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A new AI based computation method of the Eddington factor in the M1-multigroup model
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aUniversité Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, 06300, France

Abstract

The M1-multigroup model intricately captures the interaction between light and matter, incorporating the spectral behaviour of
photons. However, a critical aspect of this model lies in determining the Eddington factor, which is used in the closure relation
linking radiative pressure to radiative energy. Despite lacking an analytical expression, our investigation unveils that the Eddington
factor depends solely on three parameters: the radiative temperature, the reduced flux, and the frequency bounds’ ratio of a con-
sidered group. To address this challenge, we have devised a novel approach leveraging neural networks and polynomials, enabling
rapid and accurate estimation of this quantity.
Our method showcases significant advantages over existing techniques. It demonstrates speeds up to 3,000 times faster than the
most precise method utilising a line search algorithm and achieves precision levels up to 1,000 times higher than those relying on the
M1-grey model’s Eddington factor expression. Moreover, unlike interpolation-based methods, our approach eliminates the need for
prior knowledge of radiative quantities. Consequently, our method emerges as one of the most efficient means to precisely compute
the Eddington factor in the M1-multigroup model, offering a potent tool for advancing radiative hydrodynamics simulations.
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1. Introduction

Radiative hydrodynamics models the coupling between a hy-
personic hot plasma’s dynamics and self-produced or external
radiation. Almost all numerical codes use simplified models,
such as the cooling functions or the diffusion approximation,
that are, in most cases, limited in the general study of the
interaction of photons with matter. To accurately model the
photon transport, the HADES 2D code was specifically devel-
oped [1, 2, 3]. Such a code is indispensable for studying as-
trophysical objects, in which optically intermediate regions are
still poorly modelled yet commonly encountered within such
phenomena.

This code couples the hydrodynamics with the M1-grey and
M1-multigroup models [4, 5, 6] for radiative transfer. The M1-
multigroup model considers the spectral behaviour of light by
partitioning the electromagnetic spectrum into groups. These
models are based on the first two moments of the radiative
transfer equations and require a closure relation between the
second moment (radiative pressure) and the first (radiative en-
ergy) via the so-called Eddington tensor. This tensor depends
on a scalar quantity called the Eddington factor [7, 8, 9], which
has an analytical expression in the M1-grey model [10] but not
in the M1-multigroup model. To compute the Eddington fac-
tor in the multigroup model, there exist three methods in the
literature: the search algorithms [1], which are computation-
ally expensive but precise; the interpolation of precalculated
values [1, 11], which requires prior knowledge of the radia-
tive quantities; and the expression of the M1-grey model [12],
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which the fastest method, but is not valid, as we will see in this
paper.

Historically, the HADES code implemented two methods to
compute the Eddington factor. The first method is based on
search algorithms such as line search and Dichotomy-Newton’s
method [1], offers high precision but come with significant
computational costs, thus limiting access to simulations using
the M1-multigroup model. Additionally, this method occasion-
ally fails to converge, resulting in instabilities within the sim-
ulations. The second method utilises interpolations [1, 11],
which require prior knowledge of radiative quantities, a require-
ment that is not always met in radiative hydrodynamics simula-
tions.

Neural networks have previously been employed in super-
nova numerical simulations to compute the Eddington tensor of
the M1 model, which is used to model the interactions between
neutrinos and matter [13]. Notably, the closure relation needs
to have the required accuracy for this purpose. This study has
shown the efficiency of neural networks in achieving reason-
ably precise results while keeping computational costs manage-
able. This finding underscores the potential of neural networks
to significantly improve the accuracy and efficiency of super-
nova simulations compared to traditional methods.

In this paper, we introduce a new AI-based method devel-
oped within HADES, which computes precise values of the
Eddington factor while effectively reducing computational ex-
penses. First, we will analyse the dependencies of the Edding-
ton factor in the M1-multigroup model (Section 2). Next, we
will explore the intricacies of our devised approach (Section 3).
Subsequently, we will conduct a comparative analysis, evaluat-
ing the performance of our method against other existing meth-
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ods (Section 4). Finally, we will present our conclusions (Sec-
tion 5). As the mathematical developments are complex, we
detail the calculations in the seven appendices.

2. Analysis of the Eddington factor in the M1-multigroup
model

We define all the variables used in Table 1.

2.1. Definition of the radiative quantities
The radiation is defined by its specific intensity Iν, which

depends on the frequency of the photons and their propagation
direction. It reflects the quantity of energy transported by radi-
ation per surface unit. One can derive respectively the radiative
energy, the radiative flux and the radiative pressure as the two
first moments of the specific intensity:

Eν =
1
c

∫
4π
Iν(Ω) dΩ ; (1)

Fν =
∫

4π
Ω Iν(Ω) dΩ ; (2)

Pν =
1
c

∫
4π
Ω ⊗Ω Iν(Ω) dΩ . (3)

Where c is the light velocity, ν is the photon frequency,Ω is a
given direction, and ⊗ is the dyadic product. The radiative pres-
sure is related to the radiative energy via the Eddington tensor
Dg according to the following expression:

Pν = DνEν . (4)

According to the M1 model, which assumes that the radia-
tion propagates symmetrically according to the direction of the
radiative flux, the Eddington tensor is further related to a scalar
quantity called the Eddington factor χν. They are related ac-
cording to the following relation:

Dν =
1 − χν

2
I +

3χν − 1
2

Fν ⊗ Fν
||Fν||2

. (5)

Of course, it is impossible to consider the entirety of the elec-
tromagnetic spectrum, which is continuous. Thus there exist
two models: one that averages the behaviour of photons in the
electromagnetic spectrum (M1-grey model) and another that
discretises the electromagnetic spectrum to achieve more pre-
cision (M1-multigroup model).

2.1.1. M1-grey model
The M1-grey model considers all the photons as a whole.

Consequently, radiative quantities are integrated over all fre-
quencies according to the following expressions:

ER =
∫ ∞

0 Eν dν
FR =

∫ ∞
0 Fν dν

PR =
∫ ∞

0 Pν dν
. (6)

In this case, the M1 closure relation (4) holds, and the Ed-
dington tensor can still be expressed as a function of the Ed-
dington factor following Eq. (5). In this case, the Eddington

factor admits an analytical expression [10], depending solely
on the reduced flux, which is defined by the relation:

fR =
||FR||

c ER
. (7)

Its values lie in [0, 1] and indicate the degree of anisotropy
of the radiation (fR = 0: isotropic radiation, fR = 1: anisotropic
radiation propagating in one direction). This expression is:

χgrey =
3 + 4f2

g

5 + 2
√

4 − 3f2
g

. (8)

We will refer to this as the grey case Eddington factor.

2.1.2. M1-multigroup model
By cutting it into groups, the M1-multigroup takes into ac-

count more precisely the spectral behaviour in the electromag-
netic spectrum. We can thus define G groups, each having
bound frequencies [νg, νg+1]. To each group are associated ra-
diative quantities of each group defined as:

∀g ∈ [1,G],


Eg =

∫ νg+1

νg
Eν dν

Fg =
∫ νg+1

νg
Fν dν

Pg =
∫ νg+1

νg
Pν dν

. (9)

Once again, Eq. (4) gives the closure relation of each group,
and the Eddington tensor is related to the Eddington factor via
Eq. (5). However, in this case, the Eddington factor lacks an an-
alytical expression. To begin, we will determine the parameters
on which it depends.

2.2. Dependencies of the Eddington factor in the M1-
multigroup model

As seen in Eqs. (1), (2) and (3), we must first determine
the expression of the specific intensity to compute the radiative
quantities. By minimising the radiative entropy in the case of
the M1-multigroup model [5], it can be expressed as:

Iν(Ω) =
G∑
g=1

1g(ν) Iν,g(Ω) . (10)

Where 1g(ν) is the indicator function, worth 1 for
ν ∈ [νg, νg+1] and 0 everywhere else. Iν,g is the specific in-
tensity of the group g and can be expressed as:

Iν,g(Ω) =
2hν3

c2

[
exp

(
hν
kB

(α0,g + α1,gng ·Ω)
)
− 1

]−1

. (11)

Where h and kB are, respectively, the Planck and Boltzmann
constants, and ng is the direction of the radiative flux of group g.
If we introduce ng ·Ω = cos(θ) = µ and if we consider a frame
in which θ = 0 is the direction of the radiative flux, the radiative
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Notation Signification

Iν Spectral specific intensity (M1-multigroup model: Eq. 10)

Iν,g Spectral specific intensity of group g (Eq. 11)

νg, νg+1 Frequency bounds of group g

νm,g Geometric mean of group g’s frequency bounds, νm,g =
√
νg νg+1

δg Group g’s frequency bounds’ ratio, δg = νg/νg+1 ∈ [0, 1]

Eg Radiative energy of group g (Eq. 9)

Fg Radiative flux vector of group g (Eq. 9). Components: Fg,x, Fg,y

Pg Radiative pressure tensor of group g (Eq. 9). Components: Pg,xx, Pg,yy, Pg,xy
Pg Component of the radiative pressure of group g in the direction of the radiative flux, Pg = χgEg

χgrey, χg Eddington factor of the M1-grey model (Eq. 8) and of group g in the M1-multigroup model

fg Reduced flux of group g, fg = ||Fg||/(c Eg) ∈ [0, 1]

Tg Radiative temperature of group g, Tg =
(
Eg/aR

)1/4

Tg Adimensionalised radiative temperatures using νm,g (Eq. 21)

T
νg+1
g Adimensionalised radiative temperatures using νg+1 (Eq. 23)

T
νg
g Adimensionalised radiative temperatures using νg (Eq. 22)

T s
g Shifted radiative temperature (see Appendix C)

α0,g, α̃0,g 1st Lagrange multiplier and its adimensionalised form

α1,g, α̃1,g 2nd Lagrange multiplier and its adimensionalised form

βg Anisotropy parameter, βg = α1,g/α0,g ∈ ] − 1, 1[

Table 1: Variables used in this article

quantities of group g are expressed as:

Eg =
2π
c

∫ νg+1

νg

∫ 1

−1

2hν3/c2

ehν/kB(α0,g+α1,gµ) − 1
dν dµ ; (12)

||Fg|| = 2π
∫ νg+1

νg

∫ 1

−1

2hν3µ/c2

ehν/kB(α0,g+α1,gµ) − 1
dν dµ ; (13)

Pg =
2π
c

∫ νg+1

νg

∫ 1

−1

2hν3µ2/c2

ehν/kB(α0,g+α1,gµ) − 1
dν dµ . (14)

Where Pg is an eigenvector of the radiative pressure tensor
and is related to the Eddington factor and the radiative energy
as Pg = χgEg. ||Fg|| is the norm of the radiative flux and α0,g
and α1,g are called the Lagrange multipliers of the group g.
It has been demonstrated that if (Eg, ||Fg||) is physically realistic,
then there exist a unique couple (α0,g, α1,g) [5], which implies
that the Eddington factor depends only on the radiative energy
Eg, the norm of the radiative flux ||Fg|| and the frequency bounds
νg and νg+1. However, in the M1-grey model, we observed that
the Eddington factor only depends on the reduced flux fg, indi-
cating that further analysis is required to identify the parameters
significantly impacting the Eddington factor.

Supposing that νg > 0 and νg+1 < ∞ if we do the change of
variable ν̃ = ν/νm,g, where νm,g is the geometric mean of the
group’s frequency bounds. We obtain the following expres-

sions:

k4
B Eg

h4 ν4m,g
= aR

15
π4

∫ δ−1/2
g

δ1/2g

∫ 1

−1

ν̃3

eν̃(α̃0,g+α̃1,gµ) − 1
dν dµ ; (15)

k4
B ||Fg||

h4 ν4m,g
= aRc

15
π4

∫ δ−1/2
g

δ1/2g

∫ 1

−1

ν̃3µ

eν̃(α̃0,g+α̃1,gµ) − 1
dν̃ dµ ; (16)

k4
B Pg

h4 ν4m,g
= aR

15
π4

∫ δ−1/2
g

δ1/2g

∫ 1

−1

ν̃3µ2

eν̃(α̃0,g+α̃1,gµ) − 1
dµ . (17)

Where α̃i,g = αi,g hνm,g/kB are adimensionalised Lagrange
multipliers, δg = νg/νg+1 is the the group’s frequency bounds’
ratio, and aR is the radiative constant. We then can express the
radiative temperature, the reduced flux and the Eddington factor
as:

kB Tg
h νm,g

=

15
π4

∫ δ−1/2
g

δ1/2g

∫ 1

−1

ν̃3

eν̃(α̃0,g+α̃1,gµ) − 1
dν dµ

1/4

; (18)

fg =

∫ δ−1/2
g

δ1/2g

∫ 1
−1

ν̃3µ

eν̃(α̃0,g+α̃1,gµ)−1
dν̃ dµ∫ δ−1/2

g

δ1/2g

∫ 1
−1

ν̃3

eν̃(α̃0,g+α̃1,gµ)−1
dν̃ dµ

; (19)

χg =

∫ δ−1/2
g

δ1/2g

∫ 1
−1

ν̃3µ2

eν̃(α̃0,g+α̃1,gµ)−1
dν̃ dµ∫ δ−1/2

g

δ1/2g

∫ 1
−1

ν̃3

eν̃(α̃0,g+α̃1,gµ)−1
dν̃ dµ

. (20)
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From these expressions, it becomes evident that the Edding-
ton factor in the M1-multigroup model is solely dependent on
three quantities:

1. the adimensionalised radiative temperature
Tg = kB Tg/(h νm,g): comparison of the group’s radi-
ation energy to the energy level of the photons,

2. the reduced flux fg: degree of anisotropy of the radiation in
group g. Its values are in [0, 1] (fg = 0: isotropic radiation,
fg = 1: directional radiation),

3. the frequency bounds’ ratio δg = νg/νg+1: indication of the
separation of the group’s frequency bounds. Its values are
in [0, 1] (δg → 0: frequency bounds far from each other,
δg → 1: frequency bounds very close to each other).

One can show in the same way that we can choose the adi-
mensionalised temperature between the three following possi-
bilities1:

Tg = kB Tg/(h νm,g) ; (21)

T
νg
g = kB Tg/(h νg) = Tg/

√
δg ; (22)

T
νg+1
g = kB Tg/(h νg+1) = Tg

√
δg . (23)

Depending on the context, it may be more appropriate to
use one definition of the adimensionalised temperature over an-
other. Therefore, we will always specify which adimension-
alised radiative temperature we are using. For simplicity, we
will refer to the adimensionalised radiative temperature simply
as radiative temperature T .

In Appendix H, we detail the cases νg = 0 and νg+1 → ∞.
To efficiently compute the Eddington factor, we will analyse
the significance of its dependence on all three parameters.

2.2.1. Influence of the reduced flux
First, we display curves of the Eddington factor χg as a func-

tion of the reduced flux fg in Fig. 1, from which we draw two
conclusions:

1. Whatever T , χg always evolves from 1/3 at fg = 0 to 1 at
fg = 1 and has a slope equal to 0 at fg = 0,

2. T only influences the evolution of χg at intermediate val-
ues of fg.

This shows that χg always depends strongly on fg. Let us
further analyse the dependence on T and δg.

2.2.2. Influence of the radiative temperature and the frequency
bounds’ ratio

The ratio of the Eddington factor χg in the M1-multigroup
model relative to its grey case expression is displayed as a func-
tion of the radiative temperature Tg using different frequency
bounds’ ratios δg (Fig. 2). Qualitatively when the group’s fre-
quencies are significantly different (δg << 1), we observe the

1The choice of Tg comes from the calculations we present in this paper. The
choice of T νgg and T

νg+1
g comes from analogous calculations, taking ν̃ = ν/νg

and ν̃ = ν/νg+1, respectively.

Figure 1: Evolution of the Eddington factor χg at different radiative tempera-
tures Tg (Eq. 21), using a frequency bounds’ ratio worth δg = 10−4.

existence of a central “plateau” lying in the domain (Fig. 2a).
As the frequencies get closer together, the size of this “plateau”
diminishes until it disappears (Fig. 2b, 2c). When the frequen-
cies are nearly identical, two distinct domains emerge: one at
low and one at high temperatures. The transition between these
domains occurs at lower radiative temperatures as the frequen-
cies become closer (δg → 1, Fig. 2d). Overall, three main do-
mains can be seen in Fig. 2:

1. Domain L: Low radiative temperature. In this domain,
Tg <<

√
δg. χg depends solely on fg. A method to com-

pute it is detailed in Appendix A,
2. Domain I: Intermediate radiative temperatures. χg de-

pends strongly on the Tg, fg and δg,
3. Domain H: High radiative temperature. In this domain,
Tg >> 1/

√
δg. χg depends solely on fg. A method to com-

pute it is detailed in Appendix B.

The intermediate domain I, based on the separation of the
group’s frequencies, can be further categorised as follows:

• Case δg → 0: Bound frequencies far from each other.
There exist three intermediate domains (Fig. 2a):

– Ia: χg strongly depends on T . Empirically, we have
noticed χg only depends on fg and T νgg ,

– Ib: corresponds to the domain where the grey case
Eddington factor is valid. The width of this domain
is related to δg,

– Ic: χg strongly depends on T . χg only depends on fg
and T νg+1

g ,

• Intermediate δg: In the domains Id and Ie, χg depends on
Tg, fg and δg (Fig. 2b, 2c),

• Case δg → 1: Bound frequencies close to each other. In
the domain If , we observed that χg depends only on fg and
a shifted radiative temperature T s

g (Fig. 2d). This shift
accounts for the transition domains L to H moving towards
lower radiative temperatures (see Appendix C).

We have chosen to use neural networks to efficiently compute
the Eddington factor χg in domains where it depends on two or
more parameters. In the next section, we detail our computation
methodology.
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(a) δg = 1.10−4. L, H: Asymptotic domains, χg = F (fg); Ia: Low-intermediate radiative
temperatures, χg = F (fg,T

νg
g ); Ib: Domain in which χgrey is valid; Ic: High-intermediate

radiative temperatures, χg = F (fg,T
νg+1
g ).

(b) δg = 7.10−2. L, H : Asymptotic domains, χg = F (fg); Id: Low-intermediate ra-
diative temperatures, χg = F (fg,T

νg+1
g ); Ie: High-intermediate radiative temperatures,

χg = F (fg,T
νg+1
g , δg).

(c) δg = 7.10−2. L, H : Asymptotic domains, χg = F (fg); Id: Low-intermediate ra-
diative temperatures, χg = F (fg,T

νg+1
g ); Ie: High-intermediate radiative temperatures,

χg = F (fg,T
νg+1
g , δg).

(d) δg = 0.99. L, H: Asymptotic domains, χg = F (fg); If : Intermediate radiative tem-
peratures, χg = F (fg,T s

g ). T s
g is the shifted radiative temperature (see Appendix C).

Figure 2: Ratio of the grey case Eddington factor on the multigroup Eddington factor at fg = 0.65 and at different values of frequency bounds’ ratio δg.

Figure 3: Multi-Layer Perceptron comprising 5 inputs and 3 outputs. It
contains one input layer, one hidden layer and one output layer. The
circles represent perceptrons.

3. Details on the AI method

3.1. A short introduction to supervised neural networks
In this work, we use the neural network architecture Multi-

Layer Perceptron (MLP). It is composed of units called percep-
trons. Each of these perceptrons takes a number n of inputs x1,
x2, ..., xn to which are associated weights w1, w2, ..., wn and a
bias b and returns an output y = f

(∑n
i=1 wixi + b

)
, where f is

called activation function and is a non-linear function.
Several perceptrons can then be arranged in layers. There

are different types of layers: the input layer receives the input
data, the output layer generates the output data, and the hidden

layers are the layers between the input and the output layers
(see Fig. 3).

The first thing one must do is to define the architecture of
the neural network: the number of layers, the number of per-
ceptrons, the activation function functions used at each layer, ...
Once this is done, one must train the neural network for it to
solve a given problem. This is done by finding the optimal val-
ues of the weights and biases of each perceptron in the neural
network so that it outputs the correct answers to several known
examples. This requires choosing a function that will evaluate
the error of the neural network, which is called the cost function.
Finally, one must select the optimiser that updates the weights
and biases that minimise the cost function. The number of iter-
ation steps during the optimisation phase is called epoch.

One splits the data into two sets: the training set, which is the
set of known examples on which one trains the neural network
and the test set, that enables to check if the neural network has
correctly learnt.

3.2. Limits of the domains

As we have seen in Sec. 2, three main domains exist: the low
radiative temperature domain L, several intermediate domains I
and the high radiative temperature domain H. There are differ-
ent sub-domains in the domain I, in which the Eddington factor
depends more or less on the radiative temperature and the fre-
quency bounds (domains Ia, Ib, Ic, Id, Ie and If).
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In machine learning, there are two possible approaches: us-
ing a large neural network to predict the Eddington factor for
all cases or using smaller, specialised neural networks to com-
pute the Eddington factor in specific domains. We have chosen
the latter approach to limit the size of the neural networks re-
quired, thereby reducing computation time. Table 2 summarises
the methods used in the different domains, discussed in Sec. 1.
Here are the names of the neural networks are used for specific
domains:

• MLPa: For domain Ia. It has two inputs,

• MLPc: For domain Ic. It has two inputs,

• MLPe,1 and MLPe,2: For domain Ie. We use two neural
networks to reduced the size required and thus the predic-
tion time. MLPe,1 is used for δg ∈ ]0.03, 0.1] and MLPe,2
for δg ∈ ]0.1, 0.9]. These two neural networks have three
inputs,

• MLPf : For domain If . It has two inputs.

For domain Id, we use MLPa that only takes two parameters
and predicts accurate Eddington factors. For all these neural
networks, we use normalised inputs and impose known con-
straints on the output (Appendix D).

Range δg Range Tg Method ∗∗

Min Max Min Max

0 10−2.6 −∞ 10−5 √
δg P

L 10−2.6 0.9 −∞ 1 In: fg

0.9 1 −∞ ∗ 10−3/
√
δg
∗

0 10−2.6 100.6/
√
δg +∞ P

H 10−2.6 0.9 1 +∞ In: fg

0.9 1 100.6/
√
δg
∗ +∞ ∗

Ia 0 0.03 10−5 √
δg 101.1 √

δg MLP
In: fg, T νgg

Ib 0 10−2.6 101.1 √
δg 10−1.5/

√
δg χgrey

Ic 0 0.03 10−3/
√
δg 100.6/

√
δg MLP

In: fg, T νg+1
g

Id 0.03 0.9 10−5/
√
δg 10−3/

√
δg MLP

In: fg, T νg+1
g

Ie 0.03 0.9 10−3/
√
δg 100.6/

√
δg MLP

In: fg, δg,
T
νg+1
g

If 0.9 1 10−3/
√
δg
∗ 100.6/

√
δg
∗ MLP

In: fg, T s
g

∗Min/Max values for the shifted temperature T s
g (see Appendix C).

∗∗P: polynomial, MLP: neural network, χgrey: grey case Eddington fac-
tor. The variables after “In:” are the inputs used for each method.

Table 2: Limits for each domain.

3.3. Training/validation data

We have generated training and test datasets using the line
search algorithm we have developed (Appendix G). Table 3
summarises the parameters used to generate these datasets. Lin-
ear spacing has been used for all the quantities. We draw the
reader’s attention to the fact that the amount of data expected
does not correspond to the amount of data obtained because the
line search algorithm does not always converge.

Training
set

Test set Range

MLPa

log10(T νgg ) 500 1,000 [-5, 1.1]

fg 100 1,000 [0, 1]

# data 49,695 993,372 -

MLPc

log10(T νg+1
g ) 300 1,000 [-1.5, 0.6]

fg 100 1,000 [0, 1]

# data 28,621 951,821 -

MLPe,1

log10(T νg+1
g ) 100 150 [-5, 0.6]

fg 100 100 ∗ [0, 1]

δg 60 100 [0.03, 0.1]

# data 590,160 1,467,561 -

MLPe,2

log10(T νg+1
g ) 100 150 [-5, 1.1]

fg 100 100 ∗ [0, 1]

δg 60 100 [0.1, 0.9]

# data 589,910 1,465,462 -

MLP f

log10(T s
g ) 300 1,000 [-3, 0.6]

fg 100 1,000 [0, 1]

# data 28,712 955,143 -
∗The range fg ∈ [10−5, 0.99999] has instead been used in the test sets of

MLPe,1 and MLPe,2, to change the values of fg.

Table 3: Description of the datasets.

3.4. Architectures of the neural networks

All neural networks were trained using Julia’s Flux library2,
known for its versatility in neural network modelling. We se-
lected architectures large enough to provide precise predictions
yet small enough to ensure quick computations. The architec-
ture of these MLPs is detailed in Table 4. Our selection method-
ology is explained in Appendix E.

3.5. Validation

Finally, we check the relative error of the MLPs’ prediction
on the test set (see Sec. 3.3). Table 5 summarises the average
relative error on the Eddington factor and the components of the
radiative pressure. These errors are low, which demonstrates
the generalisability of these MLPs. The relative error can reach

2https://fluxml.ai/Flux.jl/stable/
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Neural
network

Total # of
layers

Total # of
perceptrons

# of
parameters

MLPa 3 15 77
MLPc 3 15 77
MLPe,1 4 24 146
MLPe,2 3 19 116
MLP f 3 15 77

Table 4: Architecture of the MLPs used.

100 % on the radiative pressure component Pg,xy for very low
values of fg, which is not an issue since this component does not
have a significant impact on the physics in such domain, due to
its low value compared to the other components of the radiative
pressure.

χg Pg,xx,yy Pg,xy

MLPa 3.3 × 10−3 % 6.9 × 10−3 % 2.2 × 10−2 %
MLPc 8.8 × 10−3 % 2.4 × 10−2 % 3.7 × 10−2 %
MLPe,1 8.2 × 10−3 % 1.8 × 10−2 % 4.1 × 10−2 %
MLPe,2 2.0 × 10−2 % 3.7 × 10−2 % 9.8 × 10−2 %
MLP f 1.7 × 10−2 % 3.9 × 10−2 % 8.5 × 10−2 %

Table 5: Average relative errors of each MLP on the test set. The average errors
on the components of the radiative pressure are calculated using Eqs. (F.7),
(F.8) and (F.9) in Appendix F.

3.6. Utilisation in the code HADES
To exploit the trained neural networks, we have converted our

Julia models to Keras models3 and then translated these into C
functions with the library keras2c4. The C functions are read
by the code HADES, written in Fortran 90 (upgraded to version
2003).

4. Validation: 1D Marshak wave

To evaluate this new method’s efficiency, we simulated a 1D
Marshak wave and compared it to different methods for com-
puting the Eddington factor.

4.1. Simulation description: Marshak wave
We consider a box of size L = 0.1 m for 1,000 cells, in which

there is a fluid at rest, having a temperature of T = 300 K
and a density of ρ = 8.2 × 10−9 kg/m3. On its left boundary,
the fluid experiences heating from an imposed temperature of
Tl = 5780 K, accompanied by an influx of radiative flux gov-
erned by the following expression:

∀g ∈ ⟦1,G⟧, ∀x ∈ R∗−, Fg,x(x) = c
(
Eg(x) − Eg(0)

)
; (24)

where G is the total number of groups. Initially, the radiation
is in equilibrium with the gas. The gas under consideration

3https://keras.io
4https://f0uriest.github.io/keras2c/index.html

possesses an atomic mass of ma = 1 u and an adiabatic index of
γ = 5/3. The simulation spans a duration of 13.3 ns of physical
time, during which various configurations of group numbers, as
detailed in Table 6, are employed. To compute the Eddington
factor, we considered four methods:

1. the line search algorithm described in Appendix G,
2. using the grey case Eddington factor (Eq. 8),
3. the AI method we have described in this paper,
4. the interpolation of the Eddington factor from precalcu-

lated values [1].

Number of groups νg [eV] νg+1 [eV] δg

2 groups - group 1 0 1.0×10−1 -
- group 2 1.0×10−1 ∞ -

3 groups - group 1 0 1.0×10−3 -
- group 2 1.0×10−3 1.0×10−1 1.0×10−2

- group 3 1.0×10−1 ∞ -

4 groups - group 1 0 1.0×10−3 -
- group 2 1.0×10−3 2.0×10−1 5.0×10−2

- group 3 2.0×10−1 4.0×10−1 5.0×10−1

- group 4 4.0×10−1 ∞ -

5 groups - group 1 0 1.0×10−3 -
- group 2 1.0×10−3 1.0 × 100 1.0×10−3

- group 3 1.0 × 100 1.1 × 100 9.1×10−2

- group 4 1.1 × 100 1.0 × 101 1.1×10−2

- group 5 1.0 × 101 ∞ -

Table 6: Definition of the groups

4.2. Computation time of different methods

Number
of groups

Grey case
expression

AI
method

Interpo-
lation

Line
search

2 groups 3.11 min 4.18 min 3.70 min 3.58 days

3 groups 3.92 min 4.92 min 4.69 min 7.05 days

4 groups 4.55 min 10.37 min 5.65 min 22.6 days

5 groups 5.53 min 7.72 min 6.88 min 16.6 days

Table 7: Comparison of the simulation times (CPU time).

Table 7 presents a comprehensive comparison of simulation
times across different multigroup configurations. Our devel-
oped method demonstrates remarkable efficiency, outperform-
ing the line search algorithm by 1,000 to 3,000 times in com-
putation time. However, it is slightly slower than the method
using the grey case expression, i.e. the fastest method. by a
factor of 1 to 3, its computation speed remains comparable to
the fastest methods available.
It is worth noting that simulation times for the 4-group configu-
ration are prolonged compared to other setups. This delay is at-
tributed to utilising heavier neural networks, as seen in Sec. 3.4,
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which necessitates more time for predictions. Consequently,
our developed method exhibits accelerated performance, par-
ticularly evident with fewer groups avoiding the use of MLPe,1
and MLPe,2, which are heavier.

4.3. Accuracy

At time t=0.133 ns, we present the radiative pressure PR,xx

obtained using the four different methods for computing the Ed-
dington factor. The simulation using the line search method is
designated as the reference due to its superior accuracy. Anal-
ysis of the resulting curves reveals that the AI method exhibits
errors of 10−3 %, whereas the grey case expression can yield
errors up to 2.5 %. Additionally, the error in radiative pressure
can reach 0.1 %, depending on the set of precalculated Edding-
ton factors used. This disparity highlights the enhanced preci-
sion of our new method. Furthermore, we observe that the error
associated with the grey case expression and the interpolation
method increases as the number of groups increases.

5. Conclusion

To conclude, we have obtained a neural network approach
that provides an average error on the prediction of the Edding-
ton factor in the M1-multigroup case of 10−3 % to 10−2 % and
is faster by a factor 3,000 compared to a line search algorithm
and only slower by a factor 1 to 3 compared the using the grey
case Eddington factor. Moreover, this approach does not need
prior knowledge of the radiative energy and reduced flux, which
is an advantage compared to the method using interpolations of
precalculated Eddington factors, making it one of the most effi-
cient existing.

Yet, the simulations we have done so far have not revealed
significant differences in the hydrodynamics quantities between
the different methods, even using many groups or 2D simula-
tions. The impact of the grey case Eddington factor’s lack of
precision could yet prove decisive in the case where the radia-
tion dominates, and the reduced flux is close to 1.

However, we propose this method to serve as a reference to
future work using the M1-multigroup, as it renders precise es-
timation of the Eddington factor computationally accessible.
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Appendix A. Low-temperature approximation for the Ed-
dington factor (Domain L)

We have fitted a polynomial of order 11 at T νgg = 10−8, using
Julia’s least square regression library LsqFit5. The resulting
expression is:

PL(fg) =1/3 + 2f2
g/3 +

0.3058945350580 (f3
g − f2

g ) −

3.5960491961545 (f4
g − f2

g ) +

24.1130825450229 (f5
g − f2

g ) −

92.2832025267787 (f6
g − f2

g ) +

220.1853600902954 (f7
g − f2

g ) −

329.3727903123292 (f8
g − f2

g ) +

299.9957746394199 (f9
g − f2

g ) −

151.3384873479037 (f10
g − f2

g ) +

32.2668624654447 (f11
g − f2

g ) .

(A.1)

The form of this polynomial ensures that the predicted Ed-
dington factor is 1/3 at fg = 0, 1 at fg = 1 and that the slope
is zero at fg = 0. The maximal relative error is 10−5 % on the
Eddington factor and 10−3 % on the radiative pressure compo-
nents.

Appendix B. High-temperature approximation for the Ed-
dington factor (Domain H)

If we consider the Lagrange multiplier α0 to be
α0 << kB/(hνg+1) the specific intensity of group g can
express Iν,g as:

Iν,g(µ) =
2kB

c2

ν2

α0,g(1 + βgµ)
. (B.1)

Where βg = α1,g/α0,g. The Eqs. (12), (13) and (14) can be
rewritten:

Eg =
8πkB(ν3g+1 − ν

3
g)

3c3α0,gβg

arctanh(βg)
βg

; (B.2)

||Fg|| = −
8πkB(ν3g+1 − ν

3
g)

3c3α0,g

arctanh(βg) − βg
β2
g

; (B.3)

Pg =
8πkB(ν3g+1 − ν

3
g)

3c3α0,g

arctanh(βg) − βg
β3
g

. (B.4)

One can verify using these expressions that these equa-
tions imply that the radiative temperature is such that
Tg >> hνg+1/kB, i.e. T νg+1

g >> 1. The reduced flux and Edding-
ton factor can then be expressed:

fg = −
arctanh(βg) − βg
βg arctanh(βg)

; (B.5)

χg =
arctanh(βg) − βg
β2
g arctanh(βg)

. (B.6)

5https://julianlsolvers.github.io/LsqFit.jl/latest/
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(a) Radiative pressure at time t=0.133 ns, using 2 groups (b) Radiative pressure at time t=0.133 ns, using 3 groups

(c) Radiative pressure at time t=0.133 ns, using 4 groups (d) Radiative pressure at time t=0.133 ns, using 5 groups

Figure 4: Component xx of the radiative pressure at time t=0.133 ns. The relative error is given by the formula: (Pxx,method - Pxx,line search)/Pxx,line search × 100.

Thus, the Eddington factor only depends on the reduced flux.
From these expressions, one can show that the Eddington factor
is 1/3 at fg = 0, 1 at fg = 1 and that the slope of the Eddington
factor is zero at fg = 0, which is consistent with what we saw
in Sec. 2.2.1. Additionally, at fg = 1 the slope of the Eddington
factor is worth ∂fgχg(1) = 1.

Since these expressions do not provide an expression of χg
as a function of fg, We fitted a polynomial that incorporates the
properties mentioned above. Using a dichotomy algorithm, we
calculated 100 values of χg for a reduced flux varying between
0 and 1. Then, we fitted a polynomial PH of degree 12 using
Julia’s library LsqFit5. The resulting polynomial expression is:

PH (fg) =1/3 + f2
g − f3

g/3 +

6.5813886320063 (f4
g − 2f3

g + f2
g ) −

44.5593808930324 (f5
g − 3f3

g + 2f2
g ) +

179.9251066153469 (f6
g − 4f3

g + 3f2
g ) −

463.2145547920471 (f7
g − 5f3

g + 4f2
g ) +

776.0741150675088 (f8
g − 6f3

g + 5f2
g ) −

841.0048410765069 (f9
g − 7f3

g + 6f2
g ) +

566.6515584347650 (f10
g − 8f3

g + 7f2
g ) −

215.1853394583736 (f11
g − 9f3

g + 8f2
g ) +

35.1130440991836 (f12
g − 10f3

g + 9f2
g ) .

(B.7)

The maximum relative error of this expression is worth
10−5% on the Eddington factor and 10−3% on the radiative pres-
sure components.

Appendix C. Expression of the shifted radiative tempera-
ture (Case δg → 1)

For values of the bound frequencies that are very close
(δg ≥ 0.9), we observed that the topology of the Eddington fac-
tor remains unchanged but shifts towards lower radiative tem-
peratures (Fig. C.5). To determine the extent of this tempera-
ture shift, we examined how the evolution of the position of the
most significant gradient, T ∇,max

g according to δg. We see that
log10(T ∇,max

g ) varies linearly with X = log10(1 − δg) as δg → 1
(Fig. C.6). Therefore, we fitted a linear function for δg > 0.99
(i.e. X < −2) and obtained the following expression:

log10(T ∇,max
g ) = 0.250114 X − 0.193613 . (C.1)

For δg ∈ [0.9, 0.99] (i.e. X ∈ [−2,−1]), we fitted a second-
degree polynomial as the relationship starts to deviate from lin-
earity. We have obtained the following expression:

log10(T ∇,max
g ) = 0.007385 X2+0.277981 X−0.166850 . (C.2)

We introduce a shifted radiative temperature, using the ra-
diative temperature at δg = 0.99 as a reference (i.e., T s

g equals
Tg when δg = 0.99). For δg > 0.99, it is defined as:

log10(T s
g ) = log10(Tg) − 0.250114 (X + 2) . (C.3)

For δg ∈ [0.9, 0.99], it is defined as:

log10(T s
g ) = log10(Tg)−0.007385 (X2−4)−0.277981 (X+2) .

(C.4)
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Figure C.5: Shift of the curve as δg gets closer to 1.

Figure C.6: Relation of the radiative temperature at the position of the most
significant gradient as a function of X = log10(1 − δg).

Appendix D. Input/Outputs of neural networks

As inputs for the neural networks, normalised values are used
to enhance learning efficiency:

• Inputs for MLPa:

x1 =
log10(T νgg ) − log10(T νgg,min)

log10(T νgg,max) − log10(T νgg,min)
;

x2 = fg .

• Inputs for MLPc:

x1 =
log10(T νg+1

g ) − log10(T νg+1

g,min)

log10(T νg+1
g,max) − log10(T νg+1

g,min)
;

x2 = fg .

• Inputs for MLPe,1 and MLPe,2:

x1 =
log10(T νg+1

g ) − log10(T νg+1

g,min)

log10(T νg+1
g,max) − log10(T νg+1

g,min)
;

x2 = fg ;

x3 =
δg − δg,min

δg,max − δg,min
.

• Inputs for MLP f :

x1 =
log10(T s

g ) − log10(T s
g,min)

log10(T s
g,max) − log10(T s

g,min)
;

x2 = fg .

Where the Xmin and Xmax quantities represent the minimum
and maximum values within the considered domain, and xi is
an input of the neural networks.

Additionally, the MLPs do not directly predict the Eddington
factor χg. Instead, they predict a related quantity, described by
the expression:

χg = 1/3 + 2/3 f2
g

(
1 + (1 − fg)(3/2 y − 1))

)
. (D.1)

Where y is the output of the MLP, which has been empirically
verified to fall within the range [0, 1]. This technique ensures
that the predicted Eddington factor is 1/3 at fg = 0, 1 at fg = 1,
and that the slope is zero at fg = 0.

Appendix E. Selection of the architecture of the neural net-
work

Appendix E.1. Training strategy

To train the neural networks, we utilise Julia’s library
Flux6. We employ the Light Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) optimiser from the Julia library Optim7, cho-
sen for its rapid convergence and efficient minimisation of the
cost function. Although LBFGS lacks stochastic properties,
potentially affecting generalisation, our comparison with the
vanilla Adam optimiser [14] shows that neural networks trained
with LBFGS remain generalisable in our specific scenarios. For
the training, we have defined two distinct cost functions:

L1(x1, x2, χg,data, χg,pred) =
(
χg,pred − χg,data

α f αT

)2

; (E.1)

L2(x1, x2, x3, χg,data, χg,pred) =
(
χg,pred − χg,data

α f αT αν

)2

. (E.2)

Where χg,data and χg,pred are, respectively, the label and pre-
dicted values of the Eddington factor, x1, x2, x3 are the inputs
of the neural network (see Appendix D), and α f , αT , αν are
factors defined by the expressions:

αT = min(x1, 1 − x1) + ϵT ; (E.3)
α f = min(1 − x2, χg,data − 1/3) + ϵ f ; (E.4)
αν = min(x3, 1 − x3) + ϵν . (E.5)

Where ϵT , ϵ f and ϵν are constants that prevent these factors
to be worth 0. We have respectively set these constants to 0.1,
10−3 and 0.1. These factors serve two purposes:

6https://fluxml.ai/Flux.jl/stable/
7https://julianlsolvers.github.io/Optim.jl/v0.9.3/algo/

lbfgs/
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Figure E.7: Learning curves of the different architectures tested. L represents
the number of hidden layers, and N is the total number of perceptrons. For
example, architecture L1N6 has 1 hidden layer and 6 perceptrons.

• αT and αν reduce the discontinuities at the interfaces of the
domains defined in Sec. 3.2,

• α f emphasises the importance of domains in which an er-
ror on the Eddington factor has a significant impact on the
radiative pressure (see Appendix F).

We use L1 to train the neural networks MLPa, MLPc and
MLP f and L2 for MLPe,1 and MLPe,2.

The models are trained until the weights and biases of the
MLP exhibit variations below 10−32; the predicted values show
variations below 10−32, or the gradient falls below 10−8.

Appendix E.2. Selection of the architecture

For all the neural networks, we use different activation func-
tions:

• input layer: linear function,

• hidden layers: hyperbolic tangent function tanh,

• output layer: sigmoid function σ.

Let us consider the neural network MLPa as an example. We
trained various neural networks with different numbers of hid-
den layers and perceptrons that are simple enough to ensure fast
prediction times. We have used all the training set data speci-
fied in Sec. 3.3 to train the neural networks. The architecture
we have selected is the one whose cost function is the lowest at
the end of the training, which is the architecture having 3 hid-
den layers and 15 neurons in the case of MLPa (Fig. E.7). We
have employed the same methodology for all the other neural
networks.

Appendix F. Relative error of the radiative pressure

Using Eq. (5), one can express each component of the radia-
tive pressure tensor as:

Pg,xx =

1 − χg
2
+

3χg − 1
2

F2
g,x

||Fg||2

 Eg ; (F.1)

Pg,yy =
1 − χg

2
+

3χg − 1
2

F2
g,y

||Fg||2

 Eg ; (F.2)

Pg,xy =
3χg − 1

2
Fg,xFg,y
||Fg||2

Eg . (F.3)

Considering only an error δχg in the determination of the Ed-
dington factor, The relative error on the radiative pressure com-
ponents can be expressed:∣∣∣∣∣∣δPg,xx

Pg,xx

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 3x2 − 1
(3x2 − 1)χg + 1 − x2

∣∣∣∣∣∣ δχg ; (F.4)∣∣∣∣∣∣δPg,yyPg,yy

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 3y2 − 1
(3y2 − 1)χg + 1 − y2

∣∣∣∣∣∣ δχg ; (F.5)∣∣∣∣∣∣δPg,xyPg,xy

∣∣∣∣∣∣ = δχg

χg − 1/3
. (F.6)

Where x = Fg,x/||Fg|| and y = Fg,y/||Fg||. |δPg,xx/Pg,xx| and
|δPg,yy/Pg,yy| admit a maximum relative error when respectively
x = 0 or 1 and y = 0 or 1. In this case, we can express the max-
imum relative errors as:∣∣∣∣∣∣δPg,xx

Pg,xx

∣∣∣∣∣∣
max
=

δχg

min
{
χg, 1 − χg

} ; (F.7)∣∣∣∣∣∣δPg,yyPg,yy

∣∣∣∣∣∣
max
=

δχg

min
{
χg, 1 − χg

} ; (F.8)∣∣∣∣∣∣δPg,xyPg,xy

∣∣∣∣∣∣
max
=

δχg

χg − 1/3
. (F.9)

These expressions reveal the importance of accurate predic-
tions of the Eddington factor at values of the reduced flux fg
close to 0 or 1 to reduce the relative errors on the components
of the radiative pressure tensor.

Appendix G. A short description of the 2D line search al-
gorithm developed

According to Turpault 2002 [5], it is established that a phys-
ically realistic pair (Eg, fg) corresponds uniquely to a set of La-
grange multipliers (α0,g, α1,g). Therefore, using a search algo-
rithm to derive these Lagrange multipliers from the radiative
quantities is feasible. Instead of directly employing the pairs
(α0,g, α1,g) and (Eg, fg), we’ve opted for inputs (x1 = log(α0,g),
x2 = 100σ−1(βg)), whereσ−1 denotes the inverse of the sigmoid
function, and outputs (y1 = log(Eg), y2 = log(fg)). This choice
facilitates the utilisation of a line search algorithm and ensures
quicker convergence. The computation of log(Eg) and log(fg)
follows the methodology outlined in Chinh Hyunh Nguyen’s
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Figure H.8: Ratio χg/χgrey with fg = 0.65 fg = 0.65 and νg = 0. Ib: Domain
in which χgrey is valid; Ic: High-intermediate radiative, χg = F (fg,T

νg+1
g ); H:

Asymptotically high radiative temperatures, χg = F (fg).

Figure H.9: Ratio χg/χgrey with fg = 0.65 and νg+1 → ∞. L: Asymptotically
low radiative temperatures, χg = F (fg); Ia: Low-intermediate radiative tem-
peratures, χg = F (fg,T

νg
g ); Ib: Domain in which χgrey is valid.

thesis [1]. As for the line search algorithm, we’ve implemented
a Fortran version based on the code from Numerical Recipes for
Fortran 90 [15]. The Lagrange multipliers are searched until the
error on the radiative energy and the reduced flux is calculated
with the Eqs. (12) and (19) are less than 10−6 %.

Appendix H. Case where νg = 0 or νg+1 → ∞

Appendix H.1. Case νg = 0

In this scenario, the only well-defined adimensionalised ra-
diative temperature is T νg+1

g . Therefore, the Eddington factor is
such that χg = F (fg,T

νg+1
g ). Fig. H.8 illustrates the Edding-

ton factor’s behaviour as a function of T νg+1
g . In this case, we

retrieve domains Ib, Ic, and H as discussed in the limit where
δg → 0 (Sec. 2.2.2).

Appendix H.2. Case νg+1 → ∞

Here, the only well-defined adimensionalised radiative tem-
perature is T νgg . Consequently; the Eddington factor is such
that χg = F (fg,T

νg
g ). Figure H.9 illustrates the Eddington fac-

tor’s behaviour as a function of T νgg . In this case, we retrieve
domains L, Ia, and Ib as discussed in the limit where δg → 0
(Sec. 2.2.2).
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