)a

−2 with C(x0) de�ned by (4.2). Then,
for u the solution of (4.3), we have∫

Ω

[|u1|2 + c2|∇u0|2]dx ⩽
2C(x0)

Ta2 − 2C(x0)

(∫ T

0

∫
∂Ω

|∂νu(t, x)|2dσ(x)dt+
∫ T

0

∫
Ω

|F (t, x)|2dxdt

)
(4.4)

is ful�lled.

Proof. By a density argument, it would be enough to prove the result for u0, u1 ∈ C∞
0 (Ω). With such

assumptions it is known that (4.3) admits a unique solution u ∈ C2([0,+∞);L2(Ω)) ∩ C1([0,+∞);H1
0 (Ω)) ∩

C([0,+∞);H2(Ω)). Without loss of generality we assume also that u0, u1 are real valued in such way that u
is also real valued. Fixing x0 ∈ ω satisfying (4.1) and multiplying (4.3) by ∇u · (x− x0), we obtain∫ T

0

∫
Ω

F∇u · (x− x0)dxdt =

∫ T

0

∫
Ω

[∂2t u∇u · (x− x0)− c2∆u∇u · (x− x0)]dxdt

=

∫ T

0

∫
Ω

[∂2t u∇u · (x− x0)dxdt−
∫ T

0

∫
Ω

c2∆u∇u · (x− x0)dxdt = I1 − I2.

(4.5)
From now on we denote by V the vector valued function V (x) = x− x0. Integrating by parts, we obtain

I1 = −
∫ T

0

∫
Ω

∂tu∇∂tu · V dxdt+
∫
Ω

∂tu(T, x)∇u(T, x) · V dx−
∫
Ω

u1∇u0 · V dx

= −1

2

∫ T

0

∫
Ω

[div(|∂tu|2V )− |∂tu|2div(V )]dxdt+

∫
Ω

∂tu(T, x)∇u(T, x) · V dx−
∫
Ω

u1∇u0 · V dx

= −1

2

∫ T

0

∫
∂Ω

|∂tu|2V · νdσ(x)dt+ 3

2

∫ T

0

∫
Ω

|∂tu|2dxdt+
∫
Ω

∂tu(T, x)∇u(T, x) · V dx−
∫
Ω

u1∇u0 · V dx

=
3

2

∫ T

0

∫
Ω

|∂tu|2dxdt+
∫
Ω

∂tu(T, x)∇u(T, x) · V dx−
∫
Ω

u1∇u0 · V dx.
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In the same way, we �nd

I2 =

∫ T

0

∫
Ω\ω

∆u∇u · V dxdt+ a2
∫ T

0

∫
ω

∆u∇u · V dxdt

=
1

2

∫ T

0

∫
Ω\ω

[div(|∇u|2V )− |∇u|2div(V )]dxdt+
a2

2

∫ T

0

∫
ω

[div(|∇u|2V )− |∇u|2div(V )]dxdt

=
1

2

∫ T

0

∫
Ω\ω

div(|∇u|2V )dxdt− 3

2

∫ T

0

∫
Ω\ω

|∇u|2dxdt+ a2

2

∫ T

0

∫
ω

div(|∇u|2V )dxdt− 3a2

2

∫ T

0

∫
ω

|∇u|2dxdt

=
(a2 − 1)

2

∫ T

0

∫
∂ω

|∇u|2V · ndσ(x)dt+ 1

2

∫ T

0

∫
∂Ω

|∇u|2V · νdσ(x)dt− 3

2

∫ T

0

∫
Ω

c2|∇u|2dxdt

=
(a2 − 1)

2

∫ T

0

∫
∂ω

|∂nu|2V · ndσ(x)dt+ 1

2

∫ T

0

∫
∂Ω

|∂νu|2V · νdσ(x)dt− 3

2

∫ T

0

∫
Ω

c2|∇u|2dxdt.

Combining this with (4.5), we �nd∫ T

0

∫
Ω

F∇u · (x− x0)dxdt = I1 − I2

=
3

2

∫ T

0

∫
Ω

[|∂tu|2 + c2|∇u|2]dxdt+
∫
Ω

∂tu(T, x)∇u(T, x) · V dx−
∫
Ω

u1∇u0 · V dx

− (a2 − 1)

2

∫ T

0

∫
∂Ω

|∂νu|2V · ndσ(x)dt− 1

2

∫ T

0

∫
∂Ω

|∂νu|2V · νdσ(x)dt

and we obtain

3

2

∫ T

0

∫
Ω

[|∂tu|2 + c2|∇u|2]dxdt+
∫
Ω

∂tu(T, x)∇u(T, x) · V dx−
∫
Ω

u1∇u0 · V dx

= − (1− a2)

2

∫ T

0

∫
∂Ω

|∂nu|2V · ndσ(x)dt+ 1

2

∫ T

0

∫
∂Ω

|∂νu|2V · νdσ(x)dt+
∫ T

0

∫
Ω

F∇u · (x− x0)dxdt.

Using the fact that a ∈ (0, 1) and applying (4.1), we obtain that

(1− a2)

2

∫ T

0

∫
∂Ω

|∂nu|2V · ndσ(x)dt ⩾ 0

and it follows that

3

2

∫ T

0

∫
Ω

[|∂tu|2 + c2|∇u|2]dxdt+
∫
Ω

∂tu(T, x)∇u(T, x) · V dx−
∫
Ω

u1∇u0 · V dx+

⩽
1

2

∫ T

0

∫
∂Ω

|∂νu|2V · νdσ(x)dt+ 2C(x0)

∫ T

0

∫
Ω

|F |2dxdt+ 1

8

∫ T

0

∫
Ω

|∇u|2dxdt.

Recalling that c2 ⩾ a2 ⩾ 1
4 , we obtain∫ T

0

∫
Ω

[|∂tu|2 + c2|∇u|2]dxdt+
∫
Ω

∂tu(T, x)∇u(T, x) · V dx−
∫
Ω

u1∇u0 · V dx+

⩽
1

2

∫ T

0

∫
∂Ω

|∂νu|2V · νdσ(x)dt+ 2C(x0)

∫ T

0

∫
Ω

|F |2dxdt.
. (4.6)

Fixing

E(t) :=

∫
Ω

[|∂tu(t)|2 + c2|∇u(t)|2]dx, t ∈ [0, T ],
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we deduce that E ∈ C1([0, T ]) and E′ ≡ 0. It follows that∫ T

0

∫
Ω

[|∂tu|2 + c2|∇u|2]dxdt =
∫ T

0

E(t)dt = TE(0) = T

∫
Ω

[|u1|2 + c2|∇u0|2]dx.

On the other hand, using the fact that c ⩾ a, we �nd∣∣∣∣∫
Ω

∂tu(T, x)∇u(T, x) · V dx−
∫
Ω

u1∇u0 · V dx
∣∣∣∣

⩽
∫
Ω

|∂tu(T, x)| |∇u(T, x)| |V |+
∫
Ω

|u1| |∇u0| |V | dx

⩽ C(x0)a
−2(E(T ) + E(0)) = 2C(x0)a

−2

∫
Ω

[|u1|2 + c2|∇u0|2]dx.

Combining these estimates with (4.6), we obtain(
T − 2C(x0)a

−2
) ∫

Ω

[|u1|2 + c2|∇u0|2]dx ⩽
∫ T

0

∫
∂Ω

|∂νu|2|V |dσ(x)dt+ 2C(x0)

∫ T

0

∫
Ω

|F |2dxdt

⩽ C(x0)

∫ T

0

∫
∂Ω

|∂νu|2dσ(x)dt+ 2C(x0)

∫ T

0

∫
Ω

|F |2dxdt.

This last estimate clearly implies (4.4). □

5. Representation Formula

Let the condition of Theorem 2.1 be ful�lled with (cj , f(cj , ·), g) ∈ F , and denote fj = f(ci, ·). Recall
that there exists a constant C depending on β and Ω such that

∥g∥H1(Ω) ⩽ C ∥fj∥H2(Ω) (5.1)

and (fj , g) ∈ H2(Ω) ∩H1(Ω) satis�es the compatibility condition (3.10) with (f, g) = (fj , gj), j = 1, 2. Let
us consider pj ∈ C2([0,+∞);L2(Ω)) ∩ C1([0,+∞);H1(Ω)) ∩ C([0,+∞);H2(Ω)) the solution of (2.2) with
c = cj and (f, g) = (fj , gj). Consider p = p2 − p1 and notice that p solves the problem ∂2t p− c22∆xp = c22(c

−2
1 − c−2

2 )∂2t p1, in (0,+∞)× Ω,
p(0, ·) = f, ∂tp(0, ·) = g, in Ω,
∂νp+ β∂tp = 0, on (0,+∞)× ∂Ω,

(5.2)

with f = f1 − f2 and g = g1 − g2. The main result of this section can be stated as follows.

Theorem 5.1. Fix T = 4diam(Ω), a ∈
(
3
4 , 1
)
and de�ne the space 0H

1((0, T )×∂Ω) := {h ∈ H1((0, T )×∂Ω) :
h(0, ·) ≡ 0}. Then, there exist three bounded linear operators G ∈ B(L∞(Ω);H1

0 (Ω)), I ∈ B(L2((0, T ) ×
∂Ω);H1

0 (Ω)) and J ∈ B(0H1((0, T )× ∂Ω);H1
0 (Ω)) such that the identity

G[c22(c−2
1 − c−2

2 )]− f = I[β∂tp|(0,T )×∂Ω] + J [p|(0,T )×∂Ω] (5.3)

holds true. Here the operators G, I, J are chosen in such a way that there exists a constant C > 0 depending
on Ω, and β such that

∥G∥B(L∞(Ω);H1
0 (Ω)) ⩽ C ∥f1∥H2(Ω) , (5.4)

∥I∥B(L2((0,T )×∂Ω);H1
0 (Ω)) + ∥J ∥B(0H1((0,T )×∂Ω);H1

0 (Ω)) ⩽ C. (5.5)

The proof of Theorem 5.1 is based on the construction of a boundary operator that we build by applying
the observability inequality of Proposition 4.1. For this purpose, let us �rst recall the de�nition of solutions
of (4.3), when F ≡ 0, in the transposition sense. For this purpose, let us consider the unbounded operator L
acting on L2(Ω; c−2dx) with domain D(L) = H1

0 (Ω) ∩H2(Ω) de�ned by Lh = −c2∆h, h ∈ D(L). It is well
known that L is a strictly positive selfadjoint operator with a compact resolvent. Therefore, the spectrum
of L consists of a non-decreasing sequence of strictly positive eigenvalues (λk)k⩾1. Let us also introduce
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an orthonormal basis in the Hilbert space L2(Ω; c−2dx) of eigenfunctions (φk)k⩾1 of L associated with the
non-decreasing sequence of eigenvalues (λk)k⩾1. For all s ⩾ 0, we denote by Ls the operator de�ned by

Lsg =

+∞∑
k=1

⟨g, φk⟩λskφk, g ∈ D(Ls) =

{
h ∈ L2(Ω) :

+∞∑
k=1

|⟨g, φk⟩|2 λ2sk <∞

}
and consider on D(Ls) the norm

∥g∥D(Ls) =

(
+∞∑
k=1

|⟨g, φk⟩|2 λ2sk

) 1
2

, g ∈ D(Ls).

We can also set D(L−s) the dual space of D(Ls), with respect to L2(Ω; c−2dx), which is a Hilbert space
with the norm

∥v∥D(L−s) =

( ∞∑
k=1

∣∣⟨v, φk⟩−2s

∣∣2 λ−2s
k

) 1
2

.

Let us recall that D(L
1
2 ) = H1

0 (Ω) with equivalent norm but due to the fact that the coe�cient c is not

smooth the space D(L− 1
2 ) do not coincide with H−1(Ω). In addition, one can check that

∥v∥2
D(L

1
2 )

= ∥∇v∥2L2(Ω) , v ∈ H1
0 (Ω)

and deduce that there exists C > 1 deppending only on Ω such that

C−1 ∥v∥H1(Ω) ⩽ ∥v∥
D(L

1
2 )

⩽ C ∥v∥H1(Ω) , v ∈ H1
0 (Ω). (5.6)

Fixing ψ0 ∈ L2(Ω; c−2dx), ψ1 ∈ D(L− 1
2 ) and g ∈ L2((0, T ) × ∂Ω), we consider the solution in the

transposition sense of  ∂2t ψ − c22∆xψ = 0, in (0, T )× Ω,
ψ(0, ·) = ψ0, ∂tψ(0, ·) = ψ1, in Ω,
ψ = g, on (0, T )× ∂Ω.

(5.7)

More precisely, for any F ∈ L1(0, T ;L2(Ω)) let us consider the solution vF ∈ C([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω))

of  ∂2t vF − c22∆xvF = F, in (0, T )× Ω,
vF (T, ·) = 0, ∂tvF (T, ·) = 0, in Ω,
vF = 0, on (0, T )× ∂Ω.

The solution in the transposition sense of (5.7), is the unique element ψ ∈ L∞(0, T ;L2(Ω; c−2dx)) satisfying∫ T

0

⟨ψ(t, ·), F (t, ·)⟩L2(Ω;c−2dx) dt

= −⟨ψ0, ∂tvF (0, ·)⟩L2(Ω;c−2dx) + ⟨ψ1, vF (0, ·)⟩
D(L− 1

2 ),D(L
1
2 )

−
∫ T

0

∫
∂Ω

∂νvF (t, x)g(t, x)dσ(x)dt.

(5.8)

In a similar way to [18, Corollary 2.36], we can show that (5.7) admits a unique solution ψ ∈ C([0, T ];L2(Ω; c−2dx))∩
C1([0, T ] : D(L− 1

2 )) in the transposition sense.
Let us consider the problem

∂2t φ− c22∆xφ = 0, in (0, T )× Ω,
φ(0, ·) = 0, ∂tφ(0, ·) = φ0, in Ω,
φ(T, ·) = 0, ∂tφ(T, ·) = 0, in Ω,
φ = Λφ0, on (0, T )× ∂Ω,

(5.9)

with Λ a suitable control operator from D(L− 1
2 ) to L2((0, T )× ∂Ω). We recall that c2 takes the form (2.1)

with ω = ω2 a star-shapped domain. Therefore, applying the observability inequality of Proposition 4.1, we
can prove the following result.
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Lemma 5.1. For T = 4diam(Ω) and a ∈
(
3
4 , 1
)
, we can de�ne Λ ∈ B(D(L− 1

2 );L2((0, T ) × ∂Ω)) such that

for any φ0 ∈ D(L− 1
2 ), problem (6.5) admits a unique solution φ ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];D(L− 1

2 )) in
the transposition sense satisfying

∥φ∥L∞(0,T ;L2(Ω)) ⩽ C ∥φ0∥
D(L− 1

2 )
(5.10)

with C > 0 depending only on Ω.

Proof. Let us start by proving the existence of a solution of problem (6.5) in the transposition sense. Let

φ0 ∈ D(L− 1
2 ), g ∈ L2((0, T )×∂Ω), F ∈ L1(0, T ;L2(Ω)), (u0, u1) ∈ H1

0 (Ω)×L2(Ω) and consider the solutions
of the following initial boundary value problems ∂2t v − c−2

2 ∆xv = F, in (0, T )× Ω,
v(T, ·) = 0, ∂tv(T, ·) = 0, in Ω,
u = 0, on (0, T )× ∂Ω,

(5.11)

 ∂2tw − c22∆xw = 0, in (0, T )× Ω,
w(T, ·) = u0, ∂tw(T, ·) = u1, in Ω,
w = 0, on (0, T )× ∂Ω,

(5.12)

 ∂2t ψ1 − c22∆xψ1 = 0, in (0, T )× Ω,
ψ1(0, ·) = 0, ∂tψ1(0, ·) = φ0, in Ω,
ψ1 = 0, on (0, T )× ∂Ω,

(5.13)

 ∂2t ψ2 − c22∆xψ2 = 0, in (0, T )× Ω,
ψ2(0, ·) = 0, ∂tψ2(0, ·) = 0, in Ω,
ψ2 = g, on (0, T )× ∂Ω.

(5.14)

Let us recall that problem (5.13) admits a unique solution in the transposition sense ψ1 ∈ C([0, T ];L2(Ω))∩
C1([0, T ];D(L− 1

2 )) which is the unique element of L∞(0, T ;L2(Ω; c−2dx)) satisfying, for all F ∈ L1(0, T ;L2(Ω)),
the following identity ∫ T

0

∫
Ω

c−2
2 ψ1Fdxdt = ⟨φ0, v(0, ·)⟩

D(L− 1
2 ),D(L

1
2 )
, (5.15)

with v ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) the solution of (5.11). In the same way, problem (5.14) admits

a unique solution in the transposition sense ψ2 ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];D(L− 1
2 )) which is the unique

element of L∞(0, T ;L2(Ω)) satisfying for all F ∈ L1(0, T ;L2(Ω))∫ T

0

∫
Ω

c−2
2 ψ2Fdxdt = −

∫ T

0

∫
∂Ω

g∂νvdσ(x)dt, (5.16)

with v ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) the solution of (5.11). Since T > 2Diam(Ω)a−2, Proposition

4.1 and the Poincarré inequality imply that for any (u0, u1) ∈ H1
0 (Ω)× L2(Ω) we have

∥u1∥L2(Ω) + ∥u0∥H1(Ω) ⩽ C1

(
2Diam(Ω)

(Ta2 − 2Diam(Ω))

) 1
2

∥∂νw∥L2((0,T )×∂Ω) ,

with C1 > 0 depending only on Ω. Using the fact that a > 3
4 and T = 4diam(Ω), we deduce that Ta2 −

2Diam(Ω)) ⩾ Diam(Ω))
4 > 0 and we get

∥u1∥L2(Ω) + ∥u0∥H1(Ω) ⩽ 4C1 ∥∂νw∥L2((0,T )×∂Ω) , (5.17)

Therefore, applying the Hahn Banach theorem, for any φ0 ∈ D(L− 1
2 ) we can de�ne Λφ0 ∈ L2((0, T )× ∂Ω)

such that ∫ T

0

∫
∂Ω

Λφ0∂νwdσ(x)dt = ⟨ψ1(T, ·), u1⟩L2(Ω;c−2dx) − ⟨∂tψ1(T, ·), u0⟩
D(L− 1

2 ),D(L
1
2 )
. (5.18)
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Now let us consider N to be the continuous linear form on L1(0, T ;L2(Ω))×H1
0 (Ω)× L2(Ω) given by

N (F, u0, u1) = −
∫ T

0

∫
∂Ω

Λφ0∂νvdσ(x)dt−
∫ T

0

∫
∂Ω

Λφ0∂νwdσ(x)dt.

Then, there exists ψ2 ∈ L∞(0, T ;L2(Ω)), h1 ∈ L2(Ω; c−2dx), h2 ∈ D(L− 1
2 ) such that∫ T

0

∫
Ω

ψ2Fdxdt+ ⟨h1, u1⟩L2(Ω) + ⟨h2, u0⟩
D(L− 1

2 ),D(L
1
2 )

= −
∫ T

0

∫
∂Ω

Λφ0∂νvdσ(x)dt−
∫ T

0

∫
∂Ω

Λφ0∂νwdσ(x)dt.

Fixing u0 = u1 = 0, we deduce that ψ2 ∈ L∞(0, T ;L2(Ω)) satis�es (5.16) and from the uniqueness of

this expression, we deduce that ψ2 ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];D(L− 1
2 )) is the unique solution in the

transposition sense of (5.14) with g = Λφ0. In the same way, �xing F = 0, we deduce that h1 = ψ2(T, ·)
and h2 = −∂tψ2(T, ·) and it follows

⟨ψ2(T, ·), u1⟩L2(Ω;c−2dx) − ⟨∂tψ2(T, ·), u0⟩
D(L− 1

2 ),D(L
1
2 )

= −
∫ T

0

∫
∂Ω

Λφ0∂νwdσ(x)dt.

Combining this with (5.18), we deduce that ψ2(T, ·) = −ψ1(T, ·) and ∂tψ2(T, ·) = −∂tψ1(T, ·) and φ = ψ1+ψ2

solves (6.5) in the sense of transposition. This completes the proof of the �rst statement of Lemma 5.10. In
order to complete the proof of the lemma, we need to prove the estimate (5.10). For this purpose, let us �rst
observe that using the fact that 1

2 ⩽ a ⩽ c2 ⩽ 1 and applying classical energy estimates, one can check that

there exists a constant C2 > 0 depending only on Ω such that for v ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω))

solving (5.11) and w ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) solving (5.12), we have

∥v∥C([0,T ];H1
0 (Ω)) + ∥v∥C1([0,T ];L2(Ω)) + ∥∂νv∥L2((0,T )×∂Ω) ⩽ C2 ∥F∥L1(0,T ;L2(Ω)) , (5.19)

∥w∥C([0,T ];H1
0 (Ω)) + ∥w∥C1([0,T ];L2(Ω)) + ∥∂νw∥L2((0,T )×∂Ω) ⩽ C2(∥u0∥H1(Ω) + ∥u1∥L2(Ω)). (5.20)

In the same way, following the argumentation in [18, Lemma 2.42], we can prove that there exists a constant
C3 > 0 depending only on Ω such that

∥ψ1∥C([0,T ];L2(Ω)) + ∥ψ1∥
C1([0,T ];D(L− 1

2 ))
⩽ C3 ∥φ0∥

D(L− 1
2 )
. (5.21)

Combining formula (5.17)-(5.18) with (5.21), we deduce that∣∣∣∣∣
∫ T

0

∫
∂Ω

Λφ0∂νwdσ(x)dt

∣∣∣∣∣
⩽ ∥ψ1∥C([0,T ];L2(Ω)) ∥u0∥L2(Ω) + ∥ψ1∥

C1([0,T ];D(L− 1
2 ))

∥u1∥H1(Ω)

⩽ C3 ∥φ0∥
D(L− 1

2 )
(∥u0∥L2(Ω) + ∥u1∥H1(Ω))

⩽ 4C3C1 ∥∂νw∥L2((0,T )×∂Ω) ∥φ0∥
D(L− 1

2 )
.

Thus, we have Λ ∈ B(D(L− 1
2 );L2((0, T )× ∂Ω)) with

∥Λ∥
B(D(L− 1

2 );L2((0,T )×∂Ω))
⩽ 4C3C1. (5.22)

Now recall that for any F ∈ L1(0, T ;L2(Ω)) and v ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) solving (5.11), we

have ∫ T

0

∫
Ω

c−2
2 ψ2Fdxdt = −

∫ T

0

∫
∂Ω

Λφ0∂νvdσ(x)dt
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and applying (5.19) and (5.22), we obtain∣∣∣∣∣
∫ T

0

∫
Ω

c−2
2 ψ2Fdxdt

∣∣∣∣∣ ⩽ ∥Λφ0∥L2((0,T )×∂Ω) ∥∂νv∥L2((0,T )×∂Ω)

⩽ 4C3C1 ∥φ0∥
D(L− 1

2 )
C2 ∥F∥L1(0,T ;L2(Ω)) .

Therefore, we �nd
∥ψ2∥L∞(0,T ;L2(Ω)) ⩽ 4C3C2C1 ∥φ0∥

D(L− 1
2 )
.

Combining this with (5.21) and recalling that φ = ψ1 + ψ2 we deduce (5.10). This completes the proof of
the lemma. □

Applying Lemma 5.1, we are now in position to complete the proof of Theorem 5.1.
Proof of Theorem 5.1. Let us �rst recall that, following the arguments of [25, Theorem 2.1] (see also

[18, Lemma 2.43]), for all v0 ∈ H1
0 (Ω), g ∈ 0H

1((0, T ) × ∂Ω), F ∈ L1(0, T ;L2(Ω)) one can check that the
problem  ∂2t v − c22∆xv = F, in (0, T )× Ω,

v(0, ·) = v0, ∂tv(0, ·) = 0, in Ω,
v = g, on (0, T )× ∂Ω,

admits a unique solution v ∈ C1([0, T ];L2(Ω)) ∩ C([0, T ];H1(Ω)) satisfying ∂νv ∈ L2((0, T ) × ∂Ω) and the
estimate

∥v∥C1([0,T ];L2(Ω))+∥v∥C([0,T ];H1(Ω))+∥∂νv∥L2((0,T )×∂Ω) ⩽ C(∥u0∥H1(Ω)+∥F∥L1(0,T ;L2(Ω))+∥g∥H1((0,T )×∂Ω)),

with C > 0 depending on Ω and β. Therefore, applying Lemma 5.1, we can consider φ ∈ C([0, T ];L2(Ω))
solving (6.5) and we can de�ne the normal derivative of φ as an element of the dual space 0H

1((0, T )× ∂Ω)′

of 0H
1((0, T )× ∂Ω) given by

⟨∂νφ, g⟩
0H1((0,T )×∂Ω)′,0H1((0,T )×∂Ω) = −⟨φ0, v0⟩

D(L− 1
2 ),D(L

1
2 )

+ ⟨Λφ0, ∂νv⟩L2((0,T )×∂Ω) +

∫ T

0

∫
Ω

φFdxdt.

Using this property, the fact that, since f1 = f2 on ∂Ω, we have f ∈ H1
0 (Ω) and the fact that p ∈

C2([0,+∞);L2(Ω)) ∩ C1([0,+∞);H1(Ω)) ∩ C([0,+∞);H2(Ω)), we obtain the following identity

⟨φ0, f⟩
D(L− 1

2 );D(L
1
2 )

− ⟨Λφ0, ∂νp⟩L2((0,T )×∂Ω) + ⟨∂νφ, p⟩0H1((0,T )×∂Ω)′,0H1((0,T )×∂Ω)

=

∫ T

0

∫
Ω

(∂2t p− c21∆xp)φdxdt =

∫
Ω

c22(c
−2
1 − c−2

2 )

∫ T

0

∂2t p1φdtdx.

Now using the fact that ∂νp = −β∂tp on (0, T )× ∂Ω, we obtain

⟨φ0, f⟩
D(L− 1

2 ),D(L
1
2 )

+ ⟨Λφ0, β∂tp⟩L2((0,T )×∂Ω) + ⟨∂νφ, p⟩
0H1((0,T )×∂Ω)′,0H1((0,T )×∂Ω)

=

∫
Ω

c22(c
−2
1 − c−2

2 )

∫ T

0

∂2t p1φdtdx.
(5.23)

Let us consider the operator K de�ned by

Kφ0 =

∫ T

0

∂2t p1φdt.

Using the fact that p1 ∈ C2([0,+∞);L2(Ω)), φ ∈ C([0, T ];L2(Ω)) and applying Lemma 5.1 and estimate
(3.6), (5.1), we obtain

∥Kφ0∥L1(Ω) ⩽ T ∥p2∥C2([0,T ];L2(Ω)) ∥φ∥C([0,T ];L2(Ω)) ⩽ C∗ ∥f1∥H2(Ω) ∥φ0∥
D(L− 1

2 )
,

with a constant C∗ > 0 depending on Ω and β. Thus K ∈ B(D(L− 1
2 );L1(Ω)) and we have

∥K∥
B(D(L− 1

2 );L1(Ω))
⩽ C∗ ∥f1∥H2(Ω) .
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In light of (5.6), can de�ne K∗ ∈ B(L∞(Ω);D(L
1
2 )) = B(L∞(Ω);H1

0 (Ω)) to be the adjoint operator of K as
follows ∫

Ω

ψKφ0dx = ⟨φ0,K
∗ψ⟩

D(L− 1
2 );D(L

1
2 )
, ψ ∈ L∞(Ω)

and, applying (5.6), we recall that

∥K∗∥B(L∞(Ω);H1
0 (Ω)) = C ′ ∥K∗∥

B(L∞(Ω);D(L
1
2 ))

= C ′ ∥K∥
B(D(L− 1

2 );L1(Ω))
⩽ C ′C∗ ∥f1∥H2(Ω) , (5.24)

with C ′ > 0 depending only on Ω. In the same way, we de�ne the map M : D(L− 1
2 ) ∋ φ0 7→ ∂νφ ∈

0H
1((0, T )× ∂Ω)′ where φ solves in the transposition sense (6.5). In view of Lemma 5.1 and the estimates

(5.6) and (5.22), we have M ∈ B(D(L− 1
2 ); 0H

1((0, T )× ∂Ω)′) and there exists a constant C ′
∗ > 0 depending

only on Ω such that

∥M∗∥B(0H1((0,T )×∂Ω);H1
0 (Ω)) ⩽ C ′ ∥M∗∥

B(0H1((0,T )×∂Ω);D(L
1
2 )

= C ′ ∥M∥
B(D(L− 1

2 );0H1((0,T )×∂Ω)′)
⩽ C ′

∗.

(5.25)
Thus, (5.23) can be rewritten as〈

φ0,K
∗[c22(c

−2
1 − c−2

2 )]− f
〉
D(L− 1

2 );D(L
1
2 )

=
〈
φ0,Λ

∗[β∂tp|(0,T )×∂Ω] +M∗[p|(0,T )×∂Ω]
〉
D(L− 1

2 );D(L
1
2 )
.

Since here φ0 ∈ D(L− 1
2 ) is arbitrary chosen, we obtain the identity (5.3) by choosing G = K∗, I = Λ∗ and

J = M∗. Moreover, we deduce (5.4) and (5.5) by applying the estimates (5.22) and (5.24)-(5.25). This
completes the proof of the theorem. □

6. Proof of Theorem 2.1

We �x a ∈ ( 34 , 1) to be determined and denote fj = f(cj , ·). Applying Theorem 5.1, we obtain the
following representation

G[c22(c−2
1 − c−2

2 )]− (f1 − f2) = I[β∂tp|(0,T )×∂Ω] + J [p|(0,T )×∂Ω], (6.1)

with p = p1 − p2 solving (5.2). In view of (2.4) and (5.4), there exists a constant C > 0 depending on Ω and
M such that ∥∥G[c22(c−2

1 − c−2
2 )]

∥∥
H1(Ω)

⩽ C
∥∥c22(c−2

1 − c−2
2 )
∥∥
L∞(Ω)

= C
∥∥c−2

1 − c−2
2

∥∥
L∞(Ω)

. (6.2)

On the other hand, we have
c−2
1 − c−2

2 = (a−2 − 1)(1ω2 − 1ω1).

Recalling that, for j = 1, 2, 1
2 ⩽ a ⩽ cj ⩽ 1, we obtain∥∥c−2

1 − c−2
2

∥∥
L∞(Ω)

⩽ 6(1− a) ∥1ω2
− 1ω1

∥L∞(Ω) .

Combining this with (6.2), we obtain∥∥G[c22(c−2
1 − c−2

2 )]
∥∥
H1(Ω)

⩽ 6C(1− a) ∥1ω2 − 1ω1∥L∞(Ω) .

Fixing

a0 = max

(
3

4
, 1− d

6C

)
,

with d > 0 the constant appearing in (2.5), and applying (2.5), for any a ∈ (a0, 1], we �nd∥∥G[c22(c−2
1 − c−2

2 )]− (f1 − f2)
∥∥
H1(Ω)

⩾ ∥f1 − f2∥H1(Ω) −
∥∥G[c22(c−2

1 − c−2
2 )]

∥∥
H1(Ω)

⩾ (d− 6C(1− a)) ∥1ω2 − 1ω1∥L∞(Ω) ,

where (d− 6C(1− a)) > (d− 6C(1− a0)) ⩾ 0. Combining this with (5.5) and (6.1), for any a ∈ (a0, 1], we
obtain

∥1ω2
− 1ω1

∥L∞(Ω) ⩽

(
C ∥β∥L∞(∂Ω) + C

(d− 6C(1− a))

)
∥p∥H1((0,T )×∂Ω)
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which clearly implies (2.6).
In order to complete the proof of the theorem, we only need to show (2.7). From now on, we denote by

C > 0 a constant depending on Ω, β, a and M that may change from line to line. Recalling that f1 = f2
and ∂νf1 = ∂νf2 on ∂Ω, we have

p(0, x) = f1(x)− f2(x) = 0, ∂tp(0, x) = g1(x)− g2(x) = β−1(x)(∂νf2(x)− ∂νf1(x)) = 0, x ∈ ∂Ω.

Therefore, in view of [27, Chapter I, Theorem 2.3], we can �nd G ∈ H2((0, T )× Ω) such that

G|(0,T )×∂Ω = p|(0,T )×∂Ω, G(0, ·) = ∂tG(0, ·) ≡ 0, (6.3)

∥G∥H2((0,T )×Ω) ⩽ C1

(
∥p1 − p2∥

H
3
2 ((0,T )×∂Ω)

+ ∥t− 1
2 (∂tp1 − ∂tp2)∥L2((0,T )×∂Ω)

)
, (6.4)

with C1 > 0 depending only on Ω and T . Then, we can decompose p into two terms p = v +G such that v
solves the problem ∂2t v − c22∆xv = c22(c

−2
1 − c−2

2 )∂2t p1 − (∂2tG− c22∆xG), in (0, T )× Ω,
v(0, ·) = f, ∂tv(0, ·) = g, in Ω,
v = 0, on (0, T )× ∂Ω,

(6.5)

Applying the observability inequality of Proposition 4.1, we obtain

∥f∥2H1(Ω)) ⩽ C
(
∥∂νv∥2L2((0,T )×∂Ω) +

∥∥c22(c−2
1 − c−2

2 )∂2t p1 − (∂2tG− c22∆xG)
∥∥2
L2((0,T )×Ω)

)
⩽ C

(
∥∂νv∥2L2((0,T )×∂Ω) + 2

∥∥c22(c−2
1 − c−2

2 )∂2t p1
∥∥2
L2((0,T )×Ω)

+ 2
∥∥(∂2tG− c22∆xG)

∥∥2
L2((0,T )×Ω)

)
⩽ C

(
∥∂νv∥2L2((0,T )×∂Ω) + ∥1ω2 − 1ω1∥

2
L∞(Ω) ∥p1∥

2
C2([0,T ];L2(Ω)) + ∥G∥2H2(0,T )×Ω)

)
.

Combining this with (2.4), (2.6), Proposition 3.1 and (6.4), we obtain

∥f∥H1(Ω)) ⩽ C
(
∥∂νv∥L2((0,T )×∂Ω) + ∥p1 − p2∥

H
3
2 ((0,T )×∂Ω)

+ ∥t− 1
2 (∂tp1 − ∂tp2)∥L2((0,T )×∂Ω)

)
(6.6)

Meanwhile, we get

∂νv(t, x) = ∂νp(t, x)− ∂νG(t, x) = −β(x)∂tp− ∂νG(t, x), (t, x) ∈ (0, T )× ∂Ω

and it follows

∥∂νv∥L2((0,T )×∂Ω) ⩽ ∥β∥L∞(∂Ω) ∥∂tp∥L2((0,T )×∂Ω) + ∥∂νG∥L2((0,T )×∂Ω)

⩽ C(∥p∥H1((0,T )×∂Ω) + ∥G∥H2((0,T )×Ω))

⩽ C
(
∥p1 − p2∥

H
3
2 ((0,T )×∂Ω)

+ ∥t− 1
2 (∂tp1 − ∂tp2)∥L2((0,T )×∂Ω)

)
.

Combining this last estimate with (6.6), we obtain (2.7). This completes the proof of the theorem.
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