
HAL Id: hal-04662129
https://hal.science/hal-04662129v2

Submitted on 1 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Unified Visual Exploration Framework for
(Semi-)structured Data

Théo Bouganim, Ioana Manolescu, Emmanuel Pietriga

To cite this version:
Théo Bouganim, Ioana Manolescu, Emmanuel Pietriga. A Unified Visual Exploration Framework for
(Semi-)structured Data. BigVis 2024 - 7th International Workshop on Big Data Visual Exploration
and Analytics (VLDB 2024), VLDB, Aug 2024, Guangzhou, China. �hal-04662129v2�

https://hal.science/hal-04662129v2
https://hal.archives-ouvertes.fr

A Unified Visual Exploration Framework for (Semi-)structured
Data

Théo Bouganim
Inria Saclay

Institut Polytechnique de Paris
Palaiseau, France

theo.bouganim@inria.fr

Ioana Manolescu
Inria Saclay

Institut Polytechnique de Paris
Palaiseau, France

ioana.manolescu@inria.fr

Emmanuel Pietriga
Inria Saclay

Université de Paris-Saclay
Gif-sur-Yvette, France

emmanuel.pietriga@inria.fr

ABSTRACT
Application datasets are shared or published in a variety of tech-
nical formats, structured or semi-structured. Visualization tools
can help users explore and understand those data, but are typically
designed for one data format, e.g., relational, RDF, XML, or even
a domain-specific vocabulary such as FOAF for RDF. We present
a novel framework that, given as input a dataset of one among
many different formats, automatically derives an informative graph
structure in the spirit of Property Graphs (PGs), from which an
interactive visual interface is created. Our framework leverages
prior work on integrating heterogeneous data and abstracting (or
summarizing) it. The novelty here lies in interpreting each graph
node through this abstraction process, and combining it with an
interactive visual representation.

VLDBWorkshop Reference Format:
Théo Bouganim, Ioana Manolescu, and Emmanuel Pietriga. A Unified
Visual Exploration Framework for (Semi-)structured Data. VLDB 2024
Workshop: BigVis.

1 MOTIVATION
Semi-structured data can be encoded in a variety of formats, in-
cluding RDF graphs, property graphs, JSON data objects and XML
trees. Serialization of such data structures yields textual represen-
tations that are easily persisted and transported, facilitating data
interchange. Such textual representations can also be loaded and
edited in raw text and code editors. But working at this low level of
abstraction is often tedious: users experience difficulty understand-
ing, analyzing and interactively manipulating the data, primarily
because of the unidimensional nature of this textual representation.

Visual tools and frameworks can support users in their data
understanding and analysis tasks. But those tools are typically
designed for one particular format, e.g., RDF or XML, or even for
one particular domain-specific vocabulary based on those formats,
e.g., FOAF or RSS. The goal of this work is to design and develop
a framework that can generate interactive visual representations
from data in any format (higly structured, i.e., relational, or semi-
structured). Based on the basic premise that any kind of data can
be modeled as a graph, our framework transforms the imported
data into a generic graph structure from which node-link diagram

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

representations can be derived. The research question we focus
on is as follows: can we automatically produce, from any input
data, a graph structure amenable to visual representation that can
effectively support users in data exploration and manipulation
tasks?

Our framework primarily uses node-link diagrams for the repre-
sentation of this structure, as such visualizations are generic and
fairly straightforward to understand. But as they suffer from scal-
ability problems – quickly becoming illegible as the graph’s size
or density increases – we favor an approach based on incremental
exploration. Rather than represent the entire graph, the framework
lets users identify points of entry into the graph – nodes of par-
ticular interest through, e.g., a keyword search or the filtering of
a list based on criteria such as node type or facets. A subgraph is
then generated from the selected nodes, serving as the basis for the
interactive exploration of the whole graph: based on users’ interests
– i.e., when following selected links – additional nodes are fetched
and visualized, and branches of lesser interest can be elided to keep
the visual representation manageable.

This paper is organised as follows. Section 2 gives a brief
overview of related work in data management systems and inter-
active graph exploration. Section 3 describes recent data manage-
ment research results, based on data abstraction, that our approach
builds upon. Section 4 describes the new ingredients we contribute
to generate property graphs from arbitrary input data based on
abstraction. Section 5 studies the performance of our data pro-
cessing and analysis pipeline. Section 6 then gives an overview of
the visualization tool we are currently designing to display those
graphs.

2 STATE OF THE ART
We outline the main areas and results in trying to help users cope
with large data volumes: graph exploration from a database perspec-
tive; and interactive graph visualisation. Compared to these, the
novelty of our work is: (𝑖) we target structured or semi-structured
data from a variety of models; (𝑖𝑖) we leverage property graphs as
vehicles for interactive visualization.

In this paper, we present our ongoing work toward a first objec-
tive: guiding user navigation in an unknown graph, from a given
node, to its neighbours. This is but one among many, complemen-
tary graph exploration techniques.

2.1 Graph exploration in Data Management
Systems

The traditional way of interacting with the data assumes users write
queries, which requires a certain level of technical skills, as well

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

as some familiarity with the data. To handle situations where one
or both are lacking, prior work has investigated ways to (𝑖) help
users form structured queries, or to (𝑖𝑖) search the data via simpler
means, such as keyword search and/or flexible – as opposed to
structured – querying. Below, we review recent data exploration
works targeting graph databases.

Modern graph query languages such as GPML [19] or the JEDI [1]
SPARQL extension allow asking for paths between nodes match-
ing some query variables. GPML allows asking for paths between
variables even if the users know nothing about the structure of the
path; in contrast, SPARQL 1.1 and JEDI require users to combine
known graph edge labels in their regular path queries.

In keyword-based search (KBS, in short) [3, 4, 16, 39], one asks,
e.g., for connections between “Alice", "Nice" and "IBM". Here, a re-
sult is a tree including three nodes whose labels match respectively
these keywords. KBS is handy when users know keywords (enti-
ties) to search for. It does however have disadvantages: finding all
answers may be costly, and it may be hard to "guess" entities that
are connected. To remove the latter hurdle, one approach [6] is
to automatically enumerate the paths between pairs of connected
entities of specific types, e.g., between People and Organizations,
that are considered most meaningful.

Other systems let users build SPARQL queries incrementally, e.g.,
[27] for conjunctive SPARQL, and [25] for queries with aggregation.
Many graph exploration methods exist, see, e.g., [26], in particular
coming from the data visualisation community; we discuss them
below.

2.2 Interactive graph exploration
The literature on interactive graph visualisation and exploration is
extremely rich and varied [38]. We focus our overview of this re-
search area on works that deal specifically with knowledge graphs
and some types of linked data browsers [17], as opposed to multi-
variate networks at large (covered in a recent survey [28]).

Some of the earliest visualisation tools represented raw graphs
as node-link diagrams [29]. As these representations were quite ver-
bose and generic, their scalability was limited. Various approaches
were devised to address this issue. For instance, a language inspired
by Cascading Stylesheets (CSS) was designed to customize the ap-
pearance of nodes and links [30]. The representation remained
quite verbose, however. Later systems displayed the graph as a
node-link diagram but at a higher level of abstraction, aiming to
support specific exploration tasks. LodLive [13] and Visor [32] dis-
play the graph in a dynamic manner. The graph is not shown in its
entirety: starting from a subgraph, additional nodes and links get
displayed on-demand, aggregating part of the structure and thus
limiting visual clutter. RelFinder [23], as the name suggests, shows
paths connecting pairs of resources, starting with the shortest ones.
Visor can also represent paths connecting elements several hops
away in the graph structure, taking edge direction into account.

Other knowledge graph exploration interfaces depart from the
node-link diagram representation, and rather focus on the visu-
alisation of sets of resources. This can be with faceted brows-
ing [22, 24, 37], by aggregating properties based on path charac-
teristics for the properties of interest [18] to produce meaningful
views, or through the visualisation of specific characteristics of

site

person

people
person

address

"Bob"

name

open_auctions

xmark.xml

Bob
Paris

ABC
Shoes

"I’m Bob, passionate
about shoes […], here is
my blog. […] ABC shoes
was founded in 1999 by
Alice. "

boblog
.html wikidata.org

…

…
open_auction

…

id

person1…
city

"Paris"

open_auction
…

…
annotation

author

ref:person1

…
description

text

"ABC Shoes Sneaker 200"

uri1name
"ABC Shoes"

uri2
headquartered

rdf:type
wiki:City

name
"Paris" rdf:type

wiki:brand

shoesCollection.json

type
"Sneaker"

ABC Sneaker 200

brand

"ABC Shoes"

model

"Sneaker 200"

description

"Sneaker 200 is the
newest sneaker of
ABC Shoes with
foam soles"

Alice

Figure 1: Sample ConnectionLens graph built from four
datasets.

those resources’ properties, such as the distribution of values for
a given property [11, 12, 36]. Others focus on RDF visualisation
allowing the user to access more details [14, 31]

In this context, we present our ongoing work toward a first
objective: guiding user navigation in an unknown graph, from a
given node, to its neighbours.

3 PRELIMINARIES
We first recall concepts and results our work builds upon.

3.1 ConnectionLens and normalized graphs
ConnectionLens [2, 3, 16] is a system capable of integrating het-
erogeneous datasets into a graph, as illustrated in Figure 1. We
integrate four datasets (corresponding to the gray areas) in an e-
commerce scenario. In this example, we use: (𝑖) an XMark [35]
XML auction document where ABC shoes were sold; (𝑖𝑖) a JSON
document detailing different shoe models; (𝑖𝑖𝑖) an RDF fragment
from Wikidata, about the shoe maker, and (𝑖𝑣) an auction user’s
HTML blog page. ConnectionLens enriches the graph by extracting
Named Entities (NEs), e.g., person, organisations or locations, each
added as a new node to the graph; we use one color for each NE
type.

As Figure 1 shows, some edges are labeled and some edges are
not, due to the structure of the original data. For instance, all edges
in an RDF graph are labeled; property graphs (PGs) are ingested
by turning each node (or edge) property into a standalone node,
connected to its parent node (edge) via an edge labeled with the
property name. In contrast, the natural modeling of XML documents
leads to unlabeled edges between parent and child elements, while
edges between elements and attributes are labeled; most edges in
JSON documents are not labeled, etc. To facilitate the analysis of
heterogeneous data graphs, ConnectionLens graphs are normalized:
each labeled edge is replaced by a new intermediate node carrying
the original edge’s label, as well as two unlabeled edges connecting
it to the two ends of the original edge.
Notations. We introduce the following notations. A normalised
directed graph𝐺 is a triple of the form ⟨V, E,L⟩, where:V is a set
of nodes; E ⊆ V ×V is a set of (unlabelled) directed edges; and L

is the set of node labels. Further, we write (𝑠 .𝑛𝑖1 ...𝑛𝑖𝑝 .𝑡) to denote
a directed path from source node 𝑠 to target node 𝑡 , of length 𝑝 .
Finally, P designates the set of all directed acyclic paths in 𝐺 .

3.2 Collections
Abstra [7, 8] is a data abstraction system developed recently. Given
a relational, JSON, XML, property graph (PG) or RDF dataset, from
the ConnectionLens graph corresponding to the dataset, Abstra
automatically computes a description meant to give humans a first-
sight overview of a dataset. This description is a flavor of Entity-
Relationship (ER) diagram, of which many variants have been pro-
posed in the literature. In particular, when modeling relational
databases, an entity’s attributes only have atomic values [33]; in
contrast, the value of an attribute of an Abstra entity can have a
nested structure. For instance, the value of an "address" attribute
can be a set of two locations, each specified as street, city, and
country; one location may also have an extra "getting there" field
structured in successive steps, etc.1

As an intermediary step towards abstracting datasets, Abstra
groups nodes in equivalence classes. Abstra’s notion of equiv-
alence [8] seeks to capture the judgment of users who authored
the data; it can be seen as reverse-engineering the data design
guidelines associated to each data model, and which dictate how to
describe application data in that model. For instance, human users
immediately understand that "two articles are similar (conceptu-
ally equivalent)" as soon as they both have, e.g., a title and some
authors. In order to work with graphs generated from a variety
of data sources, we leverage Abstra’s node equivalence, specified
in [8]. A group of nodes considered equivalent by Abstra are said
to be part of a collection.

Each collection has a label. For XML, PGs or JSON, the label
of the collection is the label shared by the nodes of the collection,
while for RDF, this label is the most specific type shared with the
other nodes of the collection.

3.3 Entities, boundaries and relationships
Having grouped all nodes in collections, Abstra performs the fol-
lowing steps:

(1) Organize the collections in a directed graph, having an
edge 𝐶1 → 𝐶2 whenever in the original graph, a node
of collection 𝐶1 has an outgoing edge toward a node of
collection 𝐶2; we call this the collection graph. Figure 2
shows the collection graph obtained from the XML data at
the top left in Figure 1: each collection is shown as a box,
labeled with an XML element name, e.g., initial, or with a
label such as #initial, which denotes the set of text nodes
that are children of the initial elements. The colors of the
collection boxes will be explained shortly.

(2) Choose a set of collections, each of which is designated as
the root of an entity, i.e., a core set of things described by
the dataset. Each entity collection 𝑒 is also attached a set of
attributes, i.e., other collections accessible from 𝑒 , and seen
as describing the 𝑒 entities. Abstra defines the boundary
of an entity 𝑒 as the set of these collections describing 𝑒 ,

1Sample abstractions computed by Abstra can be seen online at https://team.inria.fr/
cedar/projects/abstra/.

together with edges between them. For example, in Figure
2, the entity root collections are orange-filled, while their
boundaries are delimited by the light orange shapes.

(3) Based on the chosen entities, Abstra turns any directed
path from an entity collection 𝑒1 to another entity collec-
tion 𝑒2, into a relationship between the entities. In Figure
2, the annotation and author collections (blue background)
materialize the relation between the open auctions and the
people.

4 UNDERSTANDING DATASETS THROUGH
THE PRISM OF ABSTRACTION

Abstraction leads to a compact E-R representation of a dataset,
where users can see at a glance the main entities and relationships.
However, abstractions are not interactive, and they do not enable
finding information about any individual node. We seek to leverage
abstractions, to help users interactively explore the original data
graph at the node level. This raises two challenges, which can
be seen as losses of information (or precision) ; we detail them in
Section 4.1. Then, we describe our approach for overcoming these,
and reaching our goal.

4.1 Abstraction-induced information loss
A first observation is that abstractions may hide (not reflect) some
nodes from the original graph. This happens in several cases.

• To keep the E-R diagram of manageable size, Abstra users
may specify an upper bound on the number of entities.
Thus, node collections that are relatively rare, in a complex-
structure graph, may not be reflected in the Abstra output
at all: not as entities, not even in other entities’ boundaries.

• For visual simplicity, Abstra relationships are simple paths
from an entity to another, of the form 𝑒1 → 𝑘1 → 𝑘2 . . . →
𝑒2 for some collections 𝑘𝑖 . If a collection 𝑘 𝑗 is reachable only
from one of the 𝑘𝑖 ’s in a relation, 𝑘 𝑗 is visible neither in the
relation, nor an attribute within the boundary of 𝑒1 or 𝑒2.
For example, in Figure 2, the description and text collections
under annotation would not be visible in the abstraction.

• Finally, Abstra rejects 1-node equivalence classes as entity
roots, e.g., the site, open_auctions and people singleton col-
lections in Figure 2. Such a singleton can be seen as only a
"container" for a larger collection. If such singletons are not
included in an entity’s boundary, they may not be visible
in the abstraction.

Second, summarization may consider equivalent nodes with
slightly different structure, e.g., two person 𝑝1, 𝑝2 having name and
address, even if only 𝑝1 has an email address. Such simplifications
are common when summarizing graphs. Further, for efficiency, Ab-
stra selects entity collections, and their boundaries, directly on the
collection graph, not on the original graph. Thus, equivalent nodes,
indistinguishable in the abstraction, may have different internal
(surrounding) structures, which should be faithfully reflected for
each, when exploring the data at the node level.

Intuitively: abstraction paints with wide brushstrokes; node-
oriented exploration requires a fine brush. This is why we need

https://team.inria.fr/cedar/projects/abstra/
https://team.inria.fr/cedar/projects/abstra/

open_auction

initial interval current

person

#initial #current

start end

#startval #endval

annotation author

description

text

#textval

emailaddress

#email
address

address name

#name

city

#city

street

#street

zipcode

#zipcode

site
open_auctions people

Figure 2: Collection graph obtained from the XML document in Figure 1.

to extend the node interpretation (to which entities or relation-
ships do they belong? what part do they play there?) to each node
individually. We discuss this in Sections 4.2 and 4.3.

4.2 A role for every node
We start by dividing all the nodes into four basic roles, as illustrated
in Figure 3, using one node background color for each role (dif-
ferently from Figure 2, Figure 3 represents individual nodes and
edges):

• Value nodes (green fill), denotedV𝑉 , are the leaves of the
graph. They have no children, but contain the actual data
values.

• Entity root nodes (orange), denoted V𝐸 . These are nodes
identified by Abstra as entry points, or top nodes, in its
entities. Each Abstra entity, stripped of its relations, can be
seen as a DAG, containing nodes that describe the entity
root. Thus, V𝐸 nodes are exactly those from entity root
collections.

• In-relationship nodes (blue), denoted V𝑅 . These are data
nodes that are, in the data graph, along a directed path from
an entity root node (previous role in this list) to another.
For example, in Figure 3, there are exactly two such nodes.

• Structural nodes (white), denoted V𝑆 , are all other nodes in
the graph.

We computeV𝐸 as: the nodes assigned by Abstra to a collection
that is an entity root. We compute V𝑉 , V𝑅 , and V𝑆 directly on the
graph and also based onV𝐸 .

4.3 Boundaries to which a node belongs
Our next task is to assign each V𝑉 , V𝑅 and V𝑆 node into the
boundaries of one or more entity instances. We do this by traversing
the graph starting from each V𝑉 node, going backwards, along all
acyclic paths, until we reach an entity root, i.e., a V𝐸 node. All
the nodes (and edges) traversed on an acyclic path that reaches a
node 𝑛𝐸 ∈ V𝐸 , are part of the boundary of 𝑛𝐸 . In a similar fashion,
we also compute a boundary for each in-relationship node, except
that in this process, we stop when reaching a node fromV𝑅 , and
we attach boundaries to V𝑅 nodes. Intuitively, such boundaries

capture "all attributes needed to describe relationships between
nodes". Entities are described by possibly nested attributes, and
the nodes along the relationship paths may also have their own
attributes. We say such attributes are part of the boundary of the
respective nodes (either entity root, or relationship node). Visually,
in Figure 3, boundaries are represented as shaded pink areas. As
illustrated in the Figure, boundaries can overlap: a city is shared
by two people living there. In general, boundaries overlap when
several entity or relationship instances are described by the same
nodes (or subgraphs).

4.4 Deriving Property Graphs
Property Graphs (PGs, in short) are currently very popular for
representing (semi)structured data. PG schemas can be derived
from dataset abstractions [20]; in our context, we need to derive
PGs from normalized graphs, using the abstractions. A PG consists
of a set of nodes, and possibly a set of directed edges. Each node
and edge can have: one or more labels; and a set of attributes, which
have a name and a value; values are atomic. A PG node or edge
may have one or more labels, which serve to distinguish different
kinds of nodes. From a data management perspective, PGs are
preferable to simple graphs, such as those built by ConnectionLens
(Figure 1), or RDF graphs, because if nodes are stored with their
attributes, less joins (or navigation) are needed to retrieve a node’s
content, and similarly for edges. From a user’s perspective, also,
the encapsulation of attributes in PG nodes and edges makes them
intuitive and easy to grasp.

We turn each entity instance rooted in a node 𝑒 ∈ V𝐸 into a PG
node 𝑝𝑔𝑒 , as follows.

• Node 𝑝𝑔𝑒 has an internal identifier attribute id, whose value
is the one created for it by ConnectionLens.

• Recall that 𝑒 may have multiple values for a child label
𝑙 . Since this is not allowed in PGs, we attach to 𝑝𝑔𝑒 one
attribute whose name is 𝑙 , and whose value we compute by
serializing all the values of 𝑙 within a JSON list of the form
[𝑙𝑣1, 𝑙𝑣2, . . ., 𝑙𝑣𝑘].

• Further, 𝑒’s attributes may have nested values, which PGs
do not model. Thus, a non-atomic value of an attribute

open_auction

initial interval current

person

225$ 530$

start end

03/10/2000 12/21/2001

annotation author

description

text

ABC Shoes

address
name

Alice

city

Paris

street

5 rue de la
Paix

zipcode

75001

annotation

description

text
Shoes

person

address…

…

Figure 3: Boundaries of entity instances (in the data graph).

Label: “person“
Properties:
• name : “Alice“
• address: {

“city“: “Paris“,
“street“: “5 rue de la
Paix“,
“zipcode“: “75001“}

• emailaddress:[
“alice@mail.com“,
“alice@pro.com“]

Label: “open_auction“
Properties:
• initial : “225$“
• interval: {

“start“: “03/10/2000“,
“end“: “12/21/2001“}

• current: “530$ “
• annotation:

{“description“:
{“text“: “Shoes“}}

Label: “annotation>author“
Properties:
• annotation_description:{

“text“: “ABC Shoes“}}

Figure 4: Property graph obtained from the entity and relationship instances in Figure 3.

labeled 𝑙 is serialized into a JSON snippet of the form 𝑙 :
{𝑙𝑎1: . . . , 𝑙𝑎2: . . . , . . . , 𝑙𝑎𝑝 : . . .}, where 𝑙𝑎𝑖 ’s are the nested chil-
dren of 𝑙 . JSON lists and maps, nested within each other as
needed, are used to model attribute values that are multiple,
respectively, non-atomic (have nested children).

• Given the semantics PG labels have, the label(s) of 𝑝𝑔𝑒
should reflect its category/type. Thus, 𝑝𝑔𝑒 , and all the PG
nodes derived from nodes in the same (entity root) collec-
tion as 𝑝𝑔𝑒 , take their labels from that collection: if they
are XML elements, the element name; if they are JSON
nodes, the label path from the JSON root to the node; if
they are typed RDF node, one label for each type; for rela-
tional datasets, the labels derive directly from the schema,
etc.

A graph relationship 𝑟 of the form 𝑒1 .𝑛1𝑛𝑙 .𝑒2 where 𝑒1, 𝑒2 ∈
V𝐸 and 𝑛𝑖 ∈ V𝑅 is transformed into a (single) PG edge from the
node 𝑝𝑔1 created from 𝑒1 as above, to the node 𝑝𝑔2 corresponding
to 𝑒2. This edge is labeled with the concatenation of the labels of
all the collections along the relationship. For each node along the
relationship, we compute the properties in the same way they are
computed for PG nodes. Finally, the PG edge accumulates the prop-
erties of each node along the relationship, each property carrying
the label of the node it comes from, as a prefix of its own label. This

way, all information is kept during the transformation. In fact, if
we have two PG nodes person, Alice and Bob connected by a rela-
tion in the original graph of two nodes: package expedition and
package reception both having a date attribute, the resulting PG
edge would have two attributes date that we need to distinguish.

For illustration, Figure 4 shows two PG nodes and an edge re-
sulting from the data in Figure 2. We have added two emails to the
node at the right (not present in the data previously depicted), to
illustrate the handling of multi-valued attributes.

The PG thus obtained reflects all the nodes in the Abstra-chosen
entities and relationships, as well as all their boundaries. Running
Abstra with no upper limit on the number of selected entities maxi-
mizes the part of the original dataset we transform into a Property
Graph.

5 EXPERIMENTS
When users import data into the framework, we want it to be
available for visualisation as quickly as possible. We thus evaluate
the performance of our method as the time taken by each data
processing step, and the scalability in the data size. After describing
our datasets (Section 5.1) and experimental settings (Section 5.2),
we discuss our experiments and their results.

name size (bytes) nb. of nodes nb. of edges
XMark025 29.220.287 945.366 1.062.437
XMark05 58.005.779 1.876.628 2.122.577
XMark1 116.517.344 3.733.934 4.246.835
BSBM3K 208.986.518 971.755 1.458.780
BSBM4K 313.589.776 1.453.549 2.189.198
BSBM6K 511.100.393 2.360.702 3.563.778

Table 1: Datasets and metrics on the generated graphs.

5.1 Datasets
We used two different controllable-size datasets for our experiments.
XMark [35] is an XML benchmark describing auctions, products and
buyers. We generated files with scale factors 0.25, 0.5, and 1, respec-
tively. We fed them to Abstra, leading to normalized graphs having
from 1M to 4.24M edges. BSBM [9] is an RDF benchmark describ-
ing an e-commerce scenario, comprising products, vendors, and
consumers posting reviews about products. Again, we generated
three datasets of increasing size (Table 1), leading to normalized
graphs of .67M to 2.18M edges. The numbers of nodes and edges in
the normalized Abstra graphs are also reported in Table 1.

5.2 Settings
Our computation of roles, boundaries, and conversion to property
graphs is implemented in Python 3.6. First, we call Abstra [8] to
build the normalized graphs and collections, which we read from
Postgres. We then measure the time taken by our algorithms to
convert the data to a PG, also persisted in Postgres. We used a
MacBook with Apple M1 Pro chip with 16 GB of memory.

5.3 Results
Figure 5 and 6 shows the time taken by each operation in our
framework, as a function of the number of edges in the normalized
graph. We note that each operation time grows linearly with the
graph size (number of edges). The longest times are to compute the
boundaries (Section 4.3) and write the PG in the database. The times
are shorter for BSBM (RDF), because its relations and boundaries
are less deep, simplifying our computations. Finally, the total time
is acceptable for the processing of large datasets and as it is linear,
we cannot expect a lot of improvement. We could though parallelize
operations.

6 DATA GRAPH EXPLORATION
The property graphs generated by the above data transformation
process are all structured in the samemanner, amenable to a generic
form of exploratory visualization.

We opt for a visualization based on node-link diagrams as such
diagrams are conceptually simple to understand. But, as node-link
diagrams scale poorly with the size and density of graphs, we em-
ploy strategies to keep the visual representation compact. Figure 7
illustrates part of the interface, displaying a summarized view of
an XMark document, detailing a Person’s properties.

Our visualizations are implemented using D3 [10] and integrated
in the Connection Studio platform [5].

0

100

200

300

400

500

600

700

800

900

1000

1 1,5 2 2,5 3 3,5 4 4,5

Ti
m

e
 (s

)

Number of edges (millions)

loading graph computing roles
computing boundaries computing PG
writing to DB

Figure 5: Data processing times on XML datasets.

0

50

100

150

200

250

300

350

1 1,5 2 2,5 3 3,5 4

Ti
m

e
 (s

)

Number of edges (millions)

loading graph computing roles
computing boundaries computing PG
writing to DB

Figure 6: Data processing times on RDF datasets.

6.1 Initial query
For many datasets, showing the whole graph results in a visualiza-
tion that bears little value because of the large number of nodes and
links. We rather opt for an initially blank workspace that users will
populate incrementally with entities and relationships of certain
types, as in Graphies [34].

This obviously requires enabling users to select points of entry
in the graph. This can be a random object if the user has no clear
idea of where to start and merely wants to discover the data by
browsing it.

If the user has particular questions in mind, it is also possible to
specify a node-set to start from. Such a set can be obtained from a
keyword search, in which case the workspace will get populated
with objects (entities and relations) matching the query. Since values
are nested in JSON structures in PG objects, to optimize searcha-
bility, the search is operated on the normalized graph. We store
mappings between these nodes and the PG nodes (or relationships)
they are part of.

Users can specify if they are looking for a value, an entity root,
a relation, or a property containing the keyword. The returned
objects are entities and/or relations that contain the keyword(s).
Users can also search for PG nodes through ad-hoc property search

Figure 7: Property graph summary for an XMark document with a person’s properties expanded.

forms, e.g., find the Person named Alice, or all Person nodes living
in NY.

Another option consists in generating a visual summary of the
graph that reflects the abstractions computed by Abstra (Section 4).
As illustrated in Figure 7, this visualization shows a summary of
the structure of the property graph, representing each collection of
entities and the collection of relations in the property graph and
how they are connected.

This summary can help users identify entity or relation types
of interest that can then be selected and serve as an entry point
into the actual property graph. Selecting an entity or relation takes
users to a property table that lists all instances of the corresponding
collection, together with their properties arranged in columns. The
header of each column is the path from the root to the property.
Selecting one particular item in this list takes users to the Graph
Exploration panel, centering the viewport on the corresponding
element.

6.2 Compactness
We described how we compute a property graph from imported
datasets in Section 4. The nodes and edges of this graph are rich
objects holding multiple properties that we represent nested in-
side the corresponding geometrical primitives: boxes that can be
expanded and whose content can be scrolled for nodes; and curves
decorated with an arrow shape for links. This arrow shape conveys
the relation type and its direction. It can be expanded and scrolled
as well, to show properties associated with the corresponding type
of relationship. We favor nesting of key-value pairs in both cases
for the sake of compactness.

Nodes are laid out using D3’s force simulation (package d3-
force) [10], setting a link force that leaves reasonable empty space
around shapes to expand them. Boxes decorating links are treated
as nodes in the simulation driving the layout, link curves being

composed of two Bézier curves, one on each side. Clicking on a
shape expands that shape to reveal the nested list of properties.
That list is made scrollable if it overflows the parent node shape, as
illustrated in Figure 7 with the person collection.

Each node collection is assigned a different color hue, consistent
across views (actual property graph and graph summary). In the
Graph Summary view, stroke width (nodes and links) is mapped
to the group’s cardinality, giving a rough idea about its number of
instances.

6.3 Incremental exploration
The Graph Summary view is typically limited to a few dozen boxes
with corresponding links as it aggregates entities by collection or
relationship type. The Graph Exploration view, however, shows
the actual instances themselves and can quickly become cluttered.
Users start from a blank workspace that they will populate with a
small initial node-set, adding and pruning branches incrementally
as they follow relations of interest.

By default, only a subset of a node’s relations is shown, chosen
based on their relevance. Selecting one of those relations will fetch
and display the corresponding target node, which can then become
the primary focus of attention. Providing users with a seamless
and efficient way to navigate the graph is key, avoiding too many
explicit actions to manually expand branches and prune links of
little interest while keeping relevant branches readily accessible at
the same time. This interaction design phase is currently on-going,
as discussed next.

7 ONGOING AND FUTUREWORK
On the data transformation side, our pipeline can be improved using
parallelization to increase performance. The pipeline could also be
made into a universal (semi)-structured data converter to Property

Graphs by allowing other PG schemas than the one computed with
Abstra, letting users choose entity root collections.

On the user interface side, we are currently exploring several
areas for improvement. As mentioned earlier, nodes can have many
properties and many relations. We expose those properties through
a scrollable list, and are investigating different strategies to sort
them, such as computing a score of pertinence for each object, in-
spired by KL-divergence with pseudo-relevance feedback [27] or
personalized PageRank [15], showing to the user the top-𝑘 ranked
objects. We can also allow the user to choose the entity roots col-
lection, thus, allowing other PG schemas than the one computed
from Abstra. Such transformation pipeline would be a universal
(semi)-structured data converter to Property Graphs.

Other enhancements include: using word scale visualizations
[21] to show the value distribution per property across all nodes of
a certain collection; using input modalities beyond keyboard and
mouse to interact with elements of the node-link diagram, such as
pen and touch [34]. The latter is part of a larger interaction design
effort to ease navigation in the node-link diagram, streamlining
navigation (interactive traversal) and graph element visibility man-
agement actions, thanks to the flexibility and additional expressive
power of those two modalities combined.

We will be conducting a user-study to evaluate the quality of
the data transformation and of the exploration and visualization
tool once it is ready.

Beyond node and link visibility management, we are investi-
gating different input modalities beyond mouse and keyboard to
interact with the graph view, such as pen and touch. We believe
that these have much potential because of the flexible yet precise
selections they afford in a direct manipulation context.

ACKNOWLEDGMENTS
This work is partially funded by the AI Chair SourcesSay project
(ANR-20-CHIA-0015-01).

REFERENCES
[1] Christian Aebeloe, Vinay Setty, Gabriela Montoya, and Katja Hose. 2018. Top-K

Diversification for Path Queries in Knowledge Graphs. In ISWC Workshops.
[2] Angelos-Christos Anadiotis, Oana Balalau, Théo Bouganim, Helena Galhardas,

Mhd Yamen Haddad, Ioana Manolescu, Tayeb Merabti, and Jingmao You. 2021.
Empowering Investigative Journalism with Graph-based Heterogeneous Data
Management. IEEE Data Engineering Bulletin (2021). https://arxiv.org/abs/2102.
04141

[3] Angelos Christos Anadiotis, Oana Balalau, Catarina Conceiçao, Helena Gal-
hardas, Mhd Yamen Haddad, Ioana Manolescu, Tayeb Merabti, and Jingmao You.
2021. Graph integration of structured, semistructured and unstructured data for
data journalism. Inf. Sys. (2021). https://doi.org/10.1016/j.is.2021.101846

[4] Angelos Christos Anadiotis, Ioana Manolescu, and Madhulika Mohanty. 2023.
Integrating Connection Search in Graph Queries. In ICDE.

[5] Nelly Barret, Simon Ebel, Théo Galizzi, Ioana Manolescu, and Madhulika Mo-
hanty. 2023. User-friendly exploration of highly heterogeneous data lakes. In
CoopIS.

[6] Nelly Barret, Antoine Gauquier, Jia-Jean Law, and Ioana Manolescu. 2023. Path-
Ways: entity-focused exploration of heterogeneous data graphs. In ESWC.

[7] Nelly Barret, Ioana Manolescu, and Prajna Upadhyay. 2022. Abstra: Toward
Generic Abstractions for Data of Any Model. In CIKM. https://doi.org/10.1145/
3511808.3557179

[8] Nelly Barret, Ioana Manolescu, and Prajna Upadhyay. 2024. Computing Generic
Abstractions from Application Datasets. In EDBT.

[9] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL benchmark.
IJSWIS 5, 2 (2009).

[10] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 Data-Driven
Documents. IEEE TVCG 17, 12 (2011). https://doi.org/10.1109/TVCG.2011.185

[11] Adrian Braşoveanu, Martab Sabou, Arnoa Scharl, Alexandera Hubmann-
Haidvogel, and Daniela Fischl. 2016. Visualizing statistical linked knowledge for
decision support. Semantic Web Journal 8, 1 (2016). https://doi.org/10.3233/SW-
160225

[12] Josep Maria Brunetti, Sören Auer, Roberto García, Jakub Klímek, and Martin
Nečaský. 2013. Formal Linked Data Visualization Model. In IIWAS (Vienna,
Austria).

[13] Diego Valerio Camarda, Silvia Mazzini, and Alessandro Antonuccio. 2012.
LodLive, Exploring the Web of Data. In I-SEMANTICS (Graz, Austria). http:
//doi.acm.org/10.1145/2362499.2362532

[14] D. V. Camarda, S. Mazzini, and A. Antonuccio. 2012. LodLive, exploring the web
of data. In Proceedings of the 8th International Conference on Semantic Systems.

[15] Soumen Chakrabarti. 2007. Dynamic personalized pagerank in entity-relation
graphs. In Proceedings of the 16th international conference on World Wide Web.

[16] Camille Chanial, Rédouane Dziri, Helena Galhardas, Julien Leblay, Minh-
Huong Le Nguyen, and Ioana Manolescu. 2018. ConnectionLens: Finding Con-
nections Across Heterogeneous Data Sources (Demonstration). PVLDB 11, 12
(2018).

[17] Aba-Sah Dadzie and Emmanuel Pietriga. 2017. Visualisation of Linked Data -
Reprise. Open Journal Of Semantic Web 8, 1 (2017). https://doi.org/10.3233/SW-
160249

[18] Marie Destandau, Caroline Appert, and Emmanuel Pietriga. 2021. S-Paths: Set-
based visual exploration of linked data driven by semantic paths. Open J. Sem.
Web 12, 1 (2021). https://doi.org/10.3233/SW-200383

[19] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
et al. 2022. Graph Pattern Matching in GQL and SQL/PGQ. In SIGMOD.

[20] T. Enache, N. Barret, I. Manolescu, and M. Mohanty. 2024. Finding the PG schema
of any (semi)structured dataset: a tale of graphs and abstraction. SEAGraph
workshop (2024).

[21] Pascal Goffin, Wesley Willett, Jean-Daniel Fekete, and Petra Isenberg. 2014.
Exploring the Placement and Design of Word-Scale Visualizations. IEEE TVCG
20, 12 (2014). https://doi.org/10.1109/TVCG.2014.2346435

[22] Andreas Harth. 2010. VisiNav: A system for visual search and navigation on
web data. Journal of Web Semantics 8, 4 (2010).

[23] Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and Timo
Stegemann. 2009. RelFinder: Revealing Relationships in RDF Knowledge Bases".
In Sem. Multimedia.

[24] M. Hildebrand, J. van Ossenbruggen, and L. Hardman. 2006. /facet: A Browser
for Heterogeneous Semantic Web Repositories. In ISWC. https://doi.org/10.1007/
11926078

[25] Matteo Lissandrini, Katja Hose, and Torben Bach Pedersen. 2023. Example-
Driven Exploratory Analytics over Knowledge Graphs. In EDBT.

[26] Matteo Lissandrini, Davide Mottin, Katja Hose, and Torben Bach Pedersen. 2022.
Knowledge Graph Exploration Systems: are we lost?. In CIDR.

[27] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis.
2020. Graph-query suggestions for knowledge graph exploration. In The Web
Conference.

[28] C. Nobre, M. Meyer, M. Streit, and A. Lex. 2019. The State of the Art in Visualizing
Multivariate Networks. CGF 38, 3 (2019). https://doi.org/10.1111/cgf.13728

[29] Emmanuel Pietriga. 2002. IsaViz: a Visual Environment for Browsing and Author-
ing RDF Models. In WWW Developers Day. http://www.w3.org/2001/11/IsaViz/

[30] Emmanuel Pietriga. 2006. Semantic Web Data Visualization with Graph Style
Sheets. In SoftVis (Brighton, United Kingdom).

[31] I.O. Popov, M.C. Schraefel, W. Hall, and N. Shadbolt. 2011. Connecting the Dots:
A Multi-pivot Approach to Data Exploration. In ISWC.

[32] Igor O. Popov, M. C. Schraefel, Wendy Hall, and Nigel Shadbolt. 2011. Connecting
the Dots: A Multi-pivot Approach to Data Exploration. In ISWC.

[33] Raghu Ramakhrishnan and Johannes Gehrke. 2003. Database Management Sys-
tems (3rd edition). McGraw-Hill.

[34] Hugo Romat, Caroline Appert, and Emmanuel Pietriga. 2021. Expressive
Authoring of Node-Link Diagrams with Graphies. IEEE TVCG 27, 4 (2021).
https://doi.org/10.1109/TVCG.2019.2950932

[35] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J Carey, Ioana
Manolescu, and Ralph Busse. 2002. XMark: A benchmark for XML data manage-
ment. In VLDB.

[36] K. Thellmann, M. Galkin, F. Orlandi, and S. Auer. 2015. LinkDaViz – Automatic
Binding of Linked Data to Visualizations. In ISWC. https://doi.org/10.1007/978-
3-319-25007-6

[37] Y. Tzitzikas, N. Manolis, and P. Papadakos. 2017. Faceted Exploration of RDF/S
Datasets: A Survey. Journal of Intelligent Information Systems 48, 2 (2017).

[38] Tatiana Von Landesberger, Arjan Kuijper, Tobias Schreck, Jörn Kohlhammer,
Jarke J. van Wijk, J-D. Fekete, and Dieter W. Fellner. 2011. Visual analysis of
large graphs: state-of-the-art and future research challenges. 30, 6 (2011).

[39] Jianye Yang, Wu Yao, and Wenjie Zhang. 2021. Keyword Search on Large Graphs:
A Survey. Data Sci. Eng. 6, 2 (2021).

https://arxiv.org/abs/2102.04141
https://arxiv.org/abs/2102.04141
https://doi.org/10.1016/j.is.2021.101846
https://doi.org/10.1145/3511808.3557179
https://doi.org/10.1145/3511808.3557179
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.3233/SW-160225
https://doi.org/10.3233/SW-160225
http://doi.acm.org/10.1145/2362499.2362532
http://doi.acm.org/10.1145/2362499.2362532
https://doi.org/10.3233/SW-160249
https://doi.org/10.3233/SW-160249
https://doi.org/10.3233/SW-200383
https://doi.org/10.1109/TVCG.2014.2346435
https://doi.org/10.1007/11926078
https://doi.org/10.1007/11926078
https://doi.org/10.1111/cgf.13728
http://www.w3.org/2001/11/IsaViz/
https://doi.org/10.1109/TVCG.2019.2950932
https://doi.org/10.1007/978-3-319-25007-6
https://doi.org/10.1007/978-3-319-25007-6

	Abstract
	1 Motivation
	2 State of the art
	2.1 Graph exploration in Data Management Systems
	2.2 Interactive graph exploration

	3 Preliminaries
	3.1 ConnectionLens and normalized graphs
	3.2 Collections
	3.3 Entities, boundaries and relationships

	4 Understanding datasets through the prism of abstraction
	4.1 Abstraction-induced information loss
	4.2 A role for every node
	4.3 Boundaries to which a node belongs
	4.4 Deriving Property Graphs

	5 Experiments
	5.1 Datasets
	5.2 Settings
	5.3 Results

	6 Data graph exploration
	6.1 Initial query
	6.2 Compactness
	6.3 Incremental exploration

	7 Ongoing and future work
	Acknowledgments
	References

