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Pedicle Drilling Planning Transfer for Spine Surgery
Using Functional Map Correspondences

L. Leblanc1, R. Vialle1, C. de Farias2, E. Saghbiny1, N. Marturi2, and B. Tamadazte1

Abstract— Precise pedicle screw placement is crucial in spine
surgery, where minor inaccuracies can result in significant
complications. Despite introducing robot-assisted navigation
systems to aid surgeons, accommodating the spine’s non-
rigid movements (due to patient movement or interactions
with the surgeon) often necessitates repeated intraoperative
imaging, leading to increased radiation exposure. To address
this challenge, we propose a novel method that utilizes the
functional map (FM) framework to transfer drilling trajectories
from preoperative CT scans to partially observed and noisy
spine models. Specifically, the FM correspondences enhance the
registration quality of pre-operative and perioperative 3D spine
model data, even in the presence of non-rigid deformations.
Through comprehensive simulations, we assess the method’s
effectiveness across various cases of complex deformations using
a spine model consisting of five lumbar vertebrae obtained
through CT scans. Validation involves evaluating registration
errors in translation and rotation and verifying the clini-
cal validity of transferred drilling trajectories. The results
demonstrate the method’s efficiency in transferring drilling
trajectories onto noisy, partially observed, and deformed spine
models.

I. INTRODUCTION

Pedicle screw (PS) placement has become a standard
surgical technique in spine surgery over the past few decades.
It is extensively employed across various spinal procedures,
notably in correcting spinal deformities such as scoliosis [1].
The surgical treatment, referred to as arthrodesis, involves
spinal fusion achieved through the insertion of pedicle screws
and correction with rods [2]. As shown in Fig. 1, the PS
should be positioned correctly, i.e., through the middle of
the pedicle to obtain maximum stability of the bone-screw
interface. Failure to accurately position the PS can result in
a medial breach during insertion, leading to perforation of
the spinal cord [3], or a lateral breach causing injuries to
major vessels such as the aorta or vena cava. The literature
indicates a complication rate of up to 18% attributed to the
mispositioning of pedicle screws [4]. Overall, this highlights
that the success of spinal surgery depends substantially on
the safe and accurate positioning of the PS.

Drilling pedicles for screw placement presents a notable
challenge, traditionally reliant on the surgeon’s experience.
However, technological advancements, such as navigation
systems, robotic assistance, and augmented reality solutions,
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Fig. 1. Illustration of various screw placements in the vertebrae. a) Accu-
rately positioned screw; b) medial perforation, which involves penetration
into the spinal canal; and c) lateral perforation.

have become increasingly prominent. These innovations sig-
nificantly enhanced accuracy and reduced complications.
Navigation systems, for instance, locate surgical instru-
ments in 3D and display them on pre- or intraoperative
images, enabling surgeons to plan trajectories beforehand
and navigate them during surgery. This involves mapping
3D insertion points and screw orientations onto each pedicle,
necessitating precise pre- and intraoperative image registra-
tion [5]. Despite these advancements, spine surgery presents
unique challenges. Spinal movement can induce variations
from preoperative images throughout the procedure due to
several factors. These include patient displacements (e.g.,
due to breathing), removal of muscle to access the pedicles
during spine exposure, and the application of considerable
forces during drilling trajectories. Moreover, while individual
vertebrae are rigid, they can exhibit movement relative to
each other, leading to spine deformation and complicating
the registration process [6], [7]. Addressing these challenges
is crucial for ensuring accurate surgical outcomes in spine-
related procedures.

In robot-assisted spine surgery, managing spinal motion
and accurately placing PS is crucial. The two most widely
used methods to achieve this include employing per-operative
CT scans and using optical trackers affixed to the patient’s
anatomy to compensate for patient motion (e.g., due to
breathing). However, each has its drawbacks. CT scans offer
detailed anatomical insights; nevertheless, frequent scans
increase radiation exposure [8]. Conversely, although free
from radiation risks, optical trackers cannot capture dynamic
inter-vertebral deformations. An ideal solution would com-
bine both benefits: a radiation-free approach that accurately
captures the spine’s deformations. Nonetheless, alternative
radiation-free modalities such as depth cameras and ultra-
sound probes typically provide only partial views of the spine
and can be obscured by noise. Consequently, under such
challenging conditions of noisy and incomplete data, along



with the inter-vertebral movements, traditional geometric
registration methods may struggle [9]. Recently, advance-
ments in deep learning have shown potential in overcoming
these challenges [10]. However, they require extensive train-
ing periods and sizable datasets, often unavailable or easily
accessible.

In this work, we leverage the functional maps (FM) frame-
work [11]–[13] to enhance the registration of pre-operative
and perioperative 3D data. We aim to transfer the planned
pedicle drilling trajectory from the pre-operative CT-scan
model, i.e., the drilling point and orientation, to an intraoper-
ative model that often presents challenges due to being partial
of lower quality and impacted by noise and deformations.
Specifically, an initial FM is generated using rough manual
landmarks on the vertebrae spinous process. This FM is
refined through up-scaling to provide continuous and precise
mapping, mainly to handle symmetries in the spine model.
Finally, to individually register the segmented vertebrae,
we apply the M-estimator sample consensus (MSAC) [14].
The resulting rigid transforms transfer drilling trajectories
defined on the source (pre-operative) spine model to the
target (per-operative) spine model. The quality of registration
is evaluated both quantitatively and qualitatively:

(i) Quantitative evaluation is performed by computing the
linear and angular registration errors using the Root
Mean Squared Error (RMSE) metric. These errors are
computed for each vertebra.

(ii) Qualitative evaluation is performed by evaluating
whether the drilling trajectories are still clinically valid
once transferred to the target spine model. Clinical
validity is defined by the absence of lateral or medial
breaches, as depicted in Fig. 1.

We have evaluated the effectiveness of our proposed ap-
proach across various challenging scenarios, including arbi-
trary deformation and partial data. For this purpose, we used
a spine model composed of five lumbar vertebrae obtained
through CT scans. In over 90 scenarios, totaling 900 drilling
trajectory transfers, our method demonstrated an average
linear RMSE of 0.94mm and an average angular error of
1.32 ◦. 900 out of 900 (100%) resulted in clinically valid
drilling trajectories. These assessments encompass both best
and worst-case scenarios. For best-case scenarios, errors are
nearly negligible, with minimum linear and angular errors
are 0.006mm and 0.007 ◦, respectively, resulting in 100%
accuracy in trajectory transfer. On the other hand, for the
worst-case scenario, which is characterized by noisy and
partial data, the maximum linear and angular RMSE errors
reach 2.34mm and 2.54 ◦, respectively, resulting in 100%
accuracy in trajectory transfer.

II. PROBLEM STATEMENT
A drilling trajectory is defined by an entry point and exit

point. The entry point of the pedicle screw is established at
the intersection of either the pars interarticularis, mamillary
process, lateral border of the superior articular facet, or
mid-transverse process. The exit point is chosen to ensure
the screw traverses the center of the pedicle’s narrowest

Fig. 2. Illustration of different margins during a pedicle screw placement.

section, as shown in Fig. 2. Typically, the width of the
pedicle screw (ws) is 5 to 6mm. The narrowest part of
the pedicle is encountered at a depth dp of about 20mm
(of drilling) from the entry point. At this narrowest point,
the width of the pedicle (wp) measures roughly 11mm
for lumbar vertebrae [15]. Assuming the screw is precisely
centered within the pedicle, on average, there will be a
margin lm =

wp−ws

2 of about 2.5mm between the screw
and the pedicle’s medial and lateral boundaries. Therefore,
when transferring a drilling trajectory from a pre-operative
scan to a per-operative model, the objective should be to
limit the translational and rotational errors to a maximum of
∆t = 2.5mm and ∆R = atan( lmdp

) = 7.1 ◦, respectively.

III. TRAJECTORY TRANSFER METHODOLOGY

In this section, we present the FM framework and proceed
with the developed pipeline for transferring pedicle drilling
trajectories.

A. Functional Maps

The FM framework, introduced in [11] for the purposes of
shape analysis and correspondence identification, serves as a
tool for effectively transferring planned surgical trajectories.
Previously, it has been used for various applications in com-
puter graphics and, more recently, for robotic grasping [16].
The underlying idea behind the FM approach is that by re-
framing the shape-matching problem from a point-to-point
search to feature correspondence within a more linear ”func-
tional space”, it becomes simpler and more computationally
efficient. In the context of transferring planned trajectories,
such as pedicle screw trajectories from pre-operative to
intraoperative spine models, the framework allows for the
accurate mapping of crucial surgical points and orientations
despite variations in shape or deformations.

Let M,N be two shapes (source and target) represented
by Riemannian manifolds with nM and nN their respective
vertices. Let TP : M → N be the bijective point-wise
mapping between M and N . Directly optimizing over such
correspondences leads to difficult, non-convex, non-linear
optimization problems and becomes infeasible for dense
point clouds or meshes. Instead, with the FM, shapes are
encoded over a low-rank, compact basis for defining func-
tions. Thus, a map within this framework includes pairings of
real-valued functions rather than points [11]. In this manner,
let f : N → IR be a scalar function defined over N . A
corresponding scalar function g : M → IR defined over



M is obtained by composition, i.e., g = f ◦ TP , with TP

being a map between the two shapes. This is denoted as the
functional representation TF of the mapping TP . It is worth
noting that TP matches points of shape M to points of shape
N whereas TF matches real-valued functions defined on N
to real-valued functions defined on M.

Next, let M and N be equipped with a set of orthogonal
bases, {ϕi} and {ψi} respectively. Then, the functions f and
g can be represented as a linear combination f =

∑
i aiψi

and g =
∑

i biϕi. If {ϕi} and {ψi} form orthonormal
bases with respect to some inner product ⟨· , ·⟩, then
f =

∑
i⟨f , ψi ⟩N and g =

∑
i⟨g , ϕi ⟩M. From there,

noting that TF is a linear operator [11], we have

TF (
∑
i

⟨f, ψi⟩Nψi) =
∑
i

⟨f, ψi⟩NTF (ψi)

=
∑
i,j

⟨f, ψi⟩N ⟨TF (ψi), ϕj⟩M︸ ︷︷ ︸
cij

ϕj (1)

Truncating the series at the first kn, km coefficients, one
can obtain an approximation of TF , represented in the bases
{ψi , ϕi} as a kn × km matrix C = (cij).

Now, let us assume that, through landmarks, segments
preservation, and preserved functions, we have a set of q
corresponding functions {f1, ..., fq} and {g1, ..., gq}. Let A
be the matrix representation of aij = ⟨fi , ψj ⟩N for the
first kn bases and, similarly, B the matrix representation of
bij = ⟨gi , ϕj ⟩M for the first km bases. Then, inferring
functional correspondence reduces to solving a linear system
of equations,

CA = B (2)

Adequately choosing the bases {ϕi} and {ψi} allows for
a significant reduction in the size of this system, making
it computationally efficient. If q ≥ km,n, the system (2) is
(over-)determined and is solved in the least squares sense to
minimize the following energy

E1(C) = ||CA−B||2 (3)

Equation (3) presents the simplest optimization problem for
recovering an unknown FM. Other regularization terms have
been proposed to incorporate additional constraints, such as
operator commutativity [11]–[13], local volume preservation
and isometry [17], and descriptor-commutativity and orienta-
tion preservation [13]. Once an accurate FM is obtained, it is
possible to retrieve the point-wise correspondence TP [11].

B. Pipeline for Drilling Trajectory Transfer

The developed pipeline consists of the following key
steps. First, drilling trajectories are defined on the source
spine model, specifying entry points and drilling directions.
Subsequently, new bases on both the source and target
spine models are computed to facilitate the calculation of
descriptor functions. These functions are crucial for enabling
optimization within the FM framework. After mapping, C
is derived and refined through iterative methods, it can
be converted into a corresponding point-wise map. This
conversion allows for the individual registration of vertebrae

and the transfer of drilling trajectories from the source to the
target models. All these steps are detailed below.

1) Compute the functional bases: We derive the Laplace-
Beltrami eigenfunctions of M and N to serve as bases {ϕi}
and {ψi}. This choice is common and particularly well-suited
for shape-matching tasks, as these functions form an or-
thonormal basis, are invariant to isometric rigid motions, and
are computationally tractable. Furthermore, eigenfunctions
of the Laplace-Beltrami operator are ordered from “low fre-
quency” to “higher frequency”. Consequently, using only the
first kn << nN , km << nM coefficients results in a ‘low-
pass’ filtering effect, facilitating smooth correspondences.
Typically, kn, km ∈ [20, 100] yields effective outcomes for
shapes undergoing near-isometric deformations.

2) Compute global and local descriptors: We compute
sets of descriptor vector functions fi on N and gi on
M expressed as linear combination of the bases {ψi} and
{ϕi}, respectively, and C satisfies ci,jfi ≈ gi. To this end,
we combine global and local descriptors. Global descrip-
tors are obtained using the Wave Kernel Signature (WKS)
descriptor [18], which was proven efficient for a variety
of datasets [19]. Local descriptors are obtained using the
Heat Kernel Signature (HKS) descriptor [20] on landmarks
manually selected on the top of the spine spinous process.
WKS and HKS are invariant to isometry and are robust to
some non-isometric deformations.

3) Estimate C: Optimize C by minimizing an energy
similar to E1 given in (3). In this work, we adopt the
approach presented in [13] to enhance the quality of the FM
and to impose constraints ensuring approximate isometry and
orientation preservation in the maps. This also incorporates a
mask that promotes a slanted diagonal in C, which is useful
in the case of partial correspondences as shown in [21].

4) Refine C and convert it to a point-wise mapping: In
challenging settings, i.e., in the presence of noise, partiality
and symmetries, it is useful to refine the obtained FM. This
can be done by iterative alignment and refinement in the
basis domain. Our implementation combines two refinement
methods. Firstly, the Bijective and Continous ICP (BCICP)
algorithm [19] improves the maps in the spatial and spectral
domains. Specifically, our method can handle symmetries
and noise. Finally, the ZoomOut algorithm [22] refines
the FM through iterative spectral up-sampling, significantly
improving the mapping precision. The conversion from the
functional domain map (TF ) to the point-wise mapping TP

is achieved using the same approach proposed by the original
zoomOut method [22]. Examples of point-wise maps are
shown in Fig. 5, where point correspondence is displayed
as color correspondence.

5) Drilling trajectory transfer: Although the point-wise
mapping TP can directly transfer the drilling trajectories
entry and exit points from a source spine model to a target
spine model, local discontinuity in the map can lead to
erroneous transfer. One possible solution is to utilize the
nearest neighbors of the entry and exit points defined on the
source spine model to filter out outliers on the corresponding
points in the target spine model. In this work, knowing
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a) b) c) d)

Fig. 3. The investigated cases of spine model deformation. a) and b)
illustrate the spine model, obtained from a CT-scan, before and after non-
rigid deformation, with each vertebra undergoing a cumulative rotation of
5◦ along the spine axis, as indicated by the red arrows. c) displays the
removal of the lower half of the spine. d) exhibits the target model after
adding a noise N (0, 12).

that individual vertebrae are anatomically rigid, we rely
on segmenting the source spine model vertebrae. For each
individual vertebra Vi, we extract the point cloud Mi on
the source spine model and compute the corresponding
point cloud on the target Ni. Using the M-estimator sample
consensus (MSAC) algorithm [14], we can then compute the
optimal rigid transform TMi

Ni
∈ SE(3) between the two

point clouds. It is important to note that for partial data,
we use a rough segmentation of the upper half of the spine
model, provided only to consider mapped points.

IV. EXPERIMENTAL RESULTS

In this section, we present the experiments conducted
to evaluate the performance of our FM-based approach in
transferring drilling trajectories. This transfer is performed
from a source spine model to a target spine model that has
undergone different deformations. The utilized source spine
model consists of five lumbar vertebrae obtained through
a CT scan. It measure approximately 180mm in length,
80mm in height and a vertebral body width of 45mm.
To streamline the computational complexity, the original
mesh of the source model containing more than 40,000
faces is simplified to approximately 3,500 faces. Two drilling
trajectories were defined for each vertebra, corresponding
to one per pedicle. Before the transfer process, individual
vertebrae were manually segmented using the source spine
model. Subsequently, we assign one approximate landmark
per vertebra positioned atop the spinous process. The ini-
tial manual landmark alignment allows for pairings with a
potential deviation of up to 5mm.

A. Investigated Cases

To assess the effectiveness of our approach, we registered a
set of drilling trajectories, defined on a baseline spine model,
onto modified versions of the spine model under challenging
deformation scenarios. The following deformations, depicted
in Fig. 3, have been tested.

1) Rigid deformation: A random rigid transform
TRAND ∈ SE(3) is applied to the entire spine model, i.e.,
every point within the model undergoes the same rotation
and translation. The linear components are randomly
generated, i.e., tx, ty, tz ∈ [−2 × M,+2 × M ] where
M is the maximum dimension along x, y, and z axis
of the spine model. Similarly, the angular components,
Rx, Ry, Rz ∈ [−30,+30]◦ representing the Euler angles in
the x, y, z directions are randomly generated.

2) Non-rigid deformation: Before applying TRAND to the
entire spine model, a distinct rotation Ri is applied to
each vertebra. Specifically, the ith vertebra, starting from
the lowest one, undergoes a rotation of (i − 1) ∗ 5 degrees
along the spine axis. This aligns with the understanding that
vertebrae are anatomically rigid yet possess the ability to
move slightly concerning each other, typically within a range
of a few degrees [23]. This is shown in Fig. 3(a) and 3(b).

3) Partiality: Before applying TRAND and Ri, the lower
half of the spine model is removed by a manual selection of
the corresponding vertices. This approximates the expected
view during an open surgery. It is depicted in Fig. 3(c).

In addition to the aforementioned cases, we evaluated our
method’s performance with clean and noisy data. For noisy
cases, we applied a random Gaussian noise, N ∼ N (µ,σ2),
to the model point cloud. For instance, with N ∼ N (0, 12),
the added noise represents a data shift range of up to
6mm (i.e., ± 3σ, a shift of 13% of the initial data smallest
dimension). A comparison between clean and noisy models
is shown in Fig. 3(a) and 3(d).

B. Drilling Trajectory Transfer Evaluation

In each deformation case, 10 registrations scenarios were
computed, entailing the application of 10 different random
deformations to the spine model. Vertebrae were registered
individually between the source and target spine models.
Subsequently, the linear and angular registration errors for
each vertebra were evaluated using the RMSE metric. Addi-
tionally, qualitative analysis was performed by verifying the
clinical validity of the transferred drilling trajectories on the
target spine model. This involved checking for the absence
of medial or lateral breaches, as illustrated in Fig. 1(b) and
1(c).

Detailed results are summarized in Table I. It includes
RMSE registration errors for each vertebra and the overall
percentage of clinically valid transferred drilling trajectories
for each deformation scenario. Fig. 4 depicts a sample of
the transferred planned drilling trajectories. In the figure,
column 1 presents the trajectories planned on the pre-
operative source model, and column 2 depicts the ground
truth, representing pre-operative drilling trajectories perfectly
transferred to the degraded target model. Column 3 shows the
superposition of trajectories transferred to the target model
using the ground truth transform (in blue) alongside those
transferred using our approach (in red). Finally, column 4
presents the superposition of the ground truth trajectories
(in blue) with the ones transferred with our method (in
red) without the spine shape. For the best and worst-case
scenarios, examples of point-wise maps are provided in
Fig. 5, represented as colour correspondence.

C. Uniform Rigid Transform

When a single rigid transformation is applied to the entire
spine model, our method yields perfect drilling trajectory
transfer without noise. Furthermore, it consistently produced
valid trajectories even in Gaussian noise, with a standard
deviation of up to 1mm.



TABLE I
PERFORMANCE EVALUATION OF OUR DRILLING TRAJECTORY TRANSFER FOR DIFFERENT SPINE DEFORMATION SCENARIOS.

Type of data Vertebra 1 Vertebra 2 Vertebra 3 Vertebra 4 Vertebra 5 Valid traj.
∆(t)▲ ∆(R)△ ∆(t)▲ ∆(R)△ ∆(t)▲ ∆(R)△ ∆(t)▲ ∆(R)△ ∆(t)▲ ∆(R)△

Rigid deformation
Clean∗ 0.007 0.005 0.005 0.003 0.001 0.002 0.010 0.012 0.004 0.006 100%
N (0, 0.52)∗ 0.32 0.28 0.27 0.40 0.13 0.33 0.23 0.35 0.57 0.46 100%
N (0, 12)∗ 1.21 1.17 0.52 0.75 0.49 0.94 0.60 0.89 1.20 1.08 100%
Mean† 0.51 0.49 0.26 0.38 0.21 0.42 0.28 0.43 0.59 0.53 100%

Non-rigid deformation
Clean∗ 0.007 0.005 0.005 0.015 0.004 0.007 0.011 0.013 0.004 0.006 100%
N (0, 0.52)∗ 0.48 0.41 0.25 0.39 0.12 0.37 0.24 0.33 0.38 0.38 100%
N (0, 02)∗ 1.31 1.23 0.48 0.83 0.43 1.25 0.86 1.16 1.59 1.29 100%
Mean† 0.60 0.55 0.25 0.41 0.19 0.54 0.37 0.50 0.66 0.56 100%

Non-rigid deformation with partial data
Clean∗ 0.16 0.00 0.13 0.01 0.16 0.30 0.16 0.00 0.16 0.00 100%
N (0, 0.52)∗ 0.92 0.85 0.46 0.66 0.30 0.97 0.48 0.61 0.88 0.76 100%
N (0, 12)∗ 3.37 3.04 1.23 1.83 1.45 4.39 2.01 4.83 2.90 2.71 100%
Mean† 1.48 1.30 0.61 0.86 0.64 1.89 0.88 1.81 1.32 1.16 100%

▲ Linear RMS error (in mm). △ Angular RMS error (in degrees). ∗ 10 scenarios ( 100 trajectories) † 30 scenarios (300 trajectories)

D. Non-Rigid Transform
When applying cumulative rotations to every vertebra on

top of a rigid transform to the entire spine, our method still
yields promising results in noiseless cases. This highlights
that the proposed method fully accommodates non-rigid de-
formations, provided they are isometric. Note that, although
we selected a rotation angle of 5◦ for each vertebra to align
with anatomical norms, empirical testing showed that the
FMs could achieve accurate matching for rotation angles up
to 25◦. This indicates that the FM framework can handle
a wide range of non-rigid transformations of considerable
magnitude. Similarly to the rigid case, our FM-based method
provides valid trajectories even in Gaussian noise, with a
standard deviation of up to 1mm.

E. Data Partiality
In the presence of data partiality, a rough segmentation

of the upper half of the spine model is provided only to
account for the mapped points. In the absence of noise, our
method still provides near-perfect results while only employ-
ing one rough landmark per vertebra. However, performance
deteriorates rapidly in the presence of noise compared to the
previous case. Results become unreliable when the standard
deviation of the Gaussian noise reaches 2mm. In this case,
manual inspection of the transferred trajectories revealed
that most point-wise mappings are highly accurate, and
most drilling trajectories are correctly transferred. However,
isolated pairs of vertebrae registrations exhibited high errors.
This indicates that both noise filtering and detection of highly
discontinuous registration transforms between consecutive
vertebrae could enhance the performance in the case of noisy
scenarios.

F. Discussion
Initial results obtained with our FM-based framework are

promising. Our method consistently provides accurate point-

wise mappings even with only rough tuning of the FM
parameters and one landmark pair per vertebra. Leveraging
the rigidity of individual vertebrae, effective registration can
be achieved for each vertebra, enabling efficient transfer
of drilling trajectories between models. Remarkably, these
results are achieved in just a few minutes per spine model
using non-optimized Matlab code. We believe that efficient
noise filtering could lead to significant improvements in
handling noisy data. Additionally, while our approach suc-
cessfully handled partial datasets, incorporating partial mesh
completion techniques such as Gaussian Process Implicit
Surfaces may prove beneficial when dealing with even more
fragmented data, such as that obtained through RGB-D scans.

V. CONCLUSION

In this paper, we have presented a method for transferring
drilling trajectories between spine models under different
cases of deformations. Leveraging both the FM framework
and anatomical knowledge of the spine, we have successfully
transferred drilling trajectories from a clean CT scan of a
spine model to noisy, partial, non-rigidly deformed versions
of the spine model. While the initial results achieved with our
method are promising, we believe that further investigation
is necessary to gain a comprehensive understanding of the
method’s behavior. In this future direction, the spine database
must first be expanded to further evaluate intra-spine and
inter-spine registration. Furthermore, using multi-modal data
(e.g., CT or ultrasound scans and RGB-D images) obtained
on both ex-vivo and in-vivo cases is essential to better
evaluate real-case surgical applications. Finally, exploring
finer spine model meshes could enhance the point-wise
correspondence obtained.
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[21] E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, et al., “Partial
Functional Correspondence: Partial Functional Correspondence,” Com-
puter Graphics Forum, vol. 36, no. 1, pp. 222–236, 2017.

[22] S. Melzi, J. Ren, E. Rodola, A. Sharma, et al., “ZoomOut: Spectral
Upsampling for Efficient Shape Correspondence,” 2019.

[23] M. Kozanek, S. Wang, P. G. Passias, Q. Xia, et al., “Range of
Motion and Orientation of the Lumbar Facet Joints In Vivo:,” Spine,
vol. 34, no. 19, pp. E689–E696, Sept. 2009. [Online]. Available:
http://journals.lww.com/00007632-200909010-00021


