
HAL Id: hal-04662129
https://hal.science/hal-04662129

Submitted on 25 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Unified Visual Exploration Framework for
(Semi-)structured Data

Théo Bouganim, Ioana Manolescu, Emmanuel Pietriga

To cite this version:
Théo Bouganim, Ioana Manolescu, Emmanuel Pietriga. A Unified Visual Exploration Framework for
(Semi-)structured Data. BigVis 2024 - 7th International Workshop on Big Data Visual Exploration
and Analytics (VLDB 2024), VLDB, Aug 2024, Guangzhou, China. �hal-04662129�

https://hal.science/hal-04662129
https://hal.archives-ouvertes.fr

A Unified Visual Exploration Framework for
(Semi-)structured Data
Théo Bouganim1,2, Ioana Manolescu1,2 and Emmanuel Pietriga1,3

1Inria, Palaiseau, France
2Institut Polytechnique de Paris, Palaiseau, France
3Université de Paris-Saclay, Gif-sur-Yvette, France

Abstract
Application datasets are shared or published in a variety of technical formats, structured or semi-structured. Visualization
tools can help users explore and understand those data, but are typically designed for one data format, e.g., relational, RDF,
XML, or even a domain-specific vocabulary such as FOAF for RDF. We present a novel framework that, given as input a
dataset of one among many different formats, automatically derives an informative graph structure in the spirit of Property
Graphs (PGs), from which an interactive visual interface is created. Our framework leverages prior work on integrating
heterogeneous data and abstracting (or summarizing) it. The novelty here lies in interpreting each graph node through this
abstraction process, and combining it with an interactive visual representation.

Keywords
Property Graphs, Semi-structured Data, Visualization, Interactive Exploration

1. Motivation
Semi-structured data can be encoded in a variety of for-
mats, including RDF graphs, property graphs, JSON data
objects and XML trees. Serialization of such data struc-
tures yields textual representations that are easily per-
sisted and transported, facilitating data interchange. Such
textual representations can also be loaded and edited in
raw text and code editors. But working at this low level
of abstraction is often tedious: users experience difficulty
understanding, analyzing and interactively manipulating
the data, primarily because of the unidimensional nature
of this textual representation.

Visual tools and frameworks can support users in their
data understanding and analysis tasks. But those tools
are typically designed for one particular format, e.g., RDF
or XML, or even for one particular domain-specific vo-
cabulary based on those formats, e.g., FOAF or RSS. The
goal of this work is to design and develop a framework
that can generate interactive visual representations from
data in any format (higly structured, i.e., relational, or
semi-structured). Based on the basic premise that any
kind of data can be modeled as a graph, our framework
transforms the imported data into a generic graph struc-

7th International Workshop on Big Data Visual Exploration and
Analytics, August 29 2024, VLDB 2024, Guangzhou, China
$ theo.bouganim@inria.fr (T. Bouganim);
ioana.manolescu@inria.fr (I. Manolescu);
emmanuel.pietriga@inria.fr (E. Pietriga)
� https://pages.saclay.inria.fr/theo.bouganim/ (T. Bouganim);
https://pages.saclay.inria.fr/ioana.manolescu/ (I. Manolescu);
https://pages.saclay.inria.fr/emmanuel.pietriga/ (E. Pietriga)
� 0009-0003-5768-3818 (T. Bouganim); 0000-0002-0425-2462
(I. Manolescu); 0000-0002-9762-0462 (E. Pietriga)

© 2024 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ture from which node-link diagram representations can
be derived. The research question we focus on is as fol-
lows: can we automatically produce, from any input data,
a graph structure amenable to visual representation that
can effectively support users in data exploration and ma-
nipulation tasks?

Our framework primarily uses node-link diagrams for
the representation of this structure, as such visualizations
are generic and fairly straightforward to understand. But
as they suffer from scalability problems – quickly be-
coming illegible as the graph’s size or density increases –
we favor an approach based on incremental exploration.
Rather than represent the entire graph, the framework
lets users identify points of entry into the graph – nodes
of particular interest through, e.g., a keyword search or
the filtering of a list based on criteria such as node type
or facets. A subgraph is then generated from the selected
nodes, serving as the basis for the interactive exploration
of the whole graph: based on users’ interests – i.e., when
following selected links – additional nodes are fetched
and visualized, and branches of lesser interest can be
elided to keep the visual representation manageable.

This paper is organised as follows. Section 2 gives
a brief overview of related work in data management
systems and interactive graph exploration. Section 3 de-
scribes recent data management research results, based
on data abstraction, that our approach builds upon. Sec-
tion 4 describes the new ingredients we contribute to gen-
erate property graphs from arbitrary input data based on
abstraction. Section 5 studies the performance of our data
processing and analysis pipeline. Section 6 then gives
an overview of the visualization tool we are currently
designing to display those graphs.

mailto:theo.bouganim@inria.fr
mailto:ioana.manolescu@inria.fr
mailto:emmanuel.pietriga@inria.fr
https://pages.saclay.inria.fr/theo.bouganim/
https://pages.saclay.inria.fr/ioana.manolescu/
https://pages.saclay.inria.fr/emmanuel.pietriga/
https://orcid.org/0009-0003-5768-3818
https://orcid.org/0000-0002-0425-2462
https://orcid.org/0000-0002-9762-0462
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. State of the art
We outline the main areas and results in trying to help
users cope with large data volumes: graph exploration
from a database perspective; and interactive graph visu-
alisation. Compared to these, the novelty of our work
is: (𝑖) we target structured or semi-structured data from
a variety of models; (𝑖𝑖) we leverage property graphs as
vehicles for interactive visualization.

2.1. Graph exploration in DBMS
The traditional way of interacting with the data assumes
users write queries, which requires a certain level of tech-
nical skills, as well as some familiarity with the data. To
handle situations where one or both are lacking, prior
work has investigated ways to (𝑖) help users form struc-
tured queries, or to (𝑖𝑖) search the data via simpler means,
such as keyword search and/or flexible – as opposed to
structured – querying. Below, we review recent data
exploration works targeting graph databases.

Modern graph query languages such as GPML [1] or
the JEDI [2] SPARQL extension allow asking for paths
between nodes matching some query variables. GPML
allows asking for paths between variables even if the
users know nothing about the structure of the path; in
contrast, SPARQL 1.1 and JEDI require users to combine
known graph edge labels in their regular path queries.

In keyword-based search (KBS, in short) [3, 4, 5, 6],
one asks, e.g., for connections between “Alice", "Nice" and
"IBM". Here, a result is a tree including three nodes whose
labels match respectively these keywords. KBS is handy
when users know keywords (entities) to search for. It does
however have disadvantages: finding all answers may
be costly, and it may be hard to "guess" entities that are
connected. To remove the latter hurdle, one approach [7]
is to automatically enumerate paths between pairs of
connected entities of specific types, e.g., between People
and Organizations, etc.

Other systems let users build SPARQL queries incre-
mentally, e.g., [8] for conjunctive SPARQL, and [9] for
queries with aggregation. Many graph exploration meth-
ods exist, see, e.g., [10], in particular coming from the
data visualisation community (see below).

2.2. Interactive graph exploration
The literature on interactive graph visualisation and ex-
ploration is extremely rich and varied [11]. We focus our
overview of this research area on works that deal specifi-
cally with knowledge graphs and some types of linked
data browsers [12], as opposed to multivariate networks
at large (covered in a recent survey [13]).

Some of the earliest visualisation tools represented raw
graphs as node-link diagrams [14]. As these represen-
tations were quite verbose and generic, their scalability
was limited. Various approaches were devised to address
this issue. For instance, a language inspired by Cascad-
ing Stylesheets (CSS) was designed to customize the ap-

pearance of nodes and links [15]. The representation re-
mained quite verbose, however. Later systems displayed
the graph as a node-link diagram but at a higher level
of abstraction, aiming to support specific exploration
tasks. LodLive [16] and Visor [17] display the graph in
a dynamic manner. The graph is not shown in its en-
tirety: starting from a subgraph, additional nodes and
links get displayed on-demand, aggregating part of the
structure and thus limiting visual clutter. RelFinder [18],
as the name suggests, shows paths connecting pairs of
resources, starting with the shortest ones. Visor can also
represent paths connecting elements several hops away
in the graph structure, taking edge direction into account.

Other knowledge graph exploration interfaces focus
on the visualisation of sets of resources. This can be with
faceted browsing [19, 20, 21], by aggregating properties
based on path characteristics for the properties of in-
terest [22] to produce meaningful views, or through the
visualisation of specific characteristics of those resources’
properties, such as the distribution of values for a given
property [23, 24, 25]. Others focus on RDF visualisation
allowing the user to access more details [26, 27]

In this context, we present our ongoing work toward
a first objective: guiding user navigation in an unknown
graph, from a given node, to its neighbours.

3. Preliminaries
We first recall concepts and results our work builds upon.

3.1. Normalized Graphs
ConnectionLens [3, 28, 4] is a system capable of integrat-
ing heterogeneous datasets into a graph, as illustrated
in Figure 1. We integrate four datasets (corresponding
to the gray areas) in an e-commerce scenario. In this
example, we use: (𝑖) an XMark [29] XML auction docu-
ment where ABC shoes were sold; (𝑖𝑖) a JSON document
detailing different shoe models; (𝑖𝑖𝑖) an RDF fragment
from Wikidata, about the shoe maker, and (𝑖𝑣) an auction
user’s HTML blog page. ConnectionLens enriches the
graph by extracting Named Entities (NEs), e.g., person,
organisations or locations, each added as a new node to
the graph; we use one color for each NE type.

As Figure 1 shows, some edges are labeled and some
edges are not, due to the structure of the original data.
For instance, all edges in an RDF graph are labeled; prop-
erty graphs (PGs) are ingested by turning each node (or
edge) property into a standalone node, connected to its
parent node (edge) via an edge labeled with the property
name. In contrast, the natural modeling of XML docu-
ments leads to unlabeled edges between parent and child
elements, while edges between elements and attributes
are labeled; most edges in JSON documents are not la-
beled, etc.. To facilitate the analysis of heterogeneous
data graphs, ConnectionLens graphs are normalized: each
labeled edge is replaced by a new intermediate node car-

site

person

people
person

address

"Bob"

name

open_auctions

xmark.xml

Bob
Paris

ABC
Shoes

"I’m Bob, passionate
about shoes […], here is
my blog. […] ABC shoes
was founded in 1999 by
Alice. "

boblog
.html wikidata.org

…

…
open_auction

…

id

person1…
city

"Paris"

open_auction
…

…
annotation

author

ref:person1

…
description

text

"ABC Shoes Sneaker 200"

uri1name
"ABC Shoes"

uri2
headquartered

rdf:type
wiki:City

name
"Paris" rdf:type

wiki:brand

shoesCollection.json

type
"Sneaker"

ABC Sneaker 200

brand

"ABC Shoes"

model

"Sneaker 200"

description

"Sneaker 200 is the
newest sneaker of
ABC Shoes with
foam soles"

Alice

Figure 1: A ConnectionLens graph built from 4 datasets

rying the original edge’s label, as well as two unlabeled
edges connecting it to the two ends of the original edge.
Notations. We introduce a set of notations, as follows.
A normalised directed graph 𝐺 is a triple of the form
⟨𝒱, ℰ ,ℒ⟩, where: 𝒱 is a set of nodes; ℰ ⊆ 𝒱 × 𝒱 is
a set of (unlabelled) directed edges; and ℒ is the set of
node labels. Further, we write (𝑠.𝑛𝑖1 ...𝑛𝑖𝑝 .𝑡) to denote
a directed path from source node 𝑠 to target node 𝑡, of
length 𝑝. Finally, 𝒫 designates the set of all directed
acyclic paths in 𝐺.

3.2. Collections
Abstra [30, 31] is a data abstraction system developed
recently. Given a relational, JSON, XML, property graph
(PG) or RDF dataset, from the ConnectionLens graph
corresponding to the dataset, Abstra automatically com-
putes a description meant to give humans a first-sight
overview of a dataset. This description is a flavor of Entity-
Relationship (ER) diagram, of which many variants have
been proposed in the literature. In particular, when mod-
eling relational databases, an entity’s attributes only have
atomic values [32]; in contrast, the value of an attribute
of an Abstra entity can have a nested structure. For in-
stance, the value of an "address" attribute can be a set of
two locations, each specified as street, city, and country;
one location may also have an extra "getting there" field
structured in successive steps, etc.1

As an intermediary step towards abstracting datasets,
Abstra groups nodes in equivalence classes, or col-
lections. Abstra’s notion of equivalence [31] seeks to
capture the judgment of users who authored the data;
it can be seen as reverse-engineering the usual data de-
sign guidelines, which dictate how to describe applica-
tion data in each data model. For instance, human users
immediately understand that "two articles are similar
(conceptually equivalent)" as soon as they both have, e.g.,
a title and some authors. In order to work with graphs
generated from a variety of data sources, we leverage Ab-
stra’s node equivalence or collections, specified in [31].

1Sample abstractions computed by Abstra can be seen online at
https://team.inria.fr/cedar/projects/abstra/.

open_auction

initial interval current

person

#initial #current

start end

#startval #endval

annotation author

description

text

#textval

emailaddress

#email
address

address name

#name

city

#city

street

#street

zipcode

#zipcode

site
open_auctions people

Figure 2: Collection graph obtained from xmark.xml (Fig. 1).

Each collection has a label. For XML, PGs or JSON, the
label of the collection is the label shared by the nodes of
the collection, while for RDF, this label is the most specific
type shared with the other nodes of the collection.

3.3. Entities, boundaries and relationships
Having grouped all nodes in collections, Abstra performs
the following steps: (𝑖) Organize the collections in a di-
rected graph, having an edge 𝐶1 → 𝐶2 whenever in the
original graph, a node of collection 𝐶1 has an outgoing
edge toward a node of collection 𝐶2; we call this the
collection graph. Figure 2 shows the collection graph
obtained from the XML data at the top left in Figure 1:
each collection is shown as a box, labeled with an XML
element name, e.g., initial, or with a label such as #initial,
which denotes the set of text nodes that are children of
the initial elements. The colors of the collection boxes
will be explained shortly. (𝑖𝑖) Choose a set of collections,
each of which is designated as the root of an entity, i.e., a
core set of things described by the dataset. Each entity
collection 𝑒 is also attached a set of attributes, i.e., other
collections accessible from 𝑒, and seen as describing the 𝑒
entities. Abstra defines the boundary of an entity 𝑒 as the
set of these collections describing 𝑒, together with edges
between them. For example, in Figure 2, the entity root
collections are orange-filled, while their boundaries are
delimited by the light orange shapes. (𝑖𝑖𝑖) Based on the
chosen entities, Abstra turns any directed path from an
entity collection 𝑒1 to another entity collection 𝑒2, into a
relationship between the entities. In Figure 2, the annota-
tion and author collections (blue background) materialize
the relation between the open auctions and the people.

4. Understanding datasets through
the prism of abstraction

Abstractions are not interactive, and they do not enable
finding information about any individual node. We seek
to leverage abstractions, to help users interactively ex-
plore the original data graph at the node level. This raises
two challenges, which can be seen as losses of informa-
tion; we detail them in Section 4.1. Then, we describe our
approach for overcoming these, and reaching our goal.

https://team.inria.fr/cedar/projects/abstra/

open_auction

initial interval current

person

225$ 530$

start end

03/10/2000 12/21/2001

annotation author

description

text

ABC Shoes

address
name

Alice

city

Paris

street

5 rue de la
Paix

zipcode

75001

annotation

description

text
Shoes

person

address…

…

Figure 3: Boundaries of entity instances (in the data graph).

4.1. Abstraction-induced information loss
A first observation is that abstractions may hide (not re-
flect) some nodes from the original graph. This happens
in several cases. (𝑖) To keep the E-R diagram of manage-
able size, Abstra users may specify an upper bound on
the number of entities. Thus, node collections that are
relatively rare, in a complex-structure graph, may not be
reflected in the Abstra output at all: not as entities, not
even in other entities’ boundaries. (𝑖𝑖) For visual simplic-
ity, Abstra relationships are simple paths from an entity
to another, of the form 𝑒1 → 𝑘1 → 𝑘2 . . . → 𝑒2 for
some collections 𝑘𝑖. If a collection 𝑘𝑗 is reachable only
from one of the 𝑘𝑖’s in a relation, 𝑘𝑗 is visible neither in
the relation, nor an attribute within the boundary of 𝑒1
or 𝑒2. For example, in Figure 2, the description and text
collections under annotationwould not be visible in the ab-
straction. Finally (𝑖𝑖𝑖) Abstra rejects 1-node equivalence
classes as entity roots, e.g., the site, open_auctions and
people singleton collections in Figure 2. Such a singleton
can be seen as only a "container" for a larger collection. If
such singletons are not included in an entity’s boundary,
they may not be visible in the abstraction.

Second, summarization may consider equivalent nodes
with slightly different structure, e.g., two person 𝑝1, 𝑝2
having name and address, even if only 𝑝1 has an email
address. Such simplifications are common when summa-
rizing graphs. Thus, equivalent nodes, indistinguishable
in the abstraction, may have different internal (surround-
ing) structures, which should be faithfully reflected for
each, when exploring the data at the node level.

Intuitively: abstraction paints with wide brushstrokes;
node-oriented exploration requires a fine brush. This is
why we need to extend the node interpretation (to which
entities or relationships do they belong? what part do
they play there?) to each node individually. We discuss
this in Sections 4.2 and 4.3.

4.2. A role for every node
We start by dividing all the nodes into four basic roles,
as illustrated in Figure 3, using one node background
color for each role (differently from Figure 2, Figure 3
represents individual nodes and edges):
• Value nodes (green fill), denoted 𝒱𝑉 , are the leaves

of the graph. They have no children, but contain the

Label: “person“
Properties:
• name : “Alice“
• address: {

“city“: “Paris“,
“street“: “5 rue de la
Paix“,
“zipcode“: “75001“}

• emailaddress:[
“alice@mail.com“,
“alice@pro.com“]

Label: “open_auction“
Properties:
• initial : “225$“
• interval: {

“start“: “03/10/2000“,
“end“: “12/21/2001“}

• current: “530$ “
• annotation:

{“description“:
{“text“: “Shoes“}}

Label: “annotation>author“
Properties:
• annotation_description:{

“text“: “ABC Shoes“}}

Figure 4: Property graph obtained from the entity and rela-
tionship instances in Figure 3.

actual data values.

• Entity root nodes (orange), denoted 𝒱𝐸 . These are
nodes identified by Abstra as entry points, or top nodes,
in its entities. Each Abstra entity, stripped of its re-
lations, can be seen as a DAG, containing nodes that
describe the entity root. Thus, 𝒱𝐸 nodes are exactly
those from entity root collections.

• In-relationship nodes (blue), denoted 𝒱𝑅. These are
data nodes that are, in the data graph, along a directed
path from an entity root node (previous role in this list)
to another. For example, in Figure 3, there are exactly
two such nodes.

• Structural nodes (white), denoted 𝒱𝑆 , are all other
nodes in the graph.
We compute 𝒱𝐸 as: the nodes assigned by Abstra to

a collection that is an entity root. We compute 𝒱𝑉 , 𝒱𝑅,
and 𝒱𝑆 directly on the graph and also based on 𝒱𝐸 .

4.3. Boundaries to which a node belongs
Our next task is to assign each 𝒱𝑉 , 𝒱𝑅 and 𝒱𝑆 node into
the boundaries of one or more entity instances. We do
this by traversing the graph starting from each 𝒱𝑉 node,
going backwards, along all acyclic paths, until we reach
an entity root, i.e., a 𝒱𝐸 node. All the nodes (and edges)
traversed on an acyclic path that reaches a node 𝑛𝐸 ∈
𝒱𝐸 , are part of the boundary of 𝑛𝐸 . In a similar fashion,
we also compute a boundary for each in-relationship
node, except that in this process, we stop when reaching
a node from 𝒱𝑅, and we attach boundaries to 𝒱𝑅 nodes.
Intuitively, such boundaries capture "all attributes needed
to describe relationships between nodes".

In Figure 3, boundaries are represented as shaded pink
areas. As illustrated in the Figure, boundaries can overlap:
a city is shared by two people living there. In general,
boundaries overlap when several entity or relationship
instances are described by the same nodes (or subgraphs).

4.4. Deriving Property Graphs
Property Graphs (PGs, in short) are currently very popu-
lar for representing (semi)structured data. PG schemas
can be derived from dataset abstractions [33]; in our
context, we need to derive PGs from normalized graphs,
using the abstractions. A PG consists of a set of nodes,
and possibly a set of directed edges. Each node and edge
can have: one or more labels; and a set of attributes,
which have a name and a value; values are atomic. A

PG node or edge may have one or more labels, which
serve to distinguish different kinds of nodes. From a data
management perspective, PGs are preferable to simple
graphs, such as those built by ConnectionLens (Figure 1),
or RDF graphs, because if nodes are stored with their at-
tributes, less joins (or navigation) are needed to retrieve
a node’s content, and similarly for edges. From a user’s
perspective, also, the encapsulation of attributes in PG
nodes and edges makes them intuitive and easy to grasp.

We turn each entity instance rooted in a node 𝑒 ∈ 𝒱𝐸

into a PG node 𝑝𝑔𝑒, as follows.

• Node 𝑝𝑔𝑒 has an internal identifier attribute id, whose
value is the one created for it by ConnectionLens.

• Recall that 𝑒 may have multiple values for a child label
𝑙. Since this is not allowed in PGs, we attach to 𝑝𝑔𝑒
one attribute whose name is 𝑙, and whose value we
compute by serializing all the values of 𝑙 within a JSON
list of the form [𝑙𝑣1, 𝑙𝑣2, . . ., 𝑙𝑣𝑘].

• Further, 𝑒’s attributes may have nested values, which
PGs do not model. Thus, a non-atomic value of an
attribute labeled 𝑙 is serialized into a JSON snippet of
the form 𝑙: {𝑙𝑎1: . . . , 𝑙𝑎2: . . . , . . . , 𝑙𝑎𝑝: . . .}, where 𝑙𝑎𝑖’s
are the nested children of 𝑙. JSON lists and maps,
nested within each other as needed, are used to model
attribute values that are multiple, respectively, non-
atomic (have nested children).

• Given the semantics PG labels have, the label(s) of 𝑝𝑔𝑒
should reflect its category/type. Thus, 𝑝𝑔𝑒, and all the
PG nodes derived from nodes in the same (entity root)
collection as 𝑝𝑔𝑒, take their labels from that collection:
if they are XML elements, the element name; if they
are JSON nodes, the label path from the JSON root to
the node; if they are typed RDF node, one label for
each type; for relational datasets, the labeled derive
directly from the schema, etc.

A graph relationship 𝑟 of the form 𝑒1.𝑛1.𝑛𝑙.𝑒2
where 𝑒1, 𝑒2 ∈ 𝒱𝐸 and 𝑛𝑖 ∈ 𝒱𝑅 is transformed into a
(single) PG edge from the node 𝑝𝑔1 created from 𝑒1 as
above, to the node 𝑝𝑔2 corresponding to 𝑒2. This edge
is labeled with the concatenation of the labels of all the
collections along the relationship. For each node along
the relationship, we compute the properties in the same
way they are computed for PG nodes. Finally, the PG
edge accumulates the properties of each node along the
relationship, each property carrying the label of the node
it comes from, as a prefix of its own label. This way, all
information is kept during the transformation.

For illustration, Figure 4 shows two PG nodes and an
edge resulting from the data in Figure 2. We have added
two emails to the node at the right (not present in the
data previously depicted), to illustrate the handling of
multi-valued attributes.

The PG thus obtained reflects all the nodes in the

name size (bytes) nb. of nodes nb. of edges
XMark025 29.220.287 945.366 1.062.437
XMark05 58.005.779 1.876.628 2.122.577
XMark1 116.517.344 3.733.934 4.246.835
BSBM3K 208.986.518 971.755 1.458.780
BSBM4K 313.589.776 1.453.549 2.189.198
BSBM6K 511.100.393 2.360.702 3.563.778

Table 1
Datasets and metrics on the generated graphs.

Abstra-chosen entities and relationships, as well as all
their boundaries. Running Abstra with no upper limit on
the number of selected entities maximizes the part of the
original dataset we transform into a Property Graph.

5. Experiments
When users import data into the framework, we want it
to be available for visualisation as quickly as possible. We
thus evaluate the performance of our method as the time
taken by each data processing step, and the scalability in
the data size. After describing our datasets (Section 5.1)
and experimental settings (Section 5.2), we discuss our
experiments and their results.

5.1. Datasets
We used two different controllable-size datasets for our
experiments. XMark [29] is an XML benchmark describ-
ing auctions, products and buyers. We generated files
with scale factors 0.25, 0.5, and 1. BSBM [34] is an RDF
benchmark describing an e-commerce scenario, compris-
ing products, vendors, and consumers posting reviews
about products. Again, we generated three datasets of
increasing size (Table 1). We also report the number of
nodes and edges in the normalized Abstra graphs.

5.2. Settings
Our computation of roles, boundaries, and conversion to
property graphs is implemented in Python 3.6. First, we
call Abstra [31] to build the normalized graphs and col-
lections, which we read from Postgres. We then measure
the time taken by our algorithms to convert the data to a
PG, also persisted in Postgres. We used a MacBook with
Apple M1 Pro chip with 16 GB of memory.

5.3. Results
Figure 5 and 6 shows the time taken by each operation in
our framework, as a function of the number of edges in
the normalized graph. We note that each operation time
grows linearly with the graph size (number of edges). The
longest times are to compute the boundaries (Section 4.3)
and write the PG in the database. The times are shorter
for BSBM (RDF), because its relations and boundaries are
less deep, simplifying our computations. Finally, the total
time is acceptable for the processing of large datasets and
as it is linear, we cannot expect a lot of improvement. We
could though parallelize operations.

0

100

200

300

400

500

600

700

800

900

1000

1 1,5 2 2,5 3 3,5 4 4,5

Ti
m

e
 (s

)

Number of edges (millions)

loading graph computing roles
computing boundaries computing PG
writing to DB

Figure 5: Data processing times on XML datasets.

0

50

100

150

200

250

300

350

1 1,5 2 2,5 3 3,5 4

Ti
m

e
 (s

)

Number of edges (millions)

loading graph computing roles
computing boundaries computing PG
writing to DB

Figure 6: Data processing times on RDF datasets.

6. Data graph exploration
The property graphs generated by the above data trans-
formation process are all structured in the same manner,
amenable to a generic form of exploratory visualization.

We opt for a visualization based on node-link diagrams
as such diagrams are conceptually simple to understand.
But, as node-link diagrams scale poorly with the size
and density of graphs, we employ strategies to keep the
visual representation compact. Figure 7 illustrates part of
the interface, displaying a summarized view of an XMark
document, detailing a Person’s properties.

Our visualizations are implemented using D3 [35] and
integrated in the Connection Studio platform [36].

6.1. Initial query
For many datasets, showing the whole graph results in a
visualization of little value because of the large number
of nodes and links. We rather opt for an initially blank
workspace that users populate incrementally with enti-
ties and relationships of certain types, as in Graphies [37].

This obviously requires enabling users to select points
of entry in the graph. This can be a random object if the
user has no clear idea of where to start and merely wants
to discover the data by browsing it.

If the user has particular questions in mind, it is also
possible to specify a node-set to start from. Such a set can
be obtained from a keyword search, in which case the
workspace will get populated with objects (entities and

relations) matching the query. Since values are nested in
JSON structures in PG objects, to optimize searchability,
the search is operated on the normalized graph. We store
mappings between these nodes and the PG nodes (or
relationships) they are part of.

Users can specify if they are looking for a value, an
entity root, a relation, or a property containing the key-
word. The returned objects are entities and/or relations
that contain the keyword(s). Users can also search for PG
nodes through ad-hoc property search forms, e.g., find
the Person named Alice, or all Person nodes living in NY.

Another option consists in generating a visual sum-
mary of the graph that reflects the abstractions computed
by Abstra (Section 4). As illustrated in Figure 7, this
visualization shows a summary of the structure of the
property graph, representing each collection of entities
and the collection of relations in the property graph and
how they are connected.

This summary can help users identify entity or relation
types of interest that can then be selected and serve as an
entry point into the actual property graph. Selecting an
entity or relation takes users to a property table that lists
all instances of the corresponding collection, together
with their properties arranged in columns. The header
of each column is the path from the root to the property.
Selecting one particular item in this list takes users to
the Graph Exploration panel, centering the viewport on
the corresponding element.

6.2. Compactness
We described how we compute a property graph from im-
ported datasets in Section 4. The nodes and edges of this
graph are rich objects holding multiple properties that
we represent nested inside the corresponding geometri-
cal primitives: boxes that can be expanded and whose
content can be scrolled for nodes; and curves decorated
with an arrow shape for links. This arrow shape conveys
the relation type and its direction. It can be expanded and
scrolled as well, to show properties associated with the
corresponding type of relationship. We favor nesting of
key-value pairs in both cases for the sake of compactness.

Nodes are laid out using D3’s force simulation (package
d3-force) [35], setting a link force that leaves reasonable
empty space around shapes to expand them. Boxes deco-
rating links are treated as nodes in the simulation driving
the layout, link curves being composed of two Bézier
curves, one on each side. Clicking on a shape expands
that shape to reveal the nested list of properties. That list
is made scrollable if it overflows the parent node shape,
as illustrated in Figure 7 with the person collection.

Each node collection is assigned a different color hue,
consistent across views (actual property graph and graph
summary). In the Graph Summary view, stroke width
(nodes and links) is mapped to the group’s cardinality,
giving a rough idea about its number of instances.

Figure 7: Property graph summary for an XMark document with a person’s properties expanded.

6.3. Incremental exploration
The Graph Summary view is typically limited to a few
dozen boxes with corresponding links as it aggregates
entities by collection or relationship type. The Graph
Exploration view, however, shows the actual instances
themselves and can quickly become cluttered. Users start
from a blank workspace that they will populate with
a small initial node-set, adding and pruning branches
incrementally as they follow relations of interest.

By default, only a subset of a node’s relations is shown,
chosen based on their relevance. Selecting one of those
relations will fetch and display the corresponding target
node, which can then become the primary focus of atten-
tion. Providing users with a seamless and efficient way
to navigate the graph is key, avoiding too many explicit
actions to manually expand branches and prune links
of little interest while keeping relevant branches readily
accessible at the same time. This interaction design phase
is currently on-going, as discussed next.

7. Ongoing and future work
On the data transformation side, our pipeline can be
improved using parallelization to increase performance.
The pipeline could also be made into a universal (semi)-
structured data converter to Property Graphs by allowing
other PG schemas than the one computed with Abstra,
letting users choose entity root collections.

On the user interface side, we are currently exploring
several areas for improvement. As mentioned earlier,
nodes can have many properties and many relations. We
expose those properties through a scrollable list, and are
investigating different strategies to sort them, such as
computing a score of pertinence for each object, inspired
by KL-divergence with pseudo-relevance feedback [8]
or personalized PageRank [38], showing to the user the
top-𝑘 ranked objects.

Other enhancements include: using word scale visu-
alizations [39] to show the value distribution per prop-
erty across all nodes of a certain collection; using in-
put modalities beyond keyboard and mouse to interact
with elements of the node-link diagram, such as pen and
touch [37]. The latter is part of a larger interaction de-
sign effort to ease navigation in the node-link diagram,
streamlining navigation (interactive traversal) and graph
element visibility management actions, thanks to the
flexibility and additional expressive power of those two
modalities combined.

We will be conducting a user-study to evaluate the
quality of the data transformation and of the exploration
and visualization tool once it is ready.

References
[1] A. Deutsch, N. Francis, A. Green, K. Hare, B. Li,

L. Libkin, et al., Graph pattern matching in GQL
and SQL/PGQ, in: SIGMOD, 2022.

[2] C. Aebeloe, V. Setty, G. Montoya, K. Hose, Top-
K Diversification for Path Queries in Knowledge
Graphs, in: ISWC Workshops, 2018.

[3] A. C. Anadiotis, O. Balalau, C. Conceiçao, H. Gal-
hardas, M. Y. Haddad, I. Manolescu, T. Merabti,
J. You, Graph integration of structured, semistruc-
tured and unstructured data for data journalism, Inf.
Sys. (2021). doi:10.1016/j.is.2021.101846.

[4] C. Chanial, R. Dziri, H. Galhardas, J. Leblay, M. L.
Nguyen, I. Manolescu, ConnectionLens: Find-
ing connections across heterogeneous data sources
(demonstration), PVLDB 11 (2018).

[5] J. Yang, W. Yao, W. Zhang, Keyword search on large
graphs: A survey, Data Sci. Eng. 6 (2021).

[6] A. C. Anadiotis, I. Manolescu, M. Mohanty, Inte-

http://dx.doi.org/10.1016/j.is.2021.101846

grating Connection Search in Graph Queries, in:
ICDE, 2023.

[7] N. Barret, A. Gauquier, J.-J. Law, I. Manolescu, Path-
Ways: entity-focused exploration of heterogeneous
data graphs, in: ESWC, 2023.

[8] M. Lissandrini, D. Mottin, T. Palpanas, Y. Velegrakis,
Graph-query suggestions for knowledge graph ex-
ploration, in: The Web Conference, 2020.

[9] M. Lissandrini, K. Hose, T. B. Pedersen, Example-
driven exploratory analytics over knowledge
graphs, in: EDBT, 2023.

[10] M. Lissandrini, D. Mottin, K. Hose, T. B. Pedersen,
Knowledge graph exploration systems: are we lost?,
in: CIDR, 2022.

[11] T. Von Landesberger, A. Kuijper, T. Schreck,
J. Kohlhammer, J. J. van Wijk, J.-D. Fekete, D. W.
Fellner, Visual analysis of large graphs: state-of-
the-art and future research challenges 30 (2011).

[12] A.-S. Dadzie, E. Pietriga, Visualisation of Linked
Data - Reprise, Open Journal Of Semantic Web 8
(2017). doi:10.3233/SW-160249.

[13] C. Nobre, M. Meyer, M. Streit, A. Lex, The state of
the art in visualizing multivariate networks, CGF
38 (2019). doi:https://doi.org/10.1111/cgf.
13728.

[14] E. Pietriga, IsaViz: a Visual Environment for Brows-
ing and Authoring RDF Models, in: WWW Devel-
opers Day, 2002. URL: http://www.w3.org/2001/11/
IsaViz/.

[15] E. Pietriga, Semantic web data visualization with
graph style sheets, in: SoftVis, 2006.

[16] D. V. Camarda, S. Mazzini, A. Antonuccio, LodLive,
exploring the web of data, in: I-SEMANTICS, 2012.
URL: http://doi.acm.org/10.1145/2362499.2362532.

[17] I. O. Popov, M. C. Schraefel, W. Hall, N. Shadbolt,
Connecting the dots: A multi-pivot approach to
data exploration, in: ISWC, 2011.

[18] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann,
T. Stegemann, RelFinder: Revealing relationships
in RDF knowledge bases", in: Sem. Multimedia,
2009.

[19] A. Harth, VisiNav: A system for visual search and
navigation on web data, JWS 8 (2010).

[20] M. Hildebrand, J. van Ossenbruggen, L. Hardman,
/facet: A browser for heterogeneous semantic web
repositories, in: ISWC, 2006. URL: https://doi.org/
10.1007/11926078.

[21] Y. Tzitzikas, N. Manolis, P. Papadakos, Faceted
exploration of RDF/S datasets: A survey, Journal of
Intelligent Information Systems 48 (2017).

[22] M. Destandau, C. Appert, E. Pietriga, S-Paths: Set-
based visual exploration of linked data driven by
semantic paths, Open J. Sem. Web 12 (2021). doi:10.
3233/SW-200383.

[23] J. M. Brunetti, S. Auer, R. García, J. Klímek,

M. Nečaský, Formal linked data visualization model,
in: IIWAS, 2013.

[24] K. Thellmann, M. Galkin, F. Orlandi, S. Auer, Link-
DaViz – automatic binding of linked data to visu-
alizations, in: ISWC, 2015. URL: https://doi.org/10.
1007/978-3-319-25007-6.

[25] A. Braşoveanu, M. Sabou, A. Scharl, A. Hubmann-
Haidvogel, D. Fischl, Visualizing statistical linked
knowledge for decision support, SWJ 8 (2016). URL:
https://doi.org/10.3233/SW-160225.

[26] D. V. Camarda, S. Mazzini, A. Antonuccio, LodLive,
exploring the web of data, in: Proceedings of the
8th Int. Conf. on Semantic Systems, 2012.

[27] I. Popov, M. Schraefel, W. Hall, N. Shadbolt, Con-
necting the dots: A multi-pivot approach to data
exploration, in: ISWC, 2011.

[28] A. Anadiotis, O. Balalau, T. Bouganim, et al.,
Empowering investigative journalism with graph-
based heterogeneous data management, IEEE Data
Eng. Bul. (2021). URL: https://arxiv.org/abs/2102.
04141.

[29] A. Schmidt, F. Waas, M. Kersten, M. J. Carey,
I. Manolescu, R. Busse, XMark: A benchmark for
XML data management, in: VLDB, 2002.

[30] N. Barret, I. Manolescu, P. Upadhyay, Abstra: To-
ward generic abstractions for data of any model, in:
CIKM, 2022. doi:10.1145/3511808.3557179.

[31] N. Barret, I. Manolescu, P. Upadhyay, Computing
generic abstractions from application datasets, in:
EDBT, 2024.

[32] R. Ramakhrishnan, J. Gehrke, Database Manage-
ment Systems (3rd edition), McGraw-Hill, 2003.

[33] T. Enache, N. Barret, I. Manolescu, M. Mohanty,
Finding the PG schema of any (semi)structured
dataset: a tale of graphs and abstraction, SEAGraph
workshop (2024).

[34] C. Bizer, A. Schultz, The Berlin SPARQL benchmark,
IJSWIS 5 (2009).

[35] M. Bostock, V. Ogievetsky, J. Heer, D³ data-driven
documents, IEEE TVCG 17 (2011). doi:10.1109/
TVCG.2011.185.

[36] N. Barret, S. Ebel, T. Galizzi, I. Manolescu, M. Mo-
hanty, User-friendly exploration of highly hetero-
geneous data lakes, in: CoopIS, 2023.

[37] H. Romat, C. Appert, E. Pietriga, Expressive
authoring of node-link diagrams with graphies,
IEEE TVCG 27 (2021). doi:10.1109/TVCG.2019.
2950932.

[38] S. Chakrabarti, Dynamic personalized pagerank in
entity-relation graphs, in: Proceedings of the 16th
international conference on World Wide Web, 2007.

[39] P. Goffin, W. Willett, J.-D. Fekete, P. Isenberg, Ex-
ploring the placement and design of word-scale vi-
sualizations, IEEE TVCG 20 (2014). doi:10.1109/
TVCG.2014.2346435.

http://dx.doi.org/10.3233/SW-160249
http://dx.doi.org/https://doi.org/10.1111/cgf.13728
http://dx.doi.org/https://doi.org/10.1111/cgf.13728
http://www.w3.org/2001/11/IsaViz/
http://www.w3.org/2001/11/IsaViz/
http://doi.acm.org/10.1145/2362499.2362532
https://doi.org/10.1007/11926078
https://doi.org/10.1007/11926078
http://dx.doi.org/10.3233/SW-200383
http://dx.doi.org/10.3233/SW-200383
https://doi.org/10.1007/978-3-319-25007-6
https://doi.org/10.1007/978-3-319-25007-6
https://doi.org/10.3233/SW-160225
https://arxiv.org/abs/2102.04141
https://arxiv.org/abs/2102.04141
http://dx.doi.org/10.1145/3511808.3557179
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2019.2950932
http://dx.doi.org/10.1109/TVCG.2019.2950932
http://dx.doi.org/10.1109/TVCG.2014.2346435
http://dx.doi.org/10.1109/TVCG.2014.2346435

	1 Motivation
	2 State of the art
	2.1 Graph exploration in DBMS
	2.2 Interactive graph exploration

	3 Preliminaries
	3.1 Normalized Graphs
	3.2 Collections
	3.3 Entities, boundaries and relationships

	4 Understanding datasets through the prism of abstraction
	4.1 Abstraction-induced information loss
	4.2 A role for every node
	4.3 Boundaries to which a node belongs
	4.4 Deriving Property Graphs

	5 Experiments
	5.1 Datasets
	5.2 Settings
	5.3 Results

	6 Data graph exploration
	6.1 Initial query
	6.2 Compactness
	6.3 Incremental exploration

	7 Ongoing and future work

