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France, 4 Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie

Computationnelle et Quantitative UMR 7238, Paris, France, 5 Sorbonne Université, UMR CNRS 8001,

LPSM, Paris, France, 6 Institut Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole,

Toulouse, France, 7 Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM, CNRS,
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Abstract

Background

One of the first clinical observations of ibrutinib activity in the treatment of chronic lympho-

cytic leukemia (CLL) is a rapid decline in lymph nodes size. This phenomenon is accompa-

nied by an hyperlymphocytosis, either transient or prolonged, which is associated with

distinct clinical responses and thus has an impact on long-term outcomes. Understanding

which factors determine distinct disease courses upon ibrutinib treatment remains a scien-

tific challenge.

Methods and findings

From 2016 to 2021, we conducted a longitudinal and observational study in 2 cohorts of

patients with chronic lymphocytic leukemia (CLL) (cohort 1, n = 41; cohort 2, n = 81). These

cohorts reflect the well-known clinical features of CLL patients, such as Male/Female sex

ratio of 2/1, a median age of 70 years at diagnosis, and include patients in first-line therapy

(27%) or relapsed/refractory patients (73%). Blood cell counts were followed for each

patient during 2 years of ibrutinib treatment. In addition, immunophenotyping and whole-

body magnetic resonance imaging (MRI) were assessed in patients from cohort 1. These

data were integrated in a newly built mathematical model, inspired by previous
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mathematical works on CLL treatment and combining dynamical and statistical models,

leading to the identification of biological mechanisms associated with the 2 types of clinical

responses. This multidisciplinary approach allowed to identify baseline parameters that dic-

tated lymphocytes kinetics upon ibrutinib treatment. Indeed, ibrutinib-induced lymphocytosis

defined 2 CLL patient subgroups, transient hyperlymphocytosis (tHL) or prolonged hyper-

lymphocytosis (pHL), that can be discriminated, before the treatment, by absolute counts of

CD4+ T lymphocytes (p = 0.026) and regulatory CD4 T cells (p = 0.007), programmed cell

death protein 1 PD1 (p = 0.022) and CD69 (p = 0.03) expression on B leukemic cells, CD19/

CD5high/CXCR4low level (p = 0.04), and lymph node cellularity. We also pinpointed that the

group of patients identified by the transient hyperlymphocytosis has lower duration response

and a poor clinical outcome. The mathematical approach led to the reproduction of patient-

specific dynamics and the estimation of associated patient-specific biological parameters,

and highlighted that the differences between the 2 groups were mainly due to the production

of leukemic B cells in lymph node compartments, and to a lesser extent to T lymphocytes

and leukemic B cell egress into bloodstream. Access to additional data, especially longitudi-

nal MRI data, could strengthen the conclusions regarding leukemic B cell dynamics in lymph

nodes and the relevance of 2 distinct groups of patients.

Conclusions

Altogether, our multidisciplinary study provides a better understanding of ibrutinib response

and highlights new pharmacodynamic parameters before and along ibrutinib treatment.

Since our results highlight a reduced duration response and outcome in patients with tran-

sient hyperlymphocytosis, our approach provides support for managing ibrutinib therapy

after 3 months of treatment.

Trial registration

ClinicalTrials.gov NCT02824159.

Author summary

Why was this study done?

• Treatment of chronic lymphocytic leukemia (CLL) was revolutionized by the introduc-

tion of targeted therapies such as ibrutinib. Previous studies showed that lymphocyte

kinetics under ibrutinib treatment are related to clinical outcome, but some potential

mechanisms underlying these responses have not been fully explored.

• This study was done to decipher key biological and pharmacodynamic factors involved

in ibrutinib response.

What did the researchers do and find?

• Relying on a cohort of patients treated with ibrutinib, we combined clinical parameters,

biological monitoring, whole-body tissue imaging, and mathematical modeling to
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decipher key biological and pharmacodynamic factors underlying the 2 distinct groups

of ibrutinib response, transient or prolonged hyperlymphocytosis.

• We elaborated a mathematical model, based on previous ones of CLL and combining

both dynamical and statistical approaches, that characterizes inter-patient variability

and estimates patient-specific biological parameters associated with the 2 groups of

response.

• We identified clinical factors (age, absolute lymphocyte counts) and biological factors,

such as absolute counts of CD4+ T lymphocytes and regulatory CD4 T cells, pro-

grammed cell death protein 1 and CD69 expression on B leukemic cells, CD19/CD5high/

CXCR4low level in blood, and lymph node cellularity, before and during ibrutinib ther-

apy. These biomarkers are predictive of ibrutinib response.

• The mathematical approach confirmed the identified clinical factors, by highlighting

that the differences between the 2 types of response to ibrutinib treatment were mainly

due to the production of leukemic B cells in lymph node compartments, and to a lesser

extent to T lymphocytes and leukemic B cell egress into bloodstream.

• We found that the group of patients identified by the transient hyperlymphocytosis has

lower duration response and a poor clinical outcome.

What do these findings means?

• Estimation of patient-specific biological parameters in the mathematical models high-

lights that only few biological processes are group-specific when CLL patients are

treated with ibrutinib.

• Biomarkers defined in this study can be easily monitored in CLL patients before and

during ibrutinib treatment.

• These results offer potential support for optimizing the management of ibrutinib treat-

ment, especially in the first months of therapy.

• Access to additional data, especially longitudinal magnetic resonance imaging (MRI)

data, could strengthen the conclusions regarding leukemic B cell dynamics in lymph

nodes.

Introduction

Management of chronic lymphocytic leukemia (CLL), in first-line and relapsed/refractory set-

tings, has been revolutionized by the introduction of oral, targeted agents against Bruton Tyro-

sine Kinase (ibrutinib), PI-3Kinase (idelalisib), and Bcl-2 (venetoclax) [1,2]. In real-world

practice, ibrutinib has been used since 2014 in relapsed/refractory patients and in first-line

patients with TP53 abnormalities. The mechanisms by which ibrutinib targets CLL and restores

normal immune subsets include: direct cell killing (mostly in tissues), egress from tissue niches,

and inhibition of proliferation by targeting B cell receptor signaling and activation of canonical

NF-kB pathway, primarily in the lymph node (LN) tumor microenvironment [3,4]. These

effects led to an increase of absolute lymphocyte counts (ALCs) in parallel of efflux from tissue

compartments, whose kinetics appears heterogeneous across patients’ cohorts [5–8].
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Kinetics of lymphocytosis upon ibrutinib treatment has been first described by Wiestner’s

group [6]. In this Phase 2 study [6], 3 profiles of ALCs were described in which 1 subset

showed a long-lasting ALCs increase over time (prolonged hyperlymphocytosis (pHL), linked

to lower baseline ALCs, immunoglobulin heavy chain variable region genes mutated status,

and bulky disease). Importantly, none of those subsets were found correlated to clinical out-

comes. Prolonged hyperlymphocytosis with a slight modification of definition was reported in

69% of RESONATE (relapsed/refractory CLL) and 57% of RESONATE-2 (first-line CLL with-

out deletion 17p) patients respectively, but this time was found to be correlated with an

improvement of progression-free survival (PFS) only in the relapsed/refractory patients after

19 months follow-up [8,9]. It suggested that lack of initial hyperlymphocytosis could be con-

sidered as an easy and rapidly assessable risk factor for progressions [8,10].

Besides its efficacy against CLL cells, ibrutinib displays “on-target” and “off-tumor” effects,

explaining some of the adverse events [11,12], but might also be responsible for disease-related

immune suppression state [13–15]. One of the hallmarks of this disease is indeed a profound

immunosuppression due to impairment of T cells proliferation, cytokine production, immune

synapse formation, leading to accumulation of exhausted programmed cell death protein 1

(PD1+) T cells, and increase in CD4+CD25highCD127low regulatory T cells (Tregs) [15]. Under

ibrutinib, immuno-monitoring of PD1 levels at the surface of CD4+ and CD8+ T cells have

been reported from small cohorts (7, 14, and 17 patients) in 3 independent studies, without

correlation to clinical outcomes [16–18]. On the leukemic B cell compartment, ibrutinib treat-

ment has been shown to be associated with a reduction of PD1 expression (more pronounced

than on the T cell compartment) [18], the consequences of which remain unknown.

Mathematical modeling contributed to better understand ibrutinib-induced mechanisms

in CLL patients [5]. The model introduced by Wodarz and colleagues [5] and later used in

Burger and colleagues [7] consisted in 2 ordinary differential equations (ODEs) describing leu-

kemic B cell dynamics in LN/spleen and blood. The authors concluded that ibrutinib mainly

affects leukemic B cell death, with larger death rates in tissues than in blood. In 2014, Komar-

ova and colleagues [19] focused on the development of ibrutinib resistance using methods

from evolutionary and computational biology. These works impacted the clinical understand-

ing of CLL and have been essential in the development of current CLL treatments.

Here, using a longitudinal and observational study of CLL patients, we investigated clinico-

biological and imaging parameters predicting 2 groups of response induced by ibrutinib

(ALCs but also specific immunomodulatory effects of ibrutinib). We explored whether these

markers could be correlated to each other and/or to duration of treatment response. To do so,

we have designed a mathematical model built on our data and previous mathematical models

[5,7] and focused on both leukemic B and T cell counts co-evolution. We have elaborated a

modeling approach based on the coupling of ODE describing leukemic B and T cell dynamics

and nonlinear mixed effect (NLME) modeling. This approach enables to describe observed

inter-patient variability. To our knowledge, no NLME model has been studied for CLL under

treatment. We combined the results of clinical analyses and mathematical model parameter

estimation to identify which effects explain the 2 ibrutinib-induced patterns of lymphocytosis.

Methods and materials

Ethics statement, patients, and treatment

Peripheral blood samples from ibrutinib-treated CLL patient (n = 122: cohort 1, n = 41; cohort 2,

n = 81) were obtained from the Hematology Department with written informed consent and refer-

enced in INSERM cell bank. According to French law, INSERM cell bank has been registered with

the Ministry of Higher Education and Research (DC-2013-1903). Clinical and biological annotations
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of the samples have been reported to the Comité National Informatique et Liberté. This longitudinal

and observational study was approved by the competent authority (ANSM, n˚ 1551668A-11), the

ethics committee (N˚ CPP16-004a) and registered by Clinical-Trials.gov (NCT02824159).

This study is reported as per the Strengthening the Reporting of Observational studies in

Epidemiology (STROBE) guideline (S1 STROBE Checklist).

Immuno-monitoring study design

Among 122 ibrutinib-treated CLL patients included in the protocol, 41 patients were followed for

a two-year period from the treatment initiation (M0: Month 0). Peripheral blood samples were

collected at different times of the treatment phase (M0, M1, M2, M3, M6, M12, M18, and M24).

Immunofluorescence staining and analysis. For cell surface staining, peripheral blood

mononuclear cells (PBMCs) were incubated with conjugated antibodies (S1 Table) in phos-

phate buffer saline with 1% inactivated fetal calf serum for 20 min at 4˚C in the dark. For intra

cellular staining, surface labeled PBMC were fixed for 15 min at room temperature in parafor-

maldehyde 1.4%, then permeabilized using BD Phosflow Perm Buffer II (BD Bioscience),

washed and stained with BTK (Bruton Tyrosine Kinase) and p-BTK conjugated-antibodies for

20 min at 4˚C in the dark. Samples were measured on a BD LSR II cytometer and analyzed

with BD FACS Diva software (BD Bioscience).

In vitro blood cell depletion assay. In vitro ibrutinib sensitivity was quantified using B

cell depletion assay [20]. Briefly at each time of ibrutinib treatment, fresh PBMC were seeded

at 1 × 107 cells/ml in culture medium (providing long-term viability) and treated by relevant

doses of ibrutinib for 7 days. CD19+/CD5+ (B leukemic cells) levels were determined by flow

cytometry. B-cell depletion relative to untreated controls was determined by flow cytometry

combined with absolute number quantification as previously described [20].

Statistical analyses of medical and biological data. They were done using two-tailed

Mann–Whitney test (unpaired samples) or Student t test (paired samples).

Lymph nodes segmentations

Whole body anatomic magnetic resonance imaging (MRI) was acquired at baseline (M0) for 26

patients of cohort 1 (who accepted MRI protocol) and consisted on several 3D volume stages of

T1 weighted axial images. These patients who have been analyzed with diffusion-weighted MRI

study were the same patients analyzed in our previous study [21] except 1 patient whose acquisi-

tion encountered problem of image reconstruction. The parameters of the diffusion-weighted

MRI are the following: Repetition Time/Echo Time/Inversion Time = 6,930 ms/71 ms/160 ms

with 2 b-value of 50 and 800 s/mm2. Diffusion images were obtained by averaging over 2 acquisi-

tions. The number of stages was adjusted according to patient size to cover the whole body. To

reduce motion artifact, volume stages corresponding to thoracic and abdominal regions were

acquired in breath holding condition. Cervical, axillary, mediastinal, retroperitoneal, iliac, ingui-

nal, and splenic regions of interest were segmented with a dedicated semiautomatic method [21].

After a clinical validation by 2 radiologists, the lymph nodes segmentations allowed us to compute

the volumes (in ml) and to map these regions of interest on the diffusion modality from which the

apparent diffusion coefficient (ADC) (mm2/s) was done for the first 9 patients. ADC is related to

cellularity that captures the degree of abnormal cellular packing and density.

Cell count dynamics study and modeling

Among the 122 patients, group classification was defined according to previously described

clinical results [8,9] and thus, pHL was defined as having an ALCs at M3 larger than at M0

(ALC M3> ALC M0).
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Based on known interactions between B and T cells, and inspired by Wodarz and colleagues

[5] model, a generic model of B and T cell dynamics under ibrutinib treatment was built and

validated on medical data to reproduce the behavior of an average patient. The model accounts

for clinical observable variables: CD19+/CD5+ B cell counts in LN (denoted by BLN), and

CD19+/CD5+ B cell (Bbl), CD4 T cell (T4), CD8 T cell (T8), Natural Killer (NK) cell (TNK), and

Regulatory CD4 T cell (Tregs) counts in blood. Dynamics of leukemic B cells are described by a

model similar to the one in Wodarz and colleagues [5], where cells exit LN with a rate Fout and

are produced within LN with a constant rate Fin. Dynamics of T cells follow a standard equa-

tion, including T cell renewal and production from LN. Model’s parameters are described in

Table 1 and details of the modeling procedure are available in S1 File Modeling.

The model has been validated, in patients with and without pHL, separately by data fitting

(mean values of cell counts at M1, M2, M3, M6, M12, M18, and M24 for blood measurements,

and M1, M12 an M24 for LN measurements, obtained through volume estimations MRI mea-

surements). Least-squares minimization has been used to optimize parameter values. Parame-

ter value estimation and data fitting have been performed using Data2Dynamics [22,23], a

Matlab R2019b add-on (S1 File Modeling), and for each parameter, profile likelihood-based

confidence intervals [24] are provided.

Model development and its analysis have been performed following Garnett and colleagues

guidelines [25].

Population approach and inter-patient variability

To account for inter-patient variability in the mathematical model, we used a population

approach based on mixed-effect modeling [26]. NLME models allow the description of inter-

patient variability within a population of individuals by assuming all individuals in the

Table 1. Variables and parameters of the model of B and T cell dynamics. (d–day; LN, lymph nodes; NK, Natural

Killer cells; Tregs, regulatory CD4 T cells).

Variables and parameters Unit Description
BLN cell count Leukemic B cell count in LN

Bbl cell count Leukemic B cell count in blood

T4 cell count CD4 T cell count in blood

T8 cell count CD8 T cell count in blood

TNK cell count NK cell count in blood

Tregs cell count Tregs cell count in blood

B0
LN cell count Initial leukemic B cell count in LN

B0
bl cell count Initial leukemic B cell count in blood

T0
4

cell count Initial CD4 T cell count in blood

T0
8

cell count Initial CD8 T cell count in blood

T0
NK cell count Initial NK cell count in blood

T0
regs cell count Initial Tregs cell count in blood

Fout d-1 Lymph node exit rate

Fin cell.d-1 Leukemic B cell lymph node production rate

μB d-1 Leukemic B cell death rate

μ4 d-1 CD4 T cell death rate

μ8 d-1 CD8 T cell death rate

μNK d-1 NK cell death rate

μreg d-1 Tregs death rate

t d Time

https://doi.org/10.1371/journal.pmed.1004430.t001
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population (here CLL patients) share common characteristics (fixed effects) while each patient

is unique and differs from the average behavior by a specific value (random effect) [26–29].

Details are available in S1 File Modeling.

Parameter values were estimated with Stochastic Approximation Expectation-Maximiza-

tion algorithm [30]. A categorical covariate was used to characterize groups of patients. Clini-

cal cell counts were pooled together, and then parameter values were estimated assuming that

fixed effects were different between groups of patients. Estimated covariate parameters were

tested to be significantly different from zero with a Wald test implemented in Monolix soft-

ware [30] and a p-value threshold at 0.05 (see S1 File Modeling).

Model selection

The generic model of B and T cell count dynamics has been selected using a procedure of

model selection based on data fitting, parameter estimation, and comparison of statistical indi-

cators (corrected Akaike information criterion). All details and tested models are provided in

S1 File Modeling.

To describe inter-patient variability, an error model must be assessed for each variable,

parameter correlations, and significant covariates must be selected. The Stochastic Approxi-

mation for Model Building Algorithm (SAMBA) [31] is an iterative procedure that allows to

build a covariate, a correlation, and an error model automatically. The procedure relies on

Monolix simulations and uses the corrected Bayesian information criterion to validate its

selection.

An appropriate NLME model was selected using the SAMBA implementation in the func-

tion buildmlx and the variability model (random effects needed to explain the data) was built

with buildVar function both of the R package Rsmlx [32]. SAMBA does not guarantee that a

global minimum will be reached. Consequently, SAMBA was performed with 5 different initial

configurations (S2 Table) and the model with all common features was selected. Finally, a

multi-start approach available in Monolix [30] was performed to ensure that estimations were

robust and the model was practically identifiable.

Results

Ibrutinib-induced lymphocytosis defines 2 CLL patient subgroups

In our 122 patients (S3 Table) treatment-induced lymphocytosis was highly variable between

patients (Fig 1A). Yet, we applied the previously described cut-off [8,9] to easily classify

patients according to lymphocytosis status, irrespectively of percent ALC rise: tHL group

(transient hyperlymphocytosis) had short-lived lymphocytosis (ALC M3 < ALC M0) and pHL

group displayed a prolonged hyperlymphocytosis (ALC M3> ALC M0) (Fig 1B). This

3-month cut-off was chosen in agreement with the RESONATE and RESONATE-2 trials,

where median time to recovery from pHL was 14 and 12 weeks, respectively. Out of 122

patients treated by ibrutinib 68% were in tHL group versus 32% in pHL group in cohort 1

(n = 41) and 57% in tHL group versus 43% in pHL group in cohort 2 (n = 81) (Chi2: 0.144)

(Fig 1C). Factors significantly associated with pHL were: lower median pre-treatment ALC,

absence of deletion 17p, presence of deletion 11q, and older median age but not immunoglob-

ulin heavy chain variable region genes mutational status (S1 Fig).

Differential lymphocytosis in our series was not associated with progression-free survival

(PFS) or overall survival (OS). So, we investigated patients’ disposition along time of treatment

exposition by swimmer plot analyses (S2 Fig). Furthermore, before 1 year of treatment, aggres-

sive disease (Richter syndromes) occurred more frequently in tHL group (9%) than in pHL

group (0%), whereas percent of CLL progression was not clearly different in both groups (6%
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in tHL group versus 4% in pHL group) (S4 Table). Grade 5 (lethal) adverse events occurred

also more frequently in tHL group before 1 year of treatment (7% versus 0%, respectively). In

addition, before 6 months, infections (Grade� 3) were more frequent in tHL group (37%)

than in pHL group (24%) (p = 0.04) and in relapsed/refractory patients than first-line (34%

versus 15%, respectively; p = 0.003) (S4 Table). No correlation was found between infections

and levels of B leukemic cells, CD4+ and CD8+ T lymphocytes, NK cells and monocytes or

other clinico-biological parameters.

Interestingly, we could calculate in 91 patients (tHL group n = 49, pHL group n = 42) the

BALL score [33], that is related to 4 associated factors (1 point each): ß2-microglobulin (>5

mg/L), Anemia (Hemoglobin <110 g/L), Lactacte Deshydrogenase (LDH> upper limit of

Fig 1. Ibrutinib-induced lymphocytosis. (A) ALC in cohort 1 (dotted line represents CLL ALC at diagnosis; black

dots represent each patient at different time point; solid black lie: median). (B) Median of percent change in ALC

compared to baseline in tHL (red line) and pHL (blue line) groups; red dots (tHL group) and blue dots (pHL group)

represent each patient at different time point. (C) Percentage of tHL (red) and pHL (blue) groups in the 2 independent

cohorts. (D) Percentage of tHL (red) and pHL groups (blue) according to the BALL score: low risk according to the

BALL score equals a better overall survival prognosis based on 4 markers (ß2-microglobulin, Anemia, Lactacte

Deshydrogenase, Last therapy) in the setting of relapsed/refractory receiving chemo-immunotherapy or targeted

therapy [33]. ALC, absolute lymphocyte count; CLL, chronic lymphocytic leukemia; pHL, prolonged

hyperlymphocytosis; tHL, transient hyperlymphocytosis.

https://doi.org/10.1371/journal.pmed.1004430.g001
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normal), Last therapy (time from initiation of last therapy < 24 months). This score has been

described to predict OS under ibrutinib (irrespectively of del(11q)/del(17p) status) in relapsed/

refractory CLL registration trials [34]. In our post hoc analysis, we observed that distribution

of low (40% versus 60%), intermediate (59% versus 41%), and high risk (80% versus 20%)

scores was statistically different between the groups (Fig 1D). Our data show that patients with

pHL were overrepresented in the BALL low-risk group (60% versus 40%) and underrepre-

sented in the high-risk group (20% versus 80%) compared with patients with tHL, suggesting

that pHL group might have a better prognosis at the population level.

Baseline immune contexture and PD1 levels relate to pHL group

Monitoring of normal immune cells subsets was done in the blood of patients from cohort 1

and revealed significant differences in some cellular populations according to the groups. We

could further show that baseline absolute CD4+ T lymphocytes and regulatory CD4 T (Tregs)

cell counts were associated with pHL (Fig 2A), but Tregs cell counts were not correlated with

CD4+ T lymphocytes absolute number (tHL group R2 = 0.009; pHL group R2 = 0.05). Further-

more, baseline PD1 level, at the surface of B leukemic lymphocytes and NK cells, was also asso-

ciated with pHL (Fig 2B and 2C). As already reported [6], baseline CD19+/CD5+ level was

correlated with pHL (Fig 2C). pHL group exhibited less baseline activated B leukemic cells

(CD69+) (Fig 2C), with respect to B leukemic cells level (tHL group R2 = 0.591, p< 0.0001;

pHL group R2 = 0.591, p = 0.003). Finally, pHL group displayed also lower circulating B leuke-

mic cells exhibiting lymph node features (CD19+/CD5high/CXCR4low) (Fig 2C) that were not

correlated with CD19+/CD5+ cell count (tHL group R2 = 0.17, p = 0.09; pHL group R2 = 0.17,

p = 0.44). Baseline percentage of PD1+ CLL cells before treatment was also associated to risk of

infection. Indeed, infections occurred more frequently in patients with PD1+ CLL cells< 20%

(80% versus 42%, respectively; p< 0.0001).

In order to “explore” the lymph node compartment, MRI parameters were assessed in

cohort 1 patients who accepted to participate to this exploration (n = 26). LN volumes did not

significantly discriminate tHL and pHL groups (S3 Fig). Similarly, spleen volumes were not

significantly different between both groups (p = 0.928). We also measured the ADC on the

first 9 patients, before ibrutinib treatment. We observed that tHL group patients presented a

higher ADC (related to lower cellularity) than patients from pHL group (p = 0.03) without cor-

relation with ALC (R2 = 0.0005) (S3 Fig).

Cell population dynamics during ibrutinib treatment

Evolution of cellular populations in blood was followed during ibrutinib treatment in cohort 1

(Fig 3A). Considering all patients, ibrutinib induced a decrease of all cellular populations

along time of treatment. To note, T lymphocyte counts never went back to levels observed in

healthy donors, even after long-term ibrutinib treatment reflecting the effect of interleukin-

2-inducible T-cell kinase (ITK) targeting. In addition, even if NK cell counts decreased upon

ibrutinib treatment, they remained elevated as compared to healthy donors (Fig 3A).

As observed for ALCs, ibrutinib treatment induced 2 profiles of response for all cellular

populations according to tHL or pHL groups (Fig 3B). Indeed, all subsets increased rapidly in

pHL group, probably due to cellular egress from lymph nodes. However, kinetic of cellular

decrease was different between B and T lymphocyte populations showing that the hyperlym-

phocytosis of T cells in pHL group was more limited in intensity and duration than what is

observed for B leukemic cells and NK subsets.

We built a mathematical model of B and T cell dynamics from cohort 1 clinical measure-

ments. The model has been developed in several steps, by incorporating biological and medical
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knowledge on CLL and its treatment based on ibrutinib. Important, and sometimes prolonged,

increase of B or T cell counts in blood following the onset of the treatment is observed in the

cohort. Ibrutinib is known to deplete lymph nodes of leukemic B cells, so we hypothesized that

not only B but also T cells exit the lymph nodes following ibrutinib treatment. Thanks to avail-

able information, we assumed that for each T cell population the flux of cells from the lymph

nodes is proportional to the number of leukemic B cells in the lymph nodes (BLN). This led to

equations describing B and T cell dynamics, where all cell counts are normalized by their ini-

tial value (Fig 4A). A schematic representation of the model is presented in Fig 4B.

The average behavior of patients from each group is correctly reproduced (Fig 4C). Even

though in both cases leukemic B cell counts in blood are overestimated from M6 after the

onset of the treatment, specific dynamics of both groups are well described. The pHL charac-

terizing pHL group is clearly visible, and is associated with high T cell counts up to M1/M2.

Fig 2. Immuno-phenotyping of CLL populations before ibrutinib treatment according to tHL and pHL groups. (A) Absolute number of CD4

lymphocytes, regulatory CD4 T cells (CD4/Treg), CD8 lymphocytes, Natural Killer cells (NK), and monocytes; G/L: Giga per Liter. (B) Percentage of immune

cells expressing PD1. (C) Immuno-phenotyping of B leukemic cells. Abs nb, Absolute number; G/L, Giga per Liter; SD, standard deviation. For all graphs: two-

tailed Mann–Whitney test between tHL group (red) and pHL group (blue). CLL, chronic lymphocytic leukemia; pHL, prolonged hyperlymphocytosis; tHL,

transient hyperlymphocytosis.

https://doi.org/10.1371/journal.pmed.1004430.g002
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Fig 3. Immuno-monitoring of CLL cell populations during ibrutinib treatment. (A) Median (black line) of absolute number in leukemic B cells (CD19+/

CD5+), CD4 lymphocytes, CD8 lymphocytes, Natural Killer (NK) cells, regulatory CD4 T cells (Tregs), and Tregs/CD4 ratio. In each subgraph, dotted line

represents the median of absolute number of cells in healthy donors (for T lymphocytes and NK cells) and in CLL at diagnosis (B CD19+/CD5+); G/L: Giga

per Liter. Red dots (tHL group) and blue dots (pHL group) represent each patient at different time point. (B) Median of percent change in leukemic B cells

(CD19+/CD5+), CD4 lymphocytes, CD8 lymphocytes, Natural Killer (NK) cells, regulatory CD4 T cells (Tregs) compared to baseline in tHL group (red) and
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Dynamics of tHL group show a very brief hyperlymphocytosis (less than 1 month), associated

with an increase of T cell counts on the same period. This result cannot be compared to clinical

measurement yet due to lack of measurements between M0 and M1.

Parameter values estimated to fit patient’s data and generate cell dynamics in Fig 4C are

listed in S5 Table. The estimated values show first that T cell renewal rates are similar in both

pHL group (blue). G/L: Giga per Liter. Red dots (tHL group) and blue dots (pHL group) represent each patient at different time point. M1 to M24 indicate

month 1 up to month 24 of treatment. Statistics: two-tailed Mann–Whitney test between tHL and pHL groups. CLL, chronic lymphocytic leukemia; pHL,

prolonged hyperlymphocytosis; tHL, transient hyperlymphocytosis.

https://doi.org/10.1371/journal.pmed.1004430.g003

Fig 4. Mathematical model to simulate cell dynamics in CLL under ibrutinib treatment. (A) Mathematical system describing B and T cell dynamics. All

variables are introduced in Table 1 and details provided in S1 File Modeling. (B) Schematic representation of the mathematical model. In (A) and (B), the green

areas highlight the processes that depend on the groups when using the nonlinear mixed-effects model. (C) Both simulated (plain lines) and clinical (dots,

mean values) data of B and T cell dynamics in blood are displayed, as well as B cell dynamics in lymph nodes (bottom right) in tHL group (red) and pHL group

(blue). Simulated dynamics have been obtained with parameter values in S5 Table. CLL, chronic lymphocytic leukemia; LN, lymph nodes; NK, Natural Killer

cells; pHL, prolonged hyperlymphocytosis; tHL, transient hyperlymphocytosis; Tregs, regulatory CD4 T cells.

https://doi.org/10.1371/journal.pmed.1004430.g004
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groups, suggesting no group-specific influence of ibrutinib on T cell renewal. Second, they

highlight that the main difference between both groups is in the exit rate of leukemic B cells

from lymph nodes: it is 8 times larger in pHL group. Also, patients from pHL group have

lower B cell death and production rates than patients from tHL group.

Based on the mathematical model built for describing average clinical measurements, we

can assess that T cell count dynamics in blood are impacted by lymph node cell counts dynam-

ics. In addition, in blood, no interaction between leukemic B cells and T cells was required to

explain the observed dynamics, suggesting that these interactions can be neglected.

Biological parameters under ibrutinib treatment

In addition to a better egress of lymphoid cells in patients from pHL group, it could be also pos-

sible that B leukemic cells from these patients are less sensitive to ibrutinib due to a differential

expression of BTK or its phosphorylated form. Before treatment, no difference was observed in

BTK expression and pBTK/BTK ratio between both groups. In both groups, 1-month ibrutinib

exposure led to a decrease of BTK protein level associated with an increase of its phosphorylated

form, followed by a decrease of pBTK/BTK ratio after M6 (S4 Fig). Before treatment, in vitro

depletion assays confirmed that ibrutinib induced less cell death in pHL group than in tHL

group, irrespective of ibrutinib concentration (Fig 5A). In addition, ibrutinib is more efficient

to CD69+ leukemic cells in both groups (Fig 5B). Accordingly, monitoring of CD69+ and

CD69− showed a significantly sustained level of CD69− B leukemic cells in pHL group along

ibrutinib exposure (Fig 5C). In addition, pHL was associated with a higher egress of

B leukemic cells from lymph nodes to blood as observed by the rate of CD5highCXCR4low

circulating cells (Fig 5D), with a significant increase of CD5highCXCR4lowCD69− during the

first 6 months of treatment (M1 p = 0.0003; M2 p< 0.0001; M3 p< 0.0001; M6 p = 0.0008).

After 2 years, all patients remaining under ibrutinib treatment decreased their lymphocyto-

sis compared to baseline level despite some patients (27%) exhibited an ALC > 5 G/L

(Fig 1A).

Mathematical modeling highlights 3 biological processes specific to pHL

group

Our cohort resulted in patient-specific data for cohort 1 patients, consisting in cell counts for vari-

ous cell types (B and T cells in blood and estimated B cell counts in lymph nodes) at different

times after the onset of the treatment. Such data exhibit important inter-patient variability (Fig

1A). To account for it, we introduced a population approach with NLME modeling [26,30]. Con-

trary to the model on average data, here each patient dynamics is taken into account.

We found that the NLME model that best reproduces the measurements requires patient-

specific parameters for all B and T cell processes and includes the group covariate. All T cell

mortality parameters are correlated (μ4, μ8, μNK, μreg), as well as production and outflow of the

leukemic B cells in lymph nodes (Fin, Fout). S6 Table summarizes estimated parameters.

Noticeably, Fin, Fout and μ4 are group specific (Fig 4B), highlighting that patients from tHL

and pHL groups differ significantly in their leukemic B cell dynamics within lymph nodes.

Patients from pHL group are characterized by a much higher efflux rate from lymph nodes (44

times higher than in tHL group). The lymph node production rate is 5 times lower in pHL

group than tHL group. Finally, CD4+ T cell mortality rates also differ between groups, yet dif-

ferences are less important (death rate 1.3 times higher in pHL group). The absence of correla-

tion between parameters governing B and T cell dynamics shows that these dynamics are

independent in blood. In addition, the death rate of leukemic B cells is the same in both groups

showing that differences between both groups do not rely on this process.
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Fig 6 displays measured leukemic B cell counts in blood and lymph nodes for patients from

tHL and pHL groups and the average cell count computed from the model. Also, individual

dynamics predicted by the model were used to compute the median, the 90th and 10th percen-

tiles. An example, for each group, of individual leukemic B cell counts in blood is displayed. It

Fig 5. In vitro ibrutinib sensitivity and egress of B leukemic cells. (A) In vitro dose-effect of ibrutinib on B leukemic cell depletion at

M0. Statistics: two-tailed Mann–Whitney test; SD, standard deviation. (B) In vitro ibrutinib-sensitivity of B leukemic cells according to

CD69 expression at M0. Statistics: two-tailed paired Student t test; SD, standard deviation. (C) Median (tHL group, red; pHL group,

blue) of percent change of B leukemic cells, according to CD69 expression, under ibrutinib exposure. Red dots (tHL group) and blue

dots (pHL group) represent each patient at different time points. Statistics: two-tailed Mann–Whitney test between tHL and pHL

groups. (D) Median (tHL group, red; pHL group, blue) of percent change of lymph node circulating B leukemic cells during ibrutinib

treatment. Red dots (tHL group) and blue dots (pHL group) represent each patient at different time points. Statistics: two-tailed Mann–

Whitney test between tHL and pHL groups. pHL, prolonged hyperlymphocytosis; tHL, transient hyperlymphocytosis.

https://doi.org/10.1371/journal.pmed.1004430.g005
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shows the ability of the NLME model to reproduce patient-specific dynamics. It highlights the

good quality of model prediction when patient variability is accounted for. Results in lymph

nodes, for both groups, are impacted by the limited number of measurements. Quality of

model predictions is similar for both groups.

Discussion

Our report illustrates that interdisciplinarity between biology, medical imaging, and mathe-

matics is a strength to better understand and explain clinical observations. Indeed, in our lon-

gitudinal study and in accordance to previous clinical observations [8,9], we confirmed that

ibrutinib treatment in CLL patients induced 2 patterns of response: a transient and a pro-

longed lymphocytosis. We highlighted the importance of tumor microenvironment in the 2

types of response and the disease course upon ibrutinib treatment for the 2 patterns of

response. Indeed, we identified clinical baseline parameters (age and absolute lymphocyte

counts), biological features such as absolute counts of normal immune cells (CD4+ T lympho-

cytes, Treg cells), CD19/CD5high/CXCR4low B leukemic cells, PD1 and CD69 expression on B

leukemic hyperlymphocytosis and lymph node cellularity assessing by whole body MRI. We

also pinpointed that the group of patients identified by the transient hyperlymphocytosis had

lower duration response and a poor clinical outcome. By developing the mathematical model,

we confirmed the role of the balance between cell death and cell egress from lymph nodes in

the response to ibrutinib treatment. Noticeably, this study was not based on statistical dichoto-

mization of patients but built on previous clinical reports, defining the 2 groups of response

under ibrutinib treatment. Nevertheless, the model confirmed cell counts evolution of B leuke-

mic cells [5,7] and provided new information on T lymphocytes dynamics in CLL patients

Fig 6. Model predictions of B leukemic cell evolution accounting for inter-patient variability. (A) Percent change

in CD19+/CD5+ cell counts, in blood (left) and LNs (center), and an example of an individual specific dynamic

displayed for CD19+/CD5+ cell counts in blood (right) in tHL group. (B) Percent change in CD19+/CD5+ cell counts,

in blood (left) and LNs (center), and an example of an individual specific dynamic displayed for CD19+/CD5+ cell

counts in blood (right) in pHL group. Dynamics are obtained from simulations of the nonlinear mixed-effects model

(Fig 4A and 4B), using parameter values from S6 Table. In each plot, individual clinical measurements appear as dots.

Median and mean cell counts (left, center) are represented by a straight and dashed line respectively, 10th and 90th

percentiles by the colored shaded area, computed from model predictions. LN, lymph node; pHL, prolonged

hyperlymphocytosis; tHL, transient hyperlymphocytosis.

https://doi.org/10.1371/journal.pmed.1004430.g006
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upon ibrutinib treatment. Thus, our study gave a better knowledge of ibrutinib response in

CLL patients and provided information for clinicians to better manage ibrutinib therapy, espe-

cially in the first 3 months of treatment.

Our study relied on ALCs-based groups of response to treatment, with groups either exhib-

iting pHL (ALC M3> ALC M0) or tHL (ALC M3< ALC M0). Similar definition of groups of

patients was previously introduced in clinical studies [6,8–10]. In this work as well as in previ-

ous ones [6,8–10], dichotomization of patients in 2 groups has not been performed based on a

statistical criterion. Indeed, statistical methods could be used to determine whether 2 or more

groups of patients can be extracted from the data, and if so, what would be the optimal crite-

rion to define the groups. For instance, mixture models with different numbers of components

could be fit to the data [35,36]. Since distributions of ALCs are highly skewed to the right (few

patients with very high ALCs), it is however important to account for this specific feature of

the data that make them unlikely to be fitted by Gaussian distributions. We nevertheless

decided to use group definitions introduced in the literature, since they represented clinical

practice and consequently had potential easy clinical applications by helping to better stratify

and follow patients during ibrutinib treatment. In addition, it may be noted that ALC data

were not normally distributed (Shapiro–Wilk test, not shown) and did not have the same laws

(Wilcoxon Mann–Whitney test, not shown) at M0, M2, and M3, suggesting that the 2 groups

identified different treatment responses.

Since this study was based on only 1 measurement per time point and per patient, it was

therefore not possible to estimate the regression to the mean effect [37] in measured ALCs and

groups definition. However, over the 122 patients of both cohorts 1 and 2, dynamics over the 3

first months after treatment (measurements M1, M2, and M3) remained the same for 90

patients (that is, either above or below baseline). We could then assume that the variations on

which groups of responses had been constructed were mostly due to the treatment effect and

could not be explained by regression to the mean effect only.

Introducing a mathematical model to describe cell counts evolution in CLL patients treated

with ibrutinib was an original and complementary approach to the current clinical study. We

chose to introduce an NLME model to characterize each patient profile instead of indepen-

dently fitting our model to individual patient data. Indeed, such an approach would have been

limited by missing data that could prevent model parameters identifiability. The NLME

approach used efficiently the available information from existing measurements. Estimated

values for leukemic B cell death rate and the exit rate from lymph nodes were of the same

order of magnitude than the ones reported in Wodarz and colleagues [5] and Burger and col-

leagues [7]. We additionally described T lymphocytes dynamics under ibrutinib hence charac-

terizing more specifically the effect of ibrutinib treatment on CLL patients. We found that T

cell mortality parameters are correlated, with higher correlation rates for CD4+/CD8+ T cells

and regulatory CD4 T cells. To confirm its robustness, the model should be compared to a

new and larger dataset.

By targeting ITK, ibrutinib also induced 2 groups of response in normal cells. This sug-

gested that ibrutinib sensitivity and/or activation/exhaustion status of normal cells may affect

the dynamic of efflux versus production rates as well as cell death. Indeed, the observed base-

line of absolute CD4+ T cell counts was significantly smaller in pHL group. It was estimated,

with the mathematical model, that the death rate of CD4+ T cells was higher in pHL group,

contributing to explain the differences observed between groups. For each group, neither basal

nor time-course level of immune cells were correlated to ALCs and, except for Natural Killer

cells, absolute number of immune cells was always lower than in healthy donors. Even though

T lymphocytes function was under the scope of our study, results from clinical trials using

CD19/CD3 bispecific antibody [38] showed that immune cells were efficient against ibrutinib-
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resistant B leukemic cells. This suggested that despite a drastic reduction of T lymphocytes

number by ibrutinib treatment, function was not completely altered. It would be interesting to

follow immune cells time-course under new BTK inhibitors (acalabrutinib [39], zanubrutinib

[40]), which induced a lesser inhibition of ITK.

In order to explain the differential response to ibrutinib, we addressed the hypothesis that

lymph node micro-environment composition and related-cellularity, measured by the ADC,

could be different between groups. Our results showed that patients from tHL group present a

higher ADC (related to lower cellularity) than patients from pHL group without correlation

with ALCs. These preliminary data should be validated in a larger cohort of patients to charac-

terize ADC as a predictive marker of ibrutinib response evolution and its use in clinical prac-

tice. However, we can speculate that in tHL group, the structure of lymph nodes may be less

compact, promoting, at least in part, the exit of cells into blood compartment before treatment.

Conversely, a lower ADC (related to higher cellularity) in pHL group could be linked to a

more compact structure of lymph nodes in these patients and so, a basal lower egress of cells

into blood. This hypothesis is reinforced by absolute lymphocyte quantification and the high

number of circulating CD19/CD5high/CXCR4low cells in tHL group versus pHL group before

treatment. Then, during ibrutinib treatment, a lower compaction of lymph nodes could pro-

mote a better diffusion of ibrutinib into these organs, leading to an increase of cell death in

situ, and a reduced egress of leukemic cells (as observed in tHL group). On the contrary, a

higher compaction of lymph nodes (pHL group) could decrease ibrutinib diffusion and effi-

ciency, leading to a more prolonged egress of cells from lymph nodes to the blood compart-

ment. However, this phenomenon could also be coupled to chemokine sensitivity and surface

proteins, such as CD69, S1P1, CCR7 [41–45] that contribute to cellular egress or retention in

CLL lymph nodes. Finally, the pHL during treatment could also be linked to the lesser sensitiv-

ity of CD69- B leukemic cells to ibrutinib.

Mathematical results supported the biological parameters associated with pHL and the pre-

vious hypotheses. Under ibrutinib treatment, the lymph node exit rate of leukemic B cells was

much higher in pHL group than in tHL group. In addition, the observed smaller leukemic B

cell number in pHL group (less baseline activated leukemic B cells CD69+ and circulating leu-

kemic B cells with lymph node features (CD19+/CD5high/CXCR4low)) could be explained by a

smaller production rate in lymph nodes that was mathematically estimated to a lower value in

pHL group than in tHL group. The mathematical analysis also highlighted that inter-patient

variability was not sufficient to explain the differences between the 2 groups. This means that

differences observed in measurements were mainly due to a significant difference in the bio-

logical processes between the 2 groups of patients.

Our study also pinpointed that blood lymphocytosis induced by ibrutinib is associated to

duration response and outcomes. Indeed, pHL identified a group with a better prognosis (Fig

1) [8,10]. This observation could be related to the concept of inter-clonal equilibrium/competi-

tion among B leukemic clones leading to the non-expansion of a dominant clone (BTK

mutated or more proliferating) [46–48].

Altogether, our study provides a better understanding of which baseline clinico-biological

and pharmaco-dynamic parameters dictate absolute lymphocyte kinetics upon ibrutinib treat-

ment. Combining MRI and standard procedures (such as minimal residual disease in blood

and bone marrow compartments) might help to design future clinical trials with a more thor-

ough evaluation of “tissular compartments” responses. As our results highlight suboptimal

outcomes in patients with transient hyperlymphocytosis, we believe that our approach could

provide a support for choosing whether ibrutinib should be given alone or associated with, for

instance, venetoclax (this combo is approved by EMEA, not yet FDA) or other therapies after

3 months.
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region genes; IGHV UM: unmutated immunoglobulin heavy chain variable region genes.

(PDF)

S2 Fig. Long-term evolution of patients under ibrutinib therapy. Transient hyperlymphocy-

tosis group (tHL) (n = 68); prolonged hyperlymphocytosis group (pHL) (n = 52); each line rep-

resents a patient.

(PDF)

S3 Fig. Magnetic resonance imaging (MRI) analysis before ibrutinib treatment. (A) Repre-

sentative features of total body MRI for a patient before ibrutinib treatment. Arbitrary colors
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indicate the different organs of interest (cervical, axillary, mediastinal, retroperitoneal, iliac

lymph nodes, spleen, and liver). (B) Volume of lymph nodes according to transient hyperlym-

phocytosis group (tHL) and prolonged hyperlymphocytosis group (pHL). (C) ADC of lymph

nodes according to tHL and pHL groups. SD, standard deviation.

(PDF)

S4 Fig. Monitoring of phosphoBTK/BTK along ibrutinib treatment. tHL, transient hyper-

lymphocytosis group; pHL, prolonged hyperlymphocytosis group; SD, standard deviation; a.

u., arbitrary units.

(PDF)

S1 File Modeling. Model construction, parameter estimation, model selection. Details on

modeling choices, parameter estimation methodology, model selection procedure, for both the

generic model and the patient-specific model.

(PDF)
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comparability of assessment methods if there is more than one group 

Method, paragraphs 2-3 

Bias 9 Describe any efforts to address potential sources of bias Not applicable 

Study size 10 Explain how the study size was arrived at Method, paragraphs 1-3 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were 
chosen and why 

Method, paragraph 2 

Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding Method, paragraph 2 
S1File Modeling 
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(b) Describe any methods used to examine subgroups and interactions Method, paragraph 4-6 
S1 File Modeling 

(c) Explain how missing data were addressed Method, paragraphs 5-6 
S1 File Modeling 

(d) Cohort study—If applicable, explain how loss to follow-up was addressed 
Case-control study—If applicable, explain how matching of cases and controls was addressed 
Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy 

Not applicable 

(e) Describe any sensitivity analyses Not applicable 

 

Results  
Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed 

eligible, included in the study, completing follow-up, and analysed 

Results, paragraph 1-4 
S1 Table 

(b) Give reasons for non-participation at each stage Not applicable  
 

(c) Consider use of a flow diagram Not applicable  

Descriptive 
data 

14* (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential 
confounders 

Results, paragraph 1;  
S3 Table 

(b) Indicate number of participants with missing data for each variable of interest Not applicable 

(c) Cohort study—Summarise follow-up time (eg, average and total amount) Not applicable 

Outcome data 15* Cohort study—Report numbers of outcome events or summary measures over time Results, paragraph 1; 
S2 Figure, S4 Table 

Case-control study—Report numbers in each exposure category, or summary measures of exposure Not applicable 
Cross-sectional study—Report numbers of outcome events or summary measures Not applicable 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence 
interval). Make clear which confounders were adjusted for and why they were included 

Not applicable 

(b) Report category boundaries when continuous variables were categorized Not applicable 

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period Not applicable 

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses Results, paragraphs1-4  

Discussion  
Key results 18 Summarise key results with reference to study objectives Discussion, paragraph 1 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and 
magnitude of any potential bias 

Discussion, paragraphs 
2-4 
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Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from 
similar studies, and other relevant evidence 

Discussion, paragraphs 
1-8  

Generalisability 21 Discuss the generalisability (external validity) of the study results Discussion, paragraph 9 

Other information  
Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which 

the present article is based 
Funding 

 
*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. 
 
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE 
checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at 
http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org. 



Company Antibody Clone 
 
 
 
 
 

BioLegend 

Brilliant Violet 421 anti-human CD19 HIB19 
PE-Cy7 anti-human CD5 UCHT2 

Pacific Blue anti-human CD3 OKT3 
PE anti-human CD8 SK1 
PE anti-human CD69 FN50 

APC anti-human CD184 12G5 
Brilliant Violet 421 Mouse IgG1 isotype control MOPC-21 

PE-Cy7 Mouse IgG1 isotype control MOPC-21 
Pacific Blue Mouse IgG1 isotype control MOPC-21 

PE Mouse IgG1 isotype control MOPC-21 
APC Mouse IgG2a isotype control MOPC-173 

 
 
 
 
 
 

BD Biosciences 

PE-Cy5 anti-human CD4 RPA-T4 
PE-Cy7 anti-human CD56 B159 
FITC anti-human CD279 MIH4 

PE-Cy7 anti-human CD25 M-A251 
FITC anti-human CD127 HIL-7R-M21 

Phosflow anti-BTK (pY223) / ITK(pY180) N35-86 
AlexaFluor 647 anti-human BTK 53/BTK 

PE-Cy5 Mouse IgG1 isotype control MOPC-21 
PE-Cy7 Mouse IgG1 isotype control MOPC-21 

FITC Mouse IgG1 isotype control MOPC-21 
PE Mouse IgG1 isotype control MOPC-21 

AlexaFluor 647 Mouse IgG1 isotype control MOPC-21 
 
S1 Table: Antibodies used in the study 
 



Initial
Error model

Random effects Correlations
Covariates

nlme model (r.e) of r.e
nlme1 Constant None None None
nlme2 Constant All None All parameters
nlme3 Constant µB , µ4, µ8, µNK , µreg None None
nlme4 Constant Fout, Fin None Fin, µB

nlme5
BLN : Constant

All (Fout, Fin) Fout, Fin, µ4Bbl, T : Proportional

S2 Table: Initial configurations of nonlinear mixed-effect (nlme) model used with
SAMBA [1]. The second column indicates which error model has been used (Constant or Propor-
tional). The third column indicates which random effects (r.e) were accounted for. The fourth column
indicates which correlations of random effects were considered. The fifth column indicates whether
covariates were included, and if so on which parameters. Parameters are described in Table 1 (main
text).

Reference:

[1] Prague M, Lavielle M. SAMBA: A novel method for fast automatic model building in nonlinear
mixed-effects models. CPT Pharmacom & Syst Pharma. 2022 Feb;11(2):161–72.



  
Cohort 1  

 

 
Cohort 2  

 

Total 
Cohort  

 
(1 + 2) 

 

Total 
Cohort  

 
tHL 

group 

Total 
Cohort  

 
pHL 

group 
 

Number of patients 
 
 
Sex                                           M 

41 
Nb (%) 

 
27 (66%) 

81 
Nb (%) 

 
55 (66%) 

122 
Nb (%) 

 
82 (68%) 

68 
Nb (%) 

 
49 (72%) 

54 
Nb (%) 

 
33 (61%) 

                                                  F 14 (34%) 26 (32%) 40 (33%) 19 (28%) 21 (39%) 
 

Number of patients 
 
Median age (yrs) 
 

41 
 

70 
 

81 
 

70 
 

122 
 

70 
 

68 
 

68 
 

54 
 

73 
 

Number of patients 
 
 
First Line 

41 
Nb (%) 

 
14 (34%) 

81 
Nb (%) 

 
20 (25%) 

122 
Nb (%) 

 
33 (27%) 

68 
Nb (%) 

 
21 (31%) 

54 
Nb (%) 

 
12 (22%) 

Relapsed/Refractory 27 (66%) 61 (75%) 89 (73%) 47 (69%) 42 (78%) 
 

Number of patients 
 
 
IGHV mutational status          UM 

41 
Nb (%) 

 
31 (76%) 

73 
Nb (%) 

 
56 (77%) 

114 
Nb (%) 

 
87 (76%) 

65 
Nb (%) 

 
52 (80%) 

49 
Nb (%) 

 
35 (71%) 

                               M 10 (24%) 17 (23%) 27 (24%) 13 (20%) 14 (29%) 
 

Number of patients 
 
 
Del 17p 

 

40 
Nb (%) 

 
20 (50%) 

75 
Nb (%) 

 
26 (35%) 

115 
Nb (%) 

 
46 (40%) 

66 
Nb (%) 

 
32 (48%) 

 

49 
Nb (%) 

 
14 (29%) 

 
Number of patients 
 
 
Del 11q 

 

40 
Nb (%) 

 
15 (38%) 

75 
Nb (%) 

 
31 (41%) 

115 
Nb (%) 

 
46 (40%) 

 

66 
Nb (%) 

 
22 (33%) 

 

49 
Nb (%) 

 
24 (49%) 

 
Number of patients 
 
 
Complex karyotype 

 

41 
Nb (%) 

 
19 (46%) 

69 
Nb (%) 

 
26 (38%) 

110 
Nb (%) 

 
45 (41%) 

 

62 
Nb (%) 

 
26 (45%) 

 

48 
Nb (%) 

 
19 (40%) 

 
Number of patients 
 
 
Bulky (LN > 5cm) 
 

40 
Nb (%) 

 
5 (35%) 

40 
Nb (%) 

 
24 (60%) 

80 
Nb (%) 

 
38 (48%) 

 

53 
Nb (%) 

 
24 (45%) 

27 
Nb (%) 

 
14 (52%) 

Number of patients 
 
 
Bulky spleen 
 

40 
Nb (%) 

 
10 (25%) 

38 
Nb (%) 

 
18 (47%) 

78 
Nb (%) 

 
28 (36%) 

51 
Nb (%) 

 
20 (39%) 

27 
Nb (%) 

 
8 (30%) 

 
 
S3 Table: Clinical characteristics of patients.  
tHL: transient hyperlymphocytosis group; pHL: prolonged hyperlymphocytosis group  
Nb: number; Tt: treatment; LN: Lymph Nodes 



  
tHL group 

 

 
pHL group 

Number of patients 68 54 

 
Richter Transformation 
 
All cases 
< 1 yr of treatment 
 

 
Nb (%) 

 
11 (16%) 

6 (9%) 

 
Nb (%) 

 
2 (3%) 
0 (0%) 

 

 
Progressive disease 
 
All cases 
< 1 yr of treatment 
 

 
Nb (%) 

 
17 (25%) 
4 (6%) 

 
Nb (%) 

 
11 (20%) 
2 (4%) 

 
Total Death 

 
Nb (%) 

 

 
Nb (%) 

 
 

All cases 
< 1 yr of treatment 
 

30 (44%) 
10 (14.7%) 

26 (48%) 
3 (5.5%) 

 
Toxicity 
 
All cases 
                         Lethal toxicity 

 
Nb (%) 

 
 

18 (26%) 
9 (13%) 

 
Nb (%) 

 
 

12 (22%) 
8 (15%) 

                                
< 1 yr of treatment 

Lethal toxicity 
 

 
9 (13%) 
5 (7%) 

 
3 (5.5%) 
0 (0%) 

 
S4 Table: Clinical outcome of CLL patients according to transient 
hyperlymphocytosis (tHL) and prolonged hyperlymphocytosis (pHL) groups.  
Nb: number 



Parameter tHL group pHL group Units
value CI value CI

Fout 0.0041 [0.0034;0.0048] 0.031 [0.028;0.033] d−1

Fin 7.76 [7.75;7.77] 3.26 [3.256;3.261] cells.d−1

µB 0.037 [0.036;0.038] 0.021 [0.018;0.024] d−1

µ4 21 [17;27] 23 [18;29] cells−1.d−1

µ8 27 [21;33] 23 [18;29] cells−1.d−1

µNK 70 [56;87] 56 [47;67] cells−1.d−1

µreg 351 [267;466] 270 [215;345] cells−1.d−1

S5 Table: Parameter values associated with the best fit of average clinical data for
both transient hyperlymphocytosis (tHL) and prolonged hyperlymphocytosis
(pHL) groups and used in Figure 4C. Parameters are described in Table 1 (main
text). (CI - confidence intervals, based on the profile likelihood [1]; d – day).

Reference:

[1] Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, et al. Structural
and practical identifiability analysis of partially observed dynamical models by exploiting
the profile likelihood. Bioinformatics. 2009;25: 1923–1929. doi:10.1093/bioinformatics/btp358



Parameter Value SD Units
Fixed Effects
F tout 0.001 0.0003 d−1

F pout 0.044 0.009 d−1

F tin 0.99 0.08 cells.d−1

F pin 0.219 0.02 cells.d−1

µB 0.023 0.0004 d−1

µt4 7.17 0.37 cells−1.d−1

µp4 9.27 0.53 cells−1.d−1

µ8 9.21 0.50 cells−1.d−1

µNK 35.77 2.07 cells−1.d−1

µreg 211.85 12.63 cells−1.d−1

Random Effects
ωFout

1.89 0.16 d−1

ωFin
1.70 0.06 cells.d−1

ωµB
0.67 0.01 d−1

ωµ4 0.87 0.05 cells−1.d−1

ωµ8 0.69 0.06 cells−1.d−1

ωµNK
1.0 0.04 cells−1.d−1

ωµreg
0.97 0.08 cells−1.d−1

Error Parameters
aBLN 0.23 0.02 cells
bBbl 0.67 0.009 NU
b4 0.36 0.002 NU
b8 0.38 0.003 NU
bNK 0.56 0.004 NU
breg 0.60 0.006 NU

Correlations
c(Fout, Fin) -0.71 0.03 NU
c(µ4, µ8) 0.78 0.03 NU
c(µ4, µNK) 0.63 0.04 NU
c(µ4, µreg) 0.87 0.01 NU
c(µ8, µNK) 0.43 0.07 NU
c(µ8, µreg) 0.61 0.06 NU
c(µNK , µreg) 0.75 0.02 NU

Goodness to fit
−2LL 285 21 NU

S6 Table: Parameter values associated with the best fit of individual patient measure-
ments. Values are averaged over 10 runs with different initial guess. Parameters are described in
Table 1 (main text) and in S1 File Modeling. For fixed parameters Fout, Fin and µ4, superscripts t
and p refer to tHL (transient hyperlymphocytosis) and pHL (prolonged hyperlymphocytosis) groups,
respectively, identified by a covariate (see Section 2.2 in S1 File Modeling). Coefficient c(x, y) is the
correlation coefficient between x and y computed by Monolix (see section 2.1 in S1 File Modeling).
(SD – standard deviation; LL – log-likelihood; d – day; NU - no unit).



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S1 Fig. Analysis of factors associated with hyperlymphocytosis. Median of percent change 

in age (A) and absolute lymphocyte counts (ALC) (B) (insert: according to cohort 1 and 2) in 
transient hyperlymphocytosis (tHL) and prolonged hyperlymphocytosis (pHL) groups; each 
dot represents a patient. (C) Percent of patients in tHL (red) and pHL (blue) groups according 
to genetic alterations. Del: deletion; IGHV M: mutated immunoglobulin heavy chain variable 
region genes; IGHV UM: unmutated immunoglobulin heavy chain variable region genes.  
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S2 Fig. Long-term evolution of patients under ibrutinib therapy. transient 

hyperlymphocytosis group (tHL) (n=68); prolonged hyperlymphocytosis group (pHL) (n=52); 

each line represents a patient. 
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S3 Fig. Magnetic resonance imaging (MRI) analysis before ibrutinib treatment. (A) 

Representative features of total body MRI for a patient before ibrutinib treatment. Arbitrary 

colors indicate the different organs of interest (cervical, axillary, mediastinal, retroperitoneal, 

iliac lymph nodes, spleen and liver). (B) Volume of lymph nodes according to transient 
hyperlymphocytosis group (tHL) and prolonged hyperlymphocytosis group (pHL); (C) ADC 
of lymph nodes according to tHL and pHL groups. SD: standard deviation 
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S4 Fig. Monitoring of phosphoBTK/BTK along ibrutinib treatment.  
tHL: transient hyperlymphocytosis group; pHL: prolonged hyperlymphocytosis group. 
SD: standard deviation; a.u.: arbitrary units 

0

50

100

150

0.0114

0.0051

0.0041

0.0134

0.0344

M0    M1    M2   M3    M6  M12  M18 M24 M0    M1    M2   M3    M6  M12  M18  M24

A B
Months of ibrutinib treatment Months of ibrutinib treatment

Ph
os

ph
o-

BT
K 

/ B
TK

 (a
.u

.)
(m

ea
n

±
SD

)

tHL pHL



New pharmacodynamic parameters linked with ibrutinib
responses: prospective study in real-world patients and

mathematical modeling

Sarah Cadot*, Chloe Audebert*, Charlotte Dion, Soleakhena Ken, Loic Dupré, Laetitia Largeaud, Camille

Laurent, Loic Ysebaert, Fabien Crauste and Anne Quillet-Mary

Supporting Information: S1 Modeling

1 Mathematical model of an average patient

1.1 Mathematical model.

In order to build a dynamical model of cells dynamics in patients treated with Ibrutinib, we account
for clinical observable variables. These variables are leukemic B cell counts in lymph nodes (denoted
by BLN ), and leukemic B cell (Bbl), CD4 T cell (T4), CD8 T cell (T8), NK cell (TNK ), and Regulatory
CD4 T cell (Tregs) counts in blood.

Inspired by [9], dynamics of B cells are assumed to be described by

dBLN

dt
= −µBBLN − FoutBLN + Fin, (1)

dBbl

dt
= −µBBbl + FoutBLN . (2)

Leukemic B cells exit the lymph nodes (LN) with a rate Fout, and they are produced within LN with
a constant rate Fin. For the sake of simplicity, the same death rate (µB) is assumed for leukemic B
cells whether in LN or in blood.

Dynamics of T cells are assumed to follow a standard equation,

dTX
dt

= rX(TX , B)TX + FX
in , (3)

where rX is a net growth rate, incorporating cell divisions and deaths, and FX
in a source term of T

cells of type X exiting the LN and entering blood.
Different assumptions lead to various renewal rates: whether accounting for proliferation of

T cells or not, for Tregs-mediated regulation or not, for B cell-mediated proliferation or not, for
instance. Based on the ability to generate dynamics in agreement with measured cell counts, we
assumed no proliferation of T cells in blood and a Tregs-mediated regulation of T cell death, that is

rX(TX , B) = −µXTregs. (4)
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The specificity of some dynamics observed in the cohort 1 data relies in important, and sometimes
prolonged, increase of B or T cell counts in blood following the onset of the treatment. Ibrutinib
is known to deplete LN of leukemic B cells, therefore it may be hypothesized that not only B but
also T cells exit the LN following Ibrutinib treatment. Ideally, the source term FX

in would depend
on the number of T cells of type X in LN. Yet, this information is not available, only leukemic B
cell counts are measured in LN. We then assumed that for each T cell population the flux of cells
from the LN is proportional to the number of leukemic B cells in the lymph nodes, BLN , and write

FX
in = αX

inBLN . (5)

The model made of equations (1) to (5) describes the evoluton of absolute B and T cell counts in
LN and blood. Since hyperlymphocytosis is defined with respect to the pre-treatment measurement
(t = M0), we chose to focus on the evolution of normalized cell counts and rewrote the model,

dBn
LN

dt
= −µBB

n
LN − FoutB

n
LN + Fin

1

B0
LN

,

dBn
bl

dt
= −µBB

n
bl + Fout

(
B0

LN

B0
bl

)
Bn

LN ,

dTn
X

dt
= αX

in

(
B0

LN

T 0
X

)
Bn

LN − µXT
0
regsT

n
regsT

n
X .

(6)

where Bn
LN and Bn

bl are the normalized cell counts of leukemic B cells in the LN and blood re-
spectively, and Tn

X the normalized cells counts of T cells of type X. Initial cell counts measured
before treatment are denoted by B0

LN , B0
bl and T 0

X for leukemic B cells in LN, in blood and for T
cells. These initial counts are known from cohort 1 clinical measurements. As a consequence, initial
conditions of System (6) equal 1 for all populations.

Preliminary analysis of cell count measurements highlighted a strong correlation between CD8
and CD4 T cell counts (r2 = 0.98 for tHL group , r2 = 0.95 for pHL group). Consequently, in
the rest of the modeling part we only considered one equation – for CD4 T cells – instead of two
equations for CD8 and CD4 T cell populations. Keeping in mind that there are then 3 types of T
cells (CD4, NK and regulatory T cells), System (6) comprises 9 parameters: 3 parameters associated
with B cell dynamics and 6 parameters associated with T cell dynamics.

1.2 Data Fitting and Quality-of-Fit Criterion.

Model (6) has been compared to data consisting in mean values of cell counts at M1, M2, M3,
M6, M12, M18 and M24 for blood measurements, and M1, M12 an M24 for LN measurements.
Least-squares have been used to optimize parameter values, that is the quantity

LSBLN
+ LSBbl

+ LST4
+ LSTNK

+ LSTregs

has been minimized, where

LSX =

nX∑
i=1

(
X(ti)− X̄i

)2
,

with X̄i the mean value of observable X at time ti. Number of measurements nX equals 7 for all 
cell populations, except for leukemic B cell counts in LN where nBLN = 3 (M1, M12, M24).

Parameter value estimation and data fitting have been performed using Data2Dynamics, a Matlab 
R2019b add-on that allows to fit ordinary differential equation models to data and imple-ments, 
among other specificities, statistical assessment of parameter [6, 7].
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1.3 Model selection.

Model selection was performed from the model made of equations (6). A list of models was compared
to data, parameter values were estimated, and statistical indicators computed to determine which
model fits data the best.

The list of models is presented in Table 1. All models are modifications of the model made
of equations (6) and comprising 9 parameters. Modifications mostly lead to reduce the number of
parameters to estimate (from 9 parameters for the initial model down to 5 parameters for the most
simplified one). Parameter estimation is performed through the procedure in Section 1.2. In order
to balance the quality of fit and the complexity of the models, statistical indicators are used to
weigh the ability of a given model to appropriately fit the data. The corrected Akaike Information
Criterion (AICc) is used [2]. It is the most adapted criterion here, due to the number of parameters
and the quantity of data. However, for information purposes, the Bayesian Information Criterion
(BIC) is also computed. It is noticeable that both AICc and BIC provide here the same conclusions.

We have to mention that the B cell model (from Wodarz et al [9]) has not been modified, because
it has already been validated in the case of CLL and it very well describes B cell dynamics, in the
LN and in blood, as confirmed by our numerous simulations.

We remind that

AICc = 2k–2LL+ 2
k(k + 1)

n− (k + 1)
,

with n the size of the sample (here n = 35), k the number of parameters, and LL the log-likelihood,
and

BIC = log(n)k–2LL.

One may note that the total number of parameters k is equal to the number of parameters of the
structural model (here from 5 to 9) plus the 3 error parameters. Indeed, we assumed an error
parameter for B cell counts in LN, another error parameter for B cell counts in blood, and a unique
error parameter for T cell counts in blood. We performed several tests and none showed any relevance
to consider an error parameter for each T cell population.

Noticeably, some models may be unidentifiable. This means that comparison of the model to data
does not allow to estimate uniquely parameter values (often combinations of parameter values) that
best reproduce the data. Unidentifiability is either due to a lack of information (not enough data
to estimate parameter values) or to correlations in parameter values. Here the latter explanation is
the reason for unidentifiability (because for most models identifiability is reached, so the problem
does not come from the data). We hence indicated in Table 2 when models were identifiable (’y’ for
identifiable, ’n’ for unidentifiable, column 6 labeled ’Ident.’).

Results of model selection are presented in Table 2. Depending on the group (tHL or pHL),
models fit differently the data, yet model 26 is always associated with the best AICc. This model
has then been selected and used throughout the manuscript.

For the sake of clarity, it may be mentioned that other models were tested:

- Variations of models listed in Table 1 with one or more αX
in coefficients equal to zero (meaning

no source term for one or more T cell populations) have been compared to data but they gener-
ated either unidentifiable models or unsatisfactory models, the selection procedure highlighting
that small values of parameters αX

in always gave better results than no parameter αX
in.

- Models accounting for proliferation of T cells (either a constant proliferation rate or a T cell
mediated proliferation rate) have also been tested, but fits to data are not better and most of
the time models are unidentifiable (due to a lack of information in the data that would allow
to measure T cell proliferation).
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Table 1: List of models tested. Models are numbered from 1 to 26, and appropriate descriptions are
provided.

Model Description
1 Model (6)

2 Model (6) with µ4 = µNK

3 Model (6) with µ4 = µNK and α4
in = αNK

in

4 Model (6) with µ4 = µNK and α4
in = αreg

in

5 Model (6) with µ4 = µNK and αNK
in = αreg

in

6 Model (6) with µ4 = µNK and α4
in = αNK

in = αreg
in

7 Model (6) with µ4 = µreg

8 Model (6) with µ4 = µreg and α4
in = αNK

in

9 Model (6) with µ4 = µreg and α4
in = αreg

in

10 Model (6) with µ4 = µreg and αNK
in = αreg

in

11 Model (6) with µ4 = µreg and α4
in = αNK

in = αreg
in

12 Model (6) with µNK = µreg

13 Model (6) with µNK = µreg and α4
in = αNK

in

14 Model (6) with µNK = µreg and α4
in = αreg

in

15 Model (6) with µNK = µreg and αNK
in = αreg

in

16 Model (6) with µNK = µreg and α4
in = αNK

in = αreg
in

17 Model (6) with µ4 = µNK = µreg

18 Model (6) with µ4 = µNK = µreg and α4
in = αNK

in

19 Model (6) with µ4 = µNK = µreg and α4
in = αreg

in

20 Model (6) with µ4 = µNK = µreg and αNK
in = αreg

in

21 Model (6) with µ4 = µNK = µreg and α4
in = αNK

in = αreg
in

22 Model (6) with α4
in = αNK

in

23 Model (6) with α4
in = αreg

in

24 Model (6) with αNK
in = αreg

in

25 Model (6) with α4
in = αNK

in = αreg
in

26 Model (6) with α4
in = αNK

in = αreg
in = Fout
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Table 2: Models’ ranking based on the AICc. For each group (tHL group, left; pHL group, right),
models have been ranked based on their AICc values, from the lowest to the higher. Unidentifiable
models are ranked after all identifiable models. Column1: model’s number; Column 2: number
of parameters (par.); Column 3: value of −2 the log-likelihood (−2LL); Column 4: AICc value;
Column 5: BIC value; Column 6: indicates whether the model is identifiable (y - yes; n - no).

tHL group pHL group
Model par. −2LL AICc BIC Ident. Model par. −2LL AICc BIC Ident.
26 6 −131 −106 −99 y 26 6 −27 −2 5 y
17 7 −134 −105 −98 y 4 7 −26 3 10 y
10 7 −132 −103 −96 y 5 7 −26 3 10 y
5 7 −131 −102 −95 y 10 7 −26 3 10 y
8 7 −131 −102 −95 y 13 7 −26 3 10 y
12 8 −135 −102 −96 y 14 7 −26 3 10 y
2 8 −134 −101 −95 y 25 7 −26 3 10 y
4 7 −130 −101 −94 y 23 8 −25 8 14 y
13 7 −130 −101 −94 y 24 8 −25 8 14 y
25 7 −130 −101 −94 y 19 6 −0 25 32 y
7 8 −132 −99 −93 y 9 7 −2 27 34 y
22 8 −130 −97 −91 y 6 6 7 32 39 y
1 9 −134 −96 −91 y 11 6 7 32 39 y
18 6 −111 −86 −79 y 21 5 16 38 44 y
6 6 −108 −83 −76 y 20 6 16 41 48 y
3 7 −110 −81 −74 y 15 7 17 46 53 y
9 7 −107 −78 −71 y 1 9 −24 - - n
21 5 −100 −77 −73 y 2 8 −25 - - n
11 6 −104 - - n 3 7 −7 - - n
14 7 −130 - - n 7 8 −25 - - n
15 7 −104 - - n 8 7 −26 - - n
16 6 −99 - - n 12 8 −25 - - n
19 6 −107 - - n 16 6 17 - - n
20 6 −99 - - n 17 7 −26 - - n
23 8 −130 - - n 18 6 −8 - - n
24 8 −131 - - n 22 8 −25 - - n
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- Finally, models that do not consider regulation of T cell dynamics by Tregs have also been
considered, but they result in poor reproduction of T cell dynamics.

2 Population approach and inter-patient variability

After validating a model of B and T cell dynamics under Ibrutinib treatment for an average patient,
we modified the model to account for inter-patient variability. To do so, we used a population
approach based on mixed-effect modeling [4].

2.1 Nonlinear mixed-effect models

Nonlinear mixed effects models allow the description of inter-patient variability within a population
of individuals. All individuals belong to the same population (here a population of LLC patients)
so they share common characteristics. These are called “fixed effects” and characterize an average
behavior of the population. Nevertheless, each patient is unique and differs from the average behavior
by a specific value called “random effect”. Details on the method can be found in [1, 3, 4, 8], we
here describe only the part relevant to this study, focusing on our hypotheses.

Data {di,j , i = 1, ..., Nind, j = 1, ..., ni} is assumed to satisfy

di,j = f(yi,j , ψi) + (a+ bf(yi,j , ψi))εi,j ,

where di,j is the j-th observation of patient i, Nind is the number of patients within the population
and ni is the number of observations for the i-th patient.

The function f accounts for individual dynamics generated by a mathematical model. In this
work f is associated with the solution of a system of ODE, see Section 1.1. The function f depends
on known variables, denoted by yi,j (e.g B0

LN,i, the initial (j = 0) count of leukemic B cells in LN
for patient i), and parameters of the i-th patient, denoted by ψi.

Patient-specific parameter vector ψi is assumed to be split into fixed effects (population-dependent
effects, average behavior) and random effects (patient-dependent effects). In addition, parameters
ψi are assumed to follow a log-normal distribution to ensure their positivity. If ψk

i denotes the k-th
parameter characterizing patient i, then it is assumed that

log(ψk
i ) = log(pkpop) + ηki ,

where the vector of parameters ppop = (pkpop)k models the average behavior of the population, and

ηi = (ηki )k represents how patient i differs from this average behavior. Random effects follow a
normal distribution : (ηki )k ∼ N (0,Ω). Ω is the variance-covariance matrix defining the distribution
of the vector of random effects. When no correlation between random effects is considered, Ω is a
diagonal matrix with coefficients ω2

k in the diagonal. The coefficients ω2
k quantify the variability of

the k-th parameter within the population. When a correlation between random effects is considered,
the variance-covariance matrix Ω is a block diagonal matrix, with Ωi,j = Ωj,i = c(ηi, ηj)ωiωj , where
c(ηi, ηj) is the correlation coefficient between random effects ηi and ηj .

The residual errors, combining model approximations and measurement noise, are denoted by
(a + bf)εi,j . They quantify how the model prediction is close to the observation. Residual errors
are assumed independent, identically and normally distributed, i.e εi,j ∼ N (0, 1). Moreover, the
random effects ηi and the residual errors (a+ bf)εi,j are mutually independent.
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2.2 Parameter estimation

Parameter values are estimated with Stochastic Approximation Expectation-Maximization (SAEM)
algorithm. The SAEM algorithm is available in [5].

2.2.1 Population and patient-specific parameters.

Under the previous assumptions, cell population dynamics (average behavior and inter-patient vari-
ability) are described by parameters: ppop, Ω, and a or b. These parameters are estimated by
likelihood maximization with the SAEM algorithm.

Once these parameters have been estimated, each patient-specific vector of parameters ψi is
estimated by maximizing the conditional probabilities

P(ψi|di,j ; p̂pop, Ω̂, â, b̂),

where x̂ denotes the estimated value of x.

2.2.2 Covariates.

In order to characterize patients from tHL and pHL groups, we used categorical covariates. To do so,
data of tHL and pHL groups have been pooled together, then parameter values have been estimated
(see paragraph above) by assuming that fixed effects parameters of patients from pHL group were
different from fixed effects parameters of tHL group patients.

Categorical covariates were introduced as follows: if a patient is either in tHL or pHL group, we
assume that the probability distribution of their patient-specific parameter vector ψi has a different
mean. We write

log(ψk
i ) = log(pkpop) + βkci + ηki ,

where ci equals 1 if patient i is in pHL group, and 0 if patient i is in tHL group, and β = (βk)k is a

vector of covariate parameters. Estimated covariate parameters β̂ have been tested to be significantly
different from zero with a Wald test implemented in Monolix software [5], with a p-value threshold
at 0.05.

Patient dynamics are then characterized by parameters (ppop,Ω, a, b, β). If the estimated vector

β̂ is significantly different from zero, then the classification in tHL or pHL groups partly explains
the observed variability.
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