
HAL Id: hal-04661986
https://hal.science/hal-04661986v1

Preprint submitted on 25 Jul 2024 (v1), last revised 7 Oct 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rigidity of singular de-Sitter tori with respect to their
lightlike bi-foliation

Martin Mion-Mouton

To cite this version:
Martin Mion-Mouton. Rigidity of singular de-Sitter tori with respect to their lightlike bi-foliation.
2024. �hal-04661986v1�

https://hal.science/hal-04661986v1
https://hal.archives-ouvertes.fr


RIGIDITY OF SINGULAR DE-SITTER TORI WITH RESPECT TO THEIR
LIGHTLIKE BI-FOLIATION

MARTIN MION-MOUTON

Abstract. In this paper, we introduce a natural notion of constant curvature Lorentzian surfaces
with conical singularities, and provide a large class of examples of such structures. We moreover
initiate the study of their global rigidity, by proving that de-Sitter tori with a single singularity
are essentially determined by the topological equivalence class of their lightlike bi-foliation. While
this result is reminiscent of Troyanov’s work on Riemannian surfaces with conical singularities,
the rigidity will come from topological dynamics in the Lorentzian case.

1. Introduction

A Lorentzian metric induces on a surface a pair of lightlike foliations, and the Poincaré-Hopf
theorem implies therefore that the torus is the only closed and orientable Lorentzian surface. An
analog of the Gauß-Bonnet formula shows moreover that the only constant curvature Lorentzian
metrics on the torus are actually flat (see [Ave63, Che63]). It is then natural to try to widen this
class of geometries, in order to obtain structures locally modelled on the de-Sitter space dS2 – the
Lorentzian homogeneous space of non-zero curvature, introduced in paragraph 2.1.3 below. This
will obviously not be possible on a closed surface without removing some points, and a natural
way to do this is to proceed as in the Riemannian case, by concentrating all the curvature in
finitely many points where the metric has conical singularities.

The first goal of this paper is to introduce this new natural class of singular constant curvature
Lorentzian surfaces, to provide examples of such structures, and to initiate their study by proving
some of their fundamental properties. The second and main goal is to investigate in the de-Sitter
case the relations of these geometrical objects with associated dynamical ones: their pair of
lightlike foliations.

1.1. Singular de-Sitter surfaces. The Lorentzian singularities are defined analogously to the
Riemannian ones, and their local definition already appeared in [BBS11]. The connected com-
ponent of the identity in the isometry group of dS2 is isomorphic to PSL2(R), acts transitively
on dS2, and the stabilizer of a point o ∈ dS2 in PSL2(R) is a one-parameter hyperbolic group
A = {aθ}θ∈R ⊂ PSL2(R). As in the Riemannian case, a natural way to describe a conical singular-
ity in the de-Sitter space is to chose a non-trivial isometry aθ ∈ A and a geodesic ray γ emanating
from o, to consider the sector from γ to aθ(γ) in dS2, and to glue its two boundary components
by aθ. For simplicity we chose a lightlike half-geodesic F+

α (o), and a phenomenon specific to the
Lorentzian situation happens then: F+

α (o) is fixed by aθ. In other words, the sector described
by aθ(F+

α (o)) = F+
α (o) is simply the surface dS2

∗ obtained by cutting dS2 open along F+
α (o).

It contains two up and down copies ι±(F+
α (o)) of the initial geodesic ray as boundary compo-

nents, which can be identified by ι+(x) ∼ ι−(aθ(x)) to obtain a topological disk dS2
θ = dS2

∗/ ∼
in the quotient. This identification space has a marked point oθ which is the projection of o,
and the metric of dS2 induces moreover a natural locally dS2 Lorentzian metric on dS2

θ \ oθ,
since the gluing was made by isometries. The point oθ is then defined as the local model of a
standard singularity of angle θ of the locally dS2 surface dS2

θ \ oθ, and a singular dS2-surface is
an orientable surface bearing a locally dS2 Lorentzian metric outside of a discrete set of points
which are standard singularities (see Definition 2.22 below). We refer to paragraph 2.2.1 for more

Date: July 25, 2024.
2020 Mathematics Subject Classification. 57M50, 37E10, 37E35.
Key words and phrases. Geometric structures on surfaces, Locally homogeneous geometric structures,

Lorentzian surfaces, One-dimensional dynamics, Foliations of surfaces.
1



2 MARTIN MION-MOUTON

details on this construction, analogously introduced in the case of zero curvature (namely for the
Minkowski space), and illustrated in Figure 2.1 below.

One of the purposes of this work is to set the ground for the future investigation of singular
constant curvature Lorentzian surfaces, and to be usable as a possible reference for basic results
in future works on the subject. To this end, we carefully prove in paragraphs 2.2 and 2.3 below
many structural properties of these structures, and furnish in Proposition 3.4 a general method to
construct a large class of examples. We also give an interpretation of singular constant curvature
Lorentzian surfaces analogous to the one of Riemannian metrics with conical singularities as
metric length spaces. A natural Lorentzian counterpart of the latter notion was indeed introduced
in [KS18] under the name of Lorentzian length spaces, which constitute as in the Riemannian case
a synthetic geometric version of smooth Lorentzian manifolds focusing on their main geometrical
byproducts (namely the causal structure and the Lorentzian length of curves). Lorentzian length
spaces encompass the low regularity Lorentzian metrics in an unified way, and were partly designed
to that purpose. To the best of our knowledge, singular constant curvature Lorentzian surfaces
did however not appear so far as an object of independent interest, and we will see in the Appendix
D that they furnish a large and natural class of examples of Lorentzian length spaces, apparently
new in the literature.

1.2. Dynamics of the lightlike foliations and geometric rigidity. As we will see in para-
graph 2.2.5, we could have used any geodesic to define a standard singularity in paragraph 1.1.
The benefit of using a lightlike ray is however to observe naturally from the construction, that the
lightlike foliations Fα and Fβ of dS2 extend to two transverse (one-dimensional) topological foli-
ations of dS2

θ at the standard singularity oθ (a result properly proved in Proposition 2.13). Any
singular dS2-structure on a surface induces thus a lightlike bi-foliation (Fα,Fβ), and the torus
remains therefore the only closed and orientable surface bearing a Lorentzian metric with con-
stant curvature and standard singularities. The study of constant curvature Lorentzian metrics
on higher genus surfaces requests the introduction of other types of singularities, which produce
singular foliations. They will be the object of a future work, and we refer to Remark 3.6 for a
discussion of such examples.

The seminal work of Troyanov in [Tro86, Tro91] described the main global rigidity properties
of Riemannian surfaces with conical singularities. Troyanov proves therein that for any fixed set
of singularities and angles on a closed orientable surface, any conformal class contains a unique
metric of a given curvature having the prescribed singularities (with necessary conditions relating
the angles, the constant curvature and the Euler characteristic of the surface, given by the Gauß-
Bonnet formula). On the other hand, it is easily checked that two Lorentzian metrics µ1 and
µ2 on a surface are conformal if, and only if they have identical lightlike bi-foliations. In the
direction of Troyanov’s results, is then natural to investigate the relation of singular constant
curvature Lorentzian surfaces to their lightlike bi-foliations. The following theorem is the main
result of this paper, and provides a partial answer to this question.

Theorem A. Let S1, S2 be two closed singular dS2-surfaces having a unique singularity of the
same angle. Assume that the lightlike bi-foliations of S1 and S2 are minimal and topologically
equivalent. Then S1 and S2 are isometric.

We say that a lightlike bi-foliation (Fα,Fβ) is minimal if both foliations are such, i.e. have all
of their leaves dense. The lightlike bi-foliations of S1 and S2 are moreover said to be topologically
equivalent if there exists a homeomorphism f : S1 → S2 which is a simultaneous equivalence of
the α and the β-foliations, i.e. such that f(FS1

α (x)) = FS2
α (f(x)) and f(FS1

β (x)) = FS2
β (f(x)) for

any x ∈ S1.
A crucial difference between Theorem A and Troyanov’s work on the Riemannian case should

be emphasized at this point: the isometry between the singular dS2-surfaces is obtained in the
current work from an equivalence which is only topological between their lightlike bi-foliations.
In particular, we deduce from a topological equivalence between the bi-foliations the existence of
a smooth one, which may be seen as a geometric rigidity result for this class of bi-foliations (we
refer the reader to the very pleasant presentation of the general problem of geometric rigidity for
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dynamical systems given in [Gha21, p.468]). The former rigidity result would be of little interest
without its companion existence result, given by the following Theorem.

Theorem B. Let Aα ̸= Aβ ∈ P+(H1(T2,R)) be two distinct irrational rays and θ ∈ R∗
−. Then

there exists on T2 a singular dS2-structure with a unique singularity of angle θ, and whose lightlike
foliations are suspensions of projective asymptotic cycles A+(Fα) = Aα and A+(Fβ) = Aβ. In
particular, Fα and Fβ are both minimal.

The main results of this paper may be seen as a global description of the deformation space
of singular dS2-structures of the two-torus having a unique singularity of angle θ at 0 ∈ T2,
denoted by Defθ(T2, 0) and introduced in Definition 3.29. The description is done in terms of
the projective asymptotic cycles of the lightlike foliations, which is the topological invariant of
oriented topological foliations of the torus. It can be seen as a global counterpart of the rotation
number of the first-return map on a section, and will be introduced in paragraph 3.6 below. The
projective asymptotic cycles of the lightlike foliations are well-defined for an equivalence class
[µ] of structures in Defθ(T2, 0) (see Remark 3.30), and the general question investigated in this
paper may then be roughly summarized as follows: to which extent is the map

(1.1) [µ] ∈ Defθ(T2, 0) 7→ (A+(F [µ]
α ), A+(F [µ]

β )) ∈ P+(H1(T2,R))2

bijective ? This is in a sense a counterpart of Troyanov’s description in [Tro86, Tro91], where
the deformation space of Riemannian metrics with prescribed conical singularities is shown to
identify with the one of conformal structures (namely with the Teichmüller space). Contrarily to
Troyanov’s work, the description is however done in the current paper in terms of a topological
dynamical invariant: the projective asymptotic cycle.

While the map defined in (1.1) is not globally injective, we will prove in the two following
results its surjectivity, as well as its injectivity on large parts of Defθ(T2, 0).

Theorem C. Let θ ∈ R∗
− and cα ̸= cβ ∈ π1(T2) be two distinct primitive elements. Then there ex-

ists in Defθ(T2, 0) a unique point [µ] for which Fα(0) and Fβ(0) are closed and ([Fα(0)], [Fβ(0)]) =
(cα, cβ). Moreover, Fα and Fβ are suspensions and (T2, [µ]) is isometric to a dS2-torus T−θ,x.

The dS2-tori T−θ,x will be introduced below in Proposition 3.12.

Theorem D. Let θ ∈ R∗
−, cα ∈ π1(T2) be a primitive element and Aβ ∈ P+(H1(T2,R)) an

irrational ray. Then there exists in Defθ(T2, 0) a unique point [µ] such that:
(1) Fα(0) is closed and [Fα(o)] = cα,
(2) A+(Fβ) = Aβ.

Moreover, Fα and Fβ are suspensions, Fβ is minimal and (T2, [µ]) is isometric to a dS2-torus
T−θ,x. The obvious analogous statement holds by exchanging the roles of the α and β-foliations.

Theorems A, C and D advertise the general idea that closed singular constant curvature
Lorentzian surfaces are in a sense much more rigid than their Riemannian counterparts. This
rigidity will be a leitmotiv in this text, and finds its origin in the existence of the two lightlike
foliations – such a preferred pair of transverse foliations do not exist for singular Riemannian
surfaces.

1.3. Methods, and link with the smoothness of conjugacies for circle diffeomorphisms
with breaks. In [Tro86, Tro91], Troyanov translates the existence, in a given conformal class,
of a unique constant curvature Riemannian metric with suitable singularities, into the existence
of a unique solution for a differential equation involving the Laplacian. Using the well-behaved
properties of the latter, he proves his results by relying mainly on analytical methods. Contrarily
to the Riemannian one, the Lorentzian Laplacian is not widely studied, and is more importantly
a hyperbolic differential operator and not anymore an elliptic one, which makes his use way less
suited to our purpose. Moreover, the phenomena that we wish to highlight in this work are by
nature dynamical, the geometric rigidity expressed by Theorem A coming from the topological
dynamics of the lightlike foliations.
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For this reason, we will use in this text a constant interaction of geometrical and dynamical
methods. The former will seem more familiar to the readers used to more classical types of
geometric structures on surfaces (for instance translation or dilation surfaces), while the latter
will come from one-dimensional dynamics (namely piecewise Möbius interval exchange maps and
their associated circle homeomorphisms) and will be used in link with the lightlike foliations
through their first-return maps.

As we will see in Lemma 2.30, the first-return maps of lightlike foliations in a singular dS2-
surface are not only continuous but actually circle diffeomorphisms with breaks, and while it may
appear as a technical detail, this regularity actually gives a crucial dynamical information on the
first-return map T . Indeed, the seminal work of Denjoy [Den32] implies then that T does not
have an exceptional minimal set, and is thus topologically conjugated to a rigid rotation of the
circle if it has moreover an irrational rotation number. Since T is piecewise smooth, it is natural
to wonder at this point if T is actually smoothly conjugated to a rotation. But as naive as it may
seem, this question is an old and deep one which remains still open in its full generality. If T is
C∞ and its rotation number Diophantine, Herman showed in [Her79] that it is C∞-conjugated to a
rigid rotation, following the initial work of Arnol’d [Arn64] on this question. Since these founding
works, the research on this subject never stopped to be intensively active and we do not pretend
to cover its vast literature. The problem remains in any case unsolved for circle diffeomorphisms
with breaks, about which the optimal result up to date appears in [KKM17] to the best of our
knowledge, and answers the question in the case of a single singularity.

The main rigidity result proved in this paper happens to be similar in its philosophy to the
problem of smoothness of the conjugacy to a rigid rotation for a circle diffeomorphism. Indeed,
a topological equivalence between two pairs of foliations forces in Theorem A the existence of a
smooth one – hence of a smooth conjugacy between the first-return maps. This link between sin-
gular dS2-structures of the torus and circle diffeomorphisms with breaks is one of our motivations
for this subject, and we wish to investigate it more precisely in a future work.

1.4. Strategies of the main proofs and generalization to multiple singularities. The first
step to prove Theorem D is to reduce it to a one-parameter family of singular dS2-tori introduced
in paragraph 3.2, which are identification spaces of lightlike rectangles of dS2, illustrated in Figure
3.1 below. The uniqueness claim is translated in this way in Proposition 3.23 into a statement
about a one-parameter family of circle maps – the first-returns of the β-lightlike foliation on
the closed α-leaf. In the end, the latter statement eventually follows from a well-known fact of
one-dimensional dynamics: the rotation number of a monotonic one-parameter family of circle
homeomorphisms increases strictly at irrational points (see Lemma B.1). This scheme of proof
may serve as a paradigm for the geometrico-dynamical arguments used in the present paper and
for the efficiency of their interactions – geometrical statements becoming easy consequences of
dynamical ones once suitably translated.

The general strategy to prove Theorem A is then to show that two structures µ1 and µ2 with
topologically equivalent lightlike foliations admit arbitrarily close deformations µn

1 and µn
2 , having

a closed α-leaf at the singularity and identical irrational asymptotic cycles of their β-foliations.
We can then rely on Theorem D to say that [µn

1 ] = [µn
2 ] in the deformation space, and conclude

that [µ1] = [µ2] since the latter sequence converges, by construction, both to [µ1] and to [µ2].
This strategy of proof of Theorem A will essentially persist for any number of singularities.

Indeed, the two main tools developed in this paper to apply the previously summarized strategy
are the existence of simple closed timelike geodesics in Appendix A, and the construction of
suitable surgeries in paragraph 4.3 – and both of them are proved in full generality. The existence
of closed geodesics is known for regular Lorentzian manifolds (see for instance [Tip79, Gal86,
Suh13]), and we prove in Appendix A that the usual tools and arguments concerning the causal
structure and the Lorentzian length remain available in the setting of singular constant curvature
Lorentzian surfaces, allowing us to follow the standard proof and to obtain the expected result.

It is actually the proof of Theorem D, and more precisely the one of the dynamical Lemma
B.1 which fails for n ≥ 2 singularities, and explains that the present paper focuses on the case of
a single singularity. Indeed, the rough description that we gave previously hided a fundamental
aspect of the proof of Theorem D: after the geometrical reduction to identification spaces of
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polygons, the number of parameters of the resulting family of circle maps is equal to the number
of singularities of the initial structure. And while the strict monotonicity of the rotation number at
irrational points is easily shown for a one-parameter family, essentially everything can happen for
generic two-parameter families of circle maps – which is mainly due to the naive but fundamental
observation that the rotation number is itself a one-dimensional invariant. The investigation of
the rigidity of dS2-tori with multiple singularities requests therefore a new method to handle this
dynamical difficulty, which is the content of a work in progress of the author in collaboration
with Selim Ghazouani.

1.5. Perspectives on singular flat tori and an open question. We will prove in Proposition
2.32 a version of the Gauß-Bonnet formula, showing in particular that a constant curvature
Lorentzian metric on the torus with exactly one singularity necessarily has non-zero curvature.
The (temporary) restriction to the case of a single singularity in this paper explains thus why
we focused here on singular dS2-structures, and not on flat ones. Singular flat tori will be
independently investigated in a future work, with a more analytical point of view closer to the
one of [Tro86, Tro91] concerning singular Riemannian surfaces. Note that in the case of the
Minkoswki space, the Laplacian is simply the d’Alembertian ∂2

x − ∂2
y .

To conclude this introduction, we emphasize that in all the examples of singular dS2-tori
constructed in this text, both lightlike foliations are suspensions of circle homeomorphisms. The
author does not know if there exists a singular dS2-structure on T2, one of whose lightlike
foliations has a Reeb component.

1.6. Organization of the paper. Basic definitions and properties of singular constant curvature
Lorentzian surfaces are introduced and proved in section 2. Section 3 is then concerned with the
construction of such structures, and we give in Proposition 3.4 a general existence result of surfaces
obtained as identification spaces of polygons with lightlike geodesic edges. In the remainder of
section 3 we study thoroughly the properties of a one-parameter and a two-parameter family
of dS2-tori with one singularity, which allows us to conclude in paragraph 3.8 the proof of the
existence parts of Theorems B, C and D (we prove actually a more refined statement given in
Theorem 3.1). The proof of the uniqueness parts of Theorems A, C and D is concluded in section
4. Along the way, we introduce in paragraph 4.3 a notion of surgery, and prove in Appendix A the
existence of closed definite geodesics, for general singular constant curvature Lorentzian surfaces.
We also prove in Appendix B the main technical result used on the rotation number (which is
classical), and in Appendix C that holonomies of lightlike foliations are piecewise Möbius. Lastly,
we explain in Appendix D how singular constant curvature Lorentzian surfaces can be seen as
Lorentzian length spaces.

Acknowledgments. The author wants to thank Selim Ghazouani for suggesting him to work on
this subject, and for his constant interest in the present work. He also wants to thank Thierry Bar-
bot, Charles Fougeron, Charles Frances, Florestan Martin-Baillon, Jean-Marc Schlenker, Andrea
Seppi and Neža Žager Korenjak for interesting discussions around the subject of this paper.

Some usual notations and a standing assumption. If X is a space endowed with an equiv-
alence relation ∼, then we generally denote by π : X → X/ ∼ the canonical projection when we
need it, and also use the notation [x] = π(x) ∈ X/ ∼ for x ∈ X. For any subset P of a topological
space X, we denote by Int(P ) the interior of P , by Cl(P ) its closure and by ∂P its boundary.
All the surfaces (and any other manifolds) considered in this text are assumed to be connected,

orientable and boundaryless, unless explicitly stated otherwise.

2. Singular constant curvature Lorentzian surfaces

This section is devoted to define and prove the fundamental notions and properties concerning
singular constant curvature Lorentzian surfaces.
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2.1. Constant curvature Lorentzian surfaces. As a preparation to consider singular struc-
tures, we first focus in this subsection on regular ones. We define the main Lorentzian notions that
will be used throughout the text, and introduce the two 2-dimensional Lorentzian homogeneous
spaces as well as the surfaces modelled on them.

2.1.1. Lorentzian surfaces, time and space-orientation, and lightlike foliations. A quadratic form
is said Lorentzian if it is non-degenerate and of signature (1, n) = (−,+, . . . ,+). A Lorentzian
metric of class Ck on a manifold M is a Ck field µ of Lorentzian quadratic forms on the tangent
bundle of M . Usually, we will denote by g = gµ the bilinear form associated to µ, so that
µ(u) = g(u, u). Observe that if µ is a Lorentzian metric on a surface S, then −µ is also a
Lorentzian metric on S.

Any Lorentzian vector space (V, q) (or tangent space of a Lorentzian manifold) is decomposed
according to the sign of q, u ∈ V being called:

(1) spacelike if q(u) > 0,
(2) timelike if q(u) < 0,
(3) lightlike if q(u) = 0,
(4) causal is q(u) ≤ 0,
(5) and definite if it is timelike or spacelike.

These denominations of signatures of vectors in Lorentzian tangent spaces will be used in the
natural compatible way for line fields and curves.

A time-orientation on a Lorentzian surface (S, µ) is a continuous choice among one of the
two connected components of the cone µ−1

x (R−) \ {0} of non-zero timelike vectors, which is
called the future cone. We will also talk without distinction of the associated future causal cone,
closure of the future timelike one, and use the obvious similar notion of space-orientation in a
Lorentzian surface (namely a continuous choice among one of the two connected components of
µ−1

x (R+)\{0}). Not any Lorentzian surface bears a time-orientation, and it is said time-orientable
if it does. An orientable Lorentzian surface is time-orientable if, and only if it is space-orientable.

Any Lorentzian surface S bears locally two (unique) lightlike line fields, which are globally well-
defined if, and only if S is oriented. In the latter case, they give rise to two lightlike foliations
on the surface of which we always choose an ordering (Fα,Fβ) (defined in paragraph 2.1.5 for
the surfaces studied in this text), and this ordered pair of foliations will be called the lightlike
bi-foliation of the surface. If S is furthermore time-oriented, then these lightlike foliations are
themselves orientable. We will always use the convention for which the orientation of the lightlike
bi-foliation (Fα,Fβ) is both compatible with the orientation of S and with its time-orientation,
as illustrated in Figure 2.1 below. In other words with these conventions, a time-orientation
and an ordering (Fα,Fβ) of the lightlike foliations of an oriented Lorentzian surface, induce a
space-orientation and an orientation of Fα and Fβ.

We will call quadrant at x ∈ S the four connected components of TxS \ {µ−1(0)}, or of
D \ (Fα(x) ∪ Fβ(x)) for D a disk around x small enough for (x,D, Iα, Iβ) to be topologically
equivalent to (0, ]0 ; 1[2, ]0 ; 1[ × {0}, {0} × ]0 ; 1[), with Iα/β the respective connected components
of D ∩ Fα/β(x) containing x.

2.1.2. The Minkowski space. The flat model space of Lorentzian metrics is the Minkowski space
R1,n, i.e. the vector space Rn+1 endowed with a Lorentzian quadratic form q1,n. In this text
we will be interested in Lorentzian surfaces, and we thus focus now on the Minkoswki plane
R1,1 that we endow with the quadratic form q1,1(x, y) = 2xy and the induced left-invariant
Lorentzian metric µR1,1 . We fix on R1,1 the standard orientation of R2, and the time-orientation
(respectively space-orientation) for which the set of future timelike (resp. spacelike) vectors is
the top left quadrant {(u, v) | u < 0, v > 0} (resp. top right quadrant {(u, v) | u > 0, v > 0}).

The connected component of the identity in the orthogonal group of q1,1 is the subgroup

(2.1) SO0(1, 1) :=
{
at
∣∣∣ t ∈ R

}
⊂ SL2(R) with at :=

(
et 0
0 e−t

)
.

Since q1,1 is by construction preserved by translations, the subgroup R1,1 ⋊ SO0(1, 2) of affine
transformations preserves q1,1 and its time-orientation, and equals in fact the group Isom0(R1,1)
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of orientation and time-orientation preserving isometries of R1,1. In particular, Isom0(R1,1) acts
transitively on R1,1 with stabilizer SO0(1, 1) at 0 = (0, 0), which induces a R1,1 ⋊ SO0(1, 2)-
equivariant identification of R1,1 with the homogeneous space R1,1 ⋊ SO0(1, 2)/SO0(1, 1).

2.1.3. The de-Sitter space. We now introduce the Lorentzian homogeneous space of non-zero
constant curvature. We will denote by [S] the projection of S ⊂ Rn+1 \ {0} in the projective
space RPn, by (ei) the standard basis of Rn, and use the identification

(2.2) φ0 :
{
t ∈ R 7→ t̂ := [t : 1] ∈ RP1 \ [e1]
∞ 7→ ∞̂ := [e1]

between R∪ {∞} and RP1. Since any pair of distinct points of RP1 is contained in the image U
of the map φ := g ◦ φ0|R : R → U for some g ∈ PSL2(R), the set

dS2 := (RP1 × RP1) \ ∆ with ∆ :=
{

(p, p)
∣∣∣ p ∈ RP1

}
is covered by the domains of maps of the form
(2.3) ϕ : (p, q) ∈ U := (U × U) \ ∆ 7→ (φ−1(p), φ−1(q)) ∈ R2 \ {diagonal}
which we will call affine charts of dS2. The transition map between any two such affine charts
is by construction of the form (x, y) ∈ I2 \ {diagonal} 7→ (g(x), g(y)) ∈ R2, with I ⊂ R some
interval, and g abusively denoting the homography

(2.4) g(t) := at+ b

ct+ d
associated to g =

(
a b
c d

)
∈ PSL2(R),

characterized by the relation g
(
t̂
)

= ĝ(t). A direct computation shows that the Lorentzian metric

µ0
dS2 := 1

|x− y|2
dxdy

on R2 \ {diagonal} is preserved by the transition maps g × g (2.4) between affine charts of dS2,
which allows the following.

Definition 2.1. µ is defined as the Lorentzian metric of dS2 equaling ϕ∗µ0
dS2 on the domain of

any affine chart ϕ of the form (2.3). The Lorentzian surface (dS2,µ) will be called the de-Sitter
space.

We endow RP1 with the PSL2(R)-invariant orientation induced by the standard one of R
through the identification (2.2), and dS2 ⊂ RP1 × RP1 with the orientation induced by the one
of RP1. We also endow dS2 with the time-orientation (respectively space-orientation) for which
the set of future timelike (resp. spacelike) vectors is the top left quadrant {(u, v) | u < 0, v > 0}
(resp. top right quadrant {(u, v) | u > 0, v > 0}), in a tangent space endowed with the coordinates
coming from an affine chart (2.3).

By construction, µ is invariant by the diagonal action g(x, y) := (g(x), g(y)) of PSL2(R) on
dS2. This action is moreover transitive and the stabilizer of o := ([e1], [e2]) ∈ dS2 is the diagonal
group

A :=
{
at
∣∣∣ t ∈ R

}
,

hence dS2 is identified with PSL2(R)/A in a PSL2(R)-equivariant way. Note that the projection
SL2(R) → PSL2(R) induces an isomorphism from SO0(1, 1) defined in (2.1) with A.

We now give another (more usual) description of the de-Sitter space. The quadratic form q1,2
of the Minkowki space R1,2 equips (by restriction to its tangent bundle) the quadric

dS2 :=
{
x ∈ R3

∣∣∣ q1,2(x) = 1
}

with a Lorentzian metric µdS2 of sectional curvature constant equal to 1 (see for instance [O’N83,
Proposition 4.29]), and the Lorentzian surface (dS2, µdS2) is the two-dimensional hyperboloid
model of the de-Sitter space. Observe that endowing dS2 with the restriction of the quadratic
form q2,1 := −q1,2 defines a Lorentzian metric of constant curvature equal to −1. In other words,
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the de-Sitter and anti-de-Sitter spaces are anti-isometric in dimension 2 and have thus the same
geometry.

Lemma 2.2. (1) PSL2(R) is the subgroup of isometries of (dS2,µ) preserving both its ori-
entation and time-orientation.

(2) (dS2,µ) is isometric to (dS2, µdS2) up to a multiplicative constant. For the sake of clarity,
we normalize henceforth (dS2,µ) to have constant curvature 1.

Proof. (1) This claim follows from the facts that PSL2(R) acts transitively on dS2, that the
stabilizer of points in PSL2(R) realize all linear isometries (i.e. that a ∈ A 7→ Doa ∈ O(TodS2,µo)
is surjective), and that the one-jet determines pseudo-Riemannian isometries (a local isometry
defined on a connected open subset, fixing a point x and of trivial differential at x, is the identity).
(2) One checks that the stabilizer in SO0(1, 2) of a point of dS2 is a one-parameter hyperbolic
subgroup, which gives an identification between dS2 and PSL2(R)/A, equivariant with respect to
some isomorphism between SO0(1, 2) and PSL2(R). This yields two PSL2(R)-invariant Lorentzian
metrics on PSL2(R)/A, respectively coming from the identifications with (dS2, µdS2) and (dS2,µ).
But up to multiplication by a constant, sl2/a admits a unique Lorentzian quadratic form which is
invariant by the adjoint action of A, and PSL2(R)/A admits therefore a unique PSL2(R)-invariant
Lorentzian metric up to multiplication by a constant. □

Remark 2.3. We emphasize that C := P+(q−1
1,2(0)) =

{
l ⊂ R1,2 ∣∣ null half-line

}
can be naturally

interpreted as the conformal boundary of dS2, and that this interpretation yields a natural iden-
tification of dS2 with dS2 where each RP1 appears as a connected component of C. We refer to
the proof of Proposition C.2 for more details on this construction.

2.1.4. Lorentzian X-surfaces. We will be interested in this paper in the Lorentzian surfaces locally
modelled on one of the two formerly introduced homogeneous spaces. Denoting henceforth by
(G,X) one of the pairs (R1,1 ⋊ SO0(1, 2),R1,1) or (PSL2(R),dS2), we will use in this text the
convenient language of (G,X)-structures that we now introduce.

Definition 2.4. A (G,X)-atlas on an oriented topological surface S is an atlas of orientation-
preserving C0-charts from connected open subsets of S to X, whose transition maps are restrictions
of elements of G (any two open domains of the atlas being always assumed to have a connected
intersection). A (G,X)-structure is a maximal (G,X)-atlas, and a (G,X)-surface an oriented
surface endowed with a (G,X)-structure. A (G,X)-morphism between two (G,X)-surfaces is a
map which reads in any connected (G,X)-chart as the restriction of an element of G.

Convention 2.5. All along this paper, X will be considered solely with the action of the group
G. In order to make the text lighter, we thus drop henceforth G from our notations, and talk
simply of X-chart, X-structure, X-surface and X-morphism.

For any X-structure on a surface S, each covering π : S′ → S of S is induced with the unique
X-structure for which π is a X-morphism. In particular, π1(S) acts on the universal cover S̃ by
X-morphisms of its X-structure. Moreover for any X-morphism f from a connected open subset
U ⊂ S̃ to X, there exists a unique extension

δ : S̃ → X
of f to a X-morphism defined on S̃, and such a map is called a developing map of S. For any
developing map δ, there exists furthermore a unique group morphism

ρ : π1(S) → G
with respect to which δ is equivariant, called the holonomy morphism associated to δ. Such a
pair (δ, ρ) associated to the X-structure of S is unique up to the action g · (δ, ρ) := (g ◦ δ, gρg−1)
of G, and reciprocally any such pair defines a unique compatible X-structure on S. We refer the
reader to [Thu97, CEG87] for more details on (G,X)-structures.

The core idea of X-surfaces is that any G-invariant geometric object on X gives rise to a
corresponding object on any X-surface. In particular, any X-surface bears a unique Lorentzian
metric for which the X-charts are local isometries to X, as well as a time and space-orientation



RIGIDITY OF SINGULAR DE-SITTER TORI WITH RESPECT TO THEIR LIGHTLIKE BI-FOLIATION 9

transported to the ones of X by the X-charts. Let εX denote the constant sectional curvature of
X.

Proposition-Definition 2.6. On any orientable surface S, X-structures are in equivalence with
time-oriented Lorentzian metrics of constant curvature εX in the following way.

(1) For any X-structure on S, there exists a unique Lorentzian metric for which (G,X)-charts
are local isometries. The latter metric is time-oriented and has constant curvature εX.

(2) Conversely, any time-oriented Lorentzian metric of constant curvature εX on S is induced
by a unique X-structure.

(3) Moreover under this correspondence, the X-morphisms between X-surfaces are exactly
their orientation-preserving isometries between connected open subsets.

Proof. (1) Since G preserves the time-orientation of X, the Lorentzian metric induced by a X-
structure is time-oriented, and of constant curvature εX.
(2) Let µ be a time-oriented Lorentzian metric on S of constant sectional curvature εX. Then it
is locally isometric to X according to [O’N83, Corollary 8.15], and there exists thus an atlas of
local isometric charts of S to X preserving both orientation and time-orientation. We claim that
the transition maps of such an atlas and between two such atlases are restrictions of elements of
G, which will prove the claim. This is essentially due to the counterpart of the Liouville theorem
for (G,X), claiming that any orientation and time-orientation preserving local isometry between
two connected open subsets of X, is the restriction of an element of G. This last claim is easily
obtained from the proof of Lemma 2.2.(2).
(3) Liouville theorem proves in particular the last claim. □

2.1.5. Lightlike α and β-foliations of X-surfaces. We now describe the lightlike foliations of our
models.

Definition 2.7. We will call α and β-foliation and denote by Fα and Fβ the foliations of dS2

(respectively R1,1) whose leaves are the respective fibers of the second and first projections of
dS2 ⊂ RP1 × RP1 to RP1 (resp. the horizontal and vertical affine lines of R1,1). We call and
denote in the same way the lightlike foliations induced by the latter on any dS2-surface (resp.
R1,1-surface).

In other words, the α-leaves (resp. β-leaves) of dS2 read as horizontal (resp. vertical) lines
in any affine chart (2.3) (hence the denomination to match the one for R1,1). Observe that the
action of PSL2(R) on dS2 (respectively of R1,1 ⋊ SO0(1, 2) on R1,1) preserve both the α and the
β-foliation, which induce thus indeed foliations on any dS2-surface (resp. R1,1-surface).

We endow the lightlike leaves of dS2 with the PSL2(R)-invariant orientation induced by the
one of RP1, and the lightlike leaves R × {b} and {a} × R of R1,1 with the R1,1 ⋊ SO0(1, 2)-one
induced by R. This further induces an orientation on the lightlike foliations of any X-surface,
compatible with its orientation, time-orientation and space-orientation as illustrated by Figure
2.1 below.

The lightlike leaves of dS2 and R1,1 are embeddings of R, and we denote by F+∗
α (p) and F−∗

α (p)
the half α-leaves, i.e. the two connected components of Fα(p) \ {p} emanating respectively in
the positive and negative directions, by F+

α (p) and F−
α (p) their closures, and accordingly for

F±
β (p). Note that the lightlike leaves are the lightlike geodesics of the metric (for dS2, this is

most easily seen in the hyperboloid model, where the geodesics are the intersection of planes with
the hyperboloid).

2.1.6. Cyclic order, intervals of a circle and rectangles of dS2. The circles RP1 and S1 inherit
from their orientation a cyclic ordering, i.e. a partition of triplets (x1, x2, x3) ∈ (RP1)3 (re-
spectively (S1)3) between positive and negative ones which is invariant by cyclic permutations,
exchanged by transpositions and defined in the following way. Any n-tuple (n ≥ 3) of two-by-
two distinct points of RP1 has an ordering (x1, . . . , xn), unique up to the n cyclic permutations
(1, . . . , n)k for 1 ≤ k ≤ n, such that for any 1 ≤ i ≤ n− 1, the positively oriented injective path
of RP1 from xi to xi+1 does not meet any of the xj for j /∈ {i, i + 1}. In this case (x1, . . . , xn)
is said to be positively cyclically ordered, and two n-tuples (x1, . . . , xn) and (y1, . . . , yn) are said
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to have the same cyclic order if there exists a permutation σ such that (xσ(1), . . . , xσ(n)) and
(yσ(1), . . . , yσ(n)) are both positive. For any x, y ∈ RP1, we denote

[x ; y] := {x, y} ∪
{
z ∈ RP1

∣∣∣ (x, z, y) is positively cyclically ordered
}

⊂ RP1

with [x ; y] = {x} if x = y, and adopt the same notation for any oriented topological circle. For
any p = (xp, yp), q = (xq, yq) ∈ dS2 such that q ∈ F+

α (p) – respectively q ∈ F+
β (p) – we denote

[p ; q]α := {(x, yp) | x ∈ [xp ;xq]} – resp. [p ; q]β := {(xp, y) | y ∈ [yp ; yq]} ,

with obvious corresponding notations in R1,1, and for open or half-open intervals of extremities
p and q. More generally in any X-surface, [p ; q]α/β denotes the portion of Fα/β(p) from p to q
for the natural orientation of Fα/β(p).

Definition 2.8. For any four distinct points (A,B,C,D) ∈ dS2 such that (xA, yA) = A =
F−

α (B) ∩ F−
β (D) and (xC , yC) = C = F+

β (B) ∩ F+
α (D),

RABCD = R(xA,xC ,yA,yC) := [xA ;xC ] × [yA ; yC ]

will be called a rectangle of dS2 with lightlike boundary.

Note that by convention, the rectangles that we consider are non-degenerated (i.e. have distinct
edges), and that we name the vertices of a rectangle RABCD of dS2 in the positive cyclic order
by starting with its “bottom-left” vertex A. The area of an orientable surface S for the area form
induced by a Lorentzian metric µ (which, by definition, gives volume 1 to an orthogonal basis of
norms (1,−1) for µ), will be denoted by Aµ(S).

Lemma 2.9. Two rectangles of dS2 with lightlike boundaries are in the same orbit under PSL2(R)
if, and only if they have the same area.

Proof. For any rectangle R(xA,xC ,yA,yC), (yA, yC , xA) is a positively cyclically ordered triplet of
RP1, and we can thus assume without lost of generality that R(xA,xC ,yA,yC) = R(1̂,t̂,∞̂,0̂). Since
t ∈ ]1 ; +∞[ 7→ Aµ(R(1̂,t̂,∞̂,0̂)) ∈ R∗

+ is bijective, two rectangles have the same area if, and only
if the 4-tuples defining them have the same cross-ratio, which happens if and only if they are in
the same orbit under PSL2(R). □

2.2. The local model of standard singularities. We define in this subsection the local sin-
gularities that will be considered in this text (which appeared in [BBS11, §3.3]), and prove some
of their fundamental properties.

(G,X) denotes one of the pairs (R1,1 ⋊ SO0(1, 2),R1,1) or (PSL2(R),dS2), µ the Lorentzian
metric of X, and gµ its associated bilinear form. We also fix a base-point o ∈ X, respectively
equal to (0, 0) or ([e1], [e2]), and denote by A = {at}t∈R its stabilizer in G.

Convention 2.10. Henceforth, we will use the unique parametrization of A = {at}t∈R satisfying
the following for any non-zero future spacelike vector u ∈ ToX.

(1) With ut the unique point of R+Doa
t(u) belonging to the unit circle C of a fixed Euclidean

quadratic form on ToX, t 7→ ut is a positively oriented curve on C (endowed with the
orientation induced from the one of X).

(2) Moreover denoting by cosh the hyperbolic cosine function, for any t ∈ R we have:

gµ(u, at(u))
µ(u) = cosh(t).

This convention will be crucial for the correspondence (2.5) between angles and areas given
below by Gauß-Bonnet formula. Apart from this formula, the convention does not matter. We
emphasize that for X = R1,1, the parametrization is simply the usual one given by (2.1).
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2.2.1. Standard singularities as identification spaces. We denote by X∗ the surface with boundary
and one conical point obtained from X by cutting it along F+∗

α (o). The interior of X∗ is identified
with X \ F+

α (o), its conical point o′ with o, and its two boundary components are “upper” and
“lower” embeddings ι± : F+

α (o) → X∗ of F+
α (o) with ι±(o) = o′. Furthermore X∗ is endowed with

an action of the diagonal subgroup A for which the embeddings ι± are equivariant.
For θ ∈ R, we introduce the equivalence relation generated by the relations ι+(x) ∼θ ι−(aθ(x))

for any x ∈ F+∗
α (o), and we denote by

πθ : X∗ → Xθ = X∗/ ∼θ

the canonical projection onto the topological quotient of X∗ by ∼θ. This identification space is
illustrated in Figure 2.1.

F+
α (o)F−

α (o)

F+
β (o)

c

F−
β (o)

future spacelike cone
Diθ

D2π−iθ

future timelike cone

past timelike conepast spacelike cone

γ

aθ(γ)

ι−(aθ(x))

ι+(x)

+

o

Figure 2.1. Standard singularity, quadrants and orientations.

We define oθ := πθ(o′) and endow Xθ \ {oθ} with its standard X-structure defined by the
following atlas.

(1) For any open set U ⊂ X \ F+
α (o), we consider the chart φπθ(U) : πθ(U) → U satisfying

φπθ(U) ◦ πθ|U = id|U .
(2) Let U ⊂ X \ {o} be an open set such that U \ F+

α (o) has two respectively up and down
connected components U+ and U−, and aθ(U) ∩ U = ∅. Then we consider the open set
V = πθ(U+ ∪ ι+(U ∩ F+

α (o)) ∪ aθ(U−)) of Xθ, and the chart φV : V → U satisfying:
– φV ◦ πθ = id in restriction to U+ ∪ ι+(U ∩ F+

α (o)),
– and φV ◦ πθ = a−θ in restriction to aθ(U−).

Definition 2.11. The standard X-cone of angle θ is the oriented topological surface Xθ endowed
with its marked point oθ, its standard X-structure on Xθ \ {oθ} and its associated Lorentzian
metric denoted by µθ.

Note that our definition makes sense for θ = 0, and that in this case X0 = X.

Remark 2.12. The standard cones that we have introduced do not exhaust the natural geometric
singularities, and we refer to Remark 3.6 for a discussion of other kind of examples. However these
singularities are the dynamically natural ones: they are essentially the only ones at which the
lightlike foliations extend to two continuous foliations, in a sense made more precise in Lemma
2.14. The existence of these continuous foliations is our main motivation for considering this
specific type of singularities, and is the subject of the next paragraph.

2.2.2. Lightlike foliations at a standard singularity. To investigate the behaviour of the lightlike
foliations at the singularity, we consider a continuous chart of Xθ at oθ defined as follows. Let
expo : ToX → X denote the exponential chart of X at o, and dν ⊂ ToX the half-open line
making a positive euclidean angle ν ∈ [0 ; 2π[ with d0, where expo(d0) ⊂ F+

α (o). Note that
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aθ ◦ expo = expo ◦Doa
θ, hence with θ′ ∈ R characterized by Doa

θ(X) = e−2θ′
X for X ∈ ToFα(o),

we have ι+(expo(X)) ∼θ ι−(expo(e−2θ′
X)). With D an open disk centered at 0 in ToX, we

consider the open neighbourhood

U := ι+ ◦ expo(d0 ∩D) ∪
⋃

ν∈]0;2π[
expo(e− ν

π
θ′(dν ∩D))

of o′ in X∗, so that V = πθ(U) is an open neighbourhood of oθ in Xθ. We define then a map
ψθ : V → D, for any ν ∈ [0 ; 2π[ and X ∈ e− ν

π
θ′(dν ∩D), by

ψθ ◦ πθ(expo(X)) = e
ν
π

θ′
X.

In the above equation for p ∈ F+
α (o), we denoted ι+(p) simply by p. It is easily checked that ψ

is a homeomorphism from V to D.

Proposition 2.13. The lightlike foliations of Xθ \ {oθ} extend uniquely to two topological one-
dimensional foliations on Xθ, that we call the lightlike foliations of Xθ and continue to denote
by Fα and Fβ. Moreover for any small enough open neighbourhoods I and J of oθ in Fα(oθ) and
Fβ(oθ),

Φ: (x, y) ∈ I × J 7→ Fβ(x) ∩ Fα(y)
is a homeomorphism onto its image, restricting outside of oθ to a C∞-diffeomorphism onto its
image. The continuous α and β-foliations are thus transverse in the sense that Φ defines a
simultaneous C0 foliated chart.

Proof. Since ψθ(πθ(ι+(F+∗
α (o))∪F−∗

α (o))) = R·d0\{0} and ψθ(πθ(F+∗
β (o)∪F−∗

β (o))) = R·dβ \{0}
where expo(R ·dβ) = Fβ(o), the only possible definition of the α and β-leaves of oθ for it to define
a foliation with continuous leaves, is: Fα(oθ) = πθ ◦ ι+(F+

α (o)) ∪ πθ(F−∗
α (o)) and Fβ(oθ) =

{oθ}∪πθ(F+∗
β (o)∪F−∗

β (o)). This makes Fα(oθ) and Fβ(oθ) two topological 1-manifolds. Now for
any small enough open neighbourhoods I and J of oθ in Fα(oθ) and Fβ(oθ), and any (x, y) ∈ I×J :
Fβ(x) ∩ Fα(y) is a single point which we denote by [x, y]. Moreover for x, x′ ∈ Fα(oθ), x ̸= x′

implies Fβ(x)∩Fβ(x′) = ∅, and similarly for y ̸= y′ ∈ Fβ(oθ). Therefore Φ: (x, y) ∈ I×J 7→ [x, y]
is an injective map from I × J to the topological surface Xθ, which is clearly continuous, and
Φ(oθ, oθ) = oθ. By Brouwer’s invariance of domain theorem, Φ is thus a homeomorphism onto its
image U , which is an open neighbourhood of oθ. Observe moreover that Φ is a C∞-diffeomorphism
onto its image on restriction to any small enough open subset of Xθ \ {oθ}, since it is so in X.
Furthermore Φ({x} × J) contains an open neighbourhood of x in Fβ(x), and Φ(I × {y}) an open
neighbourhood of y in Fα(y). The restriction of Φ to suitable subsets defines thus a simultaneous
continuous foliated chart for the α and β-foliations, which concludes the proof. □

2.2.3. Characterization of standard singularities by the developing map. We now characterize the
singularity oθ of Xθ among the X-structures of a punctured disk. Let us call slit neighbourhood
of X an open set of the form U ′ = U \ F+

α (p) for U an open neighbourhood of a point p ∈ X.

Lemma 2.14. Let D be an oriented topological disk, x ∈ D, and D∗ := D \ {x} be endowed
with a X-structure. Let R denote the positive generator of π1(D∗), i.e. the homotopy class of a
positively oriented closed loop around x generating π1(D∗). Then the following properties (1) and
(2) are equivalent.

(1) There exists θ ∈ R, and a homeomorphism φ from an open neighbourhood U of x to
an open neighbourhood of oθ in Xθ, such that: φ(x) = oθ, and φ is a X-morphism in
restriction to U∗ = U \ {x}.

(2) (a) The lightlike foliations of D∗ extend uniquely to two continuous 1-dimensional folia-
tions of D;

(b) and there exists an open disk U ⊂ D containing x, and a X-isomorphism ψ from
U ′ = U \ F+

α (x) to a slit neighbourhood of o.
Furthermore property (1) for θ ∈ R is equivalent to (2).(a) and (2).(b) together with:
(2).(c) ρ(R) = aθ, with ρ the holonomy morphism associated to the developing map extending the

lift of a X-morphism ψ to a slit neighbourhood of o like in (2).(b).
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In particular, there exists at most one θ ∈ R for which the equivalent properties (1) and (2) can
be satisfied for θ.

Definition 2.15. Let D∗ := D \ x be an oriented topological punctured disk endowed with
a X-structure. We will say that x is a standard singularity of angle θ of D if the equivalent
properties (1) and (2).(a)-(c) of Lemma 2.14 are satisfied at x for θ ∈ R. A developing map of
D∗ extending a lift of φ like in (1) (equivalently of ψ like in (2).(b)) and its holonomy morphism
are said compatible at x.

Remark 2.16. The holonomy of a positively oriented loop around a singularity is well defined
only up to conjugacy, and for θ ∈ R and g ∈ PSL2(R): aθ = ga−θg−1 if, and only if g is an
anti-diagonal matrix. Hence if the angle of singularities were to be simply defined as the latter
holonomy conjugacy class, then it would be well-defined only up to sign. For this reason one
has to consider specific developing maps around a standard singularity x to define the sign of
its angle: the compatible ones as introduced in Definition 2.15. Let π : E → D∗ = D \ {x} be
the universal covering of a singular X-disk with a single singularity at x, and F ⊂ E be a closed
fundamental domain of π, such that π|Int F is injective, π(F ) = D∗ and ∂F is a copy of two lifts
Id and Iu = R(Id) of F+∗

α (x). Then a developing map δ : E → X is compatible at x if, and only
if δ(IntF ) is a slit neighbourhood of o. We will see in Lemma 2.20 and Remark 2.21 another
intrinsic characterization of the angle of a singularity.

Lemma 2.14 implies directly the following results.

Corollary 2.17. Let D∗ := D \x be an oriented punctured disk endowed with a X-structure. If x
is a standard singularity of angle 0, equivalently a standard singularity of trivial holonomy, then
the X-structure of D∗ uniquely extends to D.

Corollary 2.18. Let x be a standard singularity of a X-structure on an oriented punctured disk
D∗ := D \ x, ρ : π1(D∗) → G be a compatible holonomy map at x, and c a positively oriented
loop of D∗ whose homotopy class [c] generates π1(D∗). Then x is of angle θ ∈ R if, and only if
ρ([c]) = aθ.

The interpretation of the angle θ of a standard singularity x as the holonomy of a positive closed
loop c around it is illustrated in Figure 2.1.

Proof of Lemma 2.14. (1) for θ ⇒ (2).(a),(b)&(c). The unique continuous extension of the
lightlike foliations follows from Proposition 2.13. The restriction of the map φ of (1) to a slit
neighbourhood U ′ of x is a X-isomorphism to a slit neighbourhood of oθ which is canonically
identified with a slit neighbourhood of o by the projection map πθ, giving us the desired map ψ.
Now let O be an open subset of the universal cover of D∗ projecting homeomorphically to U ′, and
δ be the developing map extending the lift ψ̃ : O → X of ψ to O. Then δ satisfies δ ◦ R = aθ ◦ δ
(on the non-empty open subset where this equality is well-defined) by the very definition of Xθ,
which shows that ρ(R) = aθ and concludes the proof of this implication.

(2).(a)&(b) ⇒ (1) for some θ. Let π : E → U∗ = U \ {x} be the universal covering map
of U∗, and O ⊂ E be an open set such that π|O is a diffeomorphism onto U ′ = U \ F+

α (x). The
existence of ψ shows that the restriction of the developing map δ : E → X to O is an isometry
onto V ′ = V \ F+

α (o), with V an open neighbourhood of o. The lightlike leaf spaces of V ′ have
the following description:

– the leaf space Lβ of the β-foliation of V ′ is homeomorphic to the non-Hausdorff topological
1-manifold (L+ ∪ L−)/ ∼, with L± two copies of R and p− ∼ p+ for p ∈ R<0, the special
points 0± corresponding to the special leaves J±

β := F±
β (o) ∩ V ′;

– the leaf space of the α-foliation of V ′ has one specific point J−
α := F−

α (o) ∩ V ′, which is
the only α-leaf intersecting none of the leaves p± ∈ Lβ for p ≥ 0.

Since the lightlike foliations of D∗ extend by assumption to continuous foliations of D, we can
choose U to be a small enough neighbourhood of x for it to be a trivialization domain of both
lightlike foliations of D. The same description holds then for the lightlike leaf spaces of U ′ than
for the ones of V ′. Let us denote by I±

β , respectively I−
α the lifts of F±

β (x) ∩ U , resp. F−
α (x) ∩ U
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in O, and by Id/u
α the “down and up” lifts of F+

α (x) ∩ U , so that ∂O = Id
α ∪ Iu

α and R(Id
α) = Iu

α.
Then since δ is a simultaneous equivalence between the lightlike foliations, the descriptions of the
leaf spaces impose δ(I±

β ) = J±
β , δ(I−

α ) = J−
α and δ(Id/u

α ) = ]o ; pd/u[α with pd/u ∈ F+∗
α (o). With ρ

the holonomy morphism associated to δ we have thus ρ(R)(]o ; pd[α) = ]o ; pu[α, which shows that
ρ(R) fixes o, i.e. ρ(R) = aθ for some θ, and thus δ ◦R = aθ ◦ δ.

We now define a map φ : U → Xθ by:
– φ(x) = oθ;
– φ ◦ π = πθ ◦ δ on O;
– φ ◦ π = πθ ◦ ι+ ◦ δ on Id

α;
and show that φ satisfy the properties of (1). Let W be an open neighbourhood of p ∈ Id

α

so that π|W is a diffeomorphism onto π(W ), and W \ Id
α has two connected components W±,

with W+ ⊂ O and R(W−) ⊂ O. Since δ ◦ R = aθ ◦ δ, we have φ ◦ π = πθ ◦ aθ ◦ δ on W−,
φ ◦ π = πθ ◦ ι+ ◦ δ on Id

α ∩ W and φ ◦ π = πθ ◦ δ on W+, which shows that φ is a X-morphism
into Xθ on the neighbourhood of π(p).

It thus only remains to show that φ is continuous at x. Our former description shows that
φ(Fα/β(x) ∩ U) = Fα/β(oθ), and thus that φ induces two maps ϕα/β between the respective
leaf spaces of the α, resp. β-foliations of U and φ(U) ⊂ Xθ. These foliations being continuous
and transverse, it moreover suffices to show that the maps ϕα/β induced by φ between the leaf
spaces are continuous at Fα/β(x) ∩ U , to conclude that φ is continuous at x. But our former
description of the leaf spaces of U ′ and V ′ showed that δ(I−

α ) = J−
α , and thus for any sequence

Ln of α-leaves contained in U ′ and converging to Fα(x) ∩ U , φ(Ln) converges to F−
α (oθ), which

shows the continuity of ϕα at Fα(x) ∩ U . In the same way, the fact that δ(I±
β ) = J±

β shows that
ϕβ is continuous at Fβ(x) ∩ U , which concludes the proof of the second implication.

Unicity of θ. If θ1 and θ2 both satisfy the equivalent properties (1) and (2), then the holonomy
morphism of a developing map extending the lift of a X-isomorphism like in (b) should satisfy
aθ1 = ρ(R) = aθ2 according to (c) (note that (b) is indeed independent of θ). Hence θ1 = θ2,
which concludes the proof of the Lemma. □

2.2.4. Standard singularities as quotients. Let D be an open disk around o in X, and E be the
universal cover of D∗ := D \ {o}. Since aθ fixes o, it induces an isometry of D∗ which lifts to a
unique isometry ãθ of E fixing each lift of the punctured lightlike leaves of o. On the other hand,
E admits also a preferred isometry R which is the positive generator of its covering automorphism
group.

Lemma 2.19. ãθ ◦ R acts properly discontinuously on E, and E/⟨ãθ ◦ R⟩ is X-isomorphic to
Xθ \ {oθ}. More precisely, there is a natural embedding of E/⟨ãθ ◦ R⟩ as the complement of a
point oθ in a topological disk Ē, for which oθ is a standard singularity of angle θ of Ē.

Proof. Any lift F̃α of F+∗
α (o) is an embedding of R separating E ≃ R2 in two connected com-

ponents, and since ⟨R⟩ ≃ Z acts properly discontinuously on E, the images of F̃α by ⟨R⟩ are
pairwise disjoint and form a discrete set. The complement of ⟨R⟩ · F̃α in E is a disjoint union of
topological disks, the boundary of each of them being the disjoint union of an upper and a lower
translate of F̃α, and the closure of any of these connected components is a fundamental domain
for the action of ⟨R⟩ on E. Now the important observation is that by definition, ãθ preserves the
interior and the boundary of any of these fundamental domains, showing that ãθ ◦R acts indeed
properly discontinuously on E.

We add to E/⟨ãθ ◦R⟩ a point oθ, with a neighbourhood basis composed of images of sets of the
form U ∪ {oθ}, for ãθ ◦R-invariant open sets U ⊂ E projecting to punctured neighbourhoods of o
in D. This defines a topological disk Ē, in which the lightlike foliations of E/⟨ãθ ◦R⟩ = Ē \ {oθ}
extend to two continuous transverse foliations. The complement of F̃α = F+∗

α (oθ) in Ē is X-
isomorphic to the interior of one of the previously described fundamental domains, themselves
isomorphic to the slit neighbourhood D \ F+∗

α (o) in X. The result now follows from Lemma
2.14. □
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2.2.5. Standard singularities as angle defaults. Let now D be a small disk around o in X, γ be
a half-open future-oriented spacelike geodesic starting from o, θ > 0 and γθ := aθ(γ). Then
D \ (γ ∪ γθ) has two connected components. One of them is contained in the future spacelike
quadrant of o and its closure is denoted by Diθ. The other one contains the three other quadrants
and its closure is denoted by D2π−iθ. We denote by D̄2π−iθ the quotient of D2π−iθ by the relation
γ ∋ x ∼ aθ(x) ∈ γθ on its boundary (in particular o ∼ o). As we did in paragraph 2.2.1, we
consider the surface D∗ obtained from D by cutting it open along γ \ {o}, with two upper and
lower boundary components ι± : γ → D∗. We can now form the quotient D̄2π+iθ of D∗ ∪Diθ by
the relation: ι−(x) ∼ x ∈ γ and ι+(x) ∼ aθ(x) ∈ γθ for x ∈ γ. Both topological disks D̄2π±iθ

have a marked point oθ, image of o, and bear a natural X-structure on D̄2π±iθ \ {oθ} which is
defined as in paragraph 2.2.1. These constructions are illustrated in Figure 2.1.

Lemma 2.20. oθ is a standard singularity of angle θ (respectively −θ) of D̄2π−iθ \ {oθ} (resp.
of D̄2π+iθ \ {oθ}). The obvious analogous statement can be given for any two half-geodesics of
the same signature and orientation. In particular, any lightlike half-leaf can be used to define a
standard singularity.

Proof. The first important observation is that both D2π−iθ and D∗ contain three quadrants of D
at o, and thus that the lightlike foliations of D̄2π±iθ \ {oθ} extend to two transverse continuous
foliations of D̄2π±iθ. With E the universal cover of D \ {o}, ãθ the lift of aθ fixing each lift of the
punctured lightlike leaves of o, and R the positive generator of the automorphism group of E,
D̄2π−iθ \ {oθ} is the quotient of E by ⟨ãθ ◦R⟩, and D̄2π+iθ \ {oθ} the quotient of E by ⟨ã−θ ◦R⟩.
The claim is now a consequence of Lemma 2.19. □

Remark 2.21. Lemma 2.20 provides us with the Lorentzian counterpart of the usual interpretation
of Riemannian singularities as angles defaults. Indeed, we will see in the proof of Proposition 2.32
that for a natural notion of Lorentzian angle (for which angles are complex numbers), Diθ is a
sector of angle iθ (oriented from γ to aθ(γ)), and D2π−iθ a sector of angle 2π− iθ (oriented from
aθ(γ) to γ). Hence a standard singularity x has angle ν ∈ R if, and only if the total angle around
x is 2π − iν. This gives in particular a new intrinsic characterization of the angle of a standard
singularity (and especially of its sign).

Our main interest being in this text for the extension of the lightlike foliations at the singu-
larities as topological foliations, it seems to us that the use of lightlike geodesics is clearer at
first sight. However the point of view of definite geodesics will be useful for some aspects. We
emphasize that contrarily to the Riemannian case, the same (lightlike) geodesic can be used in
the Lorentzian setting to define a singularity of non-zero cone angle.

2.3. Singular X-surfaces. We use in this subsection the local model of singularities described
in paragraph 2.2, to define singular X-surfaces and to prove some of their fundamental properties.

Definition 2.22. A singular X-structure on an oriented topological surface S, is the data of:
(1) a set Σ ⊂ S of singular points in S;
(2) and a X-structure on S \ Σ for which any x ∈ Σ is a standard singularity, i.e. for which

there exists θx ∈ R (the angle at x) and a homeomorphism φ from an open neighbourhood
U ⊂ S of x to an open neighbourhood V of oθ in Xθx , such that:
(a) U ∩ Σ = {x},
(b) φ(x) = oθx ,
(c) and φ is a X-morphism in restriction to U \ {x}.

Such a map φ is called a singular X-chart at x.
A singular X-surface (S,Σ) is an oriented topological surface S endowed with a singular X-

structure of singular set Σ. The X-structure of S∗ := S \ Σ and its underlying Lorentzian metric
will be equally denoted by µ (or unspecified if no confusion is possible in the context). S∗ will
always be endowed with the C∞ structure defined by its X-structure, and S with a C∞ structure
extending the one of S∗ (see for instance [Hat]). The points of S which are not singular are
called regular, and S itself is said regular if it does not have any singular point (i.e. if it is a
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X-surface). If we want to specify them, we will denote by Θ the (ordered) set of angles of the
(ordered) singularities Σ.

A singular X-atlas (φi, Ui) on S is an atlas of C0-charts φi : Ui → Vi from connected open
subsets Ui of S to either X (regular charts) or some Xθ (singular charts), such that:

(1) any two distinct singular chart domains are disjoint,
(2) regular charts cover S \ Σ, with Σ =

{
φ−1(oθ)

∣∣ φ singular chart to Xθ

}
the set of singu-

larities of the atlas,
(3) the transition map between any two charts is a X-morphism (which makes sense since

Ui ∩ Uj ∩ Σ = ∅ for any two distinct chart domains Ui, Uj).
An isometry between two singular X-surfaces (Si,Σi, µi)i=1,2 is a homeomorphism f : S1 → S2

such that:
(1) f(Σ1) = Σ2;
(2) f is a X-morphism in restriction to S1 \ Σ1.

The area of a singular X-surface (S,Σ) is the area of S \ Σ for µ.

Remark 2.23. Let us say that a time-oriented Lorentzian metric µ of constant sectional curvature
εX defined on the complement of a discrete subset Σ of an orientable surface S is singular, if it
is induced by a singular X-structure. Then according to Proposition 2.6, time-oriented singular
Lorentzian metric of constant sectional curvature εX are equivalent to singular X-structures.

Note moreover that an isometry f : S → S between two singular X-structures µ1 and µ2 on
a surface S sharing the same singular set Σ, is simply an isometry between their underlying
Lorentzian metrics of S \ Σ, which is C∞ for the (compatible) C∞-structures defined by µ1 and
µ2 and extends to a homeomorphism of S fixing Σ.

2.3.1. First properties of singular X-surfaces. We prove now some elementary but fundamental
properties of singular X-surfaces.

Lemma 2.24. Let (S,Σ) be a singular X-surface.
(1) Σ is discrete, hence finite if S is closed.
(2) For any singularity x ∈ Σ of angle θx, ρ : π1(S \ Σ) → G a holonomy representation of

S∗ compatible at x (see Definition 2.15), and [γ] ∈ π1(S \ Σ) the homotopy class of a
positively oriented loop around x homotopic to x in S: ρ([γ]) = aθx. In particular, ρ([γ])
is conjugated to aθx.

(3) If S is closed, then the area of (S,Σ) is finite.

Proof. (1) Any singular X-chart contains indeed a unique singularity.
(2) Since x is a standard singularity of angle θx, this is a direct consequence of Lemma 2.14.
(3) For any compact measurable subset K ⊂ S \ Σ, AµS (K) is finite, and the claim follows thus
from the fact that for any compact neighbourhood K of oθ in Xθ, the area of K \ {oθ} equals the
one of K and is thus finite. □

We emphasize that the second claim of Lemma 2.24 shows that the singularities and their
angles are characterized by µS , and are geometrical invariants in the following sense.

Corollary 2.25. Let f : S1 → S2 be an isometry between two singular X-surfaces. Then for any
singular point x of S1, x ∈ Σ1 and f(x) ∈ Σ2 have the same angle: θx = θf(x).

Proof. Let [γ] ∈ π1(S1 \ Σ1) be the homotopy class of a positively oriented loop homotopic to
x, and ρ : π1(S1 \ Σ1) → G be a compatible holonomy representation of S1 at x. Then [f(γ)] ∈
π1(S2 \ Σ2) and the morphism ρ ◦ f−1

∗ : π1(S2 \ Σ2) → G induced by f has the same properties
with respect to f(x), hence aθx = ρ([γ]) = ρ ◦ f−1

∗ ([f ◦ γ]) = aθf(x) , i.e. θx = θf(x). □

Observe that for any u ∈ R, au preserves the equivalence relation ∼θ used to define Xθ. It
induces thus a map on Xθ preserving oθ that we denote by āu, characterized by āu ◦πθ = πθ ◦au.

Proposition 2.26. Let φ be a singular X-chart of Xθ at oθ, or equivalently a local isometry of
Xθ defined on a connected neighbourhood of oθ and fixing oθ. Then φ is the restriction of some
āu.
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Proof. First according to Corollary 2.25, a singular X-chart of Xθ at oθ is indeed a local isometry
of Xθ fixing oθ. Denoting U∗ := U \{oθ} we can assume without lost of generality that Fβ(oθ)∩U∗

is the union of two down and up connected components I− = ]x ; oθ[β and I+ = ]oθ ; y[β. The
first natural but important observation is that φ preserves both ends of F∗

β(oθ) in the sense that
φ(I−) = ]x′ ; oθ[β and φ(I+) = ]oθ ; y′[β for some x′ and y′. Likewise both ends of F∗

α(oθ) are
preserved, the proof being identical. Indeed φ(I−) and φ(I+) are intervals of β-leaves since φ|U∗

is a X-morphism, containing furthermore oθ in their closure since φ(oθ) = oθ. Hence the only
alternative to the above claim is that φ(I−) = ]oθ ;x′[β and φ(I+) = ]y′ ; oθ[β for some x′ and y′.
But then since φ(oθ) = oθ, φ would reverse the canonical orientation defined on β-leaves by the
X-structure of U∗ (see paragraph 2.1.5), which contradicts the fact that φ|U∗ is a X-morphism.
Let U be an open neighbourhood of o in X, so that with U ′ := U \ F+

α (o) and U∗ = U ′ ∪ ι−(U ∩
F+

α (o)) ∪ ι+(U ∩ F+
α (o)) ⊂ X∗, U = πθ(U ′). Then the restriction to U ′ (resp. V ′) of πθ are

X-morphisms, and πθ|−1
V ′ ◦φ ◦ πθ is thus the restriction of an element g ∈ G. But our previous

claim shows then that g is simultaneously in the stabilizer of Fα(o) and Fβ(o) whose intersection
is Stab(o) = A. In other words there exists u ∈ R so that φ = au on U∗ and thus on U , which
concludes the proof. □

For any X-surface (S,Σ), the union of a X-atlas of S\Σ with a (small enough) singular X-chart
at each singularity defines a singular X-atlas of S. Conversely, any singular X-atlas of S defines
of course on S a singular X-structure with the same singularities. The following result follows
directly from Proposition 2.26.

Corollary 2.27. Let S be an oriented topological surface. Then the transition maps between any
two singular X-atlases defining the same singular X-structure on S are:

– either restrictions of some au between two singular charts at the same singularity,
– or X-morphisms outside of singularities.

Two singular X-atlases whose transition maps are of this form are said equivalent, and singular
X-structures are in correspondence with equivalence classes of singular X-atlases.

Consequently, any G-invariant object or notion on X which projects well to Xθ through πθ

will make sense on any singular X-structure. The main application of this vague remark will be
the Definition A.5 given below of geodesics in singular X-surfaces.

2.3.2. First-return maps, suspensions and regularity of the lightlike foliations. If T is a homeo-
morphism of the circle S1, the vertical foliation of S1 × [0 ; 1] of leaves {p} × [0 ; 1] induces on
the quotient MT := S1 × [0 ; 1]/{(1, p) ∼ (0, T (p))}, homeomorphic to a torus, a foliation FT

called the suspension of T . We will be interested in this text with lightlike foliations of singular
X-structures which are suspensions of circle homeomorphisms, and it happens that the dynamics
of a circle homeomorphism T , hence of its suspension, is highly dependent of the regularity of T .
Indeed, circle homeomorphisms can in general have pathological behaviours by admitting excep-
tional minimal sets (see [HH86, Chapter I §5]), but the seminal work of Herman [Her79] showed
that regular enough circle homeomorphisms behave nicely. In this paragraph we give the main
technical properties of the lightlike foliations of a singular X-surface, and show in particular that
if they are suspensions of a circle homeomorphism T , then T is a C2 diffeomorphism with breaks.

Definition 2.28. A homeomorphism f : I = [a ; b] → J between two intervals of R is an
orientation-preserving Ck-diffeomorphism with breaks (1 ≤ k ≤ ∞) if there exists a finite number
of points a = x0 < · · · < xN = b in I such that for any 1 ≤ i ≤ N :

(1) f |]xi−1;xi[ is an orientation-preserving Ck-diffeomorphism onto its image,
(2) for any 1 ≤ l ≤ k, the lth derivative of f has finite limites from above at xi−1 and from

below at xi,
(3) f ′

+(xi−1) := lim
t→x+

i−1

f ′(t) and f ′
−(xi) := lim

t→x−
i

f ′(t) are > 0.

If f ′
+(xi−1) ̸= f ′

−(xi), then xi is a break point of f . A homeomorphism of S1 is a Ck-diffeomorphism
with breaks if it is so in restriction to any small enough interval of S1.
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The following naive observation will be useful to us.
Lemma 2.29. Let two consecutive intervals [a ; b] and [b ; c] of R be endowed with C∞-structures
C0-compatible with the topology of R, and φ : [a ; c] → I ⊂ R be a homeomorphism. Then for any
1 ≤ k ≤ ∞, the following are equivalent.

(1) φ restricts to Ck-diffeomorphisms with breaks of [a ; b] and [b ; c], and lim
t→b±

φ′(t) > 0.
(2) In a C∞-structure of [a ; c] which is C∞-compatible with the structures of both of its subin-

tervals, φ is a Ck-diffeomorphism with breaks.
Let F be an oriented C0 one-dimensional foliation on a surface S, I and J be two transversals

of F , i.e. C0 one-dimensional submanifolds transverse to F in a foliation chart, and x ∈ I such
that F(x) ∩ J ̸= ∅. Then by transversality, F(x) has a first intersection point denoted by H(x)
with J (with respect to the orientation of F), and there exists an open neighbourhood I ′ of x in
I such that H(y) ∈ J is well-defined for any y ∈ I ′. The map H : I ′ → J obtained in this way is
a homeomorphism onto its image (an open neighbourhood of H(x)) which is called the holonomy
of F from I to J . We refer to [CLN85, §IV.1] fore more details. A section of F is a simple closed
curve γ of S transverse to F and intersecting any of its leaves. In this case, if the holonomy of
F from γ to itself is well-defined, it will be called the first-return map of F on γ and be denoted
by P γ

F (in reference to Poincaré). We recall that a homeomorphism (respectively a foliation) of a
manifold M is said minimal if all its orbits (resp. leaves) are dense in M .
Lemma 2.30. Let (S,Σ) be a singular X-surface.

(1) The lightlike foliations of S \ Σ extend uniquely to two one-dimensional continuous folia-
tions on S, still denoted by Fα and Fβ.

(2) There exists at any point of S a simultaneous C0 foliation chart for Fα and Fβ (in the
sense of Proposition 2.13).

Let F be one of the lightlike foliations of S.
(3) Let T1, T2 ⊂ S be two small C∞ transversals of F such that T1 ∩ Σ = {x} and T2 ⊂ S \ Σ

intersects F(x), and H : T1 → T2 be the holonomy of F from T1 to T2. Then H is a
C∞-diffeomorphism with breaks.

(4) If S is homeomorphic to T2 and F C0-conjugated to the suspension of an orientation-
preserving homeomorphism H of S1, then H is C0-conjugated to a C∞-diffeomorphism
with breaks of S1, and has no exceptional minimal set. If H has moreover irrational
rotation number ρ ∈ S1, then H is C0-conjugated to the rotation Rρ : x ∈ S1 7→ x+ρ ∈ S1

and is thus minimal. In particular F is then C0-equivalent to the corresponding linear
foliation of T2, hence minimal.

The notion of rotation number is recalled in Proposition-Definition 3.18. We will prove below
in Proposition C.2 a “geometric version” of claims (3) and (4) of the following Lemma, in the
case where the transverse curves are geodesics of the surface.

Proof of Lemma 2.30. (1) follows directly from Proposition 2.13, using singular X-charts at the
singularities.
(2) follows from Proposition 2.13 at the singularities and from the X-charts at regular points.
Indeed the affine charts (2.3) are simultaneous foliated charts of the lightlike foliations of X.
(3) Without lost of generality, we can assume that S = Xθ, x = oθ, F = Fβ, and that T1 = Fβ(oθ)
and T2 = Fβ(p) with p ∈ F+

α (oθ). These reductions being done, and since the C∞ structure of
S is by definition compatible with the X-structure of S \ Σ, it only remains to check according
to Lemma 2.29 that the restriction of H to the closure of each component of Fβ(oθ) \ {oθ} is
a C∞-diffeomorphism with breaks, with a positive limit of the derivative at oθ from below and
above. We do it for F+

β (oθ), the case of the other component being analogous. According to
Proposition 2.13, for I and J small open neighbourhoods of oθ in Fα(oθ) and Fβ(oθ), the map
(x, y) ∈ I × J 7→ Fβ(x) ∩ Fα(y) defines outside of oθ a smooth diffeomorphism onto a punctured
open neighbourhood of oθ in Xθ. But the holonomy H reads in this chart as the identity of
the vertical factor, and extends thus clearly on the closure I+ of the upper component to a C∞-
diffeomorphism whose derivative has a positive limit at oθ.
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(4) Since Σ∩S is finite and F is by assumption a suspension, there exists a C∞ section T ⊂ S \Σ
of F . The first-return map H : T → T of F on T is then well-defined, and is according to
(3) a C2-diffeomorphisms with breaks as a composition of such homeomorphisms. The two last
claims follow then from Denjoy Theorem [Den32] (see also [Her79, Théorème VI.5.5 p.76]): if an
orientation-preserving homeomorphism T of S1 is a C2-diffeomorphism with breaks, then it has no
exceptional minimal set. If T has moreover irrational rotation number ρ, then it is C0-conjugated
to the rotation Rρ.1 □

Corollary 2.31. Any closed connected orientable surface which bears a singular X-structure, is
homeomorphic to a torus.

Proof. According to [HH86, Theorem 2.4.6], any closed connected orientable surface bearing a
topological foliation is indeed homeomorphic to a torus. □

This corollary shows the necessity of introducing branched covers of the standard singularities
to obtain singular X-structures on higher-genus surfaces.

2.3.3. Gauß-Bonnet formula. The standard Riemannian Gauß-Bonnet formula has a natural
counterpart for singular constant curvature Lorentzian surfaces, which imposes a relation be-
tween the singularities and the area of a singular X-torus. We recall that εX denotes the constant
sectional curvature of X: εR1,1 = 0 and εdS2 = 1.

Proposition 2.32 (Gauß-Bonnet formula). Let a closed connected orientable surface S be en-
dowed with a singular X-structure of area A(S) ∈ R∗

+, having n ∈ N∗ singularities of angles
(θ1, . . . , θn) ∈ Rn. Then:

(2.5) εX.A(S) = −
n∑

i=1
θi.

In particular, we have the following.
(1) If S is a closed singular R1,1-surface, then:

(a) either S is regular, i.e. is a flat Lorentzian torus;
(b) or S has exactly two singularities of opposite signs;
(c) or else S has at least three singularities.

(2) The area of a closed singular dS2-surface is entirely determined by the angles at its sin-
gularities.

(3) If a closed singular dS2-surface S has a single singularity x, then x has negative angle
−A(S) ∈ R∗

−.

Proof. Let us denote by Σ the singular set of S, and by S∗ = S \Σ the X-surface associated to S.
A general topological fact ensures that S admits a finite triangulation subordinate to any given
covering, i.e. each of which triangle is contained in an open set of the chosen covering. Let us
choose a singular X-atlas of S, each of which chart domain is a normal convex neighbourhood of
any of its points. Around a singular point of S, we use a natural generalization in the singular
setting of the usual notion of normal convex neighbourhood, introduced in Proposition A.7 below.
This allows us to consider a triangulation T of S, whose set of vertices, edges and faces (namely
triangles) are respectively denoted by V, E and F , such that:

(1) Σ is contained in the vertex set V;
(2) the interior of any edge e ∈ E is a geodesic interval of timelike or spacelike signature.

Formula (2.5) will follow from a Lorentzian counterpart of the Gauß-Bonnet formula, proved in
[Dza84, p.225] for compact subsets of regular Lorentzian surfaces whose boundary are piecewise
smooth timelike or spacelike curves, taking into account the angles between consecutive smooth
segments at the breaking points (see also [Ave63, Che63] for analogous formula in any signatures
and dimensions with intrisic proofs, but in the boundaryless setting). This formula needs thus
the definition of angles between tangent vectors of Lorentzian manifolds, which is done in [Dza84,

1Note that this theorem of Denjoy holds more generally for the so-called class P homeomorphisms, of which
C2-diffeomorphisms with breaks are specific examples.
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§3 p.217]. For any non-zero future-oriented spacelike vector u ∈ ToX, the angle between u and
Doa

t(u) in Dzan’s convention is simply given by

(2.6) ∅(u,Doa
t(u)) = i.t.

This relation follows from our Convention 2.10 on the parametrization of the stabilizer {at}t of
o. We draw the attention of the reader on the fact (surprising at first sight) that Lorentzian
angles have complex values (for instance pure imaginary in (2.6)). One can then define the angle
axiomatically by stating that it is additive in the usual sense (see [Dza84, Definition 7 p.220]),
and that ∅(u, v) = π

2 if gµ(u, v) = 0 for u and v non-zero. Let T i be a vertex of a triangle T ∈ F ,
and (ei

−, e
i
+) be the two edges of T incident to T i, each of them being oriented from T i to its

other extremity. Then with ui
± a vector at T i tangent to ei

± and compatible with its orientation,
the interior and exterior angles at T i are naturally defined by

(2.7) α(T i) = ∅(ui
−, u

i
+) and λ(T i) := π − α(T i).

If T i is a singular point then the tangent vectors ui
± are well-defined in any singular chart at T i,

and the angle ∅(ui
−, u

i
+) being invariant by isometry, it will not depend on the chosen singular

chart according to Proposition 2.26. Therefore, this definition still makes sense at a singular
vertex. Denoting by (T 1, T 2, T 3) the vertices of T ∈ F , the Gauß-Bonnet formula proved in
[Dza84, p.225] becomes then:

(2.8) iεXAµ(T ) +
3∑

i=1
λ(T i) = 2π

with Aµ(T ) the area of T . To translate Dzan’s formula into the equation (2.8) for our geodesic
triangle T , the following remarks are in order about the successive terms of the left-hand-side of
[Dza84, Gauß-Bonnet formula p.225]:

(1) the area element dS appearing in the formula is purely imagery, equal to idS0 with dS0
the standard area element of S (see [Dza84, (55) p.224]);

(2) the edges of T being geodesic, the integral of the geodesic curvature kg vanishes;
(3) the “directed sectorial measure of the exterior angle λi” at T i, equals our exterior angle

λ(T i) defined in (2.7).

For any v ∈ V, we denote by Fv the set of triangles containing v as a vertex, and for T ∈ Fv,
by T iv the (unique) vertex of T equal to v. The remark preceding [Dza84, Definition 3 p.218]
and the additivity of the Lorentzian angle imply then that the total angle at any regular vertex
v ∈ V is 2π, i.e. that: ∑

T ∈Fv

α(T iv ) = 2π.

Thanks to the interpretation of standard singularities as angle defaults in Remark 2.21, this
relation becomes:

(2.9)
∑

T ∈Fv

α(T iv ) = 2π − iθv.

at a singular point v ∈ V of angle θv.
We are finally ready to sum the formula (2.8) on the faces of our triangulation. To this end,

we denote by V , E, F and Fv the respective cardinals of the sets V, E , F and Fv for any v ∈ V.
We first translate (2.9) into: ∑

T ∈Fv

λ(T iv ) = π(Fv − 2) + iθv,
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which gives ∑
T ∈F

3∑
i=1

λ(T i) =
∑
v∈V

∑
T ∈Fv

λ(T iv )

=
∑
v∈V

(π(Fv − 2) + iθv)

= π(3F − 2V ) + i
∑
v∈V

θv(2.10)

by summing on the vertices. In the last equality, we used the obvious relation
∑

v∈V Fv =∑
T ∈F 3 = 3F . Using (2.10), we obtain from (2.8):∑

T ∈F
iεXAµ(T ) +

∑
T ∈F

3∑
i=1

λ(T i) =
∑
T ∈F

2π

⇔ iεXAµ(S) + π(3F − 2V ) + i
∑
v∈V

θv = 2πF

⇔ iεXAµ(S) + π(F − 2V ) + i
∑
v∈V

θv = 0.(2.11)

Since T is a triangulation, each of its edge belongs to exactly two of its faces, which translates
as
∑

e∈E 2 =
∑

T ∈F 3 and thus E = 3F
2 . Hence π(F − 2V ) = 2π(−F + E − V ) = −2πχ(S) with

χ(S) the Euler characteristic of S, and (2.11) becomes thus:

(2.12) i

(
εXAµ(S) +

∑
v∈V

θv

)
= 2πχ(S).

But S is homeomorphic to a torus according to Corollary 2.31, hence χ(S) = 0, and (2.12) yields
the expected formula (2.5) which concludes the proof of the Proposition. □

3. Constructions of singular dS2-tori

In this section, we present the constructions of dS2-tori with one singularity yielding the
existence results from Theorem B, C and D. More precisely, we will prove the following.

Theorem 3.1. Let θ ∈ R∗
−, cα ̸= cβ ∈ π1(T2) be two distinct primitive elements, and Aα ̸= Aβ ∈

P+(H1(T2,R)) be two distinct irrational rays. Then there exists on T2 a singular dS2-structure
having a unique singularity of angle θ at 0 = [0, 0], whose lightlike foliations are suspensions of
circle homeomorphisms, and moreover satisfy any of the following properties.

(1) Fα(0) and Fβ(0) are closed leaves of Fα and Fβ, and ([Fα(0)], [Fβ(0)]) = (cα, cβ). We
can moreover assume that either Fα(0) or Fβ(0) is the unique closed leaf of its foliation,
and that both of them are such if (cα, cβ) is a basis of π1(T2).

(2) ([Fα(0)], A+(Fβ)) = (cα, Aβ) (in particular, Fβ is minimal), and Fα(0) is the unique
closed leaf of Fα.

(3) (A+(Fα), A+(Fβ)) = (Aα, Aβ) (in particular, Fα and Fβ are both minimal).

We recall that according to Proposition 2.32, the negative angles are the only one which can
be realized by a single singularity of a dS2-torus, hence the necessary condition θ ∈ R∗

− which is
not a restriction. The proof of Theorem 3.1 will be concluded in paragraph 3.8.
A+(F) ∈ P+(H1(T2,R)) denotes the oriented projective asymptotic cycle of the oriented fo-

liation F , which will be introduced in paragraph 3.6. An element α ∈ π1(T2) is primitive if it
cannot be written as α = βk with β ∈ π1(T2) and k ≥ 2 – equivalently if α is represented by
simple closed curves of T2. We denote by [γ] the homotopy class of a curve γ in π1(T2). A line
l ∈ P(H1(T2,R)) is rational if l = Rα with α ∈ π1(T2) ≡ H1(T2,Z) ⊂ H1(T2,R), and irrational
otherwise.

We fix for the whole subsection an area A ∈ R∗
+ and the corresponding angle θ = −A ∈ R∗

−
given by Gauß-Bonnet formula (2.5) in Lemma 2.32.(3), so that if a singular dS2-torus of area
A has a single singularity, then it is of angle θ. We also identify in the whole section RP1 with
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R ∪ {∞} and elements of PSL2(R) with their associated homography of R ∪ {∞}, as defined in
(2.2) and (2.4).

3.1. Gluings of polygons in dS2. Let us denote by yA := 1 − e−A ∈ ]0 ; 1[ the unique number
such that Aµ(R(1,∞,0,yA)) = A. According to Lemma 2.9, RA := R(1,∞,0,yA) is, up to action
of PSL2(R), the unique rectangle with lightlike edges and area A in dS2. Our goal is to define
a quotient of it with only one singularity, which will a posteriori necessarily have angle θA by
Gauß-Bonnet formula (2.5). A first easy way to do this is to consider the unique elements g = gA
and hA of PSL2(R) such that
(3.1) g(1, 0, yA) = (∞, 0, yA) and hA(1,∞, 0) = (1,∞, yA),
and to form the quotient of RA by gluing its edges through g and hA (see Figure 3.1). The gluing
being made by isometries, the dS2-torus obtained in this way will have, as sought, a unique
singularity at the class of the vertices. However by such a construction, both lightlike leaves of
the singularity will always be closed. To obtain a structure with a minimal lightlike foliation, it
is thus necessary to consider another type of gluing.

3.1.1. Suspension of homographic interval exchange transformations. Inspired from the construc-
tions of translation surfaces as “suspensions” of (classical) interval exchange transformations, a
natural idea to obtain minimal lightlike foliations is to keep gluing the β-edges of RA through g,
but to glue its two α-edges through a homographic interval exchange transformation (HIET ) with
two components. Such a map is a bijection of an interval I of RP1 exchanging the components of
two partitions of I traditionally called top and bottom partitions, and which is homographic, i.e.
equals the restriction of an element of PSL2(R), on each component of the start partition. The
notion of HIET is both a natural generalization of the ones of (classical) IET and affine IET, and
a restriction of the notion of generalized interval exchange transformation (GIET ). We refer the
reader to the excellent [Yoca, Yocb] for more informations on theses notions (which will however
not be needed in this text).

For any x, x′ ∈ ]1 ; ∞[, we introduce the following subintervals of I = [1 ; ∞[:

(3.2) It
1 = [1 ;x′[, It

2 = [x′ ; ∞[, Ib
1 = [1 ;x[, Ib

2 = [x ; ∞[,
delimiting a top partition I = It

1 ⊔It
2 and a bottom partition I = Ib

1 ⊔Ib
2 of I. By three-transitivity

of PSL2(R) on RP1, there exists a unique pair h1, h2 of elements of PSL2(R) such that hk(0) = yA
for k = 1, 2, h1(It

1) = Ib
2 and h2(It

2) = Ib
1, and we define a HIET E : I → I by:

E|It
1
= h1|It

1
, E|It

2
= h2|It

2
.

We now “suspend” this HIET E, obtaining the quotient TA,E of the rectangle RA by the following
edges identifications: {

[1 ; ∞[ × {0} ∋ (p, 0) ∼ (E(p), yA) ∈ [1 ; ∞[ × {yA},
{1} × [0 ; yA] ∋ (1, p) ∼ (∞, g(p)) ∈ {∞} × [0 ; yA].

These gluings, illustrated in Figure 3.1, give us a first family of examples of singular dS2-tori.
Vertices of RA of the same color indicate points identified in the quotient TA,E .

Proposition 3.2. For any A ∈ R∗
+ and x, x′ ∈ ]1 ; ∞[, TA,E is homeomorphic to T2 and the

dS2-structure of the interior of RA extends to a unique singular dS2-structure on TA,E. The
latter has area A, the α-leaf of [∞, 0] is closed, its unique (potentially) singular points are [∞, 0]
and [x′, 0], and the holonomies of small positively oriented loops around them are:

(1) holonomy around (∞, 0) = h−1
2 h1g

−1,
(2) holonomy around (x′, 0) = h−1

1 gh2.

Proof. Let us denote by π : RA → TA,E the canonical projection, and [a, b] = π(a, b). We first
observe that the gluing of the edges are well-defined for the quotient to be topologically a torus,
as a Euler characteristic computation directly shows. The edges being moreover identified by
elements of PSL2(R), the dS2-structure of π(Int(RA)) for which π|Int(RA) is a dS2-morphism
extends on the complement of the vertices, i.e. on TA,E \ {[∞, 0], [x′, 0]} to a structure of area
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1 ∞

0

yA
B2 A1 B1

A2 B0 A0

RA

h1 = gh

γA

g

h2 = h

xx′

Figure 3.1. dS2-torus with one singularity and a closed α-lightlike leaf.

A. Lastly, observe that the lightlike foliations of π(Int(RA)) clearly extend to two transverse
continuous foliations of TA,E .

The top and bottom partitions (3.2) of [1 ; ∞[ define associated partitions of the α and β
boundary parts of RA, that we will call edges, and their extremities will be called vertices. Let us
detail in the specific case of A = [∞, 0] ∈ TA,E a general “recipe” to compute the holonomy around
any vertex P of TA,E , illustrated in Figure 3.1. First of all, note that each vertex P is associated
with a positively cyclically ordered periodic orbit (P0, P1, . . . , Pd), which has length 2 for A. A
small positively oriented closed loop γP around P defines indeed a cyclic ordering on the (finite)
equivalence class of P for ∼, describing in which order the points are met in RA when following γP .
For instance in the case of A if we start with A0 = (∞, 0), then we successively meet A1 = (x, yA),
A2 = (1, 0) and finally come back to A0. Moreover at each step Pi, i ≥ 1 of this periodic orbit, γP

meets in TA,E an interval of a lightlike leaf of P corresponding to two top and bottom edges et
Pi

and eb
Pi

of RA having respectively Pi and Pi−1 as one of their extremities: these are for instance
et

A1
= [1 ;x] × {yA} (A1 as right extremity) and eb

A1
= [x′ ; ∞] × {0} (A0 as right extremity) for

A1. These edges are then identified by some fPi ∈ PSL2(R), characterized by fPi(et
Pi

) = eb
Pi

:
fA1 = h−1

2 for instance. Lastly, each point Pi of the periodic orbit (P0, P1, . . . , Pd) contributes for
a certain sequence QPi of quadrants around P , ordered as they are met by γP . For instance for
A, QA0 = future timelike, QA1 = (past spacelike,past timelike) and QA2 = future spacelike. We
will say the identification of the quadrants around P is standard, if the sequence (QP0 , . . . , QPd

)
equals the standard sequence: (future timelike, past spacelike,past timelike, future spacelike), up
to cyclic permutations.
Fact 3.3. Let assume that the identification of the quadrants around a vertex P is standard. Then
P is a standard singularity of TA,E. Moreover with ρ the holonomy associated to the developing
map extending the section s : π(Int(RA)) → Int(RA) of π, we have:
(3.3) ρ(γP ) = fP1fP2 . . . fPd

fP0 ∈ StabPSL2(R)(P0).
Proof. For the sake of clarity, we write the proof in the specific case of A, but it is formally identical
in any situation. We define φ0 = s as a dS2-chart on π(U0), with U0 a small neighbourhood of
A0 in RA. Now let U1 be a small neighbourhood of A1 in RA, and φ1 be a dS2-chart defined
on a neighbourhood of π(U1) in TA,E \ {[∞, 0], [x′, 0]}, and agreeing with φ0 on a neighbourhood
of [∞, 0] in π(]1 ; ∞] × {0}). Then φ1 = gA1 ◦ s on π(U1) with gA1 ∈ PSL2(R) agreeing with
fA1 = h−1

2 on a neighbourhood of A1 in [1 ;x] × {yA}. The naive but important observation is
now that if g, g′ ∈ PSL2(R) have the same action on a non-empty open lightlike interval, then
g = g′. Indeed, it is sufficient to check this for g, g′ ∈ Stab(o), for which it simply follows from
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the fact that a non-trivial element of Stab(o) has a non-trivial action on any non-empty open
lightlike interval of extremity o. This shows that gA1 = fA1 , i.e. that φ1 = fA1 ◦ s on π(U1).

Continuing in the same way, we conclude that if U2 is a neighbourhood of A2 in RA, and φ2
a dS2-chart defined on a neighbourhood of π(U2) and agreeing with φ1 on the suited α-interval,
then φ2 = fA1 ◦ fA2 ◦ s on π(U2). To understand this relatively counter-intuitive order in the
compositions, observe first that fA2 ◦ s|π(U2) and s|π(U1) glue together to define a dS2-chart on a
punctured neighbourhood of [1, 0] in π([1 ;x′] × {0}), hence that fA1 ◦ fA2 ◦ s and fA1 ◦ s = φ1
agree on the intersection of their domains.

In the end φ3 = fA1 ◦fA2 ◦fA0 ◦φ0, and the maps φi for i = 0, . . . , 3 agree on the intersection of
their domains. They glue thus together to give a dS2-isomorphism ψ from a slit neighbourhood
U ′ = U \ Fα([∞, 0]) of [∞, 0] to a slit neighbourhood of (∞, 0) = o in dS2. This map satisfies the
hypotheses of Lemma 2.14.(2), and we conclude thus that [∞, 0] = A is a standard singularity of
the dS2-structure of TA,E \ {[1, 0], [x′, 0]}, and that ρ(γA) = fA1 ◦ fA2 ◦ fA0 ∈ Stab(o). □

Fact 3.3 shows our claim for the vertices [∞, 0] and [x′, 0], and concludes thus the proof of the
proposition. □

3.1.2. Further remarks on the gluings. To clarify our exposition, avoid unnecessary notations
and rather emphasize the main ideas, we chose to focus on the constructions of singular dS2-tori
that will be developed in the sequel of the text in the case of one singularity. However, the
same formal proof than the one of Fact 3.3 offers a general way of constructing singular X-tori,
and proves the following result. We refer to the proof of Proposition 3.2 for the definition of a
standard identification of quadrants around a vertex, and of the related notions appearing in the
statement. We will call polygon a compact connected subset of X, homeomorphic to a closed
disk, and whose boundary is a finite union of geodesic segments. We also denote by (G,X) the
pair (PSL2(R),dS2) or (R1,1 ⋊ SO0(1, 1),R1,1).

Proposition 3.4. Let P be a polygon of X, whose boundary is lightlike and endowed with:
(1) a decomposition into an even number of edges which are segments of lightlike leaves,
(2) and pairwise identifications between these edges by elements of G.

Assume that the identification of the quadrants around each vertex is standard. Then the quotient
of P by the edges identifications is a torus endowed with a unique singular X-structure compatible
with the one of P. This singular X-torus has the same area than P, and the holonomies at the
vertices are given by the formula (3.3).

Remark 3.5. Proposition 3.4 proves in particular the existence of singular R1,1-tori or singular
flat tori, and offers a way to construct a large family of them. The investigation of singular flat
tori will be considered in a future work with a more analytical point of view, closer to the one of
[Tro86, Tro91] for singular Riemannian surfaces.

Remark 3.6. Proposition 3.4 could be stated more generally: the quotient of any connected
polygon of X whose boundary is lightlike and endowed with an even partition into edges, by any
pairwise identifications of the edges by elements of G, is endowed with a natural X-structure
on the complement of the vertices. But these vertices are not standard singularities as studied
in this text if the total number of quadrants around them is not 4. For instance, non-standard
singularities do not see four lightlike half-leaves emanating from them, and in particular the
lightlike foliations do not extend to C0 foliations there. This should however not exclude the
attention for such examples, particularly interesting ones arising for instance when the lightlike
foliations have themselves standard singularities at the singularities of the metric (i.e. when they
are the stable and unstable foliations of a pseudo-Anosov map). The study of this very interesting
class of examples will be the content of a future work.

Lastly, Lemma 2.20 shows that standard singularities do not need to be constructed from
lightlike geodesics, and that definite geodesics work just as well. Therefore, we observe that
the natural counterpart of Proposition 3.4 can be stated and proved in the same way for any
polygon of X with a geodesic boundary, a partition into an even number of edges and pairwise
identifications by elements of G.
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All the graphs are assumed to be finite.

Definition 3.7. A graph C embedded in a singular X-surface S is said lightlike, if any vertex of
C has degree at least 2, and any edge of C is a connected subset of a lightlike geodesic of S. A
surface S is rectangular if there exists a lightlike graph C embedded in S such that:

Proposition 3.8. Any rectangular singular X-torus is isometric to one given by Proposition 3.4.

Proof. Let T2 = R2/Z2 be endowed with a rectangular singular X-structure, and C̄ ⊂ T2 be a
graph as in Definition 3.7. We endow R2 with the Z2-invariant singular X-structure for which
the universal covering π : R2 → T2 is a local isometry, and denote by C̃ = π−1(C̄) the lift of C̄.
This is an embedded graph in R2 satisfying properties (2) and (3) of Definition 3.7 for S = R2,
and such that each connected component of R2 \ C̃ is a topological disk. We denote by E the
closure of one of these connected components, and by C the subgraph of C̃ which is the boundary
of E. Then E is a fundamental domain for the action of Z2 on R2, and T2 is thus isometric to
the quotient of E by the suitable identifications of the edges of C by the action of elements of
Z2. Note that any edge of C̄ has two lifts in C, hence C has an even number of edges.

(a) Injectivity of the developing map on a fundamental domain. Since the singularities
Σ̄ of T2 are by assumption contained in C̄, the singularities Σ̃ = π−1(Σ̄) of R2 are contained in
C̃, and with Σ = Σ̃ ∩C, we have π(Σ) = Σ̄. In particular E∗ := E \ Σ is contained in R2 \ Σ̃, and
with U a simply connected open neighbourhood of E∗ := E \ Σ contained in R2 \ Σ̃, there exists
a X-morphism

δ : U → X,
which is the developing map of the X-structure of U . Note that U is a topological disk, as is any
connected and simply connected open subset of the plane.

Fact 3.9. δ extends to a continuous map D from a neighbourhood U of E to X. There exists
moreover a lightlike rectangle E0 of X, a decomposition of its boundary into a graph C0 whose
edges are segments of lightlike leaves, and a subset Σ0 of the vertices of C0, such that:

(1) D(E) ⊂ E0,
(2) D(Σ) = Σ0 and D is a graph morphism from C to C0,
(3) D is injective in restriction to C.

Proof. By assumption, any vertex of C̃ has degree at least 2, and since any edge is a segment of
lightlike leave, the vertices also have degree at most 4 inside C̃ (in the maximal case, segments
of the four lightlike half-leaves emanate from the vertex). But C being the boundary of E hence
a topological circle, any vertex of C has of course degree exactly 2 inside C. Now we endow the
circle C = ∂E with the orientation induced by the one of E, fix v ∈ Σ a singular vertex of C, and
denote by e−, e+ the two (closed) edges of C of extremity v, e+ being met after e− in the positive
orientation of C (e− ̸= e+ since v has degree 2). Up to a cyclic permutation of the quadrants,
the three following situations are the only one that can arise.

(1) e− is a segment of the α-leaf of v denoted by [x− ; v]α, going from x− to v for the positive
orientation of C. Similarly, e+ is a segment of the β-leaf of v of the form [v ;x+]β.
Moreover, v admits an open neighbourhood Qv in E which is a small future timelike
quadrant, and such that Qv ∩ Σ = {v}.

(2) e− is an α-segment [x− ; v]α, e+ an α-segment [v ;x+]α, and v admits an open neighbour-
hood Qv ⊂ E∗ ∪ {v} in E which is the union of a small future timelike quadrant and of a
small future spacelike quadrant.

(3) e− is an α-segment [x− ; v]α, e+ a β-segment [v ;x+]β, and v admits an open neighbour-
hood Qv ⊂ E∗ ∪ {v} in E which is the union of a small future timelike quadrant, a small
future spacelike quadrant and a small past timelike quadrant.

Note that the two orientations of the segment [x− ; v]α respectively induced by the one of the
lightlike foliation and by C coincide in these three cases, while for [v ;x+]α and [v ;x+]β they
coincide in cases (1) and (2) but are opposite in case (3).

Since v is a standard singularity, denoting by Qo the union of quadrants at o corresponding to
Qv, Q∗

v := Qv \ {v} is isometric to Q∗
o := Qo \ {o}. Namely, there exists an isometry φ from a
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neighbourhood V ⊂ U \ Σ̃ of Q∗
v in R2 to a neighbourhood V0 of Q∗

o in X, such that φ(Q∗
v) = Q∗

0
(see Lemma 2.14). Since δ|V is another X-morphism from V , there exists moreover g ∈ G such
that δ|V = g ◦ φ. Hence δ(Q∗

v) = g(Q∗
0) = Q∗

v0 , with Qv0 the union of quadrants at v0 := g(o)
corresponding to Qv. In particular, this shows that δ|V extends to an injective continuous maps
Dv from a neighbourhood W of Q to a neighbourhood W0 of Qv0 , sending v to v0.

We can now glue together these maps Dv, to define a map D from a neighbourhood U of E to X.
Since δ is a local diffeomorphism it is injective in restriction to any open edge of C, and D is thus
injective to any closed edge since the lightlike leaves of X are embeddings of R. By construction,
C0 := D(C) is a lightlike rectangular closed loop in X, and we define a decomposition of it by
stating that D is a graph morphism (which makes sense since D is injective in restriction to any
edge). A naive but important remark is now that any lightlike rectangular closed loop in X is
simple, i.e. without any self-intersection. Since E is moreover always on the same side of C by
definition of its orientation, D(E) is always on the same side of C0, hence D(E) is contained in
the (unique) lightlike rectangle E0 of X bounded by C0.

We know at this stage that D|C is a continuous map from the topological circle C = ∂E to
the topological circle C0, which is locally injective hence a local homeomorphism. But since the
oriented graph C contains only one positively travelled α-segment, D|C also has degree one. In
the end D|C is injective, which concludes the proof of the fact. □

Now since the continuous map D|E : E → E0 is locally injective and injective in restriction to
∂D, D|E is injective according to [MO63, Theorem 1 p.75] (see also Definition 3 p.74 therein).
And since δ is a local diffeomorphism, D is actually injective in restriction to a small enough
neighbourhood U of E, and is thus a homeomorphism from U to a neighbourhood U0 of E0 in X
according to Brouwer’s invariance of domain theorem. In particular, D(E) is a compact subset
of E0 of boundary ∂E0, i.e. D(E) = E0.

(b) Edges identifications. Recall that C = ∂E has an even number of edges denoted by
{(et

i, e
b
i)}i, and that T2 is isometric to the quotient E of E by the identification of each et

i with
the corresponding eb

i through a translation Tui (where ui ∈ Z2 and Tui(et
i) = eb

i). Since integral
translations are isometries of R2, there exists moreover unique elements gi ∈ G such that

δ ◦ Tui = gi ◦ δ

in restriction to a connected neighbourhood of et
i. Since D is a graph morphism according to

Fact 3.9, we can define a decomposition of C0 associated to the one of C by f t
i = D(et

i) and
f b

i = D(eb
i). We have then gi(f t

i ) = f b
i , and we can thus form the quotient E0 of E by these

edges identifications, given by Proposition 3.4. By construction, D induces then an isometry
from E ≃ T2 to E0, which concludes the proof. □

Lemma 3.10. Let S be a closed singular X-torus with one singularity x, such that one of the
lightlike leaves of x is closed and for the other lightlike foliation F : either F is minimal or F(x)
is closed. Then S is rectangular.

Proof. We assume to fix the ideas that Fα(x) is closed. We then begin the construction of the
graph C of Definition 3.7 with Fα(x), which gives one vertex and one edge. Let us denote by y
the first intersection point of Fβ(x) with Fα(x) (for the positive orientation of Fβ(x)), and by
e the positive β-segment from x to y. Note that y exists since either Fβ(x) is closed, or Fβ is
minimal. We define then C = Fα(x) ∪ e, with set of of vertices V equal to {x, y} (if y = x, then
we add a vertex anywhere on C \ {x} to have degree 2 at any vertex), and edges given by the
connected components of C \ V . Since S \ Fα(x) is a cylinder, S \C is indeed a topological disk,
while the other properties of Definition 3.7 are clearly satisfied. □

Henceforth, we come back to the homogeneous model space (G,X) = (PSL2(R),dS2), and
investigate thoroughly two families of singular dS2-tori.

3.2. A one-parameter family of dS2-tori with one singularity having a closed leaf. We
now apply Proposition 3.2 to obtain a first one-parameter family of dS2-tori.
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3.2.1. Definition of the one-parameter family. For any x ∈ ]1 ; ∞] and x′ ∈ [1 ; ∞[, let h = h(x,x′)
be the unique element of PSL2(R) such that
(3.4) h(x′,∞, 0) = (1, x, yA),
i.e. h = h2 in the notations of Proposition 3.2. Proposition 3.2 and Corollary 2.17 indicate us
that [x′, 0] ∈ TA,E is regular if, and only if h1 = gh2 = gh, or equivalently if:
(3.5) gh(1, x′, 0) = (x,∞, yA).
Since gh(x′, 0) = (∞, yA) is automatically satisfied according to the equations (3.4) and (3.1),
the condition h1 = gh2 eventually amounts to gh(1) = x.

Lemma 3.11. gh(1) = x if, and only if x′ = x
x−1 . Moreover, g and h are hyperbolic.

Proof. The last claim follows from a direct observation of the dynamics of g and h on RP1. With
g =

(
a b
c d

)
, the definition of g reads: c+d = 0, b = 0, ayA+b = yA(cyA+d), i.e. yA(cyA−c−a) = 0

and thus a = c(yA − 1). Hence g = (1 − yA)−1/2
(

−(1−yA) 0
1 −1

)
and g(t) = (yA − 1) t

t−1 . Now if
h =

(
a b
c d

)
, the definition of h reads: ax′ + b = cx′ + d, a = cx, b = dyA, hence d = cx′(x−1)

(1−yA) and
thus

h(t) = x(1 − yA)t+ x′(x− 1)yA
(1 − yA)t+ x′(x− 1) .

A computation shows x− gh(1) = ((1 + eA(−1 +x))(x(−1 +x′) −x′))/(eA(−1 +x)(−1 +x′)) and
since x > 1 > 1 − e−A, this vanishes if and only if x(−1 + x′) − x′ = 0 i.e. x′ = x/(x− 1). □

We now fix x ∈ [1 ; ∞] and denote:
(1) x′ = x′

x := x
x−1 ∈ [1 ; ∞] (x′

∞ = 1, x′
1 = ∞),

(2) and h = hx := h(x,x′
x) if x > 1, extended by h1 := g−1h∞ for x = 1.

The equations (3.4) and (3.5) show that lim
x→1

ghx = h∞, hence that lim
x→1

hx = lim
x→1

g−1(ghx) = h1,
so that the maps

x ∈ [1 ; ∞] 7→ hx ∈ PSL2(R), x ∈ [1 ; ∞] 7→ ghx ∈ PSL2(R)
are continuous. Using the top and bottom partitions (3.2) of I = [1 ; ∞[, we consider the HIET
E = Ex : I → I defined by
(3.6) Ex|It

1
= ghx|It

1
: It

1 → Ib
2 and Ex|It

2
= hx|It

2
: It

2 → Ib
1,

and denote by TA,x := TA,Ex the suspension of Ex defined in Proposition 3.2, illustrated in Figure
3.1. Note that E1 = E∞ is simply the restriction of h∞ to I, and thus that TA,1 = TA,∞. The
following result summarizes the construction and follows from Proposition 3.2.

Proposition 3.12. For any A ∈ R∗
+ and x ∈ [1 ; ∞], TA,x is homeomorphic to T2, and the dS2-

structure of the interior of RA extends to a unique singular dS2-structure on TA,x. The latter
has area A, and its unique singular point [1, 0] = [∞, 0] has a closed α-leaf and angle θ.

Corollary 3.13. Let S be a closed singular dS2-surface with a single singularity x, such that one
of the lightlike leaves of x is closed and for the other lightlike foliation F : either F is minimal or
F(x) is closed. Then S is isometric to a torus TA,x given by Proposition 3.12.

Proof. This is a direct consequence of Lemma 3.10 and Proposition 3.8. □

Remark 3.14. Of course, one can realize the symmetric construction to obtain a quotient of
RA with this time the β-leaf of [∞, 0] being closed. This is done by gluing the α-edges of RA
by the restriction of hA defined in (3.1), and its β-edges by a HIET with two components of
J = {1} × [0 ; yA] with top and bottom partitions

J t
1 = [0 ; y′[, J t

2 = [y′ ; yA[, Jb
1 = [0 ; y[, Jb

2 = [y ; yA[.
These dS2-tori of area A, with one singularity at [∞, 0] whose β-leaf is closed, will be denoted
by TA,y,∗.
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3.2.2. Investigation of the holonomy. Let a denote the homotopy class of the positively oriented
closed α-lightlike leaf [1 ; ∞] × {0} in T ∗

A,x := TA,x \ {[∞, 0]}. Let b1 be the β-lightlike positively
oriented geodesic segment {1} × [0 ; yA] going from [1, 0] to [x′, 0], and b2 be the α-lightlike
negatively oriented geodesic segment [1 ;x′] × {0} going from [x′, 0] to [1, 0]. We denote by b the
homotopy class of the piecewise geodesic closed loop b1b2 in T ∗

A,x (b1 followed by b2). Then a and
b freely generate the rank-two free group π1(T ∗

A,x) = ⟨a, b⟩, and K := aba−1b−1 is the homotopy
class of a small positively oriented closed loop around [∞, 0] in T ∗

A,x.
With ρ : π1(T ∗

A,x) → PSL2(R) be the holonomy representation of T ∗
A,x, we have ρ(a) = g,

ρ(b) = h and thus
ρ(K) = ghg−1h−1,

which is coherent with Proposition 3.2. A direct computation using the description of g and h in
Lemma 3.11 shows moreover that

tr(gh) = −
√
x(2 − yA)√
(x− yA)

, tr(ghg−1h−1) = y2
A − 2yA + 2

1 − yA
,

and in particular that for any A ∈ R∗
+ (equivalently any θ ∈ R):

(1) tr(ρ(K)) > 2;
(2) tr(gh) < 0, and x ∈ ]1 ; ∞[ 7→ tr(ghx)+2 take any sign, i.e. ghx can be hyperbolic, elliptic

or parabolic depending on the value of x.
We emphasize that, while the traces of g and h are not well-defined, any lifts of g and h to
SL2(R) give the same tr(ghg−1h−1) (the signs vanishing in the commutator). This trace is thus
a well-defined quantity associated to TA,x.

A particularly important class of dS2-surfaces are the Kleinian (or uniformizable) ones, of
the form S = Γ\Ω with Ω an open subset of dS2 and Γ ⊂ PSL2(R) a discrete subgroup acting
properly discontinuously on Ω. In this case, the holonomy morphism ρS of S has image Γ, and
is thus in particular discrete (though non necessarily faithful if Ω is not simply connected). It is
relatively easy to check that g and h∞ satisfy a ping-pong configuration on dS2, and that T ∗

A,∞
is therefore a Kleinian punctured torus. However, the following claim shows that the behaviour
of ρ and of the family of dS2-structures T ∗

A,x is very diverse.

Lemma 3.15. Let x ∈ ]1 ; ∞] be such that −2 < tr(ghx).
(1) Then ghx is elliptic, and ρ is not both discrete and faithful.
(2) There exists x ∈ ]1 ; ∞] such that tr(gh) /∈ 2 cos(2πQ), and then T ∗

A,x is not Kleinian.

Proof. 1. Indeed if it was, then the subgroup ⟨gh⟩ generated by gh would be both contained in the
compact one-parameter elliptic subgroup containing gh and in the discrete subgroup ρ(π1(T ∗

A,x)),
and would thus be finite. In particular gh would have finite order, contradicting the fact that ρ
is injective.
2. If T ∗

A,x is Kleinian, then ρ(π1(T ∗
A,x)) hence ⟨gh⟩ is discrete. Since ghx is elliptic, this forces

it to have finite order, therefore tr(ghx) = 2 cos(ν) for some angle ν such that kν = 2nπ, i.e.
tr(gh) ∈ 2 cos(2πQ). By continuity of x 7→ tr(ghx), there exists x such that tr(gh) /∈ 2 cos(2πQ),
which concludes the proof of the claim. □

Since π1(T ∗
A,x) is free, ρ : π1(T ∗

A,x) → PSL2(R) lifts to a representation into SL2(R), and singular
dS2-tori give thus a new geometric interpretation to the representations ρ of a rank-two free group
⟨a, b⟩ into SL2(R), for which ρ(a) and ρ(b) are hyperbolic and tr(ρ(aba−1b−1)) > 2. We refer to
the seminal work [Gol03] where such representations were thoroughly studied.

3.3. A two-parameter family of dS2-tori with one singularity. Our goal being to construct
singular dS2-tori with one singularity both of whose lightlike foliations are minimal, we should
first make sure that both leaves of the singularity are non-closed. To this end we fix 0 < y ≤ yA
and 1 < x ≤ ∞, and wish to apply Proposition 3.4 to the “L-shaped polygon”

LA,x,y := R(1,∞,0,y+) \ ]x ; ∞] × ]y ; y+] ⊂ dS2
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of area A illustrated in Figure 3.2. The point

y+ = y+(x,y) := −x+ eA(x− y)
−1 + eA(x− y) ∈ [yA ; 1[

is fixed by (x, y), and is the unique one so that Aµ(LA,x,y) = A. We emphasize that, conversely
to RA, the orbit space of L-shaped polygons of area A under the action of PSL2(R) is non-trivial,
and parametrized by (x, y).

3.3.1. A pair of HIETs. As we previously did for the rectangle RA, we want to glue the edges of
LA,x,y through HIETs of the intervals I = [1 ; ∞[ and J = [0 ; y+[, exchanging the two components
of the top and bottom partitions defined by{

It
1 = [1 ;x′[, It

2 = [x′ ; ∞[, Ib
1 = [1 ;x[, Ib

2 = [x ; ∞[,
J t

1 = [0 ; y′[, J t
2 = [y′ ; y+[, Jb

1 = [0 ; y[, Jb
2 = [y ; y+[,

for x′ ∈ [1 ; ∞] and y′ ∈ [0 ; y+]. We denote by h1 = h1(x,x′,y) and h2 = h2(x,x′,y) the unique
elements of PSL2(R) realizing the gluing of the α-edges of LA,x,y according to these partitions,
characterized by

h1(It
1 × {0}) = Ib

2 × {y} and h2(It
2 × {0}) = Ib

1 × {y+}
or equivalently by

(3.7) h1(1, x′, 0) = (x,∞, y) and h2(x′,∞, 0) = (1, x, y+).

We denote in the same way by (g1, g2) the elements of PSL2(R) realizing the gluing of β-edges,
indicated in Figure 3.2.

We can then form the quotient of LA,x,y by these gluings as described in Proposition 3.4, and
compute the holonomy around the vertices of LA,x,y. Formula (3.3) indicate us that B = [x′, 0]
and C = [1, y′] are regular points in the quotient if, and only if

g1 = h2h1h
−1
2 and g2 = h1h

−1
2 .

These two relations impose two equations on (x, y, x′, y′), given by the following Lemma which
follows from computations similar to the ones detailed in Lemma 3.11.

Lemma 3.16. (1) h1h
−1
2 and h2 are hyperbolic.

(2) h2h1h
−1
2 (0) = y if, and only if x′ = x

eA(y−1)+x
(= 1 if x = ∞).

(3) x
eA(y−1)+x

> 1 if, and only if y > 1 − e−Ax.

(4) If x′ = x
eA(y−1)+x

and y > 1 − e−Ax, then h2h
−1
1 (0) = x+eAx(y−1)

1+eAx(y−1)+y(x−1) ∈ [0 ; y+[.

We thus fix henceforth x ∈ ]1 ; ∞] and y ∈ ]1 − e−Ax ; yA[, and define

(3.8)



x′ = x′
(x,y) := x

eA(y−1)+x
,

h1 = h1(x,y) := h1(
x,x′

(x,y),y

), h2 = h2(x,y) := h2(
x,x′

(x,y),y

),
y′ := h2h

−1
1 (0)

g1 := h2h1h
−1
2 , g2 := h1h

−1
2 .

Then according to Lemma 3.16.(3) and (4): x′ ∈ [1 ; ∞] and y′ ∈ [0 ; y+[. Moreover according to
Lemma 3.16.(2) and the definition of h1 and h2 in (3.7) we have

g1(1, 0, y′) = (x, y, y+) and g2(1, y′, y+) = (∞, 0, y).

This allows us to define a pair E = Ex,y : I → I and F = Fx,y : J → J of HIET with two
components by

(3.9)
{
Ex,y|It

1
= h1(x,y)|It

1
: It

1 → Ib
2 and Ex,y|It

2
= h2(x,y)|It

2
: It

2 → Ib
1,

Fx,y|Jt
1
= g1(x,y)|Jt

1
: J t

1 → Jb
2 and Fx,y|Jt

2
= g2(x,y)|Jt

2
: J t

2 → Jb
1 .
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3.3.2. Gluing of the L-shaped polygon. We can now form the quotient TA,x,y of LA,x,y by the
following edges identifications, given by E and F and illustrated in Figure 3.2:{

[1 ;x′[ × {0} ∋ (p, 0) ∼ (h1(p), y) ∈ [x ; ∞[ × {y}, [x′ ; ∞[ × {0} ∋ (p, 0) ∼ (h2(p), y+) ∈ [1 ;x[ × {y+},
{1} × [0 ; y′[ ∋ (1, p) ∼ (x, g1(p)) ∈ {x} × [y ; y+[, {1} × [y′ ; y+[ ∋ (1, p) ∼ (∞, g2(p)) ∈ {∞} × [0 ; y[.

The following result summarizes this construction, and follows from Proposition 3.4.

1

0

y

y′

y+

∞

h1

h2

LA,x,y

g1

g2

x′x

a′

+1

++1

b′

−1

Figure 3.2. dS2-torus with one singularity and two minimal foliations.

Proposition 3.17. For any A ∈ R∗
+ and (x, y) in

(3.10) D :=
{

(x, y) ∈ [1 ; ∞] × ]0 ; yA]
∣∣∣ y > 1 − e−Ax

}
∪ ({∞} × [0 ; yA]) ∪ ([1 ; ∞] × {yA}),

TA,x,y is homeomorphic to T2 and the dS2-structure of the interior of LA,x,y extends to a unique
singular dS2-structure on TA,x,y. The latter has area A, [1, 0] is its unique singular point and it
has angle θ.

3.3.3. At the boundary of the domain. Let us investigate what happens at the boundary of the
domain D where our parameters (x, y) take their values.
If x = ∞ and y ∈ [0 ; yA]: Then y+ = yA hence LA,∞,y = RA, x′ = 1, E := h2|I , and TA,∞,y is

an example of the form TA,y,∗ described in Remark 3.14.
If x ∈ [1 ; ∞] and y = yA: Then y+ = y = yA hence LA,x,yA = RA, y′ = 0, F := g2|J , and

TA,x,yA is simply the quotient TA,x constructed in paragraph 3.2.1.
If x ∈ [eA ; ∞[ and y = 0: Then y′ = y+ ∈ ]0 ; 1[ and LA,∞,y is degenerated, hence TA,x,0 is not

defined, but F := g1|J is well-defined. According to (3.8), x′
x,0 = x

x−eA ∈ [1 ; ∞], hence
Ex,0 is well-defined but for x = eA when It

2 = ∅. However, we can still define then
E−1 : I → I by

(3.11) E−1|Ib
2
= h−1

1 |Ib
2

and E−1|Ib
1
≡ ∞,

so that E−1
x,y converges to E−1

x0,0 when (x, y) ∈ D converges to (x0, 0).
If x ∈ ]1 ; eA] and y = 1 − e−Ax: Then x′ = ∞, hence E and TA,x,1−e−Ax are not defined. How-

ever F is well-defined, and we can moreover define E−1 : I → I as in (3.11), with the
same continuity property.
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3.4. Rotation numbers. Our goal is to prescribe the dynamics of the lightlike foliations of
the dS2-tori that we constructed. They will be essentially characterized by those of the HIET’s
that we suspended to construct our examples, and in the end by the dynamics of circle homeo-
morphisms induced by these HIET’s. Therefore, we introduce now the basic invariant of circle
homeomorphisms, namely the rotation number.

3.4.1. From HIET to circle homeomorphisms and rotation numbers. We see the circle as the
additive group S1 = R/Z, denote by π : R → S1 the canonical projection when we need it, and
also use the notation [x] := π(x) ∈ S1 for x ∈ R. We endow S1 with the orientation induced by
the one of R, for which a continuous map f : I → S1, I being an interval of R, is non-decreasing
if for any lift F : I → R of f , F is non-decreasing. In the same way a continuous map f : S1 → S1

is non-decreasing if any lift F : R → R of f is so. We adopt the natural analogous definitions for
non-increasing, and strictly increasing or decreasing maps.

Any HIET E of an interval I = [a ; b[ ⊂ RP1 with one or two components naturally induces a
bijection E of the quotient S1

I := [a ; b]/{a ∼ b}, defined by
∀p ∈ I,E([p]) = [E(p)].

S1
I is homeomorphic to the circle S1 and bears a natural orientation induced from the one of I,

and it is moreover easy to check that E is an orientation-preserving homeomorphism of S1
I (since

the HIET E exchanges at most two components).
If f ∈ Homeo+(S1) is an orientation-preserving homeomorphism of the circle, then any lift

F : R → R of f is a strictly increasing homeomorphism of R commuting with every integer
translation Tn : x ∈ R 7→ x+ n ∈ R (n ∈ Z). Following [Her79] and the literature, we denote by
D(S1) the subgroup of all such homeomophisms of R, i.e. of all the lifts of elements of Homeo+(S1)
to R (D(S1) is precisely the centralizer in Homeo+(R) of the translation T1). Denoting by π(F ) ∈
Homeo+(S1) the map π(F )([x]) = [F (x)], we have a short exact sequence

0 → {Tn | n ∈ Z} → D(S1) π→ Homeo+(S1) → 0.
The translation number of F ∈ D(S1) is the asymptotic average amount by which F translates
the points of R. We refer to [Her79, II.2 p.20] and [dFG22, §2.1] for a proof of the following
classical results.

Proposition-Definition 3.18. Let f, g ∈ Homeo+(S1) and F ∈ D(S1) be any lift of f .
(1) The limit

(3.12) τ(F ) = lim
n→±∞

Fn(x) − x

n

exists for any x ∈ R, is independent of x, and uniform on R. It is called the translation
number of F .

(2) If G = F + d is another lift of f (d ∈ Z), then τ(G) = τ(F ) + d, and
ρ(f) = [τ(F )] ∈ S1

is called the rotation number of f .
(3) The maps F ∈ D(S1) → τ(F ) ∈ R and f ∈ Homeo+(S1) → ρ(f) ∈ S1 are continuous for

the compact-open topology.
(4) Moreover ρ is a conjugacy invariant: ρ(g ◦ f ◦ g−1) = ρ(f).

The following simple observation will be useful to us all along this text.

Lemma 3.19. Let C be an oriented topological circle and f ∈ Homeo+(C). Then for any
orientation-preserving homeomorphisms φ1, φ2 : C → S1: ρ(φ1 ◦ f ◦φ−1

1 ) = ρ(φ2 ◦ f ◦φ−1
2 ). This

common number will still be called the rotation number of f and be denoted by ρ(f) ∈ S1.

Proof. Since φ2 ◦ f ◦ φ−1
2 = φ ◦ (φ1 ◦ f ◦ φ−1

1 ) ◦ φ−1 with φ = φ2 ◦ φ−1
1 ∈ Homeo+(S1), the claim

follows from Proposition 3.18.(4). □

We will say that f ∈ Homeo+(C) is conjugated to f0 ∈ Homeo+(S1) at the base-point o ∈ C, if
f0 = φ ◦ f ◦φ−1 with φ : C → S1 an orientation-preserving homeomorphism such that φ(o) = [0].
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Lemma 3.20. In the examples TA,x introduced in Proposition 3.12, E−1
x ∈ Homeo+

(
S1

[1;∞]

)
is the holonomy map of the β-foliation on the closed α-leaf [1 ; ∞] × {yA}. Moreover if E has
irrational rotation number ρ ∈ S1 at the base point [1], then it is C0-conjugated at the base point
[1] to the rotation Rρ : x ∈ S1 7→ x+ ρ ∈ S1.

Proof. The first claim follows directly from the construction of TA,x. Since Fβ is the suspension
of E, the second claim is a direct consequence of Lemma 2.30.(4). □

3.4.2. Rotation numbers as cyclic ordering of the orbits. For θ ∈ R, we say that a sequence
(pn)n∈Z in S1 is of cyclic order [θ] ∈ S1 if it is cyclically ordered as an orbit of R[θ], namely
if for any (n1, n2, n3) ∈ Z3: the three points (pn1 , pn2 , pn3) ∈ (S1)3 are two-by-two distinct and
positively cyclically ordered if, and only if (Rn1

[θ]([0]), Rn2
[θ]([0]), Rn3

[θ]([0])) = ([n1θ], [n2θ], [n3θ]) are
so. We will henceforth assume every rational p

q ∈ Q to be written in reduced form, i.e. such that:
– either p

q = 0 and then (p, q) = (0, 1);
– or p ∈ Z∗, q ∈ N∗ and p, q are coprimes.

We refer to [dFG22, §1.1] and [dMvS93, I.1] for a proof of the following classical results.

Proposition 3.21. Let T ∈ Homeo+(S1).
(1) ρ(T ) = [p

q ] ∈ [Q] if, and only if there exists a periodic orbit of T of minimal period q and
cyclic order [p

q ]. Moreover if this is the case, then any periodic orbit of T is of this form.
In particular, ρ(T ) = [0] if, and only if T has a fixed point.

(2) ρ(T ) = θ ∈ [R \ Q] if, and only if any orbit of T is of cyclic order θ.

3.5. Realization of rotation numbers. We now come back to the HIETs that we suspended
in paragraphs 3.2 and 3.3, and show existence results for their rotation numbers.

3.5.1. Rotation number for a single HIET. We now use the notations of the paragraph 3.2.1. For
any x ∈ [1 ; ∞], we consider the orientation-preserving homeomorphism Ex of S1

I := [1 ; ∞]/{1 ∼
∞} induced by the HIET Ex of I = [1 ; ∞[ defined in (3.6).

Note that when x converges to 1, x′
x converges to ∞ and ghx to h∞ = gh1, since

ghx(1, x′
x, 0) = (x,∞, yA).

Hence Ex converges to E1 = E∞ for the compact-open topology of Homeo+(S1
I) when x → 1, and

the map
E : [x] ∈ S1

I 7→ Ex ∈ Homeo+(S1
I)

is thus easily seen to be continuous.
Let {gt}t∈R ⊂ PSL2(R) denote the one-parameter hyperbolic subgroup containing g (defined

by (3.1)), parametrized so that g = g1.

Lemma 3.22. Let x1 ≤ x2 ∈ [1 ; ∞].
(1) h−1

x1 ghx1g
−1 = h−1

x2 ghx2g
−1.

(2) There exists a unique τ ∈ [0 ; 1] such that x2 = gτ (x1), and hx2 = gτhx1.
(3) Moreover Ex2 = Sτ ◦ Ex1, with Sτ the HIET defined by{

∀p ∈ [1 ;Ex1(x′
2)[, Sτ (p) = gτ (p) ∈ [gτ (1) ; ∞[,

∀p ∈ [Ex1(x′
2) ; ∞[, Sτ (p) = gτ−1(p) ∈ [1 ; gτ (1)[.

Proof. (1) According to Proposition 3.2, the holonomy around [∞, 0] in TA,xi is equal to h−1
xi
ghxig

−1

(for a developing map compatible at [∞, 0], see Lemma 2.14), hence h−1
x1 ghx1g

−1 = aθ = h−1
x2 ghx2g

−1.
Note that this extends to the case x1 = 1 since by definition of h1 we have h−1

1 gh1g
−1 =

(h−1
∞ g)g(g−1h∞)g−1 = h−1

∞ gh∞g
−1.

(2) According to (1), hgh−1 = g with h = hx2h
−1
x1 . Hence h is in the centralizer of g in PSL2(R),

which is equal to {gt}t. Now if h2 = gτh1 we obtain directly from (3.1) and (3.4) that x2 = gτ (x1).
(3) Indeed for any p ∈ [1 ;x1[, E−1

x1 (p) = H−1
1 (p) ∈ [x′

1 ; ∞[, and x′
2 < x′

1 so Ex2 ◦ E−1
x1 (p) =

H2H
−1
1 (p) = gτ (p) ∈ [gτ (1) ;x2[. Note that gH1(x′

2) ∈ ]x1 ; ∞], so for p ∈ [x1 ; gH1(x′
2)[,

E−1
x1 (p) = H−1

1 g−1(p) ∈ [1 ;x′
2[ and Ex2 ◦ E−1

x1 (p) = gH2H
−1
1 g−1(p) = gτ (p) ∈ [x2 ; ∞[. Lastly for
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p ∈ [gH1(x′
2) ; ∞[, E−1

x1 (p) = H−1
1 g−1(p) ∈ [x′

2 ;x′
1[, and thus Ex2 ◦ E−1

x1 (p) = gτH1H
−1
1 g−1(p) =

gτ−1(p) ∈ [x2 ; ∞[. □

Proposition 3.23. The map [x] ∈ S1
I 7→ ρ(Ex) ∈ S1 is continuous, non-decreasing, and has

degree one (in particular, it is surjective). Moreover it is strictly increasing at any x for which
ρ(Ex) ∈ [R \ Q]. In particular for any u ∈ [R \ Q], there exists a unique [x] ∈ S1

I such that
ρ(Ex) = u. Lastly, for any r ∈ [Q] there exists x ∈ [1 ; ∞] such that the orbit of [1, 0] under Ex is
periodic and of cyclic order r.

Proof. The continuity of x ∈ [1 ; ∞] 7→ ρ(Ex) ∈ S1 follows from the continuity of E and of the
rotation number itself (see for instance [Her79, Proposition 2.7]), for the compact-open topology
of Homeo+(S1

I). Note that both E1 and E∞ have [1] ∈ S1
I as a fixed point, and thus that

ρ(E1) = ρ(E∞) = [0] ∈ S1. On the other hand it is easily checked that for any x ∈ ]1 ; ∞[, Ex does
not have any fixed point and thus that ρ(Ex) ̸= [0]. In particular, x 7→ ρ(Ex) is not constant.
According to Lemma 3.22.(4), we have moreover Egτ (1) = Sτ ◦ E1 with τ ∈ [0 ; 1] 7→ Sτ ∈
Homeo+(S1

I) a continuous map such that τ ∈ [0 ; 1] 7→ Sτ (p) ∈ S1
I is strictly increasing for

any p ∈ S1
I . According to Lemma B.1, x ∈ [1 ; ∞] 7→ ρ(Ex) ∈ S1

I is thus continuous and non-
decreasing. But since it is also not constant and attains the same value [0] at 1 and ∞, it is
surjective according to the Intermediate value theorem. The value [0] being attained only at the
point [1] = [∞] of S1

I , the map [x] ∈ S1
I 7→ ρ(Ex) ∈ S1 moreover has degree one. It is also strictly

increasing at any x for which ρ(Ex) ∈ [R\Q] according to Lemma B.1, which forbids any element
of [R \ Q] to have more than one pre-image in S1

I since the map has degree one, and concludes
the proof of the three first claims.
Lastly, the existence of periodic orbits of [1, 0] of any rational cyclic order under the maps Ex

follows from Lemma B.1.(4), which concludes the proof. □

3.5.2. Rotation numbers for a pair of HIET. We now want to realize rotation numbers for the
pair (E,F ) of HIETs introduced in paragraph 3.3.1. For any (x, y) ∈ D (defined in (3.10)), we
consider the orientation-preserving homeomorphisms Ex,y of S1

I := [1 ; ∞]/{1 ∼ ∞} and Fx,y of
S1

J := [0 ; y+]/{0 ∼ y+} induced by the HIETs Ex,y and Fx,y defined in (3.9). Note that with
the definitions introduced in paragraph 3.3.3 for (x, y) ∈ Cl(D), Fx,y is a well-defined orientation-
preserving homeomorphism of S1

J . On the other hand for x ∈ ]1 ; eA] and y = 1 − e−Ax, E−1
x,y

is a well-defined orientation-preserving endomorphism of S1
I , i.e. by definition a continuous,

degree-one and orientation-preserving self-map of S1
I . Equivalently, f is an orientation-preserving

endomorphism of S1 if it admits a lift F to R which is a continuous, non-decreasing self-map of
R commuting with integer translations. According to [PJM82, Appendix Lemma 3] and [NPT83,
Chapter III Proposition 3.3], the Proposition-Definition 3.18 extend to endomorphisms of S1, and
the rotation number ρ(E−1

x,y) is thus well-defined. Lastly, the maps

E−1 : (x, y) ∈ Cl(D) 7→ E−1
x,y ∈ End+(S1

I) and F : (x, y) ∈ Cl(D) 7→ Fx,y ∈ Homeo+(S1
I)

are continuous. The author want to thank Florestan Martin-Baillon, who helped him to obtain
a more elegant proof for this result than in a first version.

Proposition 3.24. The map (x, y) ∈ D 7→ (ρ(Ex,y), ρ(Fx,y)) ∈ (S1)2 is continuous and surjective.

Proof. Since the maps E−1 and F are continuous, and such is the rotation number as well according
to [NPT83, Chapter III Proposition 3.3], the map

R : (x, y) ∈ Cl(D) 7→ (ρ(E−1
x,y), ρ(Fx,y)) ∈ (S1)2

is continuous. We recall that ρ(T−1) = ρ(T )−1 for any T ∈ Homeo+(S1) (see for instance [dFG22,
§2.1]). We begin by investigating what happens for the rotation numbers on the boundary of D,
as we did in paragraph 3.3.3.
If x = ∞ and y ∈ [0 ; yA]: Then ρ(E−1

∞,y) = [0] since [1] is a fixed point of E−1
∞,y, and

y ∈ S1
J 7→ ρ(F∞,y) ∈ S1

is a continuous degree-one map as we proved in Lemma 3.23.
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If x ∈ [1 ; ∞] and y = yA: Then ρ(F∞,y) = [0] since [0] is a fixed point of Fx,yA , and

x ∈ S1
I 7→ ρ(E−1

x,yA)) ∈ S1

is a continuous degree-one map as we proved in Lemma 3.23.
If x ∈ [eA ; ∞[ and y = 0: Then ρ(F∞,y) = [0] since [0] is a fixed point of Fx,yA . On the other

hand x ∈ [eA ; ∞] 7→ x′
x,0 = x

x−eA ∈ [1 ; ∞] is surjective (see (3.8)), ρ(E−1
eA,0) = ρ(E−1

∞,0) =
[0] since [∞] is a fixed point of both, and ρ(E−1

x,0) ̸= [0] for any x ∈ ]eA ; ∞[ since E−1
x,0 has

no fixed points. Therefore, the same argument than in Lemma 3.23 shows that
[x] ∈ [eA ; ∞]/{eA ∼ ∞} 7→ ρ(E−1

x,0) ∈ S1

is a continuous monotonous map with value [0] only at x = eA and x = ∞, hence a
degree-one map.

If x ∈ ]1 ; eA] and y = 1 − e−Ax: Then x′ = ∞, hence [1] is a fixed point of E−1
∞,y and thus

ρ(E−1
x,1−e−Ax

) = [0]. On the other hand x ∈ [1 ; eA] 7→ y(x) := 1 − e−Ax ∈ [0 ; yA] is
surjective, with y = y+ = yA for x = 1, and (y = 0, y′ = y+) for x = eA. The same
argument than in Lemma 3.23 shows thus that

[x] ∈ [1 ; eA]/{1 ∼ eA} 7→ ρ(F∞,y) ∈ S1

is a continuous monotonous map with value [0] only at x = 1 and x = eA, hence a
degree-one map.

We conclude from this description that there exists continuous monotonous and surjective maps
fh : [eA ; ∞]×{0} → [1 ; ∞]×{yA} and fv :

{
(x, 1 − e−Ax)

∣∣∣ x ∈ [1 ; eA]
}

→ {∞}×[0 ; yA] between
the horizontal and vertical edges of ∂D, such that R ◦ fh = R on [eA ; ∞] × {0} and R ◦ fv = R

on
{

(x, 1 − e−Ax)
∣∣∣ x ∈ [1 ; eA]

}
. In other words, R induces a continuous map

R̄ : T → (S1)2

such that R̄ ◦ π = R, with π : Cl(D) → T the quotient of Cl(D) by the identifications p ∼ fh(p)
and p ∼ fv(p) of its edges under fh and fv, which is homeomorphic to a torus.

Assume now by contradiction that the restriction of R to D misses a point in the torus (S1)2.
Since our previous description of R|∂D shows that S1×[0]∪[0]×S1 ⊂ R(({∞}×[0 ; yA])∪([1 ; ∞]×
{yA})) ⊂ R(D), we have thus R̄(T ) ⊂ (S1)2 \ {p} for some p ∈ (S1)2 \ (S1 × [0] ∪ [0] × S1). Now
(S1)2 \ {p} retracts to a bouquet of two circles, hence its fundamental group is a free group F2 in
two generators represented by the loops S1×[0] and [0]×S1, and R̄ induces moreover in homotopy
a morphism R̄∗ from π1(T ) ≃ Z2 to π1((S1)2 \ {p}) = F2. The image of this morphism is then an
abelian subgroup of F2, and since every subgroup of F2 is free according to the Nielsen-Schreier
theorem [MKS04, Corollary 2.9, p. 95], it is actually a free abelian group and is thus contained
in a copy of Z in F2. But R̄ sends the horizontal and vertical generators of π1(T ), given by the
projections of the horizontal and vertical edges of ∂D, to the respective generators S1 × [0] and
[0] × S1 of the free group F2 = π1((S1)2 \ {p}). Obviously, the latter elements do not belong to
a common infinite cyclic subgroup of F2 = π1((S1)2 \ {p}), and this contradiction concludes the
proof of the Proposition. □

3.6. Projective asymptotic cycles and class A structures. Our goal is to prove the exis-
tence of singular dS2-tori whose lightlike foliations are prescribed in terms of an invariant which
is in a sense a global version of the rotation number of the first-return map: the projective as-
ymptotic cycle. The notion of asymptotic cycle was introduced by Schwartzman in [Sch57]. It
associates to any suitable orbit O of a topological flow on a closed manifold M , an element of
the first homology group of M which is in a sense the “best approximation of O by a closed
loop in homology”. This notion has a natural projective counterpart for the leaves of an oriented
topological one-dimensional foliation F , that we now quickly describe, referring to [Sch57, Yan85]
for more details.

We consider an auxiliary smooth Riemannian metric µ on M , the induced metric and its
induced distance dF on the leaves of F . For x ∈ M and T ∈ R we denote by γT,x the closed
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curve on M obtained by: first following F(x) from x in the positive direction until the unique
y ∈ F(x) such that dF (x, y) = T , and then closing the curve by following the minimal geodesic
of µ from y to x. Following [Yan85], we then define the oriented projective asymptotic cycle of F
at x as the half-line

(3.13) A+
F (x) := R+

{
lim

T →+∞

1
T

[γT,p]
}

∈ P+(H1(M,R))

in the first homology group of M , if this limit exists and is non-zero. Note that the orientation of
A+

F (x) obviously depends of the orientation of the foliation F , and is reversed when the orientation
of F is. We also denote by AF (x) = RA+

F (x) the unoriented projective asymptotic cycle. This
line (if it exists) is by definition constant on leaves, does not depend on the auxiliary Riemannian
metric, and is moreover natural with respect to any homeomorphism f :
(3.14) A+

f∗F (f(x)) = f∗(A+
F (x)).

In particular, any homeomorphism isotopic to the identity acts trivially on projective asymptotic
cycles. For these properties of aymptotic cycles, we refer to [Sch57, Theorem p.275] proving the
equivalence between the geometric interpretation (3.13) and the equivariant definition.

In the case of foliations on the torus, the following result is a reformulation of [Yan85, Theorem
6.1 and Theorem 6.2]. We identify henceforth H1(T2,R) with R2 through the isomorphism
induced by the covering map R2 → T2 = R2/Z2, and we say that a line in H1(T2,R) is rational
if it passes through a point of the lattice H1(T2,Z) = Z2.

Proposition 3.25 ([Yan85]). Let F be an oriented topological one-dimensional foliation of T2.
(1) A+

F (x) exists at any x ∈ T2, it is moreover constant on T2 and will be denoted by A+(F)
(respectively A(F) = RA+(F) for the unoriented asymptotic cycle).

(2) If F has a closed leaf F , A+(F) equals its homology class [F ] and is thus rational.
(3) If F is the linear oriented foliation induced by a half-line l ⊂ R2, then A+(F) = l.

We will later apply the notion of projective asymptotic cycle to the lightlike foliations of
dS2-structures which are suspensions of circle homeomorphisms. According to Lemma 2.30,
the foliations are in this case topologically equivalent to suspensions of C2-diffeomorphisms with
breaks and have thus no exceptional minimal set. It will be useful to have in mind a rough
classification of such suspensions, that we summarize in the following statement. Those results
are well-known, and are for instance proved in [HH86, §4]. We recall that a foliation (respectively
a homeomorphism) is said minimal if all its leaves (resp. orbits) are dense.

Proposition 3.26. Let F be a topological foliation of T2. Then:
(1) either F has at least one Reeb component, and in this case it is not minimal;
(2) or F is a suspension.

Assume now that F is the suspension of a C2 circle diffeomorphism T with breaks. Then one of
the two following exclusive situations arise.

(1) Either T has rational rotation number, and then F has closed leaves, all of which are
freely homotopic, and every non-closed leaf is past- and future-asymptotic to one of these
closed leaves.

(2) Or T has irrational rotation number ρ, and then F is minimal and topologically equivalent
to a linear foliation of slope ρ.

The following result is classical, and we recall its statement for the convenience of the reader.

Lemma 3.27. Let F1,F2 be two oriented topological foliations of T2 having the same oriented
projective asymptotic cycles, and γ1, γ2 be freely homotopic oriented sections of F1 and F2. Then
the first-return maps on γ1 and γ2 have the same rotation number:

ρ(P γ1
F1

) = ρ(P γ2
F2

).

The next result state that conversely, the rotation number of the first-return map is locally
equivalent to the oriented asymptotic cycle. While well-known by experts of the area, we give a
short sketch of proof of this fact for the convenience of the reader.
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Lemma 3.28. Let F1, F2 be two oriented topological foliations of T2 having the same oriented
projective asymptotic cycle, and γ1, γ1 be two freely homotopic oriented sections of F1 and F2.
Then for any oriented foliations F ′

i sufficiently close to Fi:
ρ(P γ1

F ′
1
) = ρ(P γ2

F ′
2
) ⇒ A+(F ′

1) = A+(F ′
2).

Proof. The first step is the well-known fact that for suspensions in T2, equality of the oriented
projective asymptotic cycles is equivalent to be topologically conjugated by a homeomorphism
of T2 isotopic to the identity. We can thus assume without lost of generality that F1 = F2
is the oriented linear foliation Fl of T2 induced by some half-line l ∈ P+(R2), and since the
rotation number of the first-return map is invariant by free homotopy of the section, we can
also assume that γ1 = γ2 are a common simple closed curve b ∈ π1(T2) ≡ Z2. Let a ∈ π1(T2)
be any simple closed curve completing b into a basis (a, b) of H1(T2,R) ≡ R2. Then lifting a
suspension G of T2 to R2, it is easily checked that ρ(P b

G) = [u] if, and only if there exists n ∈ Z
such that A+(G) = R+[±(a + (u + n)b)]. But on the other hand there exists a neighbourhood
of l in P+(H1(T2,R)), containing at most one of the half-lines

{
R+[±(a+ (u+ n)b)]

∣∣ n ∈ Z
}

for any [u] ∈ S1. Since the oriented asymptotic cycle vary continuously with the foliation, this
shows that for any oriented foliations F ′

1,F ′
2 in a neighbourhood of F : ρ(P b

F ′
1
) = ρ(P b

F ′
2
) implies

A+(F ′
1) = A+(F ′

2). □

We will say, following [Suh13], that a singular X-surface S is class A if the projective asymptotic
cycles of its α and β lightlike foliations are distinct: A(Fα) ̸= A(Fβ); and that it is class B
otherwise. All of the structures studied in this text are class A (see Lemma A.15 for more
details) and both of their lightlike foliations are moreover suspensions.

3.7. Deformation space and marking of the structures. We now want to define a marking
of the families of singular dS2-tori that we have constructed in Propositions 3.12 and 3.17. To
this end, we first have to introduce a deformation space to work in.

3.7.1. Deformation space of singular dS2-structures. For any oriented surface S and any set
Θ = {θi}i of angles θi ∈ R, we denote by S(S,Θ) the set of singular dS2-structures on S whose
singular points angles are given by Θ. We will endow S(S,Θ) with the usual topology on (G,X)-
structures, defined as follows (see [CEG87, §1.5] for more details).

Let (S,Σ, µ) be a singular dS2-surface of singular dS2-atlas (φi : Ui → Xi)i, where Xi = dS2

if φi is a regular chart, and Xi = dS2
θi

at a singular point xi of angle θi. Let (U ′
i)i be a shrinking

of (Ui)i, i.e. a covering such that U ′
i ⊂ Ui for each i, and assume that U ′

i contains the singular
point xi at any singular chart (note that the U ′

i for singular charts are pairwise disjoint, since the
associated Ui are such and U ′

i ⊂ Ui). Lastly, let Vi be for any i an open neighbourhood of φi|U ′
i

in
the compact-open topology of C(U ′

i , Xi), small enough so that oθi
∈ ψ(U ′

i) at any singular point
of angle θi and for any ψ ∈ Vi.

Definition 3.29. The set S(S,Θ) of singular dS2-structures of angles Θ on an oriented surface
S, is endowed with the topology for which the sets of the form{

µ′ defined by a singular dS2 atlas ψi : U ′
i → Xi

∣∣∣ ψi ∈ Vi

}
for any initial singular dS2-structure (Σ, µ) on S and any choice of shrinking U ′

i and compact-
open neighbourhoods Vi as above, form a sub-basis of the topology. We denote by S(S,Σ,Θ) the
subspace of singular dS2-structures on S of (ordered) singular set Σ with (ordered) angles Θ.

Let (S,Σ, µ) be a singular dS2-surface of singular dS2-atlas (φi, Ui). If f is a homeomorphism
of S acting as the identity on Σ, then the singular dS2-structure f∗µ of S is defined by the
singular dS2-atlas (φi ◦ f, f−1(Ui)). It has the same singular set Σ and the same angle at each
singular point. This defines a right action of the subgroup Homeo(S,Σ) of homeomorphisms of
S acting as the identity on Σ, on each S(S,Σ,Θ).

The deformation space of singular dS2-structures on S with singular set Σ of angles Θ, de-
noted by DefΘ(S,Σ), is defined as the quotient of S(S,Σ,Θ) by the subgroup Homeo0(S,Σ) of
homeomorphisms of Σ isotopic to the identity relative to Σ.
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With Homeo+(S,Σ) the group of orientation-preserving homeomorphisms of S acting as the
identity on Σ, the quotient PMod(S,Σ) of Homeo+(S,Σ) by Homeo0(S,Σ) is called the pure
mapping class group of (S,Σ), and acts naturally on DefΘ(S,Σ). The quotient of this action is
the moduli space of dS2-structures on S with singular set Σ of angles Θ.

Remark 3.30. The projective asymptotic cycle of the lightlike foliations of a point [µ] ∈ DefΘ(T2,Σ)
in the deformation space is well-defined, since homeomorphisms isotopic to the identity act triv-
ially on projective asymptotic cycles according to (3.14). In particular, the notion of class A and
B structures is invariant by the action of Homeo0(S,Σ), and makes thus sense in DefΘ(T2,Σ).

Lemma 3.31. The subset DefΘ(T2,Σ)A of class A (respectively class B) singular dS2-structures
on T2 is a union of connected components of DefΘ(T2,Σ).

Proof. The condition A(Fα) ̸= A(Fβ) of class A structures being clearly open, the set of class A
structures if open. In the other hand according to Lemma A.15, if a structure µ is class B then
both of its lightlike foliations have closed leaves Fα and Fβ, such that Fα is freely homotopic to
±[Fβ]. An important remark at this point, is that this situation cannot happen if one of the
lightlike foliations has only closed leaves. Indeed assume Fα has only closed leaves. Then all of
them are freely homotopic to Fα, which prevents Fβ to be transverse to Fα. Since both Fα and
Fβ have non-closed leaves, they are stable in the sense that any small deformation of any of them
still contains a closed leaf freely homotopic to the original closed curve Fα/β. Therefore any small
deformation of µ remains class B, which shows that the subset of class B structures is open. Since
class A and B structures form a partition of all singular dS2-structures in SΘ(T2,Σ), this shows
in the end that the set of class A (respectively class B) structures is both open and closed, i.e. is
a union of connected components of SΘ(T2,Σ). □

3.7.2. Parameter families in the deformation space. Taking the homotopy classes in π1(TA,x) ≃
Z2 and not anymore in π1(T ∗

A,x), the pair

mx := (a, b)
defined in paragraph 3.2.2 is a basis of π1(TA,x). It is in fact easy to check that b is freely
homotopic to a closed path b′ intersecting a only at [1, 0].

In the same way with a1 the positively oriented α-lightlike segment of TA,x,y from [1, 0] to
[∞, 0] and a2 the negatively oriented β-lightlike segment from [∞, 0] = [1, y′] to [1, 0], we denote
by a the homotopy class of a1a2. Lastly with b1 the positively oriented β-lightlike segment from
[1, 0] to [1, y+] and b2 the negatively oriented α-lightlike segment from [1, y+] = [x′, 0] to [1, 0],
we denote by b the homotopy class of b1b2. The marking of TA,x,y is then
(3.15) mx,y := (a, b).
To see that (a, b) indeed generate π1(TA,x,y), one easily check that a and b are freely homotopic
to two transverse closed curves a′ and b′ indicated in Figure 3.2 which have algebraic intersection
number 1 (the signs of their three intersection points being indicated in brown).

We also fix a marking m0 = ([1, 0], [0, 1]) of T2, and denote by 0 = [0, 0] its origin. We recall
that a homeomorphism f of a surface S acting as the identity on a discrete set Σ is said isotopic
to the identity relative to Σ, if there exists a continuous family t ∈ [0 ; 1] 7→ ft ∈ Homeo(Σ), such
that f0 = f , f1 = idS and for any t, ft|Σ= idΣ.

Lemma 3.32. Up to pre-composition by homeomorphisms of T2 isotopic to the identity relative
to 0, there exists:

(1) for any fixed x ∈ [1 ; ∞], a unique homeomorphism Mx : T2 → TA,x such that Mx(0) =
[1, 0] and whose action in homotopy sends m0 to mx;

(2) for any fixed (x, y) ∈ D, a unique homeomorphism Mx,y : T2 → TA,x,y such that Mx,y(0) =
[1, 0] and whose action in homotopy sends m0 to mx,y.

Proof. The existence being clear, we only have to prove that a homeomorphism of T2 fixing 0
and acting trivially in homotopy, is isotopic to the identity relative to 0. This fact is well-known
but we outline here the proof for sake of completeness. First, for a homeomorphism f of T2 fixing
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0 and with h the restriction of f to T2 \ {0}, f is isotopic to idT2 relative to 0 if and only h is
isotopic to idT2\{0} (see for instance [BCLR20, Proposition 1.6]). Then, h is isotopic to idT2\{0}
if, and only if it is homotopic to idT2\{0}, due to a result of Epstein in [Eps66] (see also [BCLR20,
Theorem 2]). Lastly, h is homotopic to idT2\{0} if, and only if it acts trivially on π1(T2 \ {0})
(see [BCLR20, Theorem 2 and §2.2]). But if f acts trivially on π1(T2), then h acts trivially on
π1(T2 \ {0}), which concludes the proof. □

For any fixed x ∈ [1 ; ∞] (respectively (x, y) ∈ D), the homeomorphisms Mx (resp. Mx,y) given
by Lemma 3.32 define thus the same point [M∗

xTA,x] (resp. [M∗
x,yTA,x,y]) in Defθ(T2, 0), which

will be denoted by
µθ,x (resp. µθ,x,y ).

We summarize the constructions of this paragraph in the following result.

Proposition 3.33. The maps

x ∈ [1 ; ∞] 7→ µθ,x ∈ Defθ(T2, 0) and (x, y) ∈ D 7→ µθ,x,y ∈ Defθ(T2, 0)

are continuous.

Proof. This follows from the continuity of the HIETs proved in paragraphs 3.5.1 and 3.5.2. □

Remark 3.34. We emphasize that µθ,1 ̸= µθ,∞. Indeed TA,1 = TA,∞ and m1 = (a1, b1) =
(a∞,−a∞ + b∞) with the notations of paragraph 3.2.2. Hence with Φ the element of the pure
mapping class group of (T2, 0) defined by the matrix

ϕ =
(

1 −1
0 1

)
∈ SL2(Z),

µθ,1 = Φ∗(µθ,∞). In other words, µθ,x does not define a closed loop, but a path in Defθ(T2, 0).

3.7.3. The deformation space is a topological surface. The only topological property of the de-
formation space that we will use in this text is that Defθ(T2, 0) is Hausdorff. This standard fact
is obtained for singular dS2-surfaces in the same way than in the classical case of Riemannian
constant curvature surfaces with conical singularities. More precisely, one usually deduces the
Hausdorff nature of DefΘ(T2,Σ) from the fact that it is a topological manifold, a property that
we will never use in this text. Since this remains the most natural way to reach the fact that
Defθ(T2, 0) is Hausdorff, we prove however this property now in the case that we are interested
with, namely the one of singular dS2-structures on T2 with a single singularity, both of which
lightlike foliations are minimal.

A natural geometrical strategy to prove that a given deformation space is a topological manifold
and to compute its dimension, is to express this deformation space as a space of polygons in the
model space, with prescribed identifications of their edges. We refer the reader to [FM11, §10.4.2]
for a very nice presentation of this type of arguments in the classical case of hyperbolic structures
on surfaces. In the case that we are interested with we can actually do better, and rely on the
specific two-parameter family of structures that we previously constructed.

Lemma 3.35. Any singular dS2-structure on T2 with a single singularity, both of which lightlike
foliations are minimal, is isometric to a structure TA,x,y given by Proposition 3.17.

Proof. The first step is to adapt Lemma 3.10, by proving that such a structure µ admits an
embedded lightlike graph C containing the unique singularity x, such that T2 \C is a topological
disk, and such that the oriented boundary of the surface T2 \\C obtained by cutting T2 along C
is a lightlike “L-shaped” polygon. Let φu

α/β be topological flows parametrizing Fα/β. It is easy to
deduce from the minimality of Fα/β the existence of s, t > 0 and s′ ∈ [0 ; t], t′ ∈ [0 ; s] such that:

(1) φs
α(x) = φt′

β (x),
(2) φt

β(x) = φs′
α (x),

(3) and φ
[0;s]
α (x) ∩ φ

[0;t]
β (x) = {x, φs

α(x), φt
β(x)},
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with possibly x = φs
α(x) and/or x = φt

β(x). Let a denote the loop at x obtained by following
φ

[0;s]
α (x) in the positive direction and then φ

[0;t′]
β (x) in the negative direction, and b denote the

loop at x obtained by following φ[0;t]
β (x) in the positive direction and then φ[0;s′]

α (x) in the negative
direction. Then a and b can be slightly deformed to two loops a′ and b′ intersecting transversally
and only at x. Indeed, a can be slightly deformed to a loop a′ at x obtained by following φ[0;s−ε]

α (x)
in the positive direction for a small ε > 0, and then a path transverse to Fβ and close to φ[0;t′]

β (x).
In the same way, we can deform b to a path b′ = φ

[0;t−ε]
β (x) · γ with γ a path transverse to Fα

and close to φ[0;s′]
α (x). Such deformations make disappear the common sub-paths φ[0;s′]

α (x) and
φ

[0;t′]
β (x) of a and b, and create no new intersections if they are small enough (this can be done

by compactness of the loops). Hence a′ and b′ have algebraic intersection number 1 (with suited
orientations conventions) and therefore T2 \\C is a topological disk with C = a∪b. The boundary
of T2 \\ C is moreover by construction L-shaped, which completes the first step.

The second step is then to show that T2 \\C is isometric to a L-shaped polygon L in dS2, and
to deduce from there that (T2, µ) is isometric to a quotient of L by an identification of its edges.
This part is a straightforward adaptation of the arguments carefully described in Proposition 3.8
in the case of rectangular surfaces. We recall from paragraph 3.3.1 that the identification of the
edges of L is entirely determined by L. □

Proposition 3.36. In the neighbourhood of any structure whose lightlike foliations are both min-
imal, Defθ(T2, 0) is a topological surface.

Proof. Let µ0 ∈ Defθ(T2, 0) have both of its lightlike foliations minimal. Then (T2, µ0) is isomet-
ric to a structure TA,x,y according to Lemma 3.35, and so is any close enough structure since this
property is clearly open. In other words, the continuous map (x, y) 7→ µθ,x,y from Proposition
3.33 is surjective from an open disk D ⊂ D to an open neighbourhood U ⊂ Defθ(T2, 0) of µ0, and
it only remains to prove that this map is injective if D is small enough. But if µ1 and µ2 define the
same point of Defθ(T2, 0), then the dS2-structures µ∗

1 and µ∗
2 of T2 \{0} are in particular isotopic,

by an isotopy as close to the identity as one wants on the neighbourhood of 0. According to the
Ehresman-Thurston deformation principle, the space of dS2-structures of T2\{0} modulo isotopy
is moreover locally homeomorphic to the space of holonomy morphisms modulo conjugation (see
[Gol88, Deformation Theorem p.178] or [BG04]). In particular, we deduce from this that if two
close enough singular dS2-structures µ1 and µ2 define the same point in Defθ(T2, 0), then they
have conjugated holonomy morphisms. But it follows from a direct computation that for any two
close enough (x1, y1) and (x2, y2), tr(h2(x1, y1)) = tr(h2(x2, y2)) and tr(g2(x1, y1)) = tr(g2(x2, y2))
implies (x1, y1) = (x2, y2), hence [µθ,x1,y1 ] = [µθ,x2,y2 ] implies (x1, y1) = (x2, y2). This shows that
(x, y) ∈ D 7→ [µθ,x,y] ∈ U is continuous, surjective and locally injective. Since it is also open by
definition of the topology of Defθ(T2, 0) it is thus a local homeomorphism, which concludes the
proof. □

Remark 3.37. Another way to obtain this result is to deduce it directly from the topology of
relative character varieties. Indeed, Ehresman-Thurston Deformation principle shows that on
a neighbourhood of the singular dS2-structures that we are studying, the deformation space of
singular dS2-structures with one singularity of fixed angle θ at 0 is locally homeomorphic to
a relative character variety. Namely the quotient space (modulo conjugations) of the space of
morphisms from π1(T2 \ 0) to PSL2(R) having fixed trace eθ + e−θ for the peripheral homotopy
class (see for instance [Gol88, Deformation Theorem p.178] or [BG04]). Note that this local
homeomorphism does not hold everywhere, but holds on the open subset of stable conjugacy
orbits, to which belong the holonomies of the singular dS2-structures studied in this paper (see
for instance the discussion at the top of [Gol88, p.179]). It is then possible to show that this
character variety is indeed a two-dimensional topological manifold, on the neighbourhood of the
holonomy maps appearing here (see for instance the seminal works [Gol84, Gol03]).

3.8. Conclusion of the proof of Theorem 3.1. We can now use the structures constructed
in Propositions 3.12 and 3.17 to conclude the proof of the existence Theorem 3.1.
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Let us consider two closed curves (a′, b′) of TA,x,y, belonging to the marking m = (a, b) defined
in (3.15) and respectively transverse to the β and the α-foliation. To fix the ideas, we define

(1) for t ∈ [1 ;x], a′
t as the closed loop obtained by following positively [t ; ∞] × {0} and then

the segment of LA,x,y from (1, y′) to (t, 0);
(2) for t ∈ [0 ; y], b′

t as the closed loop obtained by following positively {1} × [t ; y+] and then
the segment of LA,x,y from (x′, 0) to (1, t).

Then t 7→ a′
t and t 7→ b′

t are homotopies, respectively beginning at a′
1 = a and b′

0 = b. See Figure
3.2 where a′ and b′ are indicated. We moreover fix an identification from a to a′, given by the
identity on common points of the loops, and by following β-leaves positively until the first meeting
point elsewhere. Accordingly, we fix an identification from b to b′ given by following α-leaves
positively. Through these identifications, the homeomorphisms E and F of S1

I = [1 ; ∞]/{1 ∼ ∞}
and S1

J = [0 ; y+]/{0 ∼ y+} introduced in paragraph 3.5.2 induce homeomorphisms E′ and F′ of
a′ and b′. Let

P a′
β : a′ → a′ and P b′

α : b′ → b′

denote the respective holonomies of Fβ on a′ and of Fα on b′.

Lemma 3.38. P a′
β = E′−1 and P b′

α = F′−1.

Proof. The fact that E′−1 and F′−1 are the respective holonomies of the β and α foliations directly
follows from an observation of the Figure 3.2. □

With obvious corresponding notations, we will use in any torus TA,x a closed loop b′ homotopic
to b and transverse to Fα, denote by ḡ′ the homeomorphism of b′ induced by g, and by P b′

α , P a
β

the holonomies of Fα and Fβ on b′ and a. The following result is then proved in the same way
than Lemma 3.38.

Lemma 3.39. P a
β = E−1 and P b′

α = ḡ′−1.

Conclusion of the proof of Theorem 3.1. We will repeatedly use the Propositions 3.25 and 3.26
to translate the dynamics of a torus foliation into its projective asymptotic cycle. We will realize
the non-oriented projective asymptotic cycles, which yields all the expected oriented projective
asymptotic cycles by composing with orientation-reversing maps.
(1) It is clear from the dynamics of g and h1 that Fα([1, 0]) (respectively Fβ([1, 0])) is the unique
closed α-leaf (resp. β-leaf) of the torus TA,1, and by acting with the pure mapping class group of
(TA,1, [1, 0]), one obtains any basis of π1(TA,1). On the other hand, Proposition 3.23 and Lemma
3.39 show that any periodic cyclic order for the orbit of [1, 0] under the first-return map Ex of
Fβ on ax is reached. Since Dehn twists around ax belong to the pure mapping class group of
(TA,x, [1, 0]) and fix ax, we can act by such Dehn twists to obtain points [µ] ∈ Defθ(T2, 0) so
that [Fµ

α(0)] = [1, 0] and [Fµ
β (0)] is any primitive element of π1(T2) distinct from (1, 0). We

lastly observe that Fα([1, 0]) remains the unique closed α-leaf of TA,x, and that the same can be
achieved for Fβ according to Remark 3.14. This concludes the first claim.
(2) The first-return map of the β-foliation is given by the map E according to Lemma 3.38.
Proposition 3.23 shows thus in particular that the map x ∈ [0 ; ∞] 7→ A(Fµθ,x

β ) ∈ P(H1(T2,R)) ≡
RP1 is continuous, monotonous and non-constant. Therefore A(Fµθ,x

β ) reaches an interval I ⊂
P(H1(T2,R)) of non-empty interior, hence containing irrational lines. On the other hand, Remark
3.34 shows that µθ,∞ = Φ∗(µθ,1) with Φ a Dehn twist around (1, 0) fixing A(Fµθ,x

α ) = [Fµθ,x
α ](0) =

[1, 0]. It is now easily checked that the translates of I by the iterates of Φ cover P(H1(T2,R)) \
{[1, 0]}, which shows the first claim of (2). The fact that Fα(0) is the unique closed leaf of Fα

follows again from the fact that [0] = [yA] is the unique periodic point of g.
(3) As for (2), the first-return maps of the α and β foliations are given by the maps F and
E according to Lemma 3.38. Proposition 3.24 shows thus that (A(Fµθ,x,y

α ), A(Fµθ,x,y

β )) reaches a
subset K ⊂ P(H1(T2,R))2 \{diagonal} of non-empty interior, hence containing pairs of irrational
lines. As for (2), the claim follows then from the fact that the translates of K by the action of the
pure mapping group of (T2, 0) cover the pairs of distinct irrational lines in P(H1(T2,R))2. □
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4. Rigidity of singular dS2-tori

We conclude in this section the proofs of the rigidity Theorems A, C and D.

4.1. Conclusion of the proof of Theorem C. The existence part was proved in Theorem 3.1.
Let µ1, µ2 be two singular dS2-structures on T2 with a unique singularity of angle θ at 0, whose
lightlike leaves of 0 are closed and homotopic:

([Fµ1
α (0)], [Fµ1

β (0)]) = ([Fµ2
α (0)], [Fµ2

β (0)]).
According to Lemma 3.10 and the proof of Proposition 3.8, there exists homotopic isometries
respectively sending µ1 and µ2 to structures µθ,x1 and µθ,x2 with x1, x2 ∈ [1 ; ∞[ such that
Fµθ,x1

β (0) and Fµθ,x2
β (0) are closed and homotopic, and it only remains to prove that x1 = x2.

Indeed this will show that µ2 = φ∗µ1 for some homeomorphism of T2 fixing 0, but (4.3) will then
imply that φ acts trivially in homotopy i.e. is isotopic to identity relative to 0 (see the proof of
Lemma 3.32 for more details), hence [µ1] = [µ2] in Defθ(T2, 0).

From now on we implicitly identify (T2, µθ,xi
) and T−θ,xi

as explained in Lemma 3.32, to
simplify notations. The first return map of Fµθ,xi

β on Fµθ,xi
α (0) being E−1

xi
according to Lemma

3.39, we can translate the fact that Fµθ,x1
β (0) and Fµθ,x2

β (0) are closed and homotopic, to the one
that the orbits of [1] ∈ [1 ; ∞] := [1 ; ∞]/{1 ∼ ∞} under Ex1 and Ex2 are periodic, say of minimal
period q ∈ N∗, and of the same cyclic order on the circle [1 ; ∞]. We can moreover assume that
x1, x2 ∈ ]1 ; ∞[ and that q ≥ 2, since Ex has no fixed points unless x = 0. For p ∈ [1 ; ∞], let us
denote:

(1) l(p) = a if p ∈ [1 ;x′
i[, equivalently if Exi(p) = ghxi(p);

(2) and l(p) = b if p ∈ [x′
i ; ∞[, equivalently if Exi(p) = hxi(p).

Then with l1 = l([1]) and lk+1 = l(lk([1])), the word w = lq . . . l1 in the letters a and b is the
coding of the periodic orbit of [1] under Exi , and is equivalent to its cyclic ordering. In other
words the codings of [1] under Ex1 and Ex2 equal a common word w, characterized by
(4.1) Ek

xi
([1]) = wk(gh, h)([1])

where wk = lk . . . l1, and v(A,B) ∈ PSL2(R) is obtained for any A,B ∈ PSL2(R) from a word v
in the letters a and b by replacing a by A and b by B.

According to Lemma 3.22 there exists T ∈ [0 ; 1] such that x2 = gT (x1) and hx2 = gThx1 , and
we thus want to show that T = 0. From now on we denote h := hx1 to simplify notations, and
work in R ∪ {∞} identified with RP1 (in the same PSL2(R)-equivariant way (2.2) than usually).
The equalities (4.1) translate then as:

(4.2)
{
w(gh, h)(1) = w(gT +1h, gTh)(1) = 1
∀k ∈ {1, . . . , q − 1} : wk(gh, h)(1) and wk(gT +1h, gTh)(1) ∈ ]1 ; ∞[.

Fact 4.1. For any k ∈ {1, . . . , q}, the map s ∈ [0 ;T ] 7→ wk(gs+1h, gsh)(1) is strictly increasing
and has values in [1 ; ∞[.

Fact 4.1 concludes the proof, since s ∈ [0 ;T ] 7→ wq(gs+1h, gsh)(1) = w(gs+1h, gsh)(1) is in
particular strictly increasing but has according to (4.2) the same value 1 at s = 0 and s = T ,
which implies T = 0.

Proof of Fact 4.1. We prove the claim by recurrence on k.
Case k = 1. Then w1 = l1 = a and since gh(1) ∈ ]1 ; ∞[, s ∈ R 7→ w1(gs+1h, gsh)(1) =

gs+1h(1) is strictly increasing in R∪ {∞}. Since gT +1h(1) ∈ ]1 ; ∞[ as well according to (4.2), we
have thus gs+1h(1) ∈ ]1 ; ∞[ for any s ∈ [0 ;T ] by the intermediate values Theorem.

From k ∈ {1, . . . , q − 1} to k + 1. Then wk+1(gs+1h, gsh)(1) = lk+1(g, id)gsh(α(s)) for s ∈
[0 ;T ], with α(s) := wk(gs+1h, gsh)(1) strictly increasing and with values in [1 ; ∞[ by recurrence.
Since h is orientation-preserving, s ∈ [0 ;T ] 7→ h ◦ α(s) is strictly increasing. Moreover the
dynamics of h show that its attractive and repulsive fixed points respectively satisfy h+ ∈ ]yA ; 1[
and h− ∈ ]∞ ; 0[, and the attractive and repulsive fixed points of g are on the other hand 0
and yA. We have thus h ◦ α([0 ;T ]) ⊂ ]h+ ; ∞[ ⊂ [yA ; 0], and with G(s, p) = gs(p) for any
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(s, p) ∈ R × ]yA ; 0[ we have: ∂G
∂s (s, p) > 0 due to the dynamics of g, and ∂G

∂p (s, p) > 0 due to the
fact that gs is orientation-preserving. Therefore

d

ds
gsh(α(s)) = d

ds
G(s, h(α(s))) = ∂G

∂s
(s, h(α(s))) + d

ds
h(α(s))∂G

∂p
(s, h(α(s)))

is strictly positive for any s ∈ [0 ;T ] as a sum of strictly positive terms, hence s ∈ [0 ;T ] 7→
wk+1(gs+1h, gsh)(1) is strictly increasing since g is orientation preserving. Since wk+1(gh, h)(1)
and wk+1(gT +1h, gTh)(1) are moreover in [1 ; ∞[ according to (4.2), we have thus gs+1h(1) ∈
[1 ; ∞[ for any s ∈ [0 ;T ], which concludes the proof. □

4.2. Conclusion of the proof of Theorem D. The existence part is given by Theorem 3.1.
Let µ1, µ2 be two singular dS2-structures on T2 with a unique singularity of angle θ at 0, whose
α leaves of 0 are closed and such that:
(4.3) ([Fµ1

α (0)], A+(Fµ1
β )) = ([Fµ2

α (0)], A+(Fµ2
β ))

with A(Fµi
β ) an irrational line. Then as in the beginning of paragraph 4.1, there exists homotopic

isometries respectively sending µ1 and µ2 to structures µθ,x1 and µθ,x2 with x1, x2 ∈ [1 ; ∞[ such
that A+(Fµθ,x1

β ) = A+(Fµθ,x2
β ), and it only remains to prove that x1 = x2. Indeed this will show

that µ2 = φ∗µ1 for some homeomorphism of T2 fixing 0, and (4.3) will then imply that φ is
isotopic to identity relative to 0, hence that [µ1] = [µ2] in Defθ(T2, 0).

Let us denote by γi : [0 ; 1] → T2 the unique future affine parametrization of Fµθ,xi
α (0) such

that γi(0) = 0 and by Pi the first-return map of Fµθ,xi
β on Fµθ,xi

α (0) (well-defined since Fµθ,xi
β

is minimal). Then since [Fµθ,x1
α (0)] and [Fµθ,x2

α (0)] are homotopic, the equality of the oriented
projective asymptotic cycles of the β-foliations implies that ρ(P1) = ρ(P2) according to Lemma
3.27. This implies in turn that x1 = x2 according to Proposition 3.23, which concludes the proof.

4.3. Surgeries of singular constant curvature Lorentzian surfaces. In this paragraph we
introduce a useful notion of surgery in the general setting of singular X-surfaces, (G,X) denoting
as usual the pair (PSL2(R),dS2) or (R1,1 ⋊ SO0(1, 1),R1,1). Let γ : [0 ; l] → S denote for this
whole subsection an affinely parametrized simple closed timelike geodesic in a singular X-surface
(S,Σ) (with γ(0) = γ(l) and γ|]0;l[ injective). Whenever convenient, we define γ(u + nl) := γ(u)
for any u ∈ [0 ; l] and n ∈ Z. Observe that all the results of the subsection remain true for a
spacelike simple closed geodesic, by changing the metric of S to its opposite. For u ∈ [0 ; l] we
denote by

Rγ
u : γ → γ

the affine transformation of γ defined by Rγ
u(γ(t)) = γ(t+ u) (namely the rotation of parameter

u). Moreover if it is well-defined, then we denote by
P γ

ε : γ → γ

the first-return map of the lightlike foliation Fε (with ε = α or β) on γ. It is characterized by
the fact that for any x ∈ γ, P γ

ε (x) is the first intersection point of Fε(x) with γ starting from x
(for the orientation of Fε). Our goal is to prove the following result.
Proposition 4.2. Let γ : [0 ; l] → S be an affinely parametrized simple closed geodesic, in a
singular X-surface (S,Σ, µ) of ordered angle set Θ. Then for any t ∈ [0 ; l], there exists a singular
X-structure µt on S such that:

(1) the ordered singular set of µt is Σ, and its ordered angle set Θ;
(2) t ∈ [0 ; l] 7→ µt ∈ S(S,Θ) is continuous, and µ0 = µ;
(3) γ remains a (simple closed) affinely parametrized geodesic of µt of the same signature;
(4) if the first-return map P γ

α/β,µ : γ → γ of a lightlike foliation of µ is well-defined on γ, then
the one of µt is also well-defined on γ and moreover equals P γ

α/β,µt
= Rγ

t ◦ P γ
α/β,µ.

Moreover, µt can be chosen to coincide with µ outside of a tubular neighbourhood of γ as small
as one wants.

We emphasize that this surgery construction is by no mean canonical, which does however not
prevent it to be very useful.
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4.3.1. A one-parameter family of isometries. If γ is definite, then a natural parametrization is
of course the one for which |µ(γ′(t))| ≡ 1, but if γ is a lightlike geodesic then it does not have a
preferred parametrization preserved by all the local isometries stabilizing it. We fix henceforth
an affine parametrization γ : [0 ; l] → S of γ in order to select a preferred one-parameter group in
its stabilizer, even when γ is lightlike.
Lemma 4.3. Let γ : R → X be an affinely parametrized maximal geodesic of X. Then there exists
a unique parametrized one-dimensional subgroup t ∈ R 7→ gt ∈ G, for which there exists ε > 0
and an open non-empty interval I ⊂ R, such that for any t ∈ ]0 ; ε[ and u ∈ I: gt ◦γ(u) = γ(u+t).
Moreover gt ◦ γ(u) = γ(u+ t) for any t, u ∈ R.
Proof. The claim is obvious if γ is definite, since StabG(γ(I)) is then a one-parameter subgroup
preserving the parametrization up to translation and acting freely transitively on the maximal
geodesic L = γ(I). We assume thus that L is a lightlike leaf. If X = R1,1 then γ is an affinely
parametrized horizontal or vertical line L. The set of g ∈ StabG(γ(I)) which preserve the
parametrization of γ up to translation is simply the translation subgroup (Tu)u∈L ⊂ R1,1 ⋊
SO0(1, 1), and the claim obviously follows since (Tu) acts freely on L. If X = dS2, we can assume
that L = RP1 \ {[e1]} × [e1] by transitivity of PSL2(R), in which case the affine structure of L is
the one induced by RP1 \ {[e1]} through the identification p ∈ RP1 \ {[e1]} 7→ (p, [e1]) ∈ L. In
other words we can assume without lost of generality that γ(t) = ([t : 1], [e1]), and for

g = gλ,u :=
[
λ u
0 λ−1

]
∈ StabPSL2(R)(L)

(with λ ∈ R+
∗ and u ∈ R) we have thus g ◦ γ(t) = γ(λ2t + λu). Therefore g preserves the

parametrization of γ up to translation if, and only if λ = 1, and since (g1,u)u∈R again acts freely
transitively on L, this proves the claim. □

An important property to be emphasized at this point, is that if two X-morphisms f1 : U1 → V1
and f2 : U2 → V2 coincide on a non-empty connected open subset U ⊂ U1 ∩ U2, then f1 and f2
coincide on the connected component of U1 ∩ U2 containing U . This is well-known and due to
the analyticity of the action of G on X.
Lemma 4.4. Let A,B be two small open tubular neighbourhoods of γ, such that Cl(A) ⊂ B
and B ∩ Σ = γ ∩ Σ. Then there exists ε > 0 and a continuous family Φ: t ∈ [0 ; ε] 7→ Φt ∈
C(A+ ∪γ,B+ ∪γ) of continuous maps Φt defined on A+ ∪γ and with values in B+ ∪γ, which are
homeomorphisms onto their images, X-morphisms in restriction to A+, and such that Φt(γ(u)) =
γ(u+ t) for any u ∈ [0 ; l].

Observe that γ has indeed two-sided tubular neighbourhoods since S is orientable. We denoted
in the above statement by A+ and A− the up and down connected components of A \ γ (with
respect to the orientation of γ and the one of S) and likewise for B±, and will adopt henceforth
obvious similar notations.

Proof of Lemma 4.4. Let U be a topological disk of closure contained in B \ Σ and such that
U ∩ γ ̸= ∅ is connected. The Lemma 4.3 shows then the existence of ε > 0 and of a unique
continuous family t ∈ [0 ; ε] 7→ ϕt of X-morphisms defined on U and with values in B, such
that ϕt ◦ γ(u) = γ(t + u) for any γ(u) ∈ γ ∩ U and t ∈ [0 ; ε]. Indeed if ϕt

1 and ϕt
2 are two such

morphisms, then in any X-chart φ : V → X from an open set V ⊂ U , φ◦ϕt
i ◦φ−1 is the restriction

of a gt
i ∈ G such that gt

i ◦φ◦γ(u) = φ◦γ(u+ t), hence gt
1 = gt

2 according to Lemma 4.3, and thus
ϕt

1 = ϕt
2. The uniqueness on any small enough connected open subset of U gives the existence on

U by gluing these X-morphisms ϕt
i together.

Since Σ is discrete and γ compact, γ ∩ Σ is finite and γ \ Σ a finite union of intervals. We
assume now that x ∈ γ ∩ Σ is a singular point of angle θ, let V ⊂ B be a normal convex
neighbourhood of x and denote by I+ the positive half-leaf of Fα(x) ∩ V starting from x for the
orientation of Fα. Let U1, U2 be two topological disks of closures contained in V \ I+, such that
U1 ∩ U2 ̸= ∅ and Ui ∩ γ ̸= ∅ are connected, and such that with γi the connected component of
γ \ Σ containing Ui ∩ γ: x is the future (respectively past) endpoint of γ1 (resp. γ2). Observe
that possibly γ1 = γ2 if γ ∩ Σ is a point, in which case x is both a future and past endpoint.
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We showed in the previous paragraph the existence for i = 1 and 2 of unique continuous families
t ∈ [0 ; ε] 7→ ϕt

i of X-morphisms defined on Ui and with values in B, such that ϕt
i ◦γ(u) = γ(u+ t)

for any γ(u) ∈ γ ∩ Ui and t ∈ [0 ; ε]. Let now φ : V \ I+ → X be a X-chart of S such that
φ(V \ I+) = V0 \ F+

α (o) with V0 a connected neighbourhood of o, and such that πθ ◦ φ extends
to a singular X-chart at x with values in Xθ. This exists by definition of a standard singularity,
see Lemma 2.14 for more details. Then φ ◦ ϕt

i ◦ φ−1 is the restriction of a gt
i ∈ G such that

(4.4) gt
i ◦ φ ◦ γ(u) = φ ◦ γ(u+ t)

for any γ(u) ∈ γ ∩Ui and t ∈ [0 ; ε]. On the other hand, by Definition A.5 of a geodesic and since
πθ ◦φ extends to a singular X-chart at x, φ(γ1 ∩V ) and φ(γ2 ∩V ) are two intervals of a common
timelike geodesic L ⊂ X through o, and of future (resp. past) endpoint o. The equalities (4.4)
imply thus gt

1 = gt
2 according to Lemma 4.3, and therefore ϕt

1 = ϕt
2. This argument was done for

any two topological disks U1, U2 ⊂ V \ I+ with V a normal convex neighbourhood of x ∈ γ ∩ Σ,
and such topological disks Ui cover Cl(A+)\Σ if A is chosen small enough. The uniqueness yields
thus the existence of Φt on A+ by gluing these ϕt

i together.
We eventually emphasize that Φt(γ(u)) = γ(u + t) whenever γ([u ;u + t]) ∩ Σ = ∅, and that

this equality extends thus on γ by continuity, which concludes the proof of the Lemma. □

4.3.2. Proof of Proposition 4.2. We first observe that it is sufficient to construct the surgery µt

for any t ∈ [0 ; ε] with some ε > 0 depending only on γ, since one only has to apply later the
same construction to µε and to compose with further surgeries. There exists a small open tubular
neighbourhood A ⊂ S of γ whose two boundary components are transverse to whichever lightlike
foliation γ is transverse to, i.e. to both lightlike foliations if γ is definite, and to Fβ (respectively
Fα) if γ is an α (resp. β) leaf. We moreover assume that Cl(A) ∩ Σ = γ ∩ Σ, that A \ γ has two
connected components A±, A+ being the upper component with respect to the orientation of S
and the future-orientation of γ (i.e. with N a normal to γ′(t) pointing to A+, (γ′(t), N) yields the
positive orientation of S). There exists also a closed curve σ ⊂ A+ freely homotopic to γ within
A+ and that we orient compatibly with γ, that is transverse to whichever lightlike foliation γ is
transverse to and such that A+ is itself a tubular neighbourhood of σ, i.e. A+ \ σ is the union of
two up and down boundary components A+

1 and A+
2 . If A is chosen small enough, there exists

moreover an open tubular neighbourhood B of Cl(A) such that Cl(B) ∩ Σ = γ ∩ Σ, and ε > 0
such that the continuous map Φ: t 7→ Φt given by Lemma 4.4 is defined for any t ∈ [0 ; ε], where
each Φt is defined on A+ ∪γ with values in B+ ∪γ, and is a X-morphism on A+ (with the obvious
similar notations for B± than the one we defined for A±). We can moreover chose σ close enough
to γ, so that for any t we have:

(4.5) max
x∈σ

dσ(Φt(x), x) ≤ 2 max
x∈γ

dγ(Φt(x), x),

where dσ/γ are the distances induced on the curves by a fixed Riemannian metric h on S. Then
there exists a continuous map F : t ∈ [0 ; ε] 7→ Ft ∈ C(A,A∪B+), such that F0 = idA and for any
t ∈ [0 ; ε]:

(1) Ft is an orientation-preserving homeomorphism onto its image,
(2) Ft equals the identity on A− ∪ γ,
(3) and Ft equals Φt on A+

2 ∪ σ.
We can moreover assume that

(4.6) max
x∈A

dS(Ft(x), x) ≤ max
x∈σ

dS(Ft(x), x),

with dS the distance induced by h on S. Of course there exists many such maps F , but we fix
one. We define then a singular X-structure µ∗

t on A by µ∗
t = F ∗

t µ. Observe that:
(1) since Ft|γ= id|γ and A ∩ Σ = γ ∩ Σ, the singular points of µ∗

t and their angles coincide
with the one of µ|A, and are thus contained in γ ∩ Σ;

(2) since Ft|A−= id|A− , µ∗
t |A−= µ|A− ;

(3) since Ft|A+
2

= Φt|A+
2

is a X-morphism of µ, the X-atlas of µ|A+
2

is compatible with its
pullback by Ft, in other words µ∗

t |A+
2

= µ|A+
2

.
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Since (S\Cl(A+
1 ))∩A = A−⊔A+

2 , the singular X-structures µ∗
t of A and µ|S\Cl(A+

1 ) of S\Cl(A+
1 )

are thus compatible, i.e. the union of their singular X-atlases defines a singular X-structure µt

on S = (S \ Cl(A+
1 )) ∪ A. By construction, the singular points of µt and their angles coincide

with the ones of µ, and t 7→ µt is moreover continuous since t 7→ Ft is so. Furthermore for any
small enough chart φ : U → X′ of the singular X-structure of S at a point x ∈ γ (X′ = X if x is
regular, and X′ = Xθ if x is singular of angle θ), U ⊂ Ft(A) and then F−1

t (U) contains x = Ft(x).
Moreover φ ◦ γ|γ−1(U) is an affinely parametrized timelike geodesic segment of X′ by Definition
A.5 of a geodesic, and thus φ◦Ft ◦γ|γ−1(F −1

t (U)) as well since Ft ◦γ(u) = γ(u+ t). This sows that
γ remains an affinely parametrized timelike geodesic of µt since φ ◦ Ft is a chart of the singular
X-atlas of µt.

We now prove the claim concerning the lightlike foliations, and it is sufficient to do so for Fµ
α

up to interverting the two foliations (note that if γ is lightlike, it is then a closed β-leaf). We
assume thus that the first-return map Pµ of Fµ

α on γ is well-defined, and denote by P 1
µ(x) the

first intersection point of Fµ
α(x) with σ for x ∈ γ. We recall that γ and σ are the lower and

upper boundary components of A+
1 . Observe that, due to our orientation conventions, Fα(x)

is transverse to γ, and leaves A+ when travelled positively. The direct consequence of this
fact is the simple but crucial observation that the segments of α-leaf from any x ∈ γ to P 1

µ(x)
coincide for µt and µ, since µt|S\Cl(A+

1 )= µ|S\Cl(A+
1 ) by definition. We denote these segments by

[x ;P 1
µ(x)]µt

α = [x ;P 1
µ(x)]µα, and we have thus showed that for any x ∈ γ:

(4.7) P 1
µt

(x) = P 1
µ(x).

By compactness of γ, we can assume σ close enough to γ so that for any y ∈ σ, there exists
a X-chart φ : U → X of µ so that ]y ;P 2

µ(y)[µα ⊂ U , with ]y ;P 2
µ(y)[µα the connected component

of Fµ
α(y) ∩ A+

1 containing y in its closure and P 2
µ(y) ∈ γ the first intersection point of Fα(y)

with γ. Adopting the obvious similar notations for µt and with y′ = (Φt)−1(y), we have thus
φ ◦ Ft(]y′ ;P 2

µt
(y′)[µt

α ) = φ(]y ;P 2
µ(y)[µα), by definition of µt and since Ft(y′) = y. Rearranging

this equality, we obtain ]y ;P 2
µt

(y)[µt
α = F−1

t (]Φt(y) ;P 2
µ(Φt(y))[µα) for any y ∈ σ. In particular

s ∈ [0 ; t] 7→ ]y ;P 2
µs

(y)[µs
α is a homotopy from ]y ;P 2

µ(y)[µα to ]y ;P 2
µt

(y)[µt
α , and in the end P 2

µt
(y) =

F−1
t (P 2

µ(Φt(y))) = P 2
µ(Φt(y)). The last equality is due to the fact that P 2

µ(Φt(y)) ∈ γ and
Ft|γ= id|γ . But Φt is a X-morphism on A+ and sends therefore segments of α-leaves to segments
of α-leaves, hence ]Φt(y) ;P 2

µ(Φt(y))[µα = Φt(]y ;P 2
µ(y)[µα) and thus P 2

µ(Φt(y)) = Φt(P 2
µ(y)). In the

end
(4.8) P 2

µt
(y) = Rγ

t (P 2
µ(y))

for any y ∈ σ, since Φt(γ(u)) = γ(u+ t) = Rγ
t (γ(u)) (see lemma 4.4).

We can now collect our previous separated analyses of the foliation Fµt
α within S \ Cl(A+

1 ) and
A+

1 . For x ∈ γ, the first-return map of Fα(x) on γ is defined by Pµ(x) = P 2
µ ◦ P 1

µ(x) and likewise
for µt. The equalities (4.7) and (4.8) show then that Pα,µt(x) = P 2

µt
(P 1

µ(x)) = Rγ
t ◦ P 2

µ ◦ P 1
µ(x) =

Rγ
t ◦ Pµ(x), which concludes the proof of Proposition 4.2.

4.3.3. Bounding the size of a surgery. The space S(T2,Σ,Θ) of singular X-structures on T2 is
induced with a distance d defined as follows. Let (φi : Ui → Xi)i be a finite singular dS2-atlas of
µ ∈ S(T2,Σ,Θ) (where Xi = dS2 if φi is a regular chart and Xi = dS2

θi
at a singular point of

angle θi) and (U ′
i)i be a shrinking of (Ui)i as in Definition 3.29. Then with di a fixed distance on

Xi and d∞
i (f, g) = max

x∈Ui

di(f(x), g(x)) the associated uniform distance on continuous maps from

U ′
i to Xi, for any µ′ ∈ S(T2,Σ,Θ) defined by a singular dS2-atlas ψi : U ′

i → Xi, we define:

d(µ′, µ) =

 0 if µ′ = µ,

max
i

d∞
i (φi|U ′

i
, ψi) otherwise.

We fix a Riemannian metric h on T2, endow T2 and any piecewise smooth curve γ ⊂ T2 with
the induced distances dT2 and dγ , and the space of continuous maps of γ with the associated
uniform distance d∞

γ .
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Lemma 4.5. Let µ ∈ S(T2,Σ,Θ), and γ be a simple closed timelike geodesic of µ. Then there
exists a constant C > 0, such that for any surgery ν of µ around γ given by Proposition 4.2 and
having a closed α-leaf F , and for any surgery ν ′ of ν around F given by Proposition 4.2:

d(ν, ν ′) ≤ Cd∞
F (PF

β,ν , P
F
β,ν′).

Proof. By construction ν ′ coincides with ν outside of A−
2 (we refer henceforth to the notations in-

troduced in the proof of Proposition 4.2 for the surgery ν ′ of ν). With F the homeomorphism used
to define ν ′|A−

2
= F ∗ν|A−

2
on A−

2 , we thus want to prove that d(F ∗ν|A−
2
, ν|A−

2
) ≤ Cd∞

F (PF
β,ν , P

F
β,ν′)

for some constant C > 0. It is sufficient to prove this claim for any small enough surgery
ν ′ of ν, since the inequality follows then for further surgeries by triangular inequality. With
(φi : Ui → Xi)i a finite singular dS2-atlas of ν and (U ′

i)i a shrinking of (Ui)i as above, we can
thus assume that F (U ′

i) ⊂ Ui. By finiteness of the atlas and continuity of the φi’s, there exists a
constant C > 0 such that d∞

i (φi ◦ F |U ′
i
, φi|U ′

i
) ≤ Cd∞

T2(F |U ′
i
, id|U ′

i
) for any i, and thus

(4.9) d(F ∗ν|A−
2
, ν|A−

2
) ≤ Cd∞

T2(F, idT2).

Moreover F satisfies d∞
T2(F, idT2) ≤ d∞

σ (F |σ, idσ) by assumption, see (4.6). Let Φ be the isometry
used to define F |σ∪A+

2
= Φ|σ∪A+

2
, and such that the first-return maps of the β foliation on F

respectively satisfy PF
β,ν′ = Φ ◦ PF

β,ν by definition of ν. Then by continuity of Φ and since the
curve σ can be chosen as close as one wants from F , we can assume that:

d∞
σ (F |σ, idσ) = d∞

σ (Φ|σ, idσ)
≤ 2d∞

F (Φ|F , idF )
= 2d∞

F (PF
β,ν′ , PF

β,ν)(4.10)
as we have seen previously in (4.5). In the end (4.9) and (4.10) imply together d(F ∗ν|A−

2
, ν|A−

2
) ≤

2Cd∞
F (PF

β,ν′ , PF
β,ν), which concludes the proof. □

4.4. Conclusion of the proof of Theorem A. Let S1 and S2 be two closed singular dS2-
surfaces having a unique singularity of angle θ ∈ R∗

−, and with minimal and topologically equiva-
lent lightlike bifoliations. Without lost of generality, we can assume that S1 = S2 = T2 and that
the singular dS2-structures µ1 and µ2 have identical oriented lightlike bifoliations (this is possible
since our definition of singular X-structures authorizes C0-charts, hence singular X-structures can
be pulled back by homeomorphisms). Then µ1 and µ2 admit freely homotopic simple closed time-
like geodesics γ1 and γ2 according to Theorem A.1 (since they are class A according to Lemma
A.15). Up to translations we can assume that 0 is the unique singularity of both µ1 and µ2, which
does not change the existence of freely homotopic simple closed future timelike geodesics γ1 and
γ2, nor the equality

A+(Fµ1
α/β) = A+(Fµ2

α/β)
of the oriented projective asymptotic cycles of the lightlike foliations. We denote by xi the first
intersection point of Fµi

α (0) with γi, and fix for γi the unique simple future affine parametrization
γi : [0 ; 1] → T2 such that γi(0) = xi (i.e. γi(1) = γi(0) and γi|]0;1[ is injective). Since Fµi

α and Fµi
β

are both assumed minimal, the first-return maps P γi

α/β,µi
: γi → γi are well-defined, and moreover

have the same rotation numbers
ρ(P γ1

α/β,µ1
) = ρ(P γ2

α/β,µ2
)

according to Lemma 3.27, since γ1 and γ2 are freely homotopic.
According to Lemma B.1, there exists a sequence rn ∈ S1 of rationals converging to ρ(P γ1

α,µ1) =
ρ(P γ2

α,µ2) ∈ [R \ Q] and sequences [un
i ] ∈ S1 converging to [0] such that for i = 1 and 2, the orbit

of [0] for Rγi

[un
i ] ◦ P γi

α,µi
is periodic and of rational cyclic order rn. For n large enough, Proposition

4.2 yields thus a surgery µn
i = (µi)un

i
of µi around the geodesic γi such that:

(1) µn
i has a unique singularity of angle θ at 0;

(2) µn
i converges to µi;

(3) γi is still a timelike simple closed geodesic of µn
i ;
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(4) the first-return map of Fµn
i

α/β on γi is well-defined and equals the circle homeomorphism
P γi

α/β,µn
i

= Rγi

[un
i ] ◦ P γi

α/β,µi
.

Since µn
i converges to µi, Fµn

i

α/β converges to Fµi

α/β, and in particular A+(Fµn
i

α/β) converges to
A+(Fµi

α/β). Moreover according to property (4) and by definition of [un
i ], the orbits of [0] for

P γ1
α,µn

1
and P γ2

α,µn
2

are periodic and of the same rational cyclic order rn, hence ρ(P γ1
α,µn

1
) = ρ(P γ2

α,µn
2
)

according to Proposition 3.21, and the lightlike leaves Fµn
1

α (0) and Fµn
2

α (0) are closed. For any large
enough n, Lemma 3.28 shows moreover that ρ(P γ1

α,µn
1
) = ρ(P γ2

α,µn
2
) implies A+(Fµn

1
α ) = A+(Fµn

2
α )

since γ1 and γ2 are freely homotopic, i.e. that the lightlike leaves Fµn
1

α (0) and Fµn
2

α (0) are freely
homotopic since A+(Fµn

i
α ) = [Fµn

i
α (0)] according to Proposition 3.25.

Fact 4.6. Possibly passing to a subsequence, Fµn
i

α (0) is a section of Fµn
i

β .

Proof. The surface with boundary An obtained from cutting T2 along Fµn
i

α (0) is an annulus
whose boundary components are two copies of Fµn

i
α (0), and the foliation Fµn

i
β induces a foliation

Fn of An transverse to its boundary. It is known (see for instance [HH86, Remark 4.2.1 and
Theorem 4.2.15]) that such a foliation is associated to a foliation F ′

n of An tangent to its boundary
by “spiraling” Fn, and that F ′

n is itself obtained by gluing together a finite number of Reeb
components and suspensions. As a consequence, either Fµn

i
α (0) intersects every leaf of Fµn

i
β , or

else Fn admits a closed leaf F 0
n in the interior of An, corresponding to a closed leaf Fn of Fµn

i
β .

In the latter case F 0
n is freely homotopic to the boundary of An within An, and Fn is thus freely

homotopic to Fµn
i

α (0) in T2. In particular Fµn
i

α and Fµn
i

β have then the same projective asymptotic
cycle. But since A(Fµn

i

α/β) converges to A(Fµi

α/β), and A(Fµi
α ) ̸= A(Fµi

β ) as µi is class A, there
exists N ∈ N such that for any n ≥ N : A(Fµn

i
α ) ̸= A(Fµn

i
β ). This implies in turn that Fµn

i
α (0)

intersects every leaf of Fµn
i

β for any n ≥ N , which concludes the proof of the Fact. □

There exists a continuous flow φt
i on T2 such that t ∈ R 7→ φt

i(x) is a future affine parametriza-
tion of Fµi

α (x) for any x ∈ T2. Denoting by Ui the fixed neighbourhood of γi such that µi = µn
i on

T2 \ Ui (see Proposition 4.2), there exists then for any n a unique future affine parametrization
σn

i : [0 ; lni ] → T2 of Fµn
i

α (0) such that σn
i (0) = 0, and for which the maps Fun

i
used on Ui to

construct the surgeries µn
i = (µi)un

i
are affine maps (we refer to the construction of the surgery

in paragraph 4.3.2 where these maps Ft are introduced). In particular, Fµn
i

α (0) \ Ui is a union
of segments of leaves of Fµi

α , and σn
i coincide on Fµn

i
α (0) \ Ui with the parametrization φt

i of Fµi
α

up to translation. The first-return map of Fµn
i

β on σn
i = Fµn

i
α (0) is well-defined according to Fact

4.6, and for v ∈ ]−lni ; lni [ we denote by (µn
i )v the surgery of µn

i around σn
i = Fµn

i
α (0) given by

Proposition 4.2, such that:
(1) (µn

i )v has a unique singularity of angle θ at 0;
(2) F (µn

i )v
α (0) = Fµn

i
α (0) = σn

i ;
(3) the first-return map of F (µn

i )v

β on σn
i is well-defined and equal to the circle homeomorphism

P
σn

i

β,(µn
i )v

= R
σn

i

[v] ◦ P σn
i

β,µn
i

in the parametrization σn
i .

The map v ∈ ]−lni ; lni [ 7→ A+(F (µn
i )v

β ) ∈ P+(H1(T2,R)) ≡ S1 is continuous, non-decreasing
and strictly increasing at any irrational line according to Lemma B.1. Since A+(Fµn

i
β ) moreover

converges to the irrational line A+(Fµi
β ), there exists for any large enough n some v ∈ ]−lni ; lni [

such that A+(F (µn
i )v

β ) = A+(Fµi
β ). There exists then a unique vn

i ∈ ]−lni ; lni [ of smallest absolute
value satisfying

(4.11) A+(Fνn
i

β ) = A+(Fµi
β ) with νn

i := (µn
i )vn

i
,
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and in particular A+(Fνn
1

β ) = A+(Fνn
2

β ).
For x ∈ γi, y ∈ Fµi

β (x) and t ∈ R∗, let Fi(x, y, t) ∈ R∗ denote the unique time such that the
holonomy

(4.12) Hβ,µi
: [x ;Rγi

Fi(x,y,t)(x)]γi
→ [y ;φt

i(y)]α

of Fµi
β is a homeomorphism between the segments [x ;Rγi

Fi(x,y,t)(x)]γi
of γi and [y ;φt

i(y)]α of

Fµi
α (y). Since σn

i \ Ui is a union of segments of leaves of Fµi
α , the first-return map of F (µn

i )v

β on
the simple closed curve γi is well-defined (observe that γi is no longer a geodesic of (µn

i )v), and
moreover satisfies

(4.13) P γi

β,(µn
i )v

= P γi
β,µn

i
◦ Fn

i,v with Fn
i,v : x 7→ Rγi

Fi(x,Hn
i (x),v)(x)

where Hn
i is the holonomy of Fµn

i
β from γi to σn

i . Let d∞
σn

i
, d∞

γi
denote the uniform distances on

continuous maps of σn
i and γi induced by a fixed Riemannian metric on T2, and dS1 be a fixed

distance on S1. Then there exists two constant C1 > 0 and C2 > 0 such that for any n and
v ∈ ]−lni ; lni [:

d∞
σn

i
(Rσn

i

[v] , idσn
i
) ≤ C1d

∞
γi

(Fn
i,v, idγi),(4.14)

d∞
γi

(Fn
i,v, idγi) ≤ C2dS1(ρ(P γi

β,µn
i

◦ Fn
i,v), ρ(P γi

β,µn
i
)).(4.15)

The existence of such constants for any fixed n is straightforward, and their uniformity in n
follows from the definition (4.13) of Fn

i,v, and from the fact that the function Fi(x, y, t) defined in
(4.12) satisfies

sup
{∣∣∣∣ t

Fi(x, y, t)

∣∣∣∣ ∣∣∣∣ x ∈ γi, y ∈ Fµi
β (x), t ∈ R∗

}
< +∞

by compactness of γi and T2.
We know that lim dS1(ρ(P γi

β,µi
), ρ(P γi

β,µn
i
)) = 0 since µn

i converges to µi. On the other hand
P γi

β,νn
i

= P γi
β,µn

i
◦ Fn

i,vn
i

according to (4.13), while the definition (4.11) of νn
i and the Lemma 3.27

imply ρ(P γi
β,µi

) = ρ(P γi
β,νn

i
) = ρ(P γi

β,µn
i

◦ Fn
i,vn

i
). In the end lim dS1(ρ(P γi

β,µn
i

◦ Fn
i,vn

i
), ρ(P γi

β,µn
i
)) = 0,

which implies lim d∞
σn

i
(Rσn

i

[vn
i ], idσn

i
) = 0 according to (4.14) and (4.15), and thus:

lim d∞
σn

i
(P σn

i
β,νn

i
, P

σn
i

β,µn
i
) = 0

with σn
i = Fµn

i
α (0) = Fνn

i
α (0). Lemma 4.5 shows then that lim d(νn

i , µ
n
i ) = 0 with d a distance on

S(T2, 0, θ), and νn
i converges thus to µi.

Since σn
1 = Fνn

1
α (0) and σn

2 = Fνn
2

α (0) are closed and freely homotopic and A+(Fνn
1

β ) = A+(Fνn
2

β ),
Theorem D shows then that [νn

1 ] = [νn
2 ] in Defθ(T2, 0). But νn

i converges to µi in S(T2, 0, θ), and
the sequence [νn

1 ] = [νn
2 ] ∈ Defθ(T2, 0) converges thus both to [µ1] and to [µ2]. Since Defθ(T2, 0) is

Hausdorff in the neighbourhood of [µ1] and [µ2] (see Proposition 3.36), this shows that [µ1] = [µ2]
and concludes the proof of Theorem A.

Appendix A. Simple closed definite geodesics in singular constant curvature
Lorentzian surfaces

The main goal of this appendix is to prove the existence of simple closed definite geodesics in
any closed constant curvature singular Lorentzian surface. This appendix is entirely independent
from the rest of the paper, and the reader may thus choose to use Theorem A.1 below as a
“black-box” in a first reading and come back to its proof later on. We will work in this section
in the general setting of singular X-surfaces, (G,X) denoting as usual the pair (PSL2(R),dS2)
or (R1,1 ⋊ SO0(1, 1),R1,1). Geodesics of singular X-surfaces will be defined below in Definition
A.5. The goal of the section is to prove the following existence result, which will be a direct
consequence of the Proposition A.16 and the Theorem A.23 proved below.
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Theorem A.1. Let µ1 and µ2 be two class A singular X-structures on a closed surface S, having
identical oriented lightlike bi-foliations. Then µ1 and µ2 admit freely homotopic simple closed
timelike geodesics, which are not null-homotopic. The obvious analogous statement holds for the
spacelike signature.

The existence of closed definite geodesics is known for regular Lorentzian surfaces, see for
instance [Tip79, Gal86, Suh13]. However, it is a priori not clear that the usual tools and results
of Lorentzian geometry can be used in our singular setting. Most notions and results of this
section are classical in the setting of regular Lorentzian manifolds, and our goal is precisely to
show that this toolbox persists in the setting of singular X-surfaces – which is likely to have
an independent interest in the future for their further study. Most proofs for classical results
are adapted from [Min19] or [BEE96]. We then essentially follow the proof of [Tip79] to show
Theorem A.1, with slight adaptations more suited to our setting. The main idea is to prove the
existence of a simple closed timelike curve which maximizes the Lorentzian length, which is the
extremal property of Lorentzian timelike geodesics in contrast with Riemannian ones.

A.1. Geodesics of singular X-surfaces. We begin by defining the natural notion of geodesic
in a singular X-surface, and by recalling some easy facts on geodesics of X. We call affine
structure on an oriented topological one-dimensional manifold a maximal atlas of charts to R
whose transition maps are affine and orientation-preserving, in other words an (Aff+(R),R)-
structure with Aff+(R) ≃ R ⋊ R the group of affine transformations λ id +u : x 7→ λx + u of R
(with λ ∈ R∗

+, u ∈ R). We recall that geodesics of X have a fixed signature, and that lightlike
geodesics are simply the lightlike leaves. Geodesics moreover have a natural affine structure (as
for any affine connection), given by the parametrizations satisfying the geodesic equation. For
X = R1,1, the affinely parametrized geodesics are simply the affinely parametrized affine segments.
The folllowing characterization for X = dS2 follows from straightforward computations.

Lemma A.2. Let γ be a geodesic of X.
(1) The stabilizer of γ in G acts transitively on γ. For X = dS2, it is moreover:

(a) a hyperbolic one-parameter group if γ is timelike,
(b) an elliptic one-parameter group if γ is spacelike,
(c) a parabolic subgroup ( i.e. conjugated to a triangular subgroup) if γ is lightlike.

(2) There exists for any x ∈ γ a one-parameter subgroup (gt) stabilizing γ and acting freely
at x, and t ∈ R 7→ gt(x) ∈ γ is then an affine parametrization of an open subset of γ.

Proof. (1) For X = dS2 we can work with the hyperboloid model dS2 thanks to Lemma 2.2.
The stabilizer of a plane P ⊂ R1,2 is also the one of its orthogonal for q1,2, which is respectively
spacelike, timelike and lightlike in the three above cases. Straightforward computation show that
these line stabilizers are of the announced form. The transitivity of the stabilizer on γ is checked
by a direct computation (in the case of dS2, observe that StabPSL2(R)(γ) preserves each connected
component of P ∩ dS2).
(2) This fact follows easily from the identification of X with G/A. □

We observe now that any affinely parametrized geodesic interval γ : I → X passing through o
avoids a quadrant, and without lost of generality we can thus assume that γ(I) ∩ F+∗

α (o) = ∅.
Using the projection πθ : X∗ → Xθ introduced in paragraph 2.2.1 for the standard Xθ-cone,
πθ ◦γ : I → Xθ is in particular well-defined, and will be called an affinely parametrized geodesic of
Xθ. Observe moreover that the orientations of time and space induce a natural notion of future
timelike and spacelike geodesics in any X-surface (the one whose derivative is future-pointing).
This notion persists in Xθ by saying that a geodesic is future timelike (resp. spacelike) if it is
the projection of such a geodesic of X. For lightlike geodesics namely lightlike leaves, the future
orientation is the positive orientation of the foliation.

Lemma A.3. (1) Singular X-charts of Xθ at oθ (equivalently homeomorphisms defined on
a neighbourhood of oθ and fixing it, which are isometries on its complement) send future
affinely parametrized geodesics of Xθ to future affinely parametrized geodesics of the same
signature.
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(2) Let γ be a parametrized curve of a singular X-surface S passing through a singularity x.
Then γ is mapped to a future affinely parametrized geodesic of Xθ by a singular X-chart
of S at x, if and only if it is mapped to a future affinely parametrized geodesic of the same
signature in any singular X-chart at x.

Proof. (1) According to Proposition 2.26, the singular X-charts of Xθ at oθ are the maps ā
induced by elements a ∈ Stab(o) and characterized by ā ◦ πθ = πθ ◦ a. Since a preserve the affine
structure of any geodesic of X and its future orientation, ā ◦ πθ ◦ γ = πθ ◦ a ◦ γ is thus a future
affinely parametrized parametrization for any future affinely parametrized geodesic γ.
(2) This is a direct consequence of (1). □

Remark A.4. The fundamental consequence of Lemma A.3 is that, contrarily to the Riemannian
case, the notion of straight geodesic segment through a singular point always makes sense in a
singular Lorentzian surface. In other words, every future timelike geodesic segment I− converging
to a singular point x has a preferred associated timelike geodesic segment I+ arising from x, such
that I− ∪I+ is a geodesic through x. This is a new manifestation of the higher rigidity of singular
Lorentzian surfaces compared to their Riemannian couterparts.

Definition A.5. A (maximal) affinely parametrized geodesic of a singular X-surface (S,Σ) is a
(maximal) parametrized curve γ, which maps in any regular (respectively singular) chart of the
singular X-atlas of S to a future affinely parametrized geodesic interval of X (resp. of Xθ). The
signature (timelike, spacelike or lightlike) of γ is the one of any of its images in such an atlas.
The affine structure of γ is the one given by its parametrization. A geodesic is the image of a
parametrized geodesic.

Remark A.6. There is also of course a natural notion of piecewise geodesic of a singular X-surface
(S,Σ), namely a curve γ such that any connected component of γ \ Σ is a geodesic of S \ Σ.
However this notion will not play any role in this text.

Proposition A.7. Let (S,Σ) be a singular X-surface.
(1) Geodesics of S are C0 one-dimensional submanifolds, which are C∞ in S \ Σ.
(2) Any geodesic of S is contained in a unique maximal geodesic.
(3) Any point x ∈ S admits a connected open neighbourhood U homeomorphic to a disk, and

such that:
(a) U is the domain of a chart of the singular X-atlas centered at x;
(b) U is the domain of a C0 simultaneous foliated chart of the lightlike foliations;
(c) U \ (Fα(x) ∪ Fβ(x)) has four connected components, called the (open) quadrants of

U at x;
(d) for any two points y ̸= z ∈ U , there exists a unique geodesic segment [y ; z]U ⊂ U of

endpoints y and z, and [y ; z]U is moreover disjoint from (at least) one of the open
quadrants at x.

Such an U will be called a normal convex neighbourhood of x. Moreover quadrants are
themselves convex, i.e. if y, z are in a same open quadrant Q of U at x, then [y ; z]U ⊂ Q.

A quadrant of U will be said future timelike and denoted by U+ (respectively past timelike
U−) according to the notations of Figure 2.1, namely if it is crossed by a future timelike geodesic
segment starting at x of the same signature. Obvious similar denominations are used for spacelike
and causal quadrants.

Proof of Proposition A.7. (1) This is immediate from the definition.
(2) This claim is of course true in X and thus on S \ Σ, and we only have to prove it at a singular
point x ∈ Σ. Namely for two geodesics γ1, γ2 such that γ1 ∩ γ2 contains a geodesic interval I
having x as one of its endpoints, we want to prove that γ1 ∩ γ2 contains a geodesic interval J
containing x in its interior. With φ : U → Xθ a singular X-chart at x, φ(I) is contained in the
projection in Xθ of a maximal geodesic C of X. In the same way, φ(γ1) (resp. φ(γ2)) is contained
in the projection of a maximal geodesic of X which intersects C on the open interval π−1

θ (C),
but C is the only such geodesic of X. In the end φ(γ1 ∩ γ2) contains some neighbourhood of x in
πθ(C), which proves our claim.
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(3) This claim is easily proved in X, and thus on S \ Σ by using a standard normal convex
neighbourhood. On the other hand (2) proves it on the neighbourhood of a singular point. □

Geodesics are natural in the following sense.

Lemma A.8. Let f : S1 → S2 be an isometry of singular X-surfaces. Then for any affine
parametrization of a geodesic γ of S1, f ◦ γ is an affine parametrization of a geodesic of S2 of the
same type that γ.

Proof. If (φi : Ui → Vi)i is a singular X-atlas of S1, then (φi ◦ f−1 : f−1(Ui) → Vi)i is a singular
X-atlas of S2. Hence γ and f ◦γ read as the same path in these singular X-atlases, which directly
implies the claim. □

A.2. Timelike curves and causality notions. The following definition is identical to the
classical one, to the exception of condition (1) handling the singular points.

Definition A.9. In a singular X-surface (S,Σ), a timelike (respectively causal, spacelike) curve
is a continuous curve σ : [a ; b] → S such that:

(1) for any t0 ∈ [a ; b] for which γ(t0) ∈ Σ, there exists ε > 0 and a normal convex neighbour-
hood U of γ(t0) such that γ|]t0−ε;t0[⊂ U− and γ|]t0;t0+ε[⊂ U+, with U− and U+ the past
and future timelike (resp. spacelike, causal) quadrants in U ;

(2) σ is locally Lipschitz;
(3) σ′(t) is almost everywhere non-zero, future-directed and timelike (resp. causal, spacelike).

We emphasize that timelike, causal and spacelike curves are in particular always assumed to
be relatively compact and future-oriented, unless explicitly stated otherwise. They are moreover
not trivial (i.e. reduced to a point), and σ−1(Σ) is discrete according to (1), hence finite. S will
always be endowed with an auxiliary C∞ Riemannian metric h and its induced distance d, with
respect to which the Lipschitz conditions are considered. Note that σ is compact and locally
Lipschitz, hence Lipschitz. A locally Lipschitz function being almost everywhere differentiable
according to Rademacher’s Theorem, σ′(t) is almost everywhere defined which gives sense to the
condition (3). Past timelike, causal and spacelike curves are defined as future-oriented curves of
the same signature traversed in the opposite direction.

Definition A.10. In a singular X-surface S, we denote for x ∈ S by:
(1) I+(x) (respectively I−(x)) the set of points that can be reached from x by a timelike

(resp. past timelike) curve;
(2) J+(x) (respectively J−(x)) the set of points that can be reached from x by a causal (resp.

past causal) curve.
We will denote I+

S (x) and likewise for the other notions, to specify that the curves are assumed
to be contained in S. An open set U of a singular X-surface S is causally convex if there exists
no causal curve of S which intersects U in a disconnected set. S is said strongly causal if any
point of S admits arbitrarily small causally convex open neighbourhoods. In particular S is then
causal, i.e. admits no closed causal curves. S is globally hyperbolic if it is strongly causal, and if
for any p, q ∈ S, J+(p) ∩ J−(q) is relatively compact.

Observe that for any convex normal neighbourhood U of x of future and past timelike quadrant
U+ and U−, I±

U (x) = U±. This is classical in the regular Lorentzian setting (see for instance
[Min19, Theorem 2.9 p.29]) and follows from our definition of timelike and causal curves at a
singular point. Observe moreover that a X-structure on R2 has no closed lightlike leaves, as a
consequence of the classical Poincaré-Hopf theorem for topological foliations proved for instance
in [HH86, Theorem 2.4.6]. The two following results are well-known for regular Lorentzian metrics
on R2, and the proofs respectively given in [BEE96, Proposition 3.42 and Corollary 3.44] persist
in our singular setting. We repeat below a quick version of these proofs, and refer to the above
reference for more details.

Lemma A.11. In a singular X-surface homeomorphic to R2, a timelike curve intersects a given
lightlike leaf at most once.
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Proof. We henceforth endow R2 with a singular X-structure, and assume by contradiction the
existence of a timelike curve intersecting a given lightlike leaf at least twice. It is well-known
that timelike curves of regular Lorentzian manifolds are locally injective, and on the other hand
it follows readily from our definition of a timelike curve σ in a singular X-surface that it is also
locally injective at a singularity (since σ−1(Σ) is discrete). Hence timelike curves are locally
injective (see also Fact A.20 below for an alternative proof), and it is thus easy to reduce the
proof to the case of an injective timelike curve σ : [a ; b] → R2 such that σ(a) and σ(b) belong to a
leaf F of the, say α-foliation, and such that σ|]a;b[ does not intersect F . Traversing σ from σ(a) to
σ(b) followed by F from σ(b) to σ(a) (in the negative direction due to our orientation conventions)
defines then a Jordan curve in R2, bounding a unique compact subset E ⊂ R2. Since σ is timelike
for any t1 ∈ ]a ; b[, σ(t) admits a punctured neighbourhood in F+

α (σ(t)) contained in Int(E), and
the first point of F+

α (σ(t)) contained in ∂E is then necessarily of the form σ(t′1) for t′1 ∈ ]t ; b[ (the
existence of t′1 follows from the existence of foliated charts and from the compactness of E). From
there we construct recursively tn+1 = tn+t′

n
2 , and using the same notations we obtain sequences

tn, t
′
n ∈ ]a ; b[ converging to a same point t0 ∈ ]a ; b[ and such that tn < tn+1 < t′n+1 < t′n. Hence

for n big enough, σ([tn ; t′n]) is contained in a normal convex neighbourhood U of σ(t′n), and
σ(t′n) ∈ Fα(σ(tn)) ∩ I+

U (σ(tn)). But we have seen that I+
U (σ(tn)) is the future timelike quadrant

U+, which does not contain any point of Fα(σ(tn)). This contradiction concludes the proof. □

Lemma A.11 implies in particular that for any lightlike leaf F of a X-structure on R2, F has for
any x ∈ F a transversal T to the foliation of F (namely a timelike curve through x) intersecting
F only at x. This means by definition that the lightlike leaves of a X-structure on R2 are proper.
Corollary A.12. In a singular X-surface homeomorphic to R2, two distinct lightlike leaves in-
tersect at most once.
Proof. Assume by contradiction that two distinct lightlike leaves intersect at least two times.
Then these are necessarily leaves Fα and Fβ of distinct lightlike foliations, and there exists
x, y ∈ Fα ∩ Fβ such that the open intervals ]x ; y[α/β of Fα/β from x to y are disjoint. To fix the
ideas we furthermore assume that these intervals are positively oriented, which can achieved by
inversing the orientations. The curve J formed by following [x ; y]α from x to y and then [x ; y]β
from y to x is then a Jordan curve of the X-surface S ≃ R2, bounding a unique compact domain
E. With γ a timelike curve starting from x, γ enters E and cannot leave it, or it would intersect
∂E = Fα ∪Fβ and contradict Lemma A.11. We can obviously extend γ at its endpoint to a larger
point, and we obtain thus timelike curves of arbitrarily large arclength with respect to a fixed
Riemannian metric, and contained in E. But since E is compact, this contradicts the Fact A.20
which will be independently proved below, and conclude the proof. □

Corollary A.13. Any singular X-surface homeomorphic to R2 is strongly causal.
Proof. Assume by contradiction that a singular X-structure on R2 is not strongly causal. Then
there exists a point x ∈ R2, a normal convex neighbourhood U of x, and a causal curve starting
from x, leaving U and returning to it. It is easy to deform this curve to a timelike curve σ with
the same properties. We can moreover choose the boundary of U to be the union of lightlike
segments, and denote by I one of these segments which is first met by σ when it leaves U . We
can then clearly extend σ if necessary, for it to be a timelike curve intersecting I twice. This
contradicts Lemma A.11 and concludes the proof. □

Corollary A.14. A singular X-surface of universal cover homeomorphic to R2 does not admit
any null-homotopic closed causal curve.
Proof. Indeed, such a null-homotopic closed causal curve would lift to a closed causal curve of a
singular X-structure on R2, contradicting Corollary A.13. □

We recall that for S a closed singular X-surface, a line l in H1(S,R) ≃ R2 is said rational if it
passes through H1(S,Z2) ≃ Z2, and irrational otherwise.
Lemma A.15. A closed singular X-surface S is class B if, and only if both of its lightlike
foliations have closed leaves which are freely homotopic up to orientation, and is class A otherwise.
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In particular, if one of the lightlike foliations has irrational projective asymptotic cycle, then S is
class A.

Proof. If the lightlike foliations have closed leaves which are not freely homotopic up to orienta-
tion, then since two primitive element cα ̸= ±cβ of π1(T2) are not proportional in H1(T2,R), the
projective asymptotic cycles are distinct according to Lemma 3.25. If only one of the lightlike
foliations has a closed leaf, then it has a rational projective asymptotic cycle while the other
lightlike foliation has an irrational cycle, hence A(Fα) ̸= A(Fβ).

If none of the lightlike foliations have closed leaves, then none of them has a Reeb component,
hence both of them is a suspension of a homeomorphism with irrational rotation number according
to Proposition 3.26. The latter is a C2 diffeomorphism with breaks and is thus minimal according
to Lemma 2.30.(4). By definition (3.13) of the asymptotic cycle, and because any line of H1(T2,R)
is the limit of a sequence of rational lines, there exists a smooth simple closed curve a representing
A(Fα) and as close as one wants to a segment of a leave of Fα. In particular we can assume a to
be transverse to Fβ. Moreover a meets all the leaves of Fβ since the latter is minimal, and Fβ

is therefore the suspension of a homeomorphism of a. There exists thus a simple closed curve b
representing A(Fβ), whose class generates H1(T2,R) together with [a]. In particular R[a] ̸= R[b],
which shows that A(Fα) ̸= A(Fβ) and concludes the proof of the Lemma. □

The oriented projective asymptotic cycles of the lightlike foliations of a class A singular X-
surface (S, µ) delimit an open timelike cone

(A.1) Cµ = Int(conv(A+(Fβ) ∪ (−A+(Fα)))) ⊂ H1(S,R)

in the homology, and likewise a spacelike cone Cspace
µ = Int(conv(A+(Fα) ∪A+(Fβ))).

Proposition A.16. Let µ1 and µ2 be two class A singular X-structures on a closed surface S
with identical oriented lightlike bi-foliations. Then for any x ∈ S we have the following.

(1) µ1 and µ2 admit freely homotopic simple closed timelike curves passing through x which
are not null-homotopic.

(2) For any simple closed timelike curve a of µ1 (respectively µ2), there exists a simple closed
spacelike curve b intersecting a in a single point.

(3) There exists simple closed timelike and spacelike curves (a1, b1) of µ1 (resp. (a2, b2) of
µ2) such that a1 is freely homotopic to a2, b1 freely homotopic to b2, and ([ai], [bi]) is a
basis of π1(T2) for i = 1 and 2.

Proof. (1) Since S is homeomorphic to a torus we let S be equal to T2 to fix the ideas, identify the
action of π1(T2) on the universal cover R2 with the translation action of Z2, and endow R2 with
the induced singular X-structures µ̃i and a Z2-invariant auxiliary Riemannian metric. With Fα

and Fβ the common lightlike foliations of µ̃1 and µ̃2, the half-leaves F+
β (p) and F−

α (p) are for any
p ∈ R2 proper embeddings of R+. They intersect furthermore only at p according to Corollary
A.12, and delimit thus a compact subset Cp ⊂ R2 of boundary F−

α (p) ∪ F+
β (p), containing all

the timelike curves emanating from p. On the other hand there exists a constant K > 0 such
that for any p ∈ R2, Fα(p) and Fβ(p) are respectively contained in the K-neighbourhoods of
the affine lines p + A(Fα) and p + A(Fβ). This property follows from the equivalence between
asymptotic cycles and winding numbers [Sch57, p. 278], and is also very well explained in [Suh13,
§3.1]. In particular, there exists thus an affine sub-cone C′ of non-empty interior of the timelike
cone Cµ1 = Cµ2 in homology defined in (A.1), such that x + C′ ⊂ Int(Cx) for any x ∈ R2. We
have then x+ c ∈ Int(Cx), and thus x+ c /∈ Fα(x) ∪ Fβ(x). Moreover the half-leaves F−

β (x+ c)
and F−

α (x) intersect, at a unique point y according to Corollary A.12, and y /∈ {x, x + c} since
x+ c /∈ Fα(x) ∪ Fβ(x).

The piecewise lightlike curve ν̃ of (R2, µ̃i) (i = 1 or 2) from x to x + c formed by following
F−

α (x) from x to y and then F+
β (y) from y to x + c is then contained in the closure of the cone

Cx ⊂ R2, and is in particular not entirely contained in a lightlike leaf Fα(x) or Fβ(x + c) since
y /∈ {x, x+c}. Let ν be its projection to T2, which a piecewise lightlike closed curve for µ1 and µ2.
Let t = sup

{
s ∈ [0 ; 1]

∣∣∣ ν|[0;s[ is injective
}

(note that t > 0 since the lightlike leaves are proper)
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so that ν(t) is the first self-intersection point of ν with itself, and let u ∈ [0 ; t[ be the unique time
for which ν(t) = ν(u). If u = 0, i.e. ν(t) = ν(u) = ν(0), then we define σ = ν|[0;t]. If not, then
we define ν1 as the curve constituted by ν|[0;u] followed by ν|[t;1], and repeat the process on ν1.
Using for instance Fact A.20 to be proved below, there exists ε > 0 such that for any s ∈ [0 ; 1],
ν|]s−ε;s+ε[ is injective. Hence this process finishes in a finite number of steps by compactness of
ν, and yields a simple subcurve σ of ν passing through x̄ ∈ T2.

Since the piecewise lightlike simple closed curve σ of µi is not entirely contained in one lightlike
leaf, it can be slightly deformed to a freely homotopic timelike curve ηi of the singular X-structure
µi, passing through x̄ and homotopic to σ. The freely homotopic simple closed timelike curves
η1 and η2 of µ1 and µ2 through x̄ cannot be null-homotopic according to Corollary A.14, which
concludes the proof.
(2) Let C′ be the sub-cone introduced previously of the future spacelike cone Cspace

S in homology,
such that p+ C′ ⊂ Int(Cspace

p ) for any p ∈ R2 with Cspace
p ⊂ R2 the compact subset of boundary

F+
α (p)∪F+

β (p). Then there exists a free homotopy class c ∈ π1(S) contained in C′ and of algebraic
intersection number î(c, [a]) = 1 with [a]. The proof of the first claim of the Proposition yields
a closed piecewise lightlike curve ν through x = a(0) in the free homotopy class c, not entirely
contained in a single lightlike leaf. Since ν and a intersect only transversally, and with a positive
sign according to our orientations conventions (see Figure 2.1), î([ν], [a]) = 1 implies moreover
that ν and a intersect actually only at x. With σ the simple closed subcurve of ν through x
constructed in the first part of the proof, a and σ intersect then only at x = a(0) = σ(0), and
have in particular algebraic intersection number î([σ], [a]) = 1. Since σ is not entirely contained
in a single lightlike leaf, we can now as before slightly deform σ to a freely homotopic simple
closed spacelike curve b, intersecting a only at x.
(3) This last claim is a direct consequence of the two first ones. □

A.3. Lorentzian length, time-separation and maximizing causal curves. We define the
Lorentzian length of a causal curve γ : [0 ; l] → S in a singular X-surface (S,Σ) by

L(γ) :=
∫ l

0

√
−µS(γ′(t))dt ∈ [0 ; +∞].

Causal curves being almost everywhere differentiable (see paragraph A.2 for more details), this
quantity is well-defined and moreover independent of the (locally Lipschitz) parametrization of
γ thanks to the change of variable formula. An important remark to keep in mind for this whole
paragraph is that singular points do not play any role in the length of a causal curve γ in S.
Indeed since γ−1(Σ) is finite, γ is the concatenation of a finite number n of regular pieces, namely
the connected components γi of γ ∩ S∗ = S \ Σ, and we have

(A.2) L(γ) =
n∑

i=1
L(γi),

the lengths appearing in the right-hand finite sum being computed in the regular Lorentzian
surface S∗. The Lorentzian length allows us to define on S × S the time-separation function by
(A.3) τS(x, y) := sup

σ
LS(σ) ∈ [0 ; +∞],

the sup being taken on all future causal curves in S going from x to y if such a curve exists (i.e.
if y ∈ J+(x)), and by τS(x, y) = 0 otherwise. To avoid any confusion, we emphasize that, on the
contrary to τS , the Lorentzian length L(γ) computed in any open subset U ⊂ S of course agrees
with the one computed in S, which is why we do not bother to specify S in the notation L(γ).

Lemma A.17. Let y ∈ J+(x) and z ∈ J+(y), then τS(x, z) ≥ τS(x, y) + τS(y, z).

Proof. The same exact proof than in the regular setting (see for instance [Min19, Theorem 2.32])
works in our case, and we repeat it here for the reader to get a grasp of the Lorentzian specificities.
If τ(x, y) or τ(y, z) is infinite, then one construct easily by concatenation of segments of them
causal curves of arbitrarily large length going from x to z, which prove the inequality (with
equality sign). Assume now that τ(x, y) and τ(y, z) are both finite, let ε > 0 and γ, σ be
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causal curves respectively from x to y and from y to z such that L(γ) ≥ τS(x, y) − ε and
L(σ) ≥ τS(y, z) − ε. Then the causal curve ν equal to the concatenation of γ and σ goes from x
to z, hence τS(x, z) ≥ L(ν) = L(γ) +L(σ) ≥ τS(x, y) + τS(y, z) − 2ε by the definition of τS , which
proves the claim by letting ε converge to 0. □

It is important to keep in mind that all the usual inequalities, suprema and infima encountered
in Riemannian geometry when dealing with lengths of curves and geodesics are exchanged in
Lorentzian geometry (for causal curves), as the reverse triangle inequality of Lemma A.17 already
showed. The best way to understand this phenomenon (confusing at first sight), is for the reader
to explicitly check in the case of the Minkoswki plane R1,1 that timelike geodesics realize the
maximal length of a causal curve between two points. We now generalize this observation in the
following classical result.

Proposition A.18. In a singular X-surface S, a future causal curve γ : I → S is geodesic up to
reparametrization if, and and only if it is locally maximizing, namely if for any t ∈ I there exists
a connected neighbourhood It = [at ; bt] of t in I and a connected open neighbourhood Ut of γ(t)
in S, such that γ(It) ⊂ Ut and

L(γ|It) = τUt(γ(at), γ(bt)).
If I = [a ; b] and L(γ) = τS(γ(a), γ(b)) then we say that γ is maximizing. In this case γ is in
particular locally maximizing, hence a geodesic (of timelike signature if moreover L(γ) > 0).

Proof. We first prove that a maximizing causal curve γ : [a ; b] → S is locally maximizing. For
any a < t < b we have:
(A.4) L(γ|[a;t]) + L(γ|[t;b]) = L(γ) = τS(γ(a), γ(b)) ≥ τS(γ(a), γ(t)) + τS(γ(t), γ(b))
according to the reverse triangular inequality (Lemma A.17). Since on the other hand L(γ|[a;t]) ≤
τS(γ(a), γ(t)) and L(γ|[t;b]) ≤ τS(γ(t), γ(b)) by the definition of τS , both of the latter inequalities
have to be equalities to match (A.4). Applying twice this argument to at ∈ [a ; b] and then bt ∈
[at ; b] we obtain L(γ|[at;bt]) = τS(γ(at), γ(bt)) ≥ τUt(γ(at), γ(bt)), the latter inequality following
from the definition of τ as a supremum. On the other hand L(γ|[at;bt]) ≤ τUt(γ(at), γ(bt)) by
definition of τUt , hence L(γ|[at;bt]) = τUt(γ(at), γ(bt)), i.e. γ is locally maximizing.

The first claim of the Proposition is classical for causal curves of regular Lorentzian manifolds,
and is for instance proved in [Min19, Theorem 2.9 and 2.20]. Since a causal curve γ of a singular
X-surface is clearly locally maximizing (respectively geodesic) if, and only if every of its regular
pieces γi appearing in (A.2) are so, this concludes the proof of the Proposition. □

The following result is well-known in the classical setting of regular Lorentzian manifolds where
it falls as a particular case of the Limit curve theorems. We give here the main arguments of
its proof to make it clear that it persists in our singular setting, refering for instance to [Min19,
§2.11 and Theorem 2.53] for more details.

Lemma A.19. Let γn be a sequence of causal curves in a globally hyperbolic singular X-surface
S joining two points x and y. The (γn) have then uniformly bounded arclength with respect to
a fixed Riemannian metric h on S. Let σn denote the reparametrization of γn by h-arclength.
Then there exists a causal curve σ from x to y and a subsequence σnk

of σn converging to σ in
the C0-topology. Moreover lim supL(σnk

) ≤ L(σ) < +∞.

Proof. The first important and classical fact is:

Fact A.20. For any relatively compact normal convex neighbourhood U of a X-surface S (not
necessarily globally hyperbolic), causal curves contained in U are equi-Lipschitz, of uniformly
bounded Riemannian length, and leave U in a uniform bounded time. Namely there exists a
constant K > 0, a time-function f and a Riemannian metric h on U , such that for any causal
curve γ in U :

(1) γ may be reparametrized by f to be K-Lipschitz,
(2) with this reparametrization, γ leaves U in a time bounded by K,
(3) the arclength of γ for h is bounded by K.
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Proof. We explain the main idea leading to these properties for a causal curve γ contained in
a relatively compact normal convex neighbourhood U of p ∈ S∗, and refer to [BEE96, p.75]
and [Min19, Theorem 1.35, Remark 1.36 and Theorem 2.12] for more details. Denoting by g
the Lorentzian metric of S∗, let x = (x1, x2) be coordinates on U such that gp(∂x1, ∂x1) = −1,
gp(∂x2, ∂x2) = 1 and gp(∂x1, ∂x2) = 0. Then there exists ε > 0 such that, possibly shrinking U
further around p, the timelike cones of the Lorentzian metric −(1+ε)dx2

1+dx2
2 of U strictly contain

the causal cones of g (this is indeed true at p by assumption, hence on a neighbourhood of it by
continuity of g). Introducing the Riemannian metric h = dx2

1 + dx2
2 on U and K0 :=

√
2 + ε > 0,

this inclusion translates as ∥u∥h < K0dx1(u) for any g-causal vector u, hence as

(A.5)
∫ t

0

∥∥γ′(t)
∥∥

h < K0(x1(γ(t)) − x1(γ(0)))

by integration. This last inequality shows that that the arclength of causal curves contained in
U for h is uniformly bounded, that x1 is strictly increasing over them, hence that they leave U
in a uniformly bounded time when reparametrized by x1, and that they are are moreover equi-
Lipschitz for this reparametrization. Note that for any function f sufficiently close to x1, the
causal curves in U retain these uniform properties when reparametrized by f (possibly changing
the constants).

To conclude the proof we only have to argue that these properties persist on the neighbourhood
of a singular point p. We first consider normal convex neighbourhoods U− and U+ in S∗, respec-
tively avoiding the future and past timelike quadrants at p and such that U := U− ∪U+ ∪ {p} is
a neighbourhood of p. We next choose coordinates (x1, x2) on U so that x1 is sufficiently close to
the respective functions x±

1 of the previous discussion on the neighbourhoods U± for the uniform
behaviours to happen. Property (1) of Definition A.9 implies then that x1 is strictly increasing on
any causal curve γ in U , hence that γ leaves U in uniformly bounded time. When reparametrized
by x1, the causal curves of U are moreover clearly equi-Lipschitz and of uniform bounded length
for a fixed Riemannian metric, since the inequality (A.5) does not take into account the singular
point p. □

Since the causal curves γn join x to y, they are contained in J+(x) ∩ J−(y) which is relatively
compact by global hyperbolicity. Since S is in particular strongly causal by global hyperbolicity,
we can moreover cover J+(x) ∩ J−(y) by a finite number of normal convex neighbourhoods Ui

which are causally convex. We reparametrize then each γn as given by Fact A.20 in any of
the Ui, obtaining in this way an equi-Lipshitz family. Since each of the γn meets a given Ui

at most once by causal convexity, Fact A.20 moreover indicates us that the arclength of the
γn is uniformly bounded for a fixed Riemannian metric h on S. In particular, the sequence of
causal curves σn : [0 ; an] → S obtained by reparametrizing the γn by h-arclength remains equi-
Lipschitz (since the changes of parametrizations are themselves equi-Lipschitz by boundedness of
the arclengths). Since the arclengths an are bounded, we can moreover assume that (an) converges
to a ∈ ]0 ; +∞[ by passing to a subsequence. We now extend the σn to future inextendible causal
curves νn : R+ → S, i.e. such that νn(t) has no limit when t → +∞. One easily proves using Fact
A.20 that the h-arclength of the νn is infinite, and we can thus reparametrize them by h-arclength
on [an ; ∞] to an equi-Lipschitz family νn : R+ → S of causal curves.

For any m ∈ N, we can now apply Arzela-Ascoli theorem to the restriction of (νn) to [0 ;m].
This shows that a subsequence of νn|[0;m] uniformly converges to a continuous curve νm

∞ in S,
which is still Lipschitz as a uniform limit of equi-Lipschitz curves. By a diagonal argument, we
conclude to the existence of a subsequence (νnk

) of (νn) and of a continuous curve ν∞ : R+ → S
obtained as the union of the νm

∞, such that νnk
|I uniformly converges to ν∞|I for any compact

interval I ⊂ R+. It is easy to show that ν∞ is actually a causal curve as a uniform limit of
such curves (see for instance [Min19, top of p.46]), and with σ the restriction of ν∞ to [0 ; a], the
subsequence (σnk

) uniformly converges to σ.
Lastly the proof that lim supL(γnk

) ≤ L(σ) given in [Min19, Theorem 2.41] works without any
variation in our singular setting, using the decomposition (A.2) of the length into the ones of its
regular pieces. □
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A.4. Conclusion of the proof of Theorem A.1. Let S be a closed singular X-surface of class
A, hence homeomorphic to T2, b̄ be a simple closed spacelike curve in S, and πC : C → S be
the Z-covering of S for which πC∗(π1(C)) is generated by [b̄], endowed with its induced singular
X-structure.

Lemma A.21. C is a globally hyperbolic singular X-surface.

Proof. With T the automorphism of the universal cover Π: S̃ → C of C induced by b̄, Π induces
a homeomorphism from the quotient S̃/⟨T ⟩ to C. Since b̄ lifts to spacelikes curve in S̃ and S̃ is a
class A surface, each point x ∈ C admits a connected open neighbourhood U such that Π−1(U) is
the disjoint union of open sets Ui ⊂ S̃, so that any two distinct Ui ̸= Uj are not causally related,
i.e. there exists no causal curve joining a point of Ui to a point of Uj . Since S̃ is moreover strongly
causal according to Corollary A.13, we can further choose U arbitrarily small and so that each
Ui is causally convex in S̃. Now let γ : [0 ; 1] → C be a causal curve joining p = γ(0) ∈ U to
q = γ(1) ∈ U . Then γ lifts to a causal curve γ̃ from p′ in some Ui to q′ in some Uj . By definition
of the Uk’s this implies that Ui = Uj , hence that γ̃ ⊂ Ui since Ui is causally convex. In the end
γ ⊂ U , which shows the strong causality of C since x ∈ C is arbitrary and U can be chosen
arbitrarily small.

Let R denote the generator of the automorphism group of πC , positive in the sense that it is
induced by the action on S̃ of a homotopy class [ā] of closed curves of S of algebraic intersection
number î([b̄], [ā]) = 1 with b̄. We denote in the same way the action of R on S̃ and on C. Then
for x, y ∈ C, there exists a lift b of b̄ in C and k ∈ N∗ such that x and y are contained in the
interior of the unique connected compact annulus E ⊂ C bounded by b and Rk(b) (this is so by
compactness of S). For γ : [0 ; 1] → C a causal curve from x to y, we show now that γ is contained
in E. This will prove the relative compactness of J+(x) ∩ J−(y) and conclude the proof of the
Lemma. Since x, y ∈ Int(E) by assumption, there exists ε > 0 such that γ([0 ; ε[) ⊂ Int(E) and
γ(]1 − ε ; 0]) ⊂ Int(E). Furthermore by connectedness, γ cannot leave Int(E) before meeting b or
Rk(b). Moreover since C \ E has two connected components having respectively b and Rk(b) as
unique boundary components, if γ meets b (resp. Rk(b)) then it does so in two opposite directions.
But this contradicts the fact that γ is future-oriented, hence γ ⊂ E as claimed previously. □

Let ā be a closed timelike curve of S intersecting b̄ at a point x̄ = ā(0) = b̄(0), and of algebraic
intersection number î([b̄], [ā]) = 1 with it. In particular ([ā], [b̄]) is a basis of π1(S) ≃ Z2. We fix
a lift x1 ∈ π−1

C (x̄) of x̄ in C, and denote by a : [0 ; 1] → C and b1 : [0 ; 1] → C the lifts of ā and b̄
starting from x1 = a(0) = b1(0). By definition of C we have b1(1) = x1, i.e. b1 is a simple closed
curve in C. On the other hand a is a simple segment but is not closed, and x2 := a(1) = R(x1)
with R the positive generator of the covering automorphism group of πC induced by [ā]. We
denote by b2 : [0 ; 1] → C the lift of b̄ starting from x2, so that b2 = R ◦ b1. For p ∈ b1 we
denote by ap the timelike curve which is the lift of ā starting from p (for instance ax1 = a), so
that ap(0) = p and ap(1) = R(p). We introduce then the set Sp of causal curves of C from p
to R(p) which are causally homotopic to ap, i.e. homotopic through causal curves while fixing
their extremities. The following result is a version of the classical Avez-Seifert theorem (see for
instance [Min19, Theorem 4.123]), suitably adapted to our setting.

Proposition A.22. The function
(A.6) F : p ∈ b1 7→ sup

σ∈Sp

L(σ) ∈ [0 ; ∞[

has finite values, is continuous, and moreover for any p ∈ b1 there exists σ ∈ Sp such that
L(σ) = F (p).

Proof. Let p ∈ b1 and σn ∈ Sp be a sequence of causal curves such that limL(σn) = F (p). Since
C is globally hyperbolic according to Lemma A.21, there exists according to Lemma A.19 a sub-
sequence σnk

converging to a causal curve σ from p to R(p). In any normal convex neighbourhood
U , there exists εU > 0 such that for any causal curve γ contained in V where V̄ ⊂ U , all the causal
curves εU -close to γ (for a fixed auxiliary complete Riemannian metric and its induced distance
on C) are contained in U and causally homotopic to γ. Since J−(p) ∩ J+(R(p)) is compact by
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global hyperbolicity and contains any curve of Sp, we can cover J−(p) ∩ J+(R(p)) by a finite
number of normal convex neighbourhoods as before and conclude to the existence of ε > 0 such
that for any γ ∈ Sp, any causal curve ε-close to γ is causally homotopic to it. Hence for any large
enough k, σ is causally homotopic to σnk

and thus to ap, i.e. σ ∈ Sp. Hence L(σ) ≤ F (p) by
definition of F , and since F (p) = limL(σnk

) ≤ L(σ) according to Lemma A.19 this shows that
F (p) = L(σ) < +∞ and prove the first and third claims.

The proof that F is lower semi-continuous is a straightforward adaptation of [Min19, Theorem
2.32], to which we refer for more details. Let p ∈ b1, ε > 0 be such that 0 < 3ε < F (p) and
γ ∈ Sp so that L(γ) > F (p) − ε > 0. We slightly modify γ for it to be timelike and still satisfy
this last inequality. We choose then p′ ∈ γ close enough to p so that L(γ|[p;p′]) < ε and q′ ∈ γ
close enough to R(p) so that L(γ|[q′;R(p)]) < ε, hence L(γ|[p′;q′]) > F (p) − 3ε > 0. If p′ and q′

are close enough to p and R(p), then the respective past and future timelike quadrants U and V
in normal convex neighbourhoods of p′ and q′ are neighbourhoods of p and R(p), I = U ∩ b1 is
a neighbourhood of p in b1, and R(I) a neighbourhood of R(p) in b2. For any x ∈ I, the causal
curve γx from x to R(x) formed by first following the geodesic [x ; p′]U , then γ|[p′;q′] and finally
[q′ ;R(x)]V is then causally homotopic to ax, and F (x) ≥ L(γx) ≥ L(γ|[p′;q]) > F (p) − 3ε which
proves the lower semi-continuouty.

Assume now by contradiction that F is not upper semi-continuous, i.e. that there exists
pn → p in b1 and ε > 0 such that F (pn) ≥ F (p) + 2ε for any n. Then with γn ∈ Spn such that
L(γn) ≥ F (pn) − ε, since pn converges to p and R(pn) to R(p), Lemma A.19 shows the existence
of a causal curve γ from p to R(p) to which a subsequence γnk

converges. Indeed with p′ ∈ I−(p)
and q′ ∈ I+(R(p)) sufficiently close to p and R(p), there exists for any large enough n timelike
geodesics γ−

n and γ+
n respectively from p′ to pn and from R(pn) to q′, contained in normal convex

neighbourhoods of p′ and q′. We can now directly apply Lemma A.19 to the sequence of causal
curves formed by following γ−

n , γn and γ+
n , and restrict the obtained limit curve to its segment

from p to R(p). We have thus according to Lemma A.19 and by assumption on L(γn) and F (pn):
L(γ) ≥ lim supL(γnk

) ≥ lim supF (pnk
) − ε ≥ F (p) + ε. But the argument of the first paragraph

of this proof shows that γ is causally homotopic to ap, and this last inequality contradicts shows
the definition of F (p), which concludes the proof. □

We can finally conclude the proof of Theorem A.1 thanks to the following result.

Theorem A.23. Let S be a closed singular X-surface of class A. Then any simple closed timelike
(resp. spacelike) curve in S admits a freely homotopic simple closed timelike (resp. spacelike)
geodesic.

Proof. We prove the claim for a simple closed timelike curve ā, and the proof follows then in
the spacelike case by replacing the metric of S with its opposite. According to Proposition A.16,
there exists a simple closed spacelike curve b̄ intersecting ā at a single point x̄ = ā(0) = b̄(0). We
use the notations introduced before Proposition A.22 for the Z-covering πC : C → S of S such
that πC∗(π1(C)) = ⟨[b̄]⟩, for the lifts a, bi and xi (i = 1, 2) of ā, b̄ and x̄, and for the covering
automorphism R induced by the action of [ā]. With this setup, we want to find a simple timelike
geodesic segment γ : [0 ; l] → C, such that γ(0) ∈ b1 and γ(l) = R(γ(0)) ∈ b2 and homotopic
(while fixing its extremities) to aγ(0). We recall that ap denotes for p ∈ b1 the unique lift of ā
starting from p. According to Proposition A.22, the function F defined in (A.6) is continuous
and finite on the compact set b1, and reaches thus its maximum at a point p0 ∈ b1. There exists
moreover according to the same Proposition a causal curve γ ∈ Sp0 such that

(A.7) L(γ) = F (p0) = sup
p∈b1

sup
σ∈Sp

L(σ).

In particular, note that L(γ) ≥ L(a) = L(ā) > 0.
We now prove that γ : [0 ; 1] → C is locally maximizing, hence that it is a timelike geodesic up

to reparametrization according to Proposition A.18. Indeed let t ∈ [0 ; 1], U be a normal convex
neighbourhood of γ(t) and I = [a ; b] be a connected neighbourhood of t in [0 ; 1] such that γ(I) ⊂
U . Then the unique geodesic segment [γ(a) ; γ(b)]U of U from γ(a) to γ(b) is (future) timelike,
and homotopic to γ|I through causal curves while fixing the extremities. In other words the
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curve ν obtained by concatenating γ|[0;a], [γ(a) ; γ(b)]U and γ|[b;1] is in Sp0 , and thus L(ν) ≤ L(γ)
according to (A.7). But on the other hand L([γ(a) ; γ(b)]U ) = τU (γ(a), γ(b)) ≥ L(γ|[a;b]) according
to Proposition A.18, hence L(ν) ≥ L(γ). The latter inequality has thus to be an equality, which
can happen only if τU (γ(a), γ(b)) ≥ L(γ|[a;b]). This proves that γ is locally maximizing, as we
had claimed.

Let reparametrize γ : [0 ; l] → C to be geodesic. Since C is strongly causal according to Lemma
A.21, it contains in particular no closed timelike curve, and γ is thus injective. Furthermore,
γ(]0 ; l[) is contained in the interior of the unique compact connected annulus E of C bounded by
b1 and b2 as we have already seen in the second part of the proof of Lemma A.21, and in particular
γ(]0 ; l[) is thus disjoint from b1 ∪ b2. Since πC : C → S is injective in restriction to Int(E) and
πC(γ(0)) = πC(γ(l)), this proves that γ̄ = πC ◦γ : [0 ; l] → S is a simple closed timelike curve of S,
freely homotopic to a (since γ is freely homotopic to ap0 while fixing their extremities), which is
geodesic in restriction to ]0 ; l[. In a small normal convex neighbourhood U of x := γ̄(0), γ̄ is thus
the union of two future timelike geodesic segments I− and I+ of extremity x, and respectively
contained in the past timelike and future timelike quadrants at x.

Assume by contradiction that γ̄ is not a geodesic, i.e. that I± are not parts of the same geodesic
segment of U . Then according to Proposition A.18, there exists two points x± ∈ I± distinct from
x such that the unique geodesic segment [x− ;x+]U from x− to x+ in U is future timelike and
longer than the segment γ̄|[x−;x+] of γ̄ going from x− to x+:
(A.8) L([x− ;x+]U ) > L(γ̄|[x−;x+]).
With γ̄∗ the segment of γ̄ from x+ to x−, the curve ν̄ formed by following γ̄∗ and then [x− ;x+]U
is thus future timelike, and satisfies L(ν̄) > L(γ̄) according to (A.8). We denote by ν its lift in
S starting from the lift y ∈ b1 of the (unique) intersection point of [x− ;x+]U with b̄. Observe
that, if x± are chosen sufficiently close to x then ν is freely homotopic to ay, i.e. ν ∈ Sq. Since
L(ν) > L(γ) this contradicts the characterization of γ in (A.7) as the maximizer of L(σ) for
p ∈ b1 and σ ∈ Sp, which shows that γ̄ is a geodesic and concludes the proof. □

Corollary A.24. Let c ∈ DefΘ(T2,Σ) be an equivalence class of class A singular X-structures
on a closed surface S. Then there exists a basis (A,B) of π1(T2), such that any µ ∈ c admits
simple closed timelike and spacelike goeodesics a and b respectively freely homotopic to A and B.
In particular a and b intersect at a single point.

Proof. Theorem A.23 and Proposition A.16 yield a pair of simple closed timelike and spacelike
geodesics defining a basis of π1(T2). In the other hand, the action of Homeo0(S,Σ) sends such a
pair on a freely homotopic one, which proves the claim. □

Appendix B. Some classical results on the rotation number

We recall that for any orientation-preserving circle homeomorphism T ∈ Homeo+(S1), the
minimal set of T (i.e. by definition, the minimal non-empty closed and T -invariant subset of S1)
is either a finite set if T has a periodic orbit, S1 if T is minimal (i.e. has all its orbits dense),
or is exceptional i.e. a Cantor set. The following result is classical, but we give here a proof for
sake of completeness.

Lemma B.1. Let f ∈ Homeo+(S1), and t ∈ [0 ; 1] 7→ gt ∈ Homeo+(S1) be a continuous map
such that:

– g0 = idS1,
– t ∈ [0 ; 1] 7→ gt(x) ∈ S1 is increasing for any x ∈ S1,
– and for any t ∈ [0 ; 1], ft := gt ◦ f does not have an exceptional minimal set.

Then the map F : t ∈ [0 ; 1] 7→ ρ(gt ◦ f) ∈ S1 is:
(1) continuous;
(2) non-decreasing.

Assume moreover that t ∈ [0 ; 1] 7→ gt(x) ∈ S1 is strictly increasing for any x ∈ S1. Then:
(3) F is strictly increasing at any t0 ∈ [0 ; 1] such that ρ(gt0 ◦ f) ∈ [R \ Q], i.e. there exists

ε > 0 such that for any s ∈ [0 ; 1] with 0 < |s− t0| < ε: ρ(gs ◦ f) ̸= ρ(gt0 ◦ f).
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Assume finally that ρ(f) is irrational. Then:
(4) For any ε > 0, there exists η > 0 such that for any rational r ∈ [ρ(f) ; ρ(f) + η] ⊂ S1 and

any x ∈ S1, there exists t ∈ [0 ; ε] such that the orbit of x under gt ◦ f is periodic and of
cyclic order r. In particular ρ(gt ◦ f) = r.

The obvious analogous statements hold for decreasing maps, and for a family t 7→ f ◦ gt of
deformations.

We recall that in a singular closed X-surface, the holonomy f of a lightlike foliation on any
section S has according to Lemma 2.30 no exceptional minimal set, and satisfy thus the hypotheses
of Lemma B.1 with the rotation gt = RS

[t] around S (for any continuous parametrization of S).

Proof of Lemma B.1. The claim for t 7→ f◦gt and increasing maps follows from the one concerning
t 7→ gt ◦ f and decreasing maps by taking the inverse, since ρ(f−1) = −ρ(f) for any circle
homeomorphism.
(1) The continuity follows readily from the ones of the rotation number (see Proposition 3.18)
and of t 7→ gt.
(2) The assumptions on (gt) ensure the existence of a family of lifts Gt ∈ D(S1) of gt such that
for any x ∈ R: t 7→ Gt(x) is non-decreasing. Let F be a lift of f , and s ≤ t ∈ [0 ; 1]. Then
Gs ◦ F (0) ≤ Gt ◦ F (0) and if we assume that (Gs ◦ F )n(0) ≤ (Gt ◦ F )n(0) for some n ∈ N, then
since F and the Gu are strictly increasing and x 7→ Gu(x) is non-decreasing for any x ∈ R we
obtain: (Gs ◦ F )n+1(0) ≤ Gt(F ◦ (Gs ◦ F )n)(0) ≤ (Gt ◦ F )n+1(0). In the end (Gs ◦ F )n(0) ≤
(Gt ◦ F )n(0) for any n ∈ N, which shows that τ(Gs ◦ F ) ≤ τ(Gt ◦ F ) according to (3.12). Hence
u ∈ [0 ; 1] 7→ τ(Gu ◦ F ) ∈ R is non-decreasing and is a lift of the map u ∈ [0 ; 1] 7→ ρ(gu ◦ f) ∈ S1,
which proves the claim.
(3) Since ft0 = gt0 ◦ f has no exceptional minimal set and has irrational rotation number, it is
minimal. There exists thus according to the pigeonhole principle a sequence nk ∈ N such that
fnk

t0 ([0]) converges to [0], and f
nk+1
t0 ([0]) ∈ ]fnk

t0 ([0]) ; [0][ for any k. Since t ∈ [0 ; 1] 7→ fnk
t ([0])

is moreover strictly increasing and continuous for any k, for any ε > 0 there exists K ∈ N such
that fnK+1

t0+ε ([0]) ∈ ][0] ; fnK
t0+ε([0])[. This prevents in particular the orbits of [0] under ft0+ε and

ft0 to have the same cyclic orders, and therefore ρ(ft0+ε) ̸= ft0 according to Proposition 3.21. A
symmetric argument can be done for t0 − ε with a sequence converging to [0] from above.
(4) Since ρ(f) is irrational, F is not constant on a neighbourhood of 0 according to (3), and there
exists thus by continuity of F some η > 0 such that [ρ(f) ; ρ(f) + η] ⊂ [ρ(f) ; ρ(fε)]. Then for
any rational r ∈ [ρ(f) ; ρ(f) + η], there exists because of the continuity and the monotonicity of
F some t1 ≤ t2 ∈ ]0 ; ε] and some small ε′ > 0 such that:

– F (t) ∈ [ρ(f) ; r[ for any t ∈ [0 ; t1[,
– F ([t1 ; t2]) = {r},
– F (t) ∈ ]r ; ρ(f) + η] for any t ∈ ]t2 ; t2 + ε′].

Let x ∈ S1, and assume that x is not periodic for ft1 = gt1 ◦ f . We first assume that r ̸= [0],
which implies q ≥ 2 with r = [p

q ] in reduced form. Denoting (x1, . . . , xn) ∼ r if (x1, . . . , xn) has
the same cyclic order than ([0], r, 2r, . . . , (q − 1)r), we have for any θ ∈ S1:{

([0], θ, . . . , (q − 1)θ) ∼ r and qθ ∈ Cl(I−
θ )
}

⇔ θ ∈ ]r − 1
q

; r],{
([0], θ, . . . , (q − 1)θ) ∼ r and qθ ∈ Cl(I+

θ )
}

⇔ θ ∈ [r ; r + 1
q

[,

with I−
θ (respectively I+

θ ) the connected component of S1 \ {0, θ, . . . , (q− 1)θ} having [0] as right
extremity (respectively as left extremity). It is well-known that using the interpretation of the
rotation number in terms of cyclic ordering of the orbits given by Proposition 3.21, the above
equivalences adapt for any T ∈ Homeo+(S1) to give the following:

(B.1a)

(B.1b)

{
(x, T (x), . . . , T q−1(x)) ∼ r and T q(x) ∈ Cl(I−

T )
}

⇔ ρ(T ) ∈ ]r − 1
q

; r],{
(x, T (x), . . . , T q−1(x)) ∼ r and T q(x) ∈ Cl(I+

T )
}

⇔ ρ(T ) ∈ [r ; r + 1
q

[,
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with I−
T (respectively I+

T ) the connected component of S1 \ {x, T (x), . . . , T q−1(x)} having x as
right extremity (respectively as left extremity). Now f q

t1(x) ̸= x since we assumed x to be non-
periodic, and since moreover ρ(ft1) = r, f q

t1(x) is actually either in I−
ft1

or in I+
ft1

according to
(B.1a) and (B.1b). If f q

t1(x) ∈ I+
ft1

, then f q
t (x) ∈ I+

ft
for any t ∈ [0 ; t1[ sufficiently close to t1 by

continuity of t 7→ f q
t (x), which implies ρ(ft) ∈ [r ; r + 1

q [ for any such t according to (B.1b) and
contradicts the definition of t1. Therefore f q

t1(x) ∈ I−
T , and since t 7→ f q

t (x) is continuous and
increasing, with moreover ρ(ft) = r for any t ∈ [t1 ; t2]: either f q

t (x) = x for some t ∈ ]t1 ; t2], or
f q

t2(x) remains in I−
ft2

. In the latter case, f q
t (x) ∈ I−

ft
for any t ∈ ]t2 ; t2 + ε′] sufficiently close to

t2, which implies ρ(ft) ∈ ]r− 1
q ; r] for such a t according to (B.1a) and contradicts the definition

of t2. In conclusion, f q
t (x) = x for some t ∈ ]t1 ; t2].

We assume now that ρ(ft1) = r = [0]. According to the interpretation of the rotation number
in terms of cyclic ordering of the orbits given by Proposition 3.21 and equations (B.1a)- (B.1b),
this is equivalent to say that the sequence (fn

t1(x))n∈N is monotonically cyclically ordered. More
precisely, the cyclic monotonicity of (fn

t (x))n∈N forces ρ(ft) to be rational according to Proposition
3.21 and to be zero by equations (B.1a)- (B.1b), and reciprocally if (fn

t (x))n∈N is not cyclically
monotonous, then equations (B.1a)- (B.1b) implies that ρ(ft) ̸= [0]. Assume by contradiction that
(fn

t1(x))n∈N is positively cyclically ordered, hence strictly since ft1(x) ̸= x by assumption. Then
since t 7→ fn

t (x) is increasing for any n, the sequence (fn
t (x))n∈N is strictly positively cyclically

ordered for any t ∈ [0 ; t1[ close enough to t1. But this implies ρ(ft) = [0] for such a t as we
have seen previously, which contradicts the definition of t1. Therefore (fn

t1(x))n∈N is negatively
cyclically ordered, and thus using again that t 7→ fn

t (x) is increasing for any n: either ft(x) = x
for some t ∈ ]t1 ; t2], or (fn

t2(x))n∈N remains strictly negatively cyclically ordered. But in the latter
case (fn

t (x))n∈N is strictly negatively cyclically ordered for any t ∈ [t2 ; t2 + ε′[ close enough to t2,
which implies ρ(ft) = [0] for such a t and contradicts the definition of t2. In conclusion ft(x) = x
for some t ∈ ]t1 ; t2], which concludes the proof. □

Appendix C. Holonomies of lightlike foliations are piecewise Möbius

We prove in this appendix that the holonomies of lightlike foliations in a singular X-surface
are piecewise Möbius maps.

A projective structure on a topological one-dimensional manifold is a (PSL2(R),RP1)-structure
consisting of orientation preserving charts, and we call projective the (PSL2(R),RP1)-morphisms
between two projective curves. We endow R with its standard projective structure for which
x ∈ R 7→ [x : 1] ∈ RP1 is a global chart, so that projective morphisms between intervals of R
are precisely the (restrictions of) homographies. We recall that geodesics of singular dS2-surfaces
have well-defined affine structures (see Definition A.5), and observe that an affine structure defines
in particular a projective structure (through the embedding R ↪→ RP1, equivariant for the natural
embedding Aff+(R) ↪→ PSL2(R)).

Definition C.1. A homeomorphism F : I → J between two projective 1-dimensional manifolds
is piecewise projective if there exists a finite number of points x1, . . . , xN in I, called the sin-
gular points of F , such that F is projective in restriction to any connected component C of
I \ {x1, . . . , xN }.

Proposition C.2. Let H : I → J be the holonomy of a lightlike foliation between two compact
connected subsets I and J of geodesics in a singular X-surface (I = J being allowed). Then H is
piecewise projective in the affine parametrizations of I and J .

Proof. Case of R1,1. In this case, the leaves of the α and β foliations are the affine lines
respectively parallel to the vector lines Re1 and Re2. On the other hand the affinely parametrized
geodesics are the affinely parametrized segments, and the holonomy between them is thus a
dilation, i.e. an affine and in particular projective transformation.

Case of dS2. If the surface is dS2, the claim follows from a series of naive but fundamental
observations. Thanks to Proposition 2.6 we can work with the hyperboloid model dS2 of the
de-Sitter space, that we will see here as the set

{
l ∈ P+(R1,2)

∣∣ spacelike
}

of spacelike half-lines
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of R1,2. We endow R3 with its standard orientation, R1,2 with its natural time-orientation for
which (x1, x2, x3) ∈ q−1

1,2(R−) \ {0} is positive if x1 > 0, any Lorentzian plane P ⊂ R1,2 with
the induced orientation for which (P⊥

in , P ) is positively oriented (with P⊥
in the normal, for the

standard euclidean metric, pointing inward the timelike cone), and lastly any plane which is
either null (equivalently such that P ∩ q−1

1,2(0) is a line) or spacelike with the orientation such
that (P⊥

+ , P ) is positively oriented (with P⊥
+ the euclidean normal pointing in the positive causal

cone). Note that all of these orientations are SO0(1, 2)-invariant, and endow in particular dS2

and each of its geodesics with an orientation. The tangent spaces of dS2 are indeed identified
with Lorentzian planes, and its geodesics with connected components of P ∩ dS2 with P a plane
of the same signature than the geodesic. Observe that we identified here P with the set of half-
lines that it contains, a slight abuse of notations that we will frequently repeat below for any
homothety-invariant subset of R1,2, in the hope to simplify the reading.

We now describe an affine parametrization of geodesics of dS2 by the (SO0(1, 2)-invariant)
positive copy C :=

{
l ∈ P+(R1,2)

∣∣ lightlike and positive
}

of its conformal boundary. The latter is
equipped with the projective structure for which t ∈ R 7→ gt(l) ∈ C is a projective parametrization
for any one-parameter subgroup {gt}t∈R ⊂ SO0(1, 2) and l ∈ C. To this end, we define as follows
two SO0(1, 2)-equivariant natural projections

πα/β : l ∈ dS2 7→ lα/β ∈ C

whose fibers are the α and β lightlike foliations of dS2. Any l ∈ dS2 is contained in exactly two
null planes N l

α/β defining two lightlike geodesics nl
α/β containing l (the connected components of

N l
α/β ∩dS2 containing l), and we name them in such a way that with lα/β = N l

α/β ∩C, the positive
orientation of nl

α (respectively nl
β) goes from l to lα (resp. lβ). We emphasize that πα(l) ̸= πβ(l)

and l = nl
α ∩ nl

β for any l ∈ dS2, and that

l ∈ dS2 7→ (πα(l), πβ(l)) ∈ C2 \ {diagonal} ≡ dS2

is a SO0(1, 2)-bijection which naturally identifies dS2 with dS2 once C is projectively identified
with RP1 (compare with Remark 2.3).

For any plane S ⊂ R1,2 and s ⊂ dS2 a geodesic defined by S (i.e. a connected component of
S∩dS2) which is not α-lightlike, we now claim that the map πα|s : s → C is projective for the affine
parametrization of s and the projective structure of C. The same proof shows of course that πβ|s
is projective if s is not β-lightlike. Indeed the stabilizer of S in SO0(1, 2) contains a one-parameter
subgroup (gt) acting transitively on s, and t ∈ R 7→ gt(x) ∈ s is an affine parametrization of s for
any x ∈ s. The equivariance πα(gt(x)) = gt(πα(x)) of πα concludes then the proof of the claim by
definition of the projective structure of C. Observe moreover that, unless s is α-lightlike (in which
case πα|s is by definition constant), πα|s is injective and defines thus a projective isomorphism
onto its image (which equals C if s is spacelike and an open proper subset in the remaining cases).

But for any two geodesics s1, s2 of dS2 having the same signature, the holonomy H from s1 to
s2 satisfies by definition the invariance πα|s2◦H = πα|s1 on the open subset where this equality
is well-defined, showing that H is a projective isomorphism since the πα|si are such.

General case. Let (S,Σ) be a singular X-surface. Without lost of generality, we can assume
that H is the holonomy of the α foliation between compact connected subsets I and J of geodesics
of S. Since Σ is discrete and Fα continuous, the set IΣ of points p ∈ I such that [p ;H(p)]α∩Σ ̸= ∅
is discrete in I, hence finite (we denote by [p ;H(p)]α the interval of the oriented leaf Fα(p) from
p to H(p)). Let C be a connected component of I \ IΣ. Then for any x ∈ C, we can cover
[x ;H(x)]α by a finite chain of compatible regular X-charts. This expresses H|C as a finite
composition of holonomies Hi between geodesics which are, for any i, contained in the domain
of a given regular X-chart. We proved previously that each Hi is projective, and H|C is thus
projective as a composition of such maps. This shows that H is piecewise projective and concludes
the proof. □
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Appendix D. Singular constant curvature Lorentzian surfaces as Lorentzian
length spaces

We explain in this paragraph how globally hyperbolic singular X-surfaces give examples of the
Lorentzian length spaces introduced in [KS18].

The latter are natural Lorentzian counterparts of the usual metric length spaces (for which
[BH99] is a classical reference), which give a synthetic approach to Lorentzian geometry by for-
getting the metric itself and rather looking at its main geometric byproducts. Existing examples
included for now (beyond smooth Lorentzian metrics) the Lorentzian metrics with low regular-
ity, the cone structures [KS18, §5], the so-called “generalized cones” [AGKS21] and some gluing
constructions [BR24]. To the best of our knowledge and understanding, the singular constant
curvature Lorentzian surfaces as we introduce them here were not considered yet in the literature
as examples of Lorentzian length spaces. It seems to us that they provide natural examples, as
the constant curvature Riemannian metrics with conical singularities give important examples of
metric length spaces.

We will quickly describe the relation with Lorentzian length spaces without entering into too
much details, most of the technical work having been done in the Appendix A. Until the end
of this section, S denotes a singular X-surface endowed with the distance dS induced by a fixed
complete Riemannian metric.

The structure of a causal space on a set X is defined in [KS18, Definition 2.1] by a causal
relation ≤ (formally a reflexive and transitive relation) and a chronological relation ≪ (formally
a transitive relation contained in ≤) on X. We endow of course our singular X-surface S with
the chronological and causal relations defined by the timelike and causal futures (see Definition
A.10), namely by definition:

(1) x ≤ y if, and only if y ∈ J+(x);
(2) x ≪ y if, and only if y ∈ I+(x).

On a metrizable causal space (X, d,≤,≪), a time-separation function is then defined as a map
τ : X × X → [0 ; +∞] such that x ≰ y implies τ(x, y) = 0, τ(x, y) > 0 if and only if x ≪ y, τ
satisfies the reverse triangular inequality

(D.1) τ(x, z) ≥ τ(x, y) + τ(y, z)

for any x ≤ y ≤ z, and τ is lower semi-continuous. The two first conditions are by definition
satisfied by the time-separation function τS of S defined in (A.3), which also satisfies the reverse
triangular inequality (D.1) according to Lemma A.17. Lastly, the lower semi-continuity of τS is
proved in the same way than the second part of the proof of Proposition A.22, which does not rely
on global hyperbolicity (see also [Min19, Theorem 2.32]). (S, dS ,≤,≪, τS) is then a Lorentzian
pre-length space as defined in [KS18, Definition 2.8], and it is moreover automatically causally
path connected as defined in [KS18, Definition 2.18, Definition 3.1].

We assume from now on that S is globally hyperbolic in the sense of Definition A.10. In this case
the Lorentzian pre-length space (S, dS ,≤,≪, τS) satisfies some additional nice properties. Lemma
A.19 first shows that S is causally closed in the sense that if pn ≤ qn respectively converge to
p and q, then p ≤ q. It is moreover easy to show that the restriction of τS to a normal convex
neighbourhood of S (see Proposition A.7) gives a localizing neighbourhood as defined in [KS18,
Definition 3.16], hence that (S, dS ,≤,≪, τS) is strongly localizable.

The last step to Lorentzian length spaces mimics the definition of usual metric length spaces.
The τS-length of a causal curve γ : [a ; b] → S is defined in [KS18, Definition 2.24] as

LτS (γ) = inf
{

N∑
i=0

τS(γ(ti), γ(ti+1))
∣∣∣∣∣ N ∈ N, a = t0 < t1 < · · · < tN = b

}
.

Note that our usual notion of causal curve coincides with the one of [KS18, Definition 2.18]
according to [KS18, Lemma 2.21]. Using [KS18, Proposition 2.32] and the decomposition (A.2)
of the usual Lorentzian length L(γ) into the ones of its regular pieces, one easily shows that
L(γ) = LτS (γ). This last equality shows the following.
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Proposition D.1. Any globally hyperbolic singular X-surface S has a natural structure of a
regular Lorentzian length space (S, dS ,≤,≪, τS) as defined in [KS18, Definition 3.22].

We recall that according to Proposition A.16, class A closed singular X-surfaces admit simple
closed spacelike curves, and that Z-coverings with respect to such curves give according to Lemma
A.21 examples of globally hyperbolic singular X-surfaces, hence of regular Lorentzian length
spaces.
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