
HAL Id: hal-04661959
https://hal.science/hal-04661959v1

Preprint submitted on 26 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CVA Sensitivities, Hedging and Risk
Stéphane Crépey, Botao Li, Hoang Nguyen, Bouazza Saadeddine

To cite this version:
Stéphane Crépey, Botao Li, Hoang Nguyen, Bouazza Saadeddine. CVA Sensitivities, Hedging and
Risk. 2024. �hal-04661959�

https://hal.science/hal-04661959v1
https://hal.archives-ouvertes.fr

CVA Sensitivities, Hedging and Risk ∗

S. Crépey†, B. Li‡, H. Nguyen§, B. Saadeddine¶

July 26, 2024

Abstract
We present a unified framework for computing CVA sensitivities, hedging

the CVA, and assessing CVA risk, using probabilistic machine learning meant
as refined regression tools on simulated data, validatable by low-cost compan-
ion Monte Carlo procedures. Various notions of sensitivities are introduced
and benchmarked numerically. We identify the sensitivities representing the
best practical trade-offs in downstream tasks including CVA hedging and risk
assessment.

Keywords: learning on simulated data; sensitivities; CVA pricing, hedging, and
risk; neural networks; value-at-risk and expected shortfall; economic capital; model
risk.

1 Introduction
This work illustrates the potential of probabilistic machine learning for pricing
and Greeking applications, in the challenging context of CVA computations. By
probabilistic machine learning we mean machine learning as refined regression tools
on simulated data. Probabilistic machine learning for CVA pricing was introduced
in Abbas-Turki, Crépey, and Saadeddine (2023). Here we extend our approach to
encompass CVA sensitivities and risk. The fact that probabilistic machine learning
is performed on simulated data, which can be augmented at will, does not mean that
there are no related data issues. As always with machine learning, the quality of the

Acknowledgement: We are grateful to Moez Mrad, head of XVA, counterparty risk, collateral, and
credit derivatives quantitative research at Crédit Agricole CIB, and to an anonymous referee, for
inspiring exchanges.

∗The python code of the paper is available on https://github.com/botaoli/CVA-sensitivities-h
edging-risk.

†Email: stephane.crepey@lpsm.paris. LPSM/Université Paris Cité, France. Corresponding
author.

‡Email: botaoli@lpsm.paris. LPSM/Université Paris Cité. The research of B. Li is funded
by the Chair Capital Markets Tomorrow: Modeling and Computational Issues under the aegis of
the Institut Europlace de Finance, a joint initiative of Laboratoire de Probabilités, Statistique et
Modélisation (LPSM) / Université Paris Cité and Crédit Agricole CIB, with the support of Labex
FCD (ANR-11-LABX-0019-01).

§Email: hdnguyen@lpsm.paris. LPSM/Université Paris Cité. The research of H.D. Nguyen is
funded by a CIFRE grant from Natixis.

¶Email: bouazza.saadeddine2@ca-cib.com. Quantitative research GMD, Credit Agricole CIB,
Paris.

1

https://github.com/botaoli/CVA-sensitivities-hedging-risk
https://github.com/botaoli/CVA-sensitivities-hedging-risk

data is the first driver of the success of the approach. The variance of the training
loss may be high and jeopardize the potential of a learning approach. This was
first encountered in the CVA granular defaults pricing setup of Abbas-Turki et al.
(2023) due to the scarcity of the default events compared with the diffusive scale of
the risk factors in the model. Switching from prices to sensitivities in this paper is
another case of increased variance. But with probabilistic machine learning we can
also develop suitable variance reduction tools, namely oversimulation of defaults
in Abbas-Turki et al. (2023) and common random numbers in this work. Another
distinguishing feature of probabilistic machine learning, which is key for regulated
banking applications, is the possibility to assess the quality of a predictor by means
of low-cost companion Monte Carlo procedures.

1.1 Outline of the Paper and Generalities

Section 2 introduces different variants of bump sensitivities, benchmarked numeri-
cally in a CVA setup in Section 3. Section 4 shows how a conditional (e.g. future)
CVA can be learned from simulated data (pricing model parameters and paths and
financial derivative cash flows), both in a baseline calibrated setup and in an en-
riched setup also accounting for recalibration model shifts. Sections 5 and 6 develop
a framework for internal modeling of CVA and/or counterparty default risks, en-
tailing various notions of CVA sensitivities. Section 7 concludes as for which kind
of sensitivity and numerical scheme provide the best practical trade-off for various
downstream tasks including CVA hedging and risk assessment.

A vector of partial derivatives with respect to x is denoted by ∂x (or ·′ when
x is clear from the context). All equations are written using the risk-free asset
as a numéraire and are stated under the probability measure which is the blend
of physical and pricing measures advocated for XVA computations in Albanese,
Crépey, Hoskinson, and Saadeddine (2021, Remark 2.3), with related expectation
operator denoted below by E. All cash flows are assumed square integrable. Some
standing notation is listed in Table 1.

All neural network trainings are done using the PyTorch module and the Adam
optimizer. Linear regressions are implemented using a truncated singular value
decomposition (SVD) approach. Unless explicitly stated, we always include a ridge

ρ
ee
ee

model parameters, i.e. exogenous
model parameters ε and initial
conditions of model risk factors

Y
ee
ee

CVA diffusive risk factor process
with initial condition y
(if constant) or ι (if randomized)

% randomization of ρ X default indicator processes of clients
ω
ee

stochastic drivers
(e.g. Brownian paths)

Z
ee

market price process, with
initial condition z0

ρ0 calibrated value of ρ ξ(ρ;ω) product payoff
·̄ 2ρ0 − · Π0 Eξ(ρ)
·θ neural net function with parameters θ ς(ρ;ω) ξ(ρ;ω)− ξ(ρ̄;ω)
q number of market instruments Σ0(ρ) Eς(ρ)
m
ee

number of Monte Carlo paths
of the pricing model

∆
ee

CVA hedging ratio or linear
coefficients of a CVA proxy

p
ee

number of model parameters,
i.e. dimension of ρ

Γ
ee

diagonal quadratic coefficients
of a CVA proxy

Table 1: Standing notation.

2

(i.e. Tikhonov) regularization term in the loss function to stabilize trainings and
regressions. Our computations are run on a server with an Intel(R) Xeon(R) Gold
5217 CPU and a Nvidia Tesla V100 GPU.

2 Fast Bump Sensitivities
In this section we consider a time-0 option price Π0(ρ) = Eξ(ρ), where the payoff
ξ(ρ) ≡ ξ(ρ;ω) depends on constant model parameters ρ and (implicitly in the
shorthand notation ξ(ρ)) on the randomness ω of the stochastic drivers of the
model risk factors with respect to which the expectation is taken above. The model
parameters ρ encompass the initial values of the risk factors of the pricing model,
as well as all the exogenous (constant, in principle) model parameters, e.g. the
value of the volatility in a Black-Scholes model. For each constant ρ, the price
Π0(ρ) can be estimated by Monte Carlo. Our problem in this part is the estimation
of the corresponding sensitivities ∂ρΠ0(ρ0), at a baseline (in practice, calibrated)
value ρ = ρ0 of the model parameters. Such sensitivities lie at the core of any
related hedging scheme for the option. They are also key in many regulatory capital
formulas.

Monte Carlo estimation of sensitivities in finance comes along three main streams
(Crépey, 2013, Section 6.6): (i) differentiation of the density of the underlying pro-
cess via integration by parts or more general Malliavin calculus techniques, assuming
some regularity of this process; (ii) cash flows differentiation, assuming their dif-
ferentiability, in chain rule with the stochastic flow of the underlying process; (iii)
Monte Carlo finite differences, biased but generic, which are the Monte Carlo version
of the industry standard bump sensitivities. But (i) suffers from intrinsic variance
issues. In contemporary technology, (ii) appeals to adjoint algorithmic differentia-
tion (AAD). A randomized version of this approach is provided by Sections 5.3–5.5
of Saadeddine (2022), targeted to model calibration, which requires sensitivities of
vanilla options as a function of their model parameters. However, the embedded
AAD layer can quickly represent important implementation and memory costs on
complex pricing problems at the portfolio level such as CVA computations: see
Capriotti, Jiang, and Macrina (2017). Such an AAD Greeking approach becomes
nearly unfeasible in the case of pricing problems embedding numerical optimiza-
tion subroutines, e.g. the training of the conditional risk measures embedded in the
refined CVA and higher-order XVA metrics of Albanese et al. (2021) (with Picard
iterations) or Abbas-Turki, Crépey, Li, and Saadeddine (2024) (explicit scheme
without Picard iterations).

2.1 Common Random Numbers

Under the approach (iii), first-order pointwise bump sensitivities are computed by
relaunching the Monte Carlo pricing engine with common random numbers ω for
values bumped by ±1% (typically and in relative terms) of each risk factor and/or
model parameter of interest, then taking the accordingly normalized difference be-
tween the corresponding Π0(ρ) and Π0(ρ̄), where ·̄ means symmetrization with

3

respect to ρ0, so

ρ+ ρ̄

2 = ρ0, i.e. ρ̄ = 2ρ0 − ρ. (1)

This approach requires two Monte Carlo simulation runs per sensitivity, making it
a robust but heavy procedure, which we try to accelerate by various means in what
follows.

A predictor Πθ
0(ρ) ≈ Π0(ρ) for the pricing function around ρ = ρ0 within a

suitable space of neural nets parameterized by θ readily leads to an AAD estimate
∂ρΠ0(ρ0) ≈ ∂ρΠθ

0(ρ0) for the corresponding sensitivities. However, even if ridge reg-
ularization may help in this regard, such an estimate, deemed naive AAD hereafter,
may be bad as differentiation is not a continuous operator in the supremum norm
(in other terms, functions may be arbitrarily close in sup norm but their deriva-
tives may be far from each other). Specifically, let B denote the space of the Borel
measurable functions of ρ. The pricing function

Π0(ρ) = Eξ(ρ) = E
(
ξ(%)

∣∣ % = ρ
)

(2)

(for % randomizing ρ around ρ0) can be learned from simulated pairs (%, ξ(%;ω))
based on the representation

Π0(·) = arg min
Φ∈B

E
[(
ξ(%)− Φ(%)

)2]
. (3)

To learn the function Π0(·) around ρ0, we can replace, in the optimization problem
(3), B by a suitable space of neural nets and E by a simulated sample mean Ê, with
each “vertical” (time-0) draw of % followed by an “horizontal” (across future times)
draw of ω that is implicit in ξ(%) ≡ ξ(%;ω). The ensuing minimization problem for
the weights θ of the neural net ρ 7→ Πθ

0(ρ) ≈ Π0(ρ) is then performed numerically
by Adam mini-batch gradient descent. The corresponding sensitivities ∂ρΠθ

0(ρ0) are
retrievable by AAD at negligible additional cost. However, as emphasized above,
the ensuing naive AAD sensitivities ∂ρΠθ

0 may be a poor estimate of ∂ρΠ0.
In this learning setup, the corresponding instability reflects a variance issue.

In order to cope with the increased variance due to the switch from prices to
sensitivities, a useful trick is to introduce ς(ρ;ω) := ξ(ρ;ω) − ξ(ρ̄;ω) (cf. (1)).
We can then learn the sensitivity (in the sense here of finite differences) function
ρ 7→ Σ0(ρ) := Eς(ρ), which satisfies by linearity and chain rule (as ρ̄ = 2ρ0 − ρ)

Σ′0(ρ) = Π′0(ρ) + Π′0(ρ̄), in particular ∂ρΣ0(ρ0) = 2∂ρΠ0(ρ0). (4)

For learning the function Σ0(·) locally around ρ0, with % randomizing ρ as above,
we rely on the representation Σ0(ρ) = E

(
ς(%)

∣∣ % = ρ
)
, i.e.

Σ0(·) = arg min
Φ∈B

E
[(
ς(%)− Φ(%)

)2]
. (5)

Then we replace, in the optimization problem (5), B by a linear hypothesis space
Σθ

0(ρ) = θ>(ρ− ρ0) (noting that Σ0(ρ0) = 0) and E by a simulated sample mean Ê,
with again each vertical draw of % followed by one horizontal draw of ω that is im-
plicit in ς(%). This results in a linear least-squares problem for the weights θ, solved

4

by SVD. The estimated weights θ/2 are our linear bump sensitivities estimate
for 1

2∂ρΣ0(ρ0) = ∂ρΠ0(ρ0). These sensitivity estimates are the slope coefficients of a
multilinear regression, for which confidence intervals CI scaling in 1/

√
|sample size|

are available (Matloff, 2017, Section 2.12.11). The use of each drawn set of model
parameters % twice, also via %̄ with a common ω in ς(%;ω) = ξ(%;ω) − ξ(%̄;ω),
is a common random numbers variance reduction technique as in (iii) above. For
well-chosen distributions of the randomization % of ρ, this approach results in much
more accurate sensitivities than the naive AAD approach. For simple parametric
distributions of %, the covariance matrix that appears in the regression for the first-
order sensitivities is known and invertible in closed form, which reduces the linear
regression (implemented without ridge regularization in this analytical case) to a
standard Monte Carlo and a more robust CI. Nonlinear hypothesis spaces of neural
networks trained the way described after (3) (just replacing ξ(%) and ∂ρΠθ

0(ρ0) there
by ς(%) and ∂ρΣθ

0(ρ0) here) can also be used instead of the above linear model for
Σ0(ρ). The AAD bump sensitivities are then obtained as the halved AAD sen-
sitivities of the trained (no longer linear) network ρ 7→ ∂ρΣθ

0 at ρ0 (but we lose the
confidence interval CI in this case). Similar ideas can be applied to higher order sen-
sitivities, using e.g. ξ(ρ;ω)−2ξ(ρ0;ω)+ξ(ρ̄;ω) instead of ς(ρ;ω) = ξ(ρ;ω)−ξ(ρ̄;ω)
to capture diagonal gammas. However, higher order means even more variance.
Moreover, the Jacobian trick of Section 2.3 to convert model into market sensitiv-
ities is only workable for first-order sensitivities, hence our focus on the latter in
this work.

An important ingredient in successful randomized (linear or AAD) bump sensi-
tivities is the choice of appropriate distributions for %. Since different parameters
(components of ρ) may have very different magnitudes in values and price impact
(see e.g. Figure 1 page 8 and Table 2 page 12), a linear regression may not be able
to identify the individual effect of each parameter when all are bumped simultane-
ously. To address this issue, we divide the parameters into groups. Them simulated
paths of the pricing model are then partitioned into blocks of paths such that only
one group of parameters is bumped in each subset. In addition to this, one can
use different distributions for each group or even for each parameter. Notably, we
have observed numerically that slightly noiser distributions yield better sensitivities
estimates for volatility-related parameters.

In addition to the above, we will also compute benchmark bump sensitivities
as per (iii) in the above, obtained on the basis of p Monte Carlo repricings with m
common random numbers ω and relative variations of ±1% of one model parameter
in each Monte Carlo run, as well smart bump sensitivities, similar but only
using m/p paths each, where p is the number of model parameters (dimension of
ρ). Hence the time of computing all the smart bump sensitivities is of the same
order of magnitude as the one of retrieving the linear bump sensitivities, which
is also roughly the time of pricing Π0(ρ0) by Monte Carlo with m paths. More
precisely, each smart bump sensitivity uses m/p paths of a Monte Carlo simulation
run with m paths as a whole. This is significantly more efficient than doing pMonte
Carlo runs of size m/p each, especially in the GPU simulation environment of our
CVA computations later below. Note that such smart bump sensitivities are also
a special case of linear bump sensitivities with block simulation trick, for blocks of
size m/p and deterministic bumps of relative size 1% on one and only one model

5

input : A (calibrated) baseline ρ0 for the initial conditions of all risk factors and
for the exogenous parameters of the pricing model, a number m of
pricing model paths.

output: Estimated sensitivities θ/2 (linear case) or 1
2∂ρΣθ0(ρ0) (more generally)

≈ ∂ρΠ0(ρ0).
1 Draw m i.i.d. bumped model parameters ρj from some distribution randomizing ρ

around ρ0, e.g. N
(
ρ0, diag

(
σ2ρ0 � ρ0

))a with σ = 1%, 3%, 5%b or, in the case of
smart bump sensitivities, ρj = ρ0 bumped by 1% on its

⌊
jp
m

⌋
-th component

2 Draw m i.i.d. stochastic drivers ω parameters {ω1, . . . , ωm}
3 for (ρ, ω) ∈ (ρ1, ω1) .. (ρ1, ωm) do
4 Compute the payoffs ξ(ρ;ω) and ξ(ρ̄;ω), where ρ+ρ̄

2 = ρ0
5 Compute ς(ρ;ω) = ξ(ρ;ω)− ξ(ρ̄;ω)
6 end
7 if AAD bump sensitivities then
8 Train a neural network Σθ0(ρ) to regress (ς(ρ1), . . . , ς(ρm)) against

(ρ1, , . . . , ρm)
9 Retrieve ∂ρΣθ0(ρ) by AAD and divide the obtained gradient by two for

obtaining the AAD bump sensitivities.
10 else if Linear bump sensitivities then
11 Regress linearly (without intercept) (ς(ρ1), . . . , ς(ρm)) against

(ρ1 − ρ0, . . . , ρm − ρ0) by SVD
12 Divide the regression coefficients θ by two for obtaining the linear bump

sensitivities
13 else if Smart bump sensitivities then
14 Compute each sensitivity by dividing the average of ς over each block of size

m/p by two times the corresponding bump size
15 end

Algorithm 1: Fast bump sensitivities.
a� is the Hadamard (i.e. componentwise) product between vectors and diag(vec) is a diagonal
matrix with diagonal “vec”.

bThe notation N
(
ρ0, diag

(
σ2ρ0 � ρ0

))
which is used for simplicity in this pseudo-code ignores

the practically important block simulation trick mentioned in the end of Section 2.1.

parameter in each block, the linear regression degenerating in this case to a local
sample mean over the m/p paths of each block: see Algorithm 1, which summarizes
the above procedures for various fast bump sensitivities.

2.2 Basket Black-Scholes Example

Let us consider a European call on the geometric average of d Black-Scholes as-
sets, aiming for the corresponding deltas, vegas, and (diagonal) gammas, which are
known analytically in this lognormal setup. Regarding the above block simulation
trick, the time-0 values of the assets are bumped in half of the paths, while the
volatilities are bumped in the other half. We study two cases, with d = 3 and
10 and, respectively m = 105 and m = 5 × 105 simulated Black-Scholes paths.
In the d = 3 case, we implement all the fast bump approaches of Algorithm 1
and the naive AAD approach described after (3). The learning of the gammas is
also reported in this low-dimensional experiment. In the d = 10 case, we skip the

6

naive AAD approach as well as all the learned gamma results because of their poor
performance. The hypothesis space used in all the AAD approaches is a vanilla
multi-layer perceptron with two hidden layers and softplus activation functions.

The error bars in Figure 1 page 8 represent our 95% confidence intervals (CI)
for the linear bump sensitivities. Regarding the AAD bump approach, we train the
neural network 100 times with different initializations to also get a 95% confidence
interval, in a meaning weaker than CI though: as the data is not resampled in each
run, the AAD confidence intervals (CI[) can only account for the randomness in
training, not for the one of the simulated data. The upper plots of Figure 1 show the
inaccuracy of the naive AAD sensitivities. The fast bump approaches consistently
estimate deltas, but vegas and gammas appear to be more challenging. This is
due to greater variance in the case of gammas, whereas in the case of vegas, the
collusion between the noise of the random volatility coefficient and the one of the
Brownian drivers ω makes the learning task more difficult. As should be, the CIs
of the linear and smart bump sensitivities contain nearly all the exact sensitivities.
This is also mostly the case for the CI[s of the AAD bump sensitivities, but in their
case this comes without theoretical guarantee. The benchmark bump sensitivities
are exact with 2 significant digits (at least for deltas and vegas) in this Black-
Scholes setup. They would be visually indistinguishable of the exact sensitivities if
we added them on the graphs of Figure 1. The time of computing the smart bump
sensitivities is of the same order of magnitude as the one of retrieving the linear
bump sensitivities, with also similar accuracy as demonstrated in Figure 3(a) page
15, where both ratios between running times and errors of the linear and smart
bump sensitivities with respect to the benchmark bump sensitivities stay close to
each other. The complexities, describing how long it would take for each algorithm
to achieve a relative error in the Black-Scholes case (or standard error in the CVA
case) of 1%, are not significantly different for the linear, smart and benchmark
bump sensitivities, for most of p; otherwise the smart ones beat by a small margin
the linear ones, themselves a bit worse than the benchmark ones. The grey dashed
lines in the right panels indicate the p2 scaling of complexities expected for the
benchmark bump sensitivities, which involve 2p simulation runs in dimension Θ(p)
(the number of risk factors in the pricing model).

In general, we observed that in high dimension the linear and smart bump
sensitivities tend to be more stable and reliable than the AAD bump sensitivities.
Hence we forget AAD bump sensitivities hereafter.

2.3 From Model to Market Sensitivities

The sensitivities ∂ρΠ0(ρ0) are sensitivities to model parameters. Practical hedging
schemes require sensitivities to calibrated prices of hedging instruments. Hence,
for hedging purposes, our sensitivities must be mapped to hedging ratios in market
instruments. This can be done via the implicit function theorem, the way explained
in Henrard (2011), Savine (2018), and Antonov et al. (2018). In a nutshell, assume
that, given market prices z ∈ Rq of suitable calibration (hedging) assets, the corre-
sponding pricing model parameters ρ(z) are obtained by a calibration procedure of
the form

ρ(z) ∈ argmin
ρ∈Rp

cal-err (z, ρ) , (6)

7

1 2 3
Delta

0.12

0.13

0.14

0.15

0.16

0.17
exact sensis
naive AAD
AAD bump
linear bump
smart bump

1 2 3
Vega

1

0

1

2

3

4

5

6

exact sensis
naive AAD
AAD bump
linear bump
smart bump

1 2 3
Gamma

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1e 3

exact sensis
naive AAD
AAD bump
linear bump
smart bump

(a) d = 3 and m = 105 paths.

2 4 6 8 10
Delta

0.025

0.026

0.027

0.028

0.029

0.030

0.031

0.032
exact sensis
AAD bump
linear bump
smart bump

2 4 6 8 10
Vega

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

exact sensis
AAD bump
linear bump
smart bump

(b) d = 10 and m = 5× 105 paths.

Figure 1: Multi-asset geometric average call sensitivities on 3 (a) and 10 (b) inde-
pendent Black-Scholes assets. The error bars represent confidence intervals CI or
CI[, in dotted lines regarding the latter, which only reflect a training noise.

where cal-err (z, ρ) quantifies the mean square error between the market prices z of
the calibration instruments and their prices in the pricing model with parameters ρ.
Note that, in practice, not all the pricing parameters are obtained via a minimization
as in (6): some of them are bootstrapped or even directly observed on the market,
see Savine (2018) for a more detailed presentation and Section 3.1 for an example.

Assume cal-err of class C2 in ρ. Let ρ(z0) = ρ0 be a solution of (6) associated
with a particular z = z0, hence ∂ρcal-err(z0, ρ0) = 0. Denote by ∂2

ρ,ρcal-err the
Hessian matrix of cal-err with respect to ρ and assume that ∂2

ρ,ρcal-err(z0, ρ0) is
invertible. Then, by the implicit function theorem applied to the function ∂ρcal-err
of (z, ρ), there exists an open neighborhood O ∈ Rq of z0 on which (6) uniquely
defines a function O 3 z 7→ ρ(z), i.e. ∂ρcal-err(z, ρ(z)) = 0 for all z ∈ O. Moreover,
if ρ is in C1 (O;Rp), then

∂zρ(z) = −
(
∂2
ρ,ρcal-err(z, ρ(z))

)−1(
∂2
ρ,zcal-err(z, ρ(z))

)
, for all z ∈ O,

8

where we assume that the matrix of all the second derivatives of cal-err with respect
to one component in ρ and one component in z, denoted by ∂2

ρ,zcal-err, exists. From
there, the chain rule

(∂zΠ0(z))> =
(
∂ρΠ0(ρ(z))

)>
∂zρ(z)

= −
(
∂ρΠ0(ρ(z))

)>(
∂2
ρ,ρcal-err(z, ρ(z))

)−1(
∂2
ρ,zcal-err(z, ρ(z))

)
, for z ∈ O,

(7)

allows deducing the market sensitivities ∂zΠ0 from the model sensitivities ∂ρΠ0.
When heavy Monte Carlo (such as CVA) pricing tasks are involved in the ∂ρΠ0
computations, the time of computing ∂zΠ0 through (7) is dominated by the time
of computing ∂ρΠ0.

Another way to compute market bump sensitivities is to bump each target
calibration price and recompute the price Π0 for pricing model parameters ρ re-
calibrated to each bumped calibrated data set. This direct approach does not
need Jacobian transformations and it is also amenable to second-order sensitivi-
ties. However, accounting for curves and surfaces of hedging assets, there may be
much more market sensitivities than model sensitivities (as in our use case of Sec-
tion 3.1). Moreover, direct market sensitivities require not only intensive repricings
but also model recalibrations, as many as targeted market sensitivities. The direct
approach is therefore typically much heavier than the one based on model bump
sensitivities followed by Jacobian transformations. We therefore forget direct mar-
ket bump sensitivities hereafter: by market bump sensitivities, we mean from now
on (first-order) bump sensitivities with respect to model parameters, transformed
to the corresponding first-order market sensitivities via (7).

3 Credit Valuation Adjustment and Its Bump Sensitiv-
ities

In the above Black-Scholes setup, bump sensitivities are useless because the exact
Greeking formulas are also faster. We now switch to CVA computations in the
role of Π before, for which pricing and Greeking can only be achieved by intensive
Monte Carlo simulations implemented on GPU. Since we are also interested in the
risk of CVA fluctuations (if unhedged, or of fluctuations of a hedged CVA position
more generally), we now consider the targeted price Π (CVA from now on) as a
process. We denote by MtMc, the counterparty-risk-free valuation of the portfolio
of the bank with its client c; τc, the client c’s default time, with intensity process
γc; X, with X0 ≡ 0 (componentwise), the vector of the default indicator processes
of the clients of the bank; Y , a diffusive vector process of model risk factors such
that each MtMc

t and γct is a measurable function of (t, Yt), for t ≥ 0 (in the case
of credit derivatives with the client c, MtMc

s would also depend on Xt, which can
be accommodated at no harm in our setup). The exogenous model parameters are
denoted by ε. Let the baseline ρ0 = (y0, ε0) denote a calibrated value of (y, ε), where
y is used for referring to the initial condition of Y , whenever assumed constant. Let
ι denote an initial condition for Y randomized around its baseline y0, ε be likewise a
randomization of ε around its baseline ε0, and %t = (Yt, ε), t ≥ 0. Starting from the
(random) initial condition (0, ι), the model (X,Y) is supposed to evolve according

9

to some Markovian dynamics (e.g. the one of Section 3.1) parameterized by ε. This
setup allows encompassing in a common formalism:

• the baseline mode of Abbas-Turki et al. (2023, Section 4) where %0 ≡ ρ0;

• the risk mode where Y0 ≡ y0;

• the sensis mode, or general %0 case, used with an exogenous distribution of
ι in Section 3.1 and with ι distributed as the diffusive risk factors of the CVA
simulation engine in the risk mode at a specified risk horizon in Section 6.

The CVA engine in the baseline mode %0 ≡ ρ0 was introduced in Abbas-Turki
et al. (2023). The risk and sensis mode also incorporating a randomization ε of the
exogenous model parameters ε, and of Y0 in the sensis mode, are novelties of the
present work.

We restrict ourselves to an uncollateralized CVA for notational simplicity. Given
n pricing time steps of length h such that nh = T , the final maturity of the derivative
portfolio of the bank, let, at each t = ih,

LGDt =
∑
c

i−1∑
j=0

(MtMc
jh)+1jh<τc≤(j+1)h,

ξt,T = h
∑
c

n−1∑
j=i

(MtMc
jh)+(e−

∑j−1
ı=i

γc
ı − e−

∑j

ı=i
γc

ı)1{τc>ih}.

(8)

Our computations rely on the following default-based and intensity-based formu-
lations of the (time-discretized) CVA of a bank with clients c, at the pricing time
t = ih (cf. Abbas-Turki et al. (2023, Eqns. (25)-(27))):

CVAt(x, ρ) = E
[∑

c

n−1∑
j=i

(MtMc
jh)+1jh<τc≤(j+1)h︸ ︷︷ ︸

LGDT−LGDt

∣∣∣Xih = x, %ih = ρ
]

= E
[
h
∑
c

n−1∑
j=i

(MtMc
jh)+(e−

∑j−1
ı=i

γc
ı − e−

∑j

ı=i
γc

ı)1{τc>ih}︸ ︷︷ ︸
ξt,T

∣∣∣Xih = x, %ih = ρ
]
,

(9)

where each coordinate of x is 0 or 1. From a numerical viewpoint, the second line
of (9) entails less variance than the first one (see Figure 5 in Abbas-Turki et al.
(2023)). Hence we rely for our CVA computations on this second line. At the
initial time 0, as X0 ≡ 0, we can restrict attention to the origin x = 0 and skip
the argument x as well as the conditioning by Xih = x in (9). In the sensis mode,
one is in the setup (2) for ξ = ξ0,T , which implicitly depends on %0 = (ι, ε), i.e.
CVA0(%0) = E

(
ξ(%0)

∣∣ %0
)
. The baseline CVA sensitivities can thus be computed by

Algorithm 1, with CVA and (y = Y0, ε) here in the role of Π and ρ there. In the
baseline mode where %0 ≡ ρ0, CVA0(%0) is constant, equal to the corresponding

CVA0(ρ0) = ELGDnh = Eξ0,T , (10)

10

which is computed by Monte Carlo based on the second line of (9) for t = 0 there,
as a sample mean of ξ0,T , along with the corresponding 95% confidence interval.

All our CVA computations are done on GPU (whereas the previous Black-
Scholes calculations were done on CPU, except for neural net training on GPU).

3.1 CVA Lab

In our numerics below, we have 10 economies. For each of them we have a short-term
interest rate driven by a Vasicek diffusion and, except for the reference economy, a
Black-Scholes exchange rate with respect to the currency of the reference economy.
The reference bank has 8 counterparties with corresponding default intensity pro-
cesses driven by CIR diffusions. We thus have 8 default indicator processes X of the
counterparties and 10 + 9 + 8 = 27 diffusive risk factors Y . This results in a Marko-
vian model (X,Y) of dimension 35, entailing p = 90 parameters corresponding to
the 27 initial conditions of the Y processes plus their 63 exogenous parameters (see
Table 2 page 12). This model is only for illustrative purposes: the methodology
of the paper can be applied to any Markovian model (X,Y) of client defaults and
diffusive (or jump-diffusive if wished) risk factors.

A “reasonably stressed” but arbitrary baseline ρ0 (see after (13)) plays the role
of calibrated model parameters in our numerics. In the above pricing model, we
consider the CVA on a portfolio of interest rate swaps with characteristics generated
randomly as in Abbas-Turki et al. (2023, Section 3.3). The portfolio consists of 500
interest rate swaps with random characteristics (maturity ≤ T = 10 years, notional,
currency and counterparty) and strikes such that the swaps are worth 0 in the
baseline model (i.e. for %t ≡ ρ0) at time 0. The swaps have analytic counterparty-
risk-free valuation in our pricing model (Abbas-Turki et al., 2023, Section 6). Their
price processes are converted into the reference currency and aggregated into the
corresponding clients MtMc processes.

We simulate by an Euler scheme m = 217 ≈ 1.3 × 105 paths of the pricing
model (X,Y), with n = 100 MtM pricing time steps of length h = 0.1 and 25 Euler
simulation sub-steps per pricing time step (referred to as daily basis). A Monte
Carlo computation of (10) in the baseline mode then yields CVA0(ρ0) ∈ 5, 027± 18
with 95% probability (computed in about 30s). A randomization of Y0 and ε in
the sensis mode is used for deriving CVA linear bump sensitivities as per Section
2.1. Table 2 presents benchmark versus fast (linear and smart) bump sensitivities
with respect to the p = 90 model parameters introduced in Section 3.1. The CIs
of the linear and smart bump sensitivities consistently cover the benchmark bump
sensitivities, which, with regard to its much smaller confidence interval, serve as
reference for these sensitivities (even if biased with respect to the exact ∂ρCVA0).
Regarding the subset simulation trick exposed after Algorithm 1, we divided the
model parameters into 10 groups separated by horizontal lines in Table 2.

For converting the model sensitivities into market sensitivities by the Jacobian
method of Section 2.3, we first need to specify the market instruments. In this case,
each of the 10 zero-yield curves has the 14 pillars 0.01, 0.1, 0.2, 0.5, 1, . . . , 10 years,
each of the 9 FX forward curves has 4 pillars 0.01, 0.1, 0.2, 0.5 year, and each of
the 8 CDS curves (with monthly payments and loss-given-default parameter set to
60% for each counterparty) has the 10 pillars 1, . . . , 10 years, resulting in a total

11

param. benchmark
bump

linear
bump

smart
bump param. benchmark

bump
linear
bump

smart
bump

r
〈0〉
0 -12,354± 41 -14,426± 1,426 -12,310± 384 b〈8〉 -37,295± 487 -43,620± 10,327 -40,903± 4,519
r
〈1〉
0 -4,761± 57 -4,349± 1,331 -4,597± 514 b〈9〉 94,235± 760 89,363± 11,404 93,950± 6,802
r
〈2〉
0 10,715± 92 12,060± 1,438 11,010± 859 σr,〈0〉 23,850± 209 25,610± 5,852 24,283± 1,979
r
〈3〉
0 1,433± 37 1,331± 1,315 1,521± 353 σr,〈1〉 23,563± 311 22,360± 4,287 21,755± 2,460
r
〈4〉
0 14,712± 62 14,648± 1,350 15,054± 573 σr,〈2〉 33,945± 392 32,240± 4,193 36,699± 4,635
r
〈5〉
0 24,539± 146 26,762± 1,697 25,057± 1,424 σr,〈3〉 14,402± 191 16,502± 4,445 13,434± 1,671
r
〈6〉
0 15,100± 96 15,450± 1,416 14,744± 901 σr,〈4〉 20,347± 292 18,847± 3,576 20,866± 2,828
r
〈7〉
0 29,368± 161 30,239± 1,612 29,637± 1,398 σr,〈5〉 36,305± 500 38,439± 5,455 34,401± 4,262
r
〈8〉
0 5,930± 66 5,410± 1,372 6,264± 689 σr,〈6〉 26,597± 400 23,572± 4,182 26,593± 3,329
r
〈9〉
0 5,132± 57 7,117± 1,347 4,879± 484 σr,〈7〉 31,233± 644 29,380± 5,086 32,828± 7,071
χ
〈1〉
0 151± 3 188± 80 164± 26 σr,〈8〉 28,051± 391 29,169± 4,154 25,456± 2,634
χ
〈2〉
0 733± 7 709± 86 757± 78 σr,〈9〉 24,085± 322 22,284± 3,722 24,944± 3,326
χ
〈3〉
0 123± 2 134± 77 134± 21 σχ,〈1〉 292± 10 194± 211 364± 103
χ
〈4〉
0 816± 6 790± 81 808± 56 σχ,〈2〉 406± 21 317± 198 378± 181
χ
〈5〉
0 829± 8 932± 85 941± 83 σχ,〈3〉 224± 8 229± 189 185± 49
χ
〈6〉
0 835± 9 861± 96 852± 89 σχ,〈4〉 300± 18 -31± 251 247± 139
χ
〈7〉
0 1,030± 11 1,036± 92 979± 92 σχ,〈5〉 460± 23 426± 205 526± 233
χ
〈8〉
0 243± 4 213± 77 243± 32 σχ,〈6〉 543± 29 440± 200 487± 220
χ
〈9〉
0 583± 6 543± 85 559± 50 σχ,〈7〉 458± 36 394± 229 211± 191
γ
〈1〉
0 2,201± 15 2,371± 266 2,155± 131 σχ,〈8〉 402± 13 405± 210 307± 66
γ
〈2〉
0 1,528± 12 1,554± 261 1,498± 109 σχ,〈9〉 344± 20 401± 214 459± 200
γ
〈3〉
0 3,097± 24 2,843± 267 3,133± 228 α

〈1〉
0 86± 1 86± 19 82± 11

γ
〈4〉
0 1,250± 10 1,447± 255 1,280± 92 α

〈2〉
0 69± 1 66± 19 68± 9

γ
〈5〉
0 1,473± 12 1,466± 263 1,384± 103 α

〈3〉
0 143± 2 140± 21 152± 19

γ
〈6〉
0 2,982± 15 2,964± 276 2,937± 136 α

〈4〉
0 38± 1 45± 14 41± 5

γ
〈7〉
0 6,068± 32 6,122± 321 6,001± 306 α

〈5〉
0 45± 1 58± 18 48± 6

γ
〈8〉
0 5,887± 27 5,976± 310 5,976± 258 α

〈6〉
0 154± 1 158± 18 165± 11

a〈0〉 -1,125± 5 -1,142± 91 -1,116± 47 α
〈7〉
0 336± 3 336± 23 315± 28

a〈1〉 -823± 10 -831± 103 -838± 83 α
〈8〉
0 285± 2 283± 19 270± 25

a〈2〉 133± 9 162± 102 120± 92 δ〈1〉 6,386± 53 5,818± 1,185 6,032± 437
a〈3〉 -240± 4 -249± 83 -239± 38 δ〈2〉 6,737± 53 6,831± 1,236 6,556± 440
a〈4〉 570± 7 506± 91 519± 72 δ〈3〉 8,693± 91 9,617± 1,212 8,476± 738
a〈5〉 1,093± 11 1,055± 123 1,097± 98 δ〈4〉 6,096± 42 6,372± 1,183 5,928± 358
a〈6〉 660± 9 681± 95 728± 81 δ〈5〉 5,888± 36 5,708± 1,276 5,846± 305
a〈7〉 1,377± 13 1,462± 118 1,421± 117 δ〈6〉 14,539± 67 14,824± 1,185 15,038± 686
a〈8〉 -482± 11 -430± 112 -509± 91 δ〈7〉 23,261± 128 21,714± 1,336 23,014± 1,082
a〈9〉 -68± 7 -56± 106 -69± 73 δ〈8〉 31,441± 144 31,949± 1,484 31,938± 1,558
b〈0〉 -166,788± 437 -169,247± 10,994 -166,618± 4,384 ν〈1〉 -38± 8 -78± 132 16± 84
b〈1〉 -31,802± 406 -38,577± 9,149 -31,678± 4,753 ν〈2〉 -47± 8 -53± 132 -147± 59
b〈2〉 78,709± 823 81,995± 10,636 86,000± 8,440 ν〈3〉 -57± 15 -87± 138 6± 132
b〈3〉 -6,206± 341 -2,364± 10,461 -3,459± 3,561 ν〈4〉 -26± 6 -10± 126 -37± 62
b〈4〉 140,127± 683 150,195± 10,716 138,407± 6,189 ν〈5〉 -35± 6 45± 128 -44± 49
b〈5〉 114,437± 914 109,486± 10,779 121,754± 9,471 ν〈6〉 -66± 13 -60± 151 -100± 118
b〈6〉 127,783± 1,108 120,891± 9,923 123,214± 9,430 ν〈7〉 -151± 23 -244± 146 -150± 209
b〈7〉 191,031± 1,373 188,073± 12,629 196,130± 14,048 ν〈8〉 -161± 24 -230± 154 -129± 221

Table 2: CVA sensitivities and 95% confidence intervals (CI) with respect to the
p = 90 parameters of the model, estimated by the benchmark, linear and smart
bump approaches. The notation for the parameters follows Abbas-Turki et al.
(2023, Eqns. (43) and (44)). The horizontal lines separate groups of parameters
bumped simultaneously under the linear bump approach, the way explained after
Algorithm 1. The model volatility parameters left aside from the calibration process
(see the comments to Figure 2 below) are in orange.

of q = 256 market instruments and first-order market sensitivities. As we do not
introduce any options as hedging assets, we freeze the volatility model parameters
(in orange in Table 2) and only consider the calibration error as a function of the
initial conditions and drift parameters of the model risk factors. The reason why
our FX curves are restricted to 4 points is because we thus only have one FX-related

12

model (spot exchange rate) parameter for each foreign currency. Figure 2 page 14
displays some of the interest-rate, credit and FX market sensitivities deduced from
the model sensitivities of Table 2 by Jacobian transformation the way explained
in Section 2.3. We note the consistency between the orders and magnitudes, but
also term structure profiles (except in the ends of the second credit curve), of the
market sensitivities deduced from the benchmark vs. fast (linear and smart) bump
sensitivities, with again a slight advantage of smart over linear bump sensitivities.

The times taken to generate the model sensitivities of Table 2 and the corre-
sponding market sensitivities are recorded in Table 3. The linear and smart bump
calculations use the same m Brownian driving paths ω of the pricing model as the
one used for the Monte Carlo computation of CVA0(ρ0). The speedups of the linear
and smart bump sensitivities are almost identical, of about 90 with respect to the
benchmark bump sensitivities. In Figure 3(b) page 15, the increasing curves in
the left panel highlight the almost linear growth of the speedup of the linear and
smart bump sensitivities with respect to the benchmark ones when the number p of
pricing model parameters increases, but with also increasing errors displayed in the
middle panel. The smart bump sensitivities have smaller confidence interval than
the linear bump sensitivities for all tested p. Combining with the timing result, we
conclude that the smart bump sensitivities outperform the linear bump sensitivities
in this CVA use case. This is confirmed by the right panel of Figure 3(b), where
for all tested p the complexity of linear bump sensitivities is higher than the one of
smart bump sensitivities, itself very close (as expected) to the one of the benchmark
bump sensitivities.

Market sensitivities
Parameter sensitivities Jacobian TotalSimul. Lin. regr. Total

bench. 12m48s N/A 12m48s(1×)
30s

13m18s(1×)
linear 8.6s 0.1s 8.7s(88.5×) 38.7s(20.6×)
smart 8.5s N/A 8.5s(90.0×) 38.5s(20.7×)

Table 3: Computation times (and speedups “×” in parentheses) for CVA bump sen-
sitivities shown in Table 2. The time of the benchmark bump sensitivities contains
diagonal gamma estimation (needed for the “bench. bump sensis w/ Γ” in Table 6
page 24), which amounts to an extra 5 seconds needed for computing the baseline
CVA0(ρ0) (the CVA0(%0) and CVA0(%̄0) being already needed for the deltas). Here
and in Figure 3(b) page 15 likewise, the times exclude the infrastructure initial-
ization times taken once for all computations (allocating GPU memory, compiling
CUDA kernel, etc.), which amount to 10 to 30 seconds depending on p.

13

0 2 4 6 8 10
Maturity

1.0

1.5

2.0

2.5

3.0
1e 2 ZC yield curve

reference economy
foreign economy 1

0 2 4 6 8 10
Maturity

1.0

0.5

0.0

0.5

1.0 1e4
Sensitivity to ZC

 of reference economy
bench. bump
linear bump
smart bump

0 2 4 6 8 10
Maturity

1.0

0.5

0.0

0.5

1.0 1e4
Sensitivity to ZC

 of foreign economy 1

bench. bump
linear bump
smart bump

0.0 0.1 0.2 0.3 0.4 0.5
Maturity

0.0

0.5

1.0

1.5

1e 4 FX yield curve
foreign economy 1
foreign economy 2

0.0 0.1 0.2 0.3 0.4 0.5
Maturity

6

3

0

3

6
1e3

Sensitivity to FX forward
 of foreign currency 1

bench. bump
linear bump
smart bump

0.0 0.1 0.2 0.3 0.4 0.5
Maturity

8

4

0

4

8

1e3

Sensitivity to FX forward
 of foreign currency 2

bench. bump
linear bump
smart bump

2 4 6 8 10
Maturity

1.2

1.4

1.6

1.8

2.0
1e 2 CDS spread curve

counterparty 1
counterparty 2

2 4 6 8 10
Maturity

8

4

0

4

8

1e2

Sensitivity to CDS price
 of counterparty 1

bench. bump
linear bump
smart bump

2 4 6 8 10
Maturity

7.5

5.0

2.5

0.0

2.5

5.0

1e2

Sensitivity to CDS price
 of counterparty 2

bench. bump
linear bump
smart bump

Figure 2: Sensitivities to prices of selected zero-coupons (ZCs) (top), FX forward
contracts (middle), and CDS contracts (bottom), estimated by Jacobian transfor-
mations from benchmark and fast (linear and smart) bump sensitivities to the
pricing model parameters. ZC and FX yield curves are constructed from ZC and
FX forward prices through the transformation · 7→ − log(·)

T , where T denotes the
maturity.

14

5 25 50 75 100 150
p

0
20
40
60
80

100
120

Speedup
linear bump
smart bump

5 25 50 75 100 150
p

2

4

6

8

10

12

Error ratio

linear bump
smart bump

101 102

p

10 2

10 1

100

101

102

103
Complexity (s)

linear bump
smart bump
bench. bump

p2

(a) Performance in Black-Scholes computations

25 75 125 175
p

25
50
75

100
125
150
175

Speedup
linear bump
smart bump

25 75 125 175
p

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Standard error ratio

linear bump
smart bump

101 102

p

102

103

Complexity (s)
linear bump
smart bump
bench. bump

p2

(b) Performance in CVA computations

Figure 3: Comparison of performance of linear and smart bump sensitivities as a
function of the number of model parameters p fixing m = 216 in (a) and m = 217 in
(b), using benchmark bump sensitivities as references. The speedups displayed in
the left panels are obtained by dividing the execution times for benchmark sensi-
tivities by the execution times for linear or smart bump sensitivities. For each
value of p, the errors displayed in the middle panel are: in the Black-Scholes
case, the mean of the p ratios between the relative error of the linear (resp.
smart) bump sensitivity and the relative error of the benchmark sensitivity; in
the CVA case, the median of the p ratios between the Monte Carlo standard er-
rors of the linear (resp. smart) bump sensitivity and of the benchmark sensitiv-
ity. The complexities in the right panels are defined as the projected times of
reaching a relative error (for Black-Scholes) or relative standard error (for CVA)
of 1% given the 1/

√
|sample size| scaling of the error and standard error, with

|sample size| = m for linear and benchmark bumps and m/p for smart bumps; that
is, projected time (i.e. complexity) = exec. time× 104 (relative (standard) error

)2.
The

√
|sample size| above is justified as explained after (5) for linear bumps and

by the central limit theorem for benchmark and smart bumps. The performance
metrics of the Black-Scholes computations rely on 64 Monte Carlo simulation runs
per p, with associated confidence intervals computed according to the principle of
uncertainty propagation in (Lee and Forthofer, 2005, Chapter 4 page 22). The per-
formances of CVA sensitivities are produced from a single Monte Carlo simulations
run per p (as for a given run we only have access to CVA sensitivities errors in the
sense of standard errors, which cannot be aggregated across different runs).

15

4 Learning the Future CVA
Equivalently to the second line in (9),

CVAt(·) = arg min
Φ∈B

E
[(
ξt,T − Φ(Xt, %t)

)2]
, (11)

where B is the set of the Borel measurable functions of (x, ρ). We denote by
CVAθ

t (Xt, %t) the conditional CVA at time t = ih > 0 learned by a neural network
with parameters θ on the basis of simulated pairs (Xt, %t) and cash flows ξt,T .
The conditional CVA pricing function CVAθ

t (x, ρ) is obtained by replacing E by a
simulated sample mean Ê and B by a neural net (or linear as a special case) search
space in the optimization problem (11). The latter is then addressed numerically
by Adam mini-batch gradient descent on the basis of simulated pairs (Xt, %t) as
features and ξt,T as labels: see Algorithm 2, in the baseline and risk modes.

input : Calibrated pricing model parameters ρ0 = (y0, ε0) (with client default
indicators X0 all equal to 0), a CVA pricing time t = ih > 0, a number of
paths m with n pricing time steps (and daily Euler simulation step) of
the pricing model, a number of training epochs E (e.g. 1000) of the
(neural network or linear) learning model for CVAt(Xt, %t), a partition B
of {1, . . . ,m} into mini-batches. Adam optimizer set by default.

output: one trained set θ of the parameters of the predictor
CVAθ

t (x, y) ≈ CVAt(x, y) in the baseline mode or
CVAθ

t (x, y, ε) ≈ CVAt(x, y, ε) in the risk mode.
1 if baseline mode then
2 Set εj = ε0, for j = 1 ..m
3 else if risk mode then
4 Draw m i.i.d. bumped exogenous model parameters εj from the distribution

N
(
ε0, diag

(
σ2ε0 � ε0

))
5 end
6 For each j ∈ 1 ..m with associated ρj = (y0, εj) and driving Brownian path ωj ,

simulate one pricing model path (X,Y)(ρj ;ωj) starting from (0, y0) with
exogenous model parameters εj and compute the corresponding ξt,T (ρj ;ωj)

7 Initialize a neural network CVAθ
t (x, y) in the baseline mode or CVAθ

t (x, y, ε) in the
risk mode

8 Define the loss function L(θ, batch) = sample mean over trajectories in batch ∈ B

of the (cf. (11))
(
ξt,T (ρj ;ωj)− Φθj

)2
, with Φθj = CVAθ

t

(
Xt(ρj ;ωj), Yt(ρj ;ωj

)
in

the baseline mode or CVAθ
t

(
Xt(ρj ;ωj), Yt(ρj ;ωj), εj

)
in the risk mode

9 for epoch = 1, . . . , E do
10 for batch ∈ B do
11 θ ← AdamStep(L(θ, batch))
12 end
13 end
Algorithm 2: Learning CVAt(Xt, %t) at some future time t > 0 in the
baseline or risk mode. The distribution of ε in the risk mode can be set
exogenously, as displayed above for simplicity, or assessed statistically on a
historical basis, as done in the SIMM context of Albanese, Caenazzo, and
Syrkin (2017).

16

4.1 Twin Monte Carlo Validation Procedure

A key asset of probabilistic machine learning procedures for any conditional ex-
pectation such as Π0(%) in Section 2 is the availability of the companion “twin
Monte Carlo validation procedure” of Abbas-Turki et al. (2023, Section 2.4), al-
lowing one to assess the accuracy of a predictor. Let ξ(1)(%) and ξ(2)(%) denote
two copies of ξ(%) independent given %, i.e. such that E

[
f(ξ(1)(%))g(ξ(2)(%))

∣∣%] =
E
[
f(ξ(1)(%))

∣∣%]E[g(ξ(2)(%))
∣∣%] holds for any Borel bounded functions f and g. The

twin Monte Carlo validation procedure for a predictor Φ(%) of Π0(%) = E(ξ(%)|%)
consists in estimating by Monte Carlo

E
[
Φ(%)2 −

(
ξ(1)(%) + ξ(2)(%)

)
Φ(%) + ξ(1)(%)ξ(2)(%)

]
= E

[(
Φ(%)− E

(
ξ(%)

∣∣%))2]
, (12)

as it follows from the tower rule by conditional independence: see Algorithm 3. The
estimate twin-stat of the square error can be negative in this algorithm. Thus, the
95% upper bound of square error, remaining positive most of the times, is calculated
alongside the square error itself. We emphasize that the ensuing twin errors measure
the performance of the predictor, but not of the associated sensitivities, as a low
error of the predictor induces no constraint on the error for the derivatives.

Table 4 shows the twin scores of neural network and linear regression versus
nested Monte Carlo predictors of CVAt(Xt, %t) in the baseline and risk modes. In
both modes, all three methods have comparable performance for small t (0.01 and
0.1 years). The linear learning model for CVAθ

t (x, ρ) does not require sophisticated
training like the neural network but only linear algebra, it converges equally well for
t = 0.01 and 0.1, but falls short at one year, where the nonlinearity of CVAt(x, ρ)
becomes significant: for t = 1 and 3.5 years, the neural network outperforms the
linear regression significantly. As illustrated by the left panel of Figure 1 in (Abbas-
Turki et al., 2023, Section 2), this nonlinearity and the necessity of neural network

input : out-of-sample {(ρj , ξ(1)
j , ξ

(2)
j)}mj=1 with independent draws ρj of % and

ξ
(1)
j , ξ

(2)
j independent copies of ξ given % = ρj , norm (set to 1 by default)

output: Estimation of the normalized root mean square relative error and its
95%-confidence upper bound for a predictor Φ(%) of Π0(%) = E(ξ|%)

1 Compute twin-stat = 1
m

∑m
j=1

[
(Φ(ρj))2 − (ξ(1)

j + ξ
(2)
j)Φ(ρj) + ξ

(1)
j ξ

(2)
j

]
2 Compute

twin-stdev =
√

1
m

∑m
j=1

[
(Φ(ρj))2 − (ξ(1)

j + ξ
(2)
j)Φ(ρj) + ξ

(1)
j ξ

(2)
j − twin-stat

]2
3 Compute twin-up =

√
twin-stat+ 2√

m
twin-stdev

4 if twin-stat > 0 then
5 Compute twin-err =

√
twin-stat/norm

6 else
7 Set twin-err to N/A
8 end
9 Output twin-err and twin-ub := twin-up/norm
Algorithm 3: Twin Monte Carlo validation for a predictor Φ(%) of Π0(%) =
E(ξ|%).

17

t (in yr) Baseline mode Risk mode
Nested MC NN Linear Nested MC NN Linear

0.01 N/A(4.3%) N/A(4.3%) N/A(4.5%) N/A(4.3%) 2.1%(5.0%) 3.0%(5.5%)
0.1 6.6%(8.0%) 5.7%(7.3%) 6.8%(8.2%) 6.6%(8.0%) 9.8%(10.8%) 9.8%(10.8%)
1 9.2%(10.3%) 9.7%(10.8%) 10.4%(11.4%) 9.4%(10.5%) 22.1%(22.6%) 22.3%(22.9%)
3.5 8.8%(10.1%) 12.0%(13.5%) 15.7%(17.3%) 9.7%(11.5%) 26.0%(27.0%) 27.0%(28.2%)

Table 4: The mean and (95% upper bound) for the relative twin error normalized
by CVA0(ρ0) (cf. Algorithm 3) of nested Monte Carlo CVAt, neural network CVAt,
and linear regression CVAt, for t = 0.01, 0.1, 1, and 3.5 ≈ T/3 years (where the
CVA of a portfolio of swaps is deemed the most volatile), in the baseline and risk
modes.

would become more stringent with option portfolios, possibly for lower t already.
In the baseline mode, the learned CVAt(Xt, %t) can occasionally be more accurate
than its nested Monte Carlo counterpart, which is also much slower: for a given
t, the nested Monte Carlo CVA (with m = 217 outer paths and 1024 inner paths
throughout the paper) takes approximately 40 minutes, while simulating the data
and training a neural net CVA with 2 hidden layers and softplus activation (resp.
regressing a linear CVA) takes roughly 30 (resp. 25) seconds. In the risk mode, the
neural network is less accurate than nested Monte Carlo: the input dimension of
the neural network becomes 35 for (x, y) plus 63 for ε in the risk mode versus 35
simply in the baseline mode, hence training CVAθ

t (x, ρ) becomes harder (or would
require more data) and the resulting predictor becomes less accurate than nested
Monte Carlo. For t = 3.5 the neural network prediction is bad, but not as bad as
the linear prediction. A better neural network predictor might be achievable by
fine-tuning the SGD or enriching the simulated dataset and/or the architecture of
the network. Since we only need the risk mode for t ≤ 1 in the dowstream tasks of
Sections 5-6, we did not venture in these directions.

5 Run-off CVA Risk
An economic (or “internal”) view gained from simulating the movements of model
or/and market risk factors and obtaining risk measures of CVA fluctuations is an
important dimension of the CVA capital regulatory requirements of a bank, in the
context of its supervisory review and evaluation process (SREP): quoting https:
//www.bankingsupervision.europa.eu/legalframework/publiccons/html/icaap_ila
ap_faq.en.html (last accessed June 6 2024), “the risks the institution has identified
and quantified will play an enhanced role in, for example, the determination of
additional own funds requirements on a risk-by-risk basis.”

The focus of this section is on

δCVAθ
t + LGDt, where δCVAθ

t = CVAθ
t (Xt, %t)− CVA0(ρ0) (13)

(cf. (8)-(9)), assessed in the risk mode, where %t = (Yt(y0, ε), ε) and ε follows
N
(
ε0, diag

(
t(1%)2ε0 � ε0

))
. The random variable (δCVAθ

t + LGDt) reflects a dy-
namic but also run-off view on CVA and counterparty default risk altogether, as
opposed to the stationary run-on CVA risk view of Section 6. We assess CVA risk,

18

https://www.bankingsupervision.europa.eu/legalframework/publiccons/html/icaap_ilaap_faq.en.html
https://www.bankingsupervision.europa.eu/legalframework/publiccons/html/icaap_ilaap_faq.en.html
https://www.bankingsupervision.europa.eu/legalframework/publiccons/html/icaap_ilaap_faq.en.html

counterparty default risk, and both risks combined, on the basis of value-at-risks
(VaR) and expected shortfalls (ES) of δCVAθ

t and LGDt in the risk mode, reported
for t = 0.01, 0.1, 1 yr and various quantile levels α = 95, 97.5 or 99% in Table 5.
The middle-point of 97.5% for the ES fits a nowadays reference 99.9% value-at-
risk reference level, via the conventional mapping between a 97.5% ES and a 99%
VaR in a Gaussian setup, also considering that our baseline parametrization reflects
market conditions at a 90% level of stress (cf. the high CDS spreads visible in the
bottom left panel of Figure 2). The results of Table 5 page 20 emphasize that CVA
and counterparty default risks assessed on a run-off basis are primarily driven by
client defaults, especially at higher quantile levels. As visible in the right plots, for
t = 0.01 and 0.1, there are few client defaults and the right tail of the distribution
of δCVAθ

t + LGDt is dominated by the term δCVAθ
t . For t = 1, instead, the LGDt

term takes the lead, significantly shifting the right tail of the distribution upward.

5.1 Run-off CVA Hedging

Let (in vector form) CF represent the cumulative cash flows process of the market
instruments of Section 3.1, with price process Zt = E(CFT−CFt|Xt, %t), t ∈ 0 .. nh =
T , and let

δZt = Zt(Xt, %t)− z0 (14)

denote the difference between the market prices Zt(Xt, %t) and their time-0 baseline
price z0. By loss Lθt , we mean the following hedged loss(-and-profit) of the CVA
desk over the risk horizon t:

Lθt = δCVAθ
t + LGDt − (δZt + CFt)>∆− c, (15)

where the hedging ratio ∆ ∈ Rq is treated as a free parameter, while c is deduced
from ∆ through the constraint that ELθt = 0 (or ÊLθt = 0 in our numerics). The
constant c, which is equal to 0 (modulo the numerical noise) in the baseline mode
where CVA + LGD and Z + CF are both martingales, can be interpreted in terms
of a hedging valuation adjustment (HVA) in the spirit of Albanese, Benezet, and
Crépey (2023), i.e. a provision for model risk. Albanese et al. (2023) develop how,
such a provision having been set apart in a first stage, the loss Lθt , thus centered via
the “HVA trend” c (i.e. c = −EδHVAt = HVA0 − EHVAt), deserves an economic
capital, which we quantify below as an expected shortfall of Lθt .

Bump sensitivities ∆ = ∆bump can be used in (15) but they are expected to be
inappropriate for dealing with client defaults. As an alternative approach yielding
hedging ratios, HVA trend and economic capital at the same time, one can use

∆ec = arg min
∆∈Rq

ES
(
Lθt

)
. (16)

Following Rockafellar and Uryasev (2000), (16) can be reformulated as the following
convex optimization problem:

(∆ec, kec) = arg min
∆∈Rq ,k∈R

k + (1− α)−1E
[(
Lθt − k

)+
]
, (17)

19

t = 0.01 δCVAθ
t LGDt

δCVAθ
t

+LGDt

Expectation -9 0.28 -8
VaR 95% 268 0 268
VaR 97.5% 323 0 323
VaR 99% 388 0 389
ES 95% 344 0.28 345
ES 97.5% 395 0.28 397
ES 99% 460 0.28 464

t = 0.1 δCVAθ
t LGDt

δCVAθ
t

+LGDt

Expectation 56 7 63
VaR 95% 939 0 953
VaR 97.5% 1,124 0 1,145
VaR 99% 1,347 0 1,389
ES 95% 1,192 7 1,243
ES 97.5% 1,361 7 1,445
ES 99% 1,571 7 1,740

t = 1 δCVAθ
t LGDt

δCVAθ
t

+LGDt

Expectation 75 502 578
VaR 95% 2,942 3,621 4,597
VaR 97.5% 3,746 7,309 7,190
VaR 99% 4,796 11,997 11,757
ES 95% 4,122 8,846 8,980
ES 97.5% 4,953 12,383 12,297
ES 99% 6,102 17,004 17,048

Table 5: δCVAθ
t , LGDt and their sum (CVA0(ρ0) = 5, 027). (Left) Risk measures.

(Right) qq plots against δCVAθ
t used as a benchmark (corresponding to the diago-

nal). The red circles correspond to the VaRs 95%, 97.5% and 99%.

where kec is then the value-at-risk (quantile of level α) of the corresponding Lθt .
Note that one could also easily account for transaction costs in this setup, which is
nothing but a deep hedging approach over one time step for computing the HVA
trend c and the hedging policy ∆ec compressing the ensuing economic capital and
its cost. Note that the constraint ELθt = 0, motivated financially after (15), is also
necessary numerically to stabilize the training of the EC sensitivities.

As a possible (simpler) variation on the economic capital (EC) run-off sen-

20

sitivities (16)-(17), we also consider the following PnL explain (PLE) run-off
sensitivities:

∆ple = arg min
∆∈Rq

E[(Lθt)2]. (18)

Once CVAθ
t (Xt, %t) learned from the cash flows ξt,T (%t) the way described in Algo-

rithm 2 / risk mode, the EC sensitivities (16) are computed by stochastic gradient
descent based on an empirical version of (17); the PLE sensitivities are computed
by performing a linear regression corresponding to an empirical version of (18): cf.
lines 9–13 of Algorithm 4 page 25 (which corresponds to the CVA run-on setup of
Section 6).

By unexplained PnL UPL (resp. economic capital EC), we mean the standard
error (resp. expected shortfall) of Lθt . As performance metrics, we consider a back-
testing, out-of-sample UPL (resp. EC with α = 95%) for ∆ = 0, divided by UPL
(resp. EC with α = 95%) for each considered set of sensitivities: the higher the
corresponding “compression ratios”, the better the corresponding sensitivities. For
each simulation run below (here and in Section 6), we usem = 217 paths to estimate
the PLE and EC sensitivities and we generate other m = 217 paths for our backtest.

The left panels in Figure 4 compare the hedging performance of benchmark
bump versus EC or PLE sensitivities for t = 0.01, 0.1, and 1 yr. The unhedged case
corresponds to the red horizontal dash-dot lines. Consistent with their definitions,
the PLE sensitivities always (even though we are out-of-sample) yield the highest
unexplained PnL compression ratios, while the EC sensitivities, except for t = 0.01,
yield the highest EC compression ratio. As expected, bump sensitivities provide
very poor hedging performance (we omitted fast bump sensitivities, which provide
results similar to the benchmark ones). At the risk horizon t = 0.01, client defaults
are rare (only occurring on 0.017% of the scenarios) and a bump sensitivities hedge
reduces risk, but much less so than the EC or PLE sensitivities hedges. For t = 0.1
and 1 yr, hedging by bump sensitivities is even counterproductive, worsening both
unexplained PnL and economic capital compared to the unhedged case; EC and
PLE sensitivities hedges achieve significant unexplained PnL and economic capital
compression, but this comes along with very high HVA trends c.

The expected conclusion of this part is that for properly hedging CVA in the run-
off mode, one should first replicate the impact of the defaults with appropriate CDS
positions (or decide to warehouse default risk, especially if CDSs are not liquidly
available), rather than trying to hedge “on average”, which only makes sense for
CVA assessed in the run-on mode. The latter corresponds to the right panels in
Figure 4, to be commented upon in Section 6.1.

21

bench.
 bump sensis

EC
 sensis

PLE
 sensis

0

1

2

3

4
Un

ex
pl

ai
ne

d
Pn

L
 C

om
pr

es
sio

n
Ra

tio

bench.
 bump
 sensis

smart
 bump
 sensis

EC
 sensis

PLE
 sensis

LS
 sensis

1

2

3

4

5

6

bench.
 bump sensis

EC
 sensis

PLE
 sensis

0

1

2

3

4

5

Ec
on

om
ic

Ca
pi

ta
l

 C
om

pr
es

sio
n

Ra
tio

bench.
 bump
 sensis

smart
 bump
 sensis

EC
 sensis

PLE
 sensis

LS
 sensis

1

2

3

4

5

bench.
 bump sensis

EC
 sensis

PLE
 sensis

10 1

100

101

102

103

104

HV
A

tre
nd

bench.
 bump
 sensis

smart
 bump
 sensis

EC
 sensis

PLE
 sensis

LS
 sensis

102

103

t = 0.01 t = 0.1 t = 1

Figure 4: Compression ratios of UPL (top), EC (middle), and HVA trends c (bot-
tom), for various δCVAθ

t + LGDt hedging approaches in Section 5.1 (left), and
δCVAθ

(t) hedging approaches in Section 6.1 (right). Horizontal dash-dot lines cor-
respond to the unhedged case with ∆ = 0 in (15) and (20).

6 Run-on CVA Risk
With ·(t) in ε(t) referring to the dependence of the variance σ2 of ε − ε0 (in the
notation of Algorithm 2) in t in what follows, namely Var(ε(t)) = t×0.01%, denoting

22

by Yt(y0, ε(t)) the Y process at time t starting from y0 at 0 and for model parameters
set to ε(t), and by %(t) =

(
Yt(y0, ε(t)), ε(t)

)
, let (cf. (14))

δ%(t) = (Yt(y0, ε(t))− y0, ε(t) − ε0) = %(t) − ρ0, δZ(t) = Z0(%(t))− z0,

δCVA(t) = CVA0(%(t))− CVA0(ρ0).
(19)

The fact that we consider the time-0 CVA0(%(t)) (see after (9)) and likewise Z0(%(t))
here, as opposed to CVAt(Xt, %t) and Zt(Xt, %t) in Section 5, is in line with an
assessment of risk on a run-on portfolio and customers basis and with a siloing of
CVA vs. counterparty default risk, which have both become standard in regulation
and market practice. Various predictors of δCVA(t) can be learned directly from
the simulated model parameters %(t) and cash flows ξ0,T (%(t))−ξ0,T (ρ0) (as opposed
to and better than learning δCVA(t) via CVA0(%(t)), which would involve more
variance): nested Monte Carlo estimator, neural net regressor δCVAθ

(t), linear(-
diagonal quadratic) regressors against δ%(t) or δZ(t) referred to as LS (for “least
squares”) below. The neural network used for training δCVAθ

(t) based on simulated
data (%(t)−ρ0, ξ0,T (%(t);ω)−ξ0,T (ρ0;ω)) as per line 8 of Algorithm 4 has one hidden
layer with two hundred hidden units and softplus activation functions.

Table 6 displays some twin upper bounds and risk measures of δCVA(t) com-
puted with these different approximations, as well as with linear(- diagonal quadratic)
Taylor expansions in δ%(t) or δZ(t) with coefficients estimated as benchmark or smart
bump sensitivities.

In terms of the twin upper bounds, the nested CVA has the best accuracy, but
(for a given risk horizon t) it takes about 2 hours, versus about one minute of
simulation time for generating the labels, plus 30 seconds for training by neural
networks and 2-3 seconds for LS regression. The neural network excels at large t,
where the non-linearity becomes significant, while being outperformed by the linear
methods at small t, where δCVA(t) is approximately linear. With diagonal gamma
(Γ) elements taken into account, the performance of the LS regressor improves at
large t. The linear quadratic Taylor expansions show relatively good twin upper
bounds for small t, but worsen for large t.

Regarding now the risk measures, the nested δCVA(t) and the neural net-
work δCVAθ

(t) provide more conservative VaR and ES estimates than any linear(-
quadratic) proxy in all cases. Surprisingly, even though CVA0(%(t)) in δCVA(t) is a
function of %(t), for t = 1 the linear(-quadratic) proxies in δZ(t) outperform those
in %(t), in terms both of twin error and of consistency of the ensuing risk measures
with those provided by the nonparametric (neural net and nested) references. Also
note that, when compared with the nonparametric approaches again, the smart
bump sensitivities proxy in δZ(t) yields results almost as good as the much slower
benchmark bump sensitivities proxy in δZ(t) (see Tables 3 and 7 pages 13 and 26).

23

t
risk

measure
nonparametric linear quadratic in δ%(t) linear quadratic in δZ(t)

nested
δCVA(t)

δCVAθ
(t)

bench.
bump

sensis w/ Γ

smart
bump
sensis

LS sensis
w/ Γ

bench.
bump
sensis

smart
bump
sensis

LS sensis
w/ Γ

0.01

twin-ub 11 29 13 15 18 23 23 18
VaR 95% 364 315 312 306 302 315 312 308
VaR 97.5% 431 369 366 358 354 370 367 362
VaR 99% 510 431 429 418 415 435 431 424
ES 95% 454 387 384 375 372 389 385 380
ES 97.5% 514 434 432 421 417 437 433 427
ES 99% 585 491 489 476 473 495 490 484

0.1

twin-ub 59 103 110 111 109 101 104 94
VaR 95% 1,223 1,189 1,154 1,101 1,148 1,147 1,138 1,151
VaR 97.5% 1,431 1,383 1,340 1,266 1,327 1,330 1,318 1,332
VaR 99% 1,686 1,618 1,562 1,463 1,539 1,554 1,542 1,556
ES 95% 1,504 1,449 1,403 1,321 1,386 1,396 1,383 1,396
ES 97.5% 1,693 1,622 1,570 1,467 1,544 1,559 1,545 1,561
ES 99% 1,923 1,830 1,769 1,638 1,731 1,757 1,740 1,757

1

twin-ub 325 693 1,244 1,307 1,113 932 943 743
VaR 95% 7,097 6,992 6,365 5,300 6,440 5,867 5,831 6,676
VaR 97.5% 8,433 8,199 7,451 5,897 7,432 6,737 6,686 7,838
VaR 99% 10,333 9,887 8,991 6,646 8,812 7,914 7,846 9,493
ES 95% 9,163 8,805 8,077 6,142 7,956 7,162 7,097 8,492
ES 97.5% 10,654 10,090 9,309 6,715 9,032 8,075 7,988 9,792
ES 99% 12,781 11,869 11,161 7,456 10,598 9,339 9,216 11,677

Table 6: Risk measures of δCVA(t) computed by Monte Carlo using δCVA(t) simu-
lated by various predictors. The three lowest (i.e. best) twin errors (without nor-
malization, cf. Algorithm 3 page 17) and the three highest (i.e. most conservative)
risk estimates on each row are emphasized in bold.

6.1 Run-on CVA Hedging

Let

Lθ(t) = δCVAθ
(t) − (δZ(t))>∆− c (20)

(cf. (14) and (19)). As in Section 5, the “HVA trend” c (here “= −EδHVA(t) =
HVA0 − EHVA(t)”) is deduced from ∆ through the constraint that ELθ(t) = 0 (or
ÊLθ(t) = 0 in the numerics). By EC and PLE run-on sensitivities, we mean

∆ec = arg min
∆∈Rq

ES
(
Lθ(t)

)
and ∆ple = arg min

∆∈Rq
E[(Lθ(t))2], (21)

where ES means 95% expected shortfall as in Section 5.1. Once δCVAθ
(t) learned

from simulated %(t) and ξ0,T (%(t)) − ξ0,T (ρ0) the way mentioned after (19), these
sensitivities are computed much like their run-off counterparts of Section 5. Even
simpler (but still optimized) LS (run-on) sensitivities are obtained without prior
learning of δCVA(t), just by regressing linearly ξ0,T (%(t))−ξ0,T (ρ0) against δZ(t) the
way explained after (19) (purely linear LS regression here as opposed to linear di-
agonal quadratic LS regression in Table 6, due to our hedging focus of this part).
These LS sensitivities are thus obtained much like the linear bump sensitivities of
Algorithm 1, except for the scaling of the bumps that are used in the corresponding

24

%(t), and the fact that these LS sensitivities are computed directly in the market
variables, without Jacobian transformation. The derivation of the LS, EC, and
PLE run-on sensitivities is summarized in Algorithm 4. Their computation times
are reported in Table 7. The right panels in Figure 4 page 22 show the run-on
CVA hedging performance of different candidate sensitivities. All the risk com-
pression ratios decrease with the risk horizon t. All sensitivities reduce both the
unexplained PnL and economic capital by at least 2.5 times for t = 0.01 and 4.5
times for t = 0.1 and 1. Since client defaults are skipped in the run-on mode,
the efficiency of bump sensitivities hedges is understandable. For each risk horizon
and performance metric, the optimized sensitivities always have better results than
(benchmark or smart) bump sensitivities. Among those, the PLE and LS sensitiv-
ities hedges display the highest risk compression ratios and the lowest HVA trend
c. Unlike what we observed in the run-off mode, most sensitivities (except for EC
sensitivities when t = 0.01 or 0.1) also compress the HVA trend c compared to the
unhedged case.

input : A set of calibrated initial values and model parameters ρ0 = (y0, ε0)
(client default indicators X0 all set to 0), a time horizon t, a number of
exposure paths m with n pricing time steps.

output: Estimated sensitivities ∆.
1 Simulate m cash flows ξ0,T (ρ0;ωj) as per line 6 of Algorithm 2 in the baseline

mode
2 Simulate m realizations εj of ε(t) as per line 2 of Algorithm 2 with σ = 1%

√
t and

yj = Y jt (y0, εj ; ω̃j) as per line 6 of Algorithm 2, for Brownian drivers ω̃j drawn
independently from the ωj , and set ρj = (yj , εj)

3 Simulate m realizations ξ0,T (ρj ;ωj) as per line 6 of Algorithm 2 in the risk mode
(with common random numbers, meaning here the same ωj as in line 1)

4 For each ρj , j = 0 ..m, compute the corresponding market hedging instrument
prices scenario zj

5 if LS then
6 Regress linearly the ξ0,T (ρj ;ωj)− ξ0,T (ρ0;ωj) against the zj − z0 by SVD. The

obtained coefficients are the LS sensitivities.
7 else
8 Train a neural network δCVAθ

(t)(y, ε) to regress the ξ0,T (ρj ;ωj)− ξ0,T (ρ0;ωj)
against the ρj − ρ0.

9 if EC then
10 Solve the left-hand side in (21) by Adam stochastic gradient descent.
11 else if PLE then
12 Solve the right-hand side in (21) by SVD linear regression.
13 end
14 end

Algorithm 4: LS, EC and PLE run-on sensitivities.

25

[Smart] bump sensitivities Regression sensitivities SpeedupModel
sensis

Jacobian
transform

MtM
simulation LS δCVAθ

(t)
learning

PnL regression
EC PLE LS EC PLE

12min48s
[8.5s] 30s 27s 1s 6s 31s 1s 28.5

[1.4]
12.5
[0.6]

23.5
[1.1]

Table 7: Computation times for learning δCVAθ
(t) and the related sensitivities.

The speedups measure the ratios of the total time taken by the benchmark bump
sensitivities approach to the total time taken by each of the sensitivities.

7 Conclusion
Table 8 synthesizes our findings regarding CVA (or more general, regarding columns
1 to 3) sensitivities, as far as their approximation quality to corresponding partial
derivatives (for bump sensitivities) and their hedging abilities (regarding also the
optimized sensitivities) are concerned. The winner that emerges as the best trade-
off for each downstream task in blue green red in the first row is identified by
the same color in the list of sensitivities. bench. bump plays the role of market
standard. Sensitivities that are novelties of this work are emphasized in yellow
(smart bump sensitivities essentially mean standard bump sensitivities with less
paths, but with the important implementation caveat mentioned at the end of
Section 2.1; PLE sensitivities were already introduced in the different context of
SIMM computations in Albanese et al. (2017); EC sensitivities were introduced in
Rockafellar and Uryasev (2000) and are also considered in Buehler (2019)).

sensitivities speed stability local accuracy CVA run-off
hedge

CVA run-on
hedge

bench. bump very slow very stable benchmark bad good

fast
bump
sensis

naive AAD bump fast fragile bad bad bad
AAD bump fast fragile average bad bad
linear bump fast average good bad good
smart bump fast stable good bad good

optimized
sensis

EC sensis fast average not applicable good very good
PLE sensis very fast stable not applicable good excellent
LS w/o Γ very fast stable not applicable not applicable excellent

Table 8: Conclusions regarding sensitivities and hedging. By local accuracy of a
bump sensitivity, we mean the accuracy of the approximation it provides for the
corresponding partial derivative. Italics means tested but not reported in tables or
figures in the paper.

Regarding the assessment of CVA risk, in the run-on CVA case (see Table 9
using the same color code as Table 8), we found out that neural net regression
of conditional CVA results in likely more reliable (judging by the twin scores of
the associated CVA learners) and also faster value-at-risk and expected shortfall
estimates than CVA Taylor expansions based on bump sensitivities (such as the
ones that inspire certain regulatory CVA capital charge formulas). But an LS
proxy, linear diagonal quadratic in market bumps, provides an even quicker (as it
is regressed without training) and almost equally reliable view on CVA risk as the
neural net CVA. In the run-off CVA case (not represented in the table), the
neural net learner of CVAt in the risk mode (or nested CVA learner alike but

26

in much longer time) allows one to get a consistent and dynamic view on CVA and
counterparty default risk altogether.

δCVA(t) learners speed stability twin accuracy δCVA(t) VaR and ES

nonparametric nested MC very slow stable very good very conservative
neural net fast average good conservative

linear(-quadratic)
in market bumps

bench. bump very slow very stable good/average
for small/large t aggressive

LS w/ Γ in δZt very fast stable good conservative

Table 9: Conclusions regarding run-on CVA risk.

References
Abbas-Turki, L., S. Crépey, B. Li, and B. Saadeddine (2024). An explicit scheme

for pathwise XVA computations. arXiv:2401.13314.

Abbas-Turki, L., S. Crépey, and B. Saadeddine (2023). Pathwise CVA regressions
with oversimulated defaults. Mathematical Finance 33 (2), 274–307.

Albanese, C., C. Benezet, and S. Crépey (2023). Hedging valuation adjustment and
model risk. arXiv:2205.11834v2.

Albanese, C., S. Caenazzo, and M. Syrkin (2017). Optimising VAR and terminating
Arnie-VAR. Risk Magazine, October.

Albanese, C., S. Crépey, R. Hoskinson, and B. Saadeddine (2021). XVA analysis
from the balance sheet. Quantitative Finance 21 (1), 99–123.

Antonov, A., S. Issakov, and A. McClelland (2018). Efficient SIMM-MVA calcula-
tions for callable exotics. Risk Magazine, August.

Buehler, H. (2019). Statistical hedging. ssrn.2913250.

Capriotti, L., Y. Jiang, and A. Macrina (2017). AAD and least-square Monte Carlo:
Fast Bermudan-style options and XVA Greeks. Algorithmic Finance 6 (1-2), 35–
49.

Crépey, S. (2013). Financial Modeling: A Backward Stochastic Differential Equa-
tions Perspective. Springer Finance Textbooks.

Henrard, M. (2011). Adjoint algorithmic differentiation: Calibration and implicit
function theorem. OpenGamma Quantitative Research (1). ssrn:1896329.

Lee, E. S. and R. N. Forthofer (2005). Analyzing complex survey data. Sage Publi-
cations.

Matloff, N. (2017). Statistical regression and classification: from linear models to
machine learning. Chapman and Hall/CRC.

Rockafellar, R. T. and S. Uryasev (2000). Optimization of conditional value-at-risk.
Journal of risk 2, 21–42.

27

Saadeddine, B. (2022). Learning From Simulated Data in Finance: XVAs, Risk
Measures and Calibration. Ph. D. thesis, Université Paris-Saclay. https://theses
.hal.science/tel-03894764v1/document.

Savine, A. (2018). From model to market risks: The implicit function theorem
(IFT) demystified. ssrn:3262571 .

28

https://theses.hal.science/tel-03894764v1/document
https://theses.hal.science/tel-03894764v1/document

	Introduction
	Outline of the Paper and Generalities

	Fast Bump Sensitivities
	Common Random Numbers
	Basket Black-Scholes Example
	From Model to Market Sensitivities

	Credit Valuation Adjustment and Its Bump Sensitivities
	CVA Lab

	Learning the Future CVA
	Twin Monte Carlo Validation Procedure

	Run-off CVA Risk
	Run-off CVA Hedging

	Run-on CVA Risk
	Run-on CVA Hedging

	Conclusion

