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Abstract23

Purpose: Registration and segmentation of magnetic resonance (MR) and ultrasound24

(US) images could play an essential role in surgical planning and resectioning brain25

tumors. However, validating these techniques is challenging due to the scarcity of pub-26

licly accessible sources with high-quality ground truth information. To this end, we27

propose a unique set of segmentations (RESECT-SEG) of cerebral structures from the28

previously published RESECT dataset to encourage a more rigorous development and29

assessment of image processing techniques for neurosurgery.30

Acquisition and Validation Methods: The RESECT database consists of MR and31

intra-operative US (iUS) images of 23 patients who underwent brain tumor resection32

surgeries. The proposed RESECT-SEG dataset contains segmentations of tumor tis-33

sues, sulci, falx cerebri, and resection cavity of the RESECT iUS images. Two highly34

experienced neurosurgeons validated the quality of the segmentations.35

Data Format and Usage Notes: Segmentations are provided in 3D NIFTI format36

in the OSF open-science platform: https://osf.io/jv8bk.37

Potential Applications: The proposed RESECT-SEG dataset includes segmenta-38

tions of real-world clinical US brain images that could be used to develop and evaluate39

segmentation and registration methods. Eventually, this dataset could further improve40

the quality of image guidance in neurosurgery.41
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I. Introduction42

Gliomas are the most common malignant primary brain tumors originating from glial cells43

and are classified into grades 1-4 by the World Health Organization (WHO)1,2. Grades 1-44

2 are low-grade, while grades 3-4 are high-grade tumors3. Surgical resection is a standard45

treatment for gliomas, and pre-operative magnetic resonance (MR) imaging is used for tumor46

characterization. However, brain tissue deforms during surgery due to factors like edema and47

gravity (i.e. brain shift)4, rendering pre-operative MR images inaccurate. Acquiring data at48

different stages during surgery helps the surgeon better monitor the progress of the tumor49

resection and, consequently, operate more precisely. Intra-operative imaging, particularly50

intra-operative MR (iMR) and intra-operative ultrasound (iUS) aids surgeons by providing51

updated guidance5,6,7. While iMR offers superior image quality, it is costly, adds a long52

time to the operation, and requires dedicated operating rooms8,9. In contrast, iUS is a cost-53

effective, flexible, and versatile modality that presents real-time scanning without altering54

the surgical workflow10,11,12. Due to the easy procedure of acquiring iUS rather than iMR,55

several recent studies have demonstrated the use and interest in iUS in neurosurgery8,11,12,13.56

While iUS presents several advantages in the context of brain tumor resection, ultra-57

sound (US) images can be difficult to interpret. Non-standard imaging planes and unfamiliar58

contrast are major factors limiting the efficient and widespread use of US in neurosurgery.59

To mitigate such limitations and fully leverage the advantages of iUS, automated image seg-60

mentation of structures such as tumors within iUS images can provide valuable assistance to61

neurosurgeons during procedures. Recent automated image segmentation algorithms, such62

as deep learning (DL) algorithms have made advancements in brain tumor segmentation63

from both US14,15,16,17 and MR18,19,20,21 images. However, access to high-quality datasets ex-64

pertly annotated is essential for the development and validation of DL algorithms22. In the65

context of medical imaging, MR images have seen more readily available datasets compared66

to other modalities, making them the primary focus for DL algorithm development. The67

BRATS challenge, among others, stands out as a prominent dataset with valuable annota-68

tions that have significantly contributed to the evolution and refinement of DL algorithms23.69

Acquiring such data, especially for iUS images, is expensive and rare.70

Currently, there are only three publicly available datasets that provide iUS brain im-71

ages, the BITE dataset24, the RESECT database25, and ReMIND26. The BITE dataset72

contains pre- and post-operative MR scans as well as multiple iUS images of 14 patients.73

The RESECT database contains pre-operative MR scans and iUS images from 23 patients74

with low-grade gliomas. The ReMIND dataset contains 369 pre-operative MR scans, 320 3D75

iUS scans, 301 iMR scans, and 356 pre-operative MR segmentations of 114 patients. None of76

the abovementioned datasets contain segmentation of anatomical structures in the iUS im-77

ages, thereby hindering the development and validation of iUS processing methods. For the78

RESECT database, a few research groups have previously conducted segmentations of iUS79

images14,18,27, However, a portion of these annotations remained inaccessible to the public,80

and in some instances, only a small subset of cases was segmented, with limited validation81

procedures in place.82
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In this work, we present the most comprehensive and validated expert segmentations of83

cerebral structures in iUS images from the RESECT database. The focus of the RESECT-84

SEG dataset is on delineating the tumor in pre-resection iUS 3D volumes and identifying the85

resection cavity during and after the surgery. To enhance the surgeon’s ability to achieve86

more precise tumor resection, sulci and the falx cerebri, whenever they were within the87

field of view, were also delineated. These structures commonly serve as crucial anatomical88

references for surgeons, given their clear visibility in iUS images. The following sections89

detail the segmentation and validation protocols for all the mentioned structures in the iUS90

images and brain tumor segmentation in pre-operative MR images.91

II. Acquisition and Validation Methods92

In this section, a comprehensive overview of the dataset is presented, along with detailed an-93

notations for various anatomical structures, including tumors, resection cavities, falx cerebri,94

and sulci. The annotation process involved the utilization of two primary tools: ITK-SNAP28
95

and 3D Slicer29, chosen based on individual preference and familiarity. Furthermore, specific96

built-in features of these software platforms were leveraged as necessary, such as smoothing97

and interpolation functionalities, to enhance the accuracy and completeness of the annota-98

tions. Further elaboration on these tools and their respective functionalities is provided in99

the subsequent paragraphs. Given that both ITK-SNAP and 3D Slicer are widely used tools100

in the field, the decision to select one over the other was solely based on our inter-group101

preferences. It is important to highlight that manual segmentation entails human judgment102

and expertise, enabling nuanced interpretation and adjustments tailored to the anatomical103

complexities of each case. Consequently, the choice of segmentation software or algorithm104

does not introduce bias, as it depends on the proficiency and diligence of the annotators.105

II.A. RESECT Database106

The RESECT database25 comprises pre-operative contrast-enhanced T1-weighted and T2107

FLAIR MR scans alongside three 3D volumes of iUS scans from 23 patients with low-grade108

gliomas (grade 2) who underwent surgeries between 2011 and 2016 at St. Olavs University109

Hospital, Trondheim, Norway. The iUS scans were acquired at three different stages of110

the procedure: before resection, during resection, and after resection for control. These US111

images were captured by an expert surgeon, and the database includes manual neuroanatomy112

landmarks, facilitating MR-to-US volume registration and inter-US volume alignment. The113

details of the image acquisition procedure can be summarized as follows:114

• Pre-operative MR scans: T1-weighted and T2 FLAIR sequences were acquired on 3T115

Magnetom Skyra MR scanners, both with 1 mm isotropic voxel size, except three116

patients who underwent the MR imaging on a 1.5T Magnetom Avanto MR scanner117

with 1 mm slice thickness.118
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• Intra-operative US scans: 3D US images collected using a 12FLA-L linear probe of119

Sonowand Invite neuronavigation system with a frequency range of 6-12 MHz inte-120

grated with the NDI Polaris optical tracking system.121

II.B. iUS Tumor Segmentation Protocol122

Tumoral tissue in US images is typically identified through abnormal echogenicity or tex-123

ture variations compared to healthy tissue. Echogenicity refers to the level of reflectivity124

or brightness of tissue on a US image. In this context, variations in echogenicity indicate125

potential areas of malignancy, allowing medical professionals to identify and examine po-126

tential cancerous lesions. In the study, 19 out of 23 cases’ iUS images (cases 1 to 23) were127

segmented, initially following Munkvold et al.’s method27. In these cases, initial US volume128

segmentations were already available. Four cases (cases 24 to 27) without prior iUS segmen-129

tations relied on MR segmentations to define the tumor region of interest in iUS images.130

To be more specific, for these four cases, the MR segmentation served as a starting point to131

define the region of interest (ROI) for the tumor in the iUS images. Further details of the132

MR segmentation protocol can be found in the work of Munkvold et al.27.133

In the iUS segmentation protocol, 3D Slicer29, a free and open-source medical image134

analysis software, was employed to perform ground truth segmentations on the acquired135

iUS images. For cases 24 to 27 that were initiated with MR segmentations due to brain136

shift during resection surgery, the boundaries of the tumor in the US images and MR tumor137

segmentations did not align25. This discrepancy necessitated the registration of MR tumor138

segmentations to iUS images using available landmarks from the RESECT database. This139

registration process effectively mitigated the misalignment of tumor borders between the iUS140

images and their corresponding MR tumor segmentations. Therefore, for cases 24 to 27, the141

MR segmentations were imported into the 3D Slicer scene and after the registration step,142

they were utilized as the initial delineation for iUS.143

In all cases, to refine the initial 3D US tumor segmentations, the Label Map Smoothing144

module, an existing feature in 3D Slicer, was employed. Subsequently, the smoothed tumor145

segmentations were manually fine-tuned to ensure accurate coverage of the tumor region in146

the iUS image. To facilitate further correction, FLAIR MR images were registered to iUS147

images since MR images were unaffected by brain-shift effects. These complementary over-148

lays served as guidance for generating more precise iUS tumor segmentations. An illustrative149

example of tumor segmentation is provided in Fig. 3 (a)-(d).150

II.C. iUS Resection Cavity Segmentation Protocol151

Resection cavity segmentation in iUS images encompasses the volume where tissue has been152

resected or retracted during image acquisition. Resection, a surgical procedure character-153

ized by the complete removal of tissue or tumors, contributes to the formation of a distinct154

three-dimensional space within the brain known as the resection cavity. On the other hand,155

retraction, another surgical maneuver, entails cutting tissue and displacing it to the side156
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hyperechoic signal

resection cavity

(a) (b)

Figure 1: Ultrasound image of a resection cavity (a) with and (b) without segmentation.

without complete removal. Hyperechoic signals surrounding cavities in iUS images result157

from sound attenuation differences between brain tissue and saline water, as well as the158

presence of blood (see Fig. 1)30. To prevent false positives, only homogeneous, dark signals159

were considered as cavities, potentially leading to slight underestimation in cases involving160

blood-filled cavities. In challenging cases with small, entirely blood-filled cavities, segmen-161

tation was not possible due to indistinguishable borders. For example, in three exceptional162

instances (Case 11 during and after resection, and Case 15 during resection), the cavities163

appeared notably small and completely inundated with blood, without any noticeable dark164

signals.165

It is worth noting that, due to the inherent variability in surgical procedures, determin-166

ing the precise timing of image capture was challenging since it could occur at different stages167

of the resection process. The crucial factor was ensuring that US images were taken before168

the surgeon completed the resection entirely, even if residual tumors remained. The segmen-169

tation of resection cavities was conducted using ITK-SNAP28. Initially, regularly spaced170

slices, approximately one in every five slices, were manually delineated. Subsequently, ITK’s171

morphological interpolation, facilitated by ITK-SNAP’s Convert3D command-line tool, was172

utilized to fill in the remaining slices. Convert3D is one of the companion tools of ITK-SNAP173

that provides additional features. It is a command-line tool that enables the combination174

of multiple image processing tasks into efficient mini-programs, making it an integral tool175

in studies involving hundreds of 3D images. In cases where necessary, additional slices were176

manually segmented to optimize the interpolation outcome. The segmentation process for177

most RESECT cases was originally carried out by two raters as part of a previous study14.178

Following an assessment of intra- and inter-rater variability, these segmentations were re-179

viewed by a neurosurgeon and were then modified accordingly. Subsequently, for this study,180

the remaining RESECT cases were segmented, and all cases underwent refinement during181

the validation protocol detailed in section II.G..182
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falx

(a)

falx

(b)

falx

(c)

Figure 2: T1 MR (a), (b), and US (c) images of the falx cerebri.

II.D. iUS Falx Cerebri Segmentation Protocol183

The falx cerebri is the membrane that separates the left and right hemispheres of the brain.184

This cerebral falx has a hyperechoic signal in iUS images. It presents a characteristic quasi-185

planar shape that appears as a straight line in coronal and axial slices. The falx is also visible186

in the MR images, especially T1-weighted (Fig. 2). This structure is thus a convenient187

landmark that can be particularly useful to anchor registration. The falx is not always188

within the iUS volume due to the limited field of view but can be visible depending on the189

tumor location. The falx segmentation is, therefore, present for some volumes only. Since190

the falx’ bright signal is similar to sulci it is difficult to localize the inferior border of the191

membrane. We, therefore, used the registered T1-weighted MR images to adjust the falx192

segmentation in height. Regularly spaced slices were manually delineated using ITK-SNAP193

and then interpolated with Convert3D.194

II.E. iUS Sulci Segmentation Protocol195

For segmentation purposes, sulci were defined as folds filled with cerebrospinal fluid (CSF)196

between brain tissue sections. CSF surrounding the brain, such as between the tissue and the197

dura mater or tentorium, was not labeled, although it had a similar iUS signal. Sulci were198

initially segmented with manual delineation every five slices and morphological interpolation199

using Convert3D when moving through the volume in a single direction (e.g., axial slices).200

Unlike volumetric structures, sulci are thin, complex, folded surfaces. To capture their201

irregular shapes, each volume was annotated in three viewing directions (axial, sagittal, and202

coronal), and these segmentations were first interpolated separately and later combined into203

a union. While this process resulted in slight over-segmentation, it significantly improved204

sulci delineation, according to annotators and neurosurgeons. In each case, the volume205

preceding resection underwent segmentation aided by registered MR images to accurately206

delineate sulci structures. This initial segmentation served as a reference for segmenting207

the volume during and after resection. The manual segmentation process was facilitated by208

ITK-SNAP, employing a Wacom One pen tablet, which demonstrated superior speed and209

precision compared to a conventional computer mouse.210
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II.F. Pre-operative MR Tumor Segmentation211

For completeness, we provide segmentations of the tumors in the pre-operative T2 FLAIR212

images. As the cases in the database are lower-grade gliomas, there is no contrast uptake in213

the T1 weighted images and the T2 FLAIR images are used to define the tumor boundaries.214

The tumors were semi-automatically segmented in 3DSlicer using the GrowCut algorithm31.215

The resulting segmentations were manually corrected when needed and smoothed with a216

2×2 mm median filter.217

II.G. Data Validation218

All segmentations presented in this work were validated by two experienced neurosurgeons219

(S.D.R., O.S.). The segmentations were presented to the specialists through a case-by-220

case 3D Slicer scene, including the original iUS image, segmentation masks, and MR images.221

Figure 3 represents an example of such a scene. We asked specialists to grade all segmentation222

masks based on five criteria for three types of structures:223

• Quality of tumor: smoothness of the boundaries (SMT), identification of tumoral tis-224

sues (IdT), exclusion of non-cancerous tissues (ExT)225

• Quality of resection cavity: identification of resection cavity (IdR)226

• Quality of sulci and falx: identification of sulci and falx (IdS)227

The grading scheme for each criterion was on a scale of 1 to 5 defined as major improvement228

needed, minor improvement needed, acceptable, good quality, and excellent, respectively.229

For each criterion, a score of 3 from both surgeons was needed to pass the quality control230

of segmentation masks. Otherwise, the masks were revised according to the surgeons’ com-231

ments. In determining the choice of a passing score of 3, it is important to clarify that this232

decision was rooted in the specific criteria established for surgeons evaluating the dataset.233

The selection of 3 as the pass score was deliberate, as it represented the midpoint on the234

validation scale of 1 to 5. This choice was informed by the summary of evaluation forms,235

aiming to identify a common rating among inter-rater assessments. Given the intricate and236

complex nature of brain structures, achieving consensus on a moderate score like 3 ensured237

a balanced assessment that accounted for the variability inherent in such evaluations. The238

final grades for each patient are presented in Table 1.239
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Figure 3: An example of segmentations overlaid with intra-operative ultrasound (iUS) and
MR images (green: tumor; yellow: sulci; red: cerebral falx; blue: resection cavity). iUS
volume before resection: (a)-(d); iUS volume during resection: (e)-(h).

III. Data Format and Usage Notes240

The proposed RESECT-SEG segmentations are distributed in the NIFTI format. Upon the241

acceptance of this paper, they will be available via the OSF open-science https://osf.io/242

jv8bk for public viewing and downloading and can be freely used by research laboratories243

as well as clinical institutes. However, gaining any financial benefits from the distribution of244

the proposed segmentation dataset is prohibited. The database is under the CC BY-NC-SA245

4.0 License.246

IV. Discussion247

The border and shape of brain tumors have long been established as important diagnostic248

markers in resection surgeries. Several image processing techniques have been adopted to249

segment tumors which rely on the creation of mathematical descriptions of the tumor border.250

Similarly, identifying resection cavity contours has been used to evaluate the completeness251

of tumor resection. Finally, segmenting surrounding cerebral structures can greatly bene-252

fit image analysis during the surgeries. However, validation of image processing techniques253

needs to be investigated in the case of new data. It is important to highlight that there are254

few brain datasets accessible to the public, and even those available, such as the BITE24,255

RESECT25, and ReMIND26 datasets, do not include iUS segmentation of brain anatomies.256

The absence of US segmentation datasets for the brain is largely attributed to the complexity257

of the task. To this end, we have provided the manual segmentations of cerebral structures258

in iUS images of the 23-patient RESECT dataset, verified by two expert surgeons through259

detailed evaluation criteria per brain anatomy. Our proposed expert-annotated RESECT-260
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SEG dataset comprises the segmentation masks of brain tumors, resection cavities, the falx261

cerebri, and sulci. Tumor segmentations of the pre-operative MR images are also provided262

as a reference. To the best of our knowledge, this is the first study that publicly provides a263

comprehensive expert-annotation segmentation of iUS images. The challenging procedure of264

delineating brain iUS images has impeded the publications of such segmentations. This vali-265

dated dataset serves as a crucial asset for evaluating and benchmarking various segmentation266

methods, thereby driving advancements in brain imaging research.267

Table 1: Quality control grade chart for segmentation masks before, during, and after re-
section. Grades of the two neurosurgeons are given side-by-side in each cell. For Case 11
(during and after resection) and Case 15 (during resection), the resection cavity was not
labeled (see section II.C.).

Validation Scores

Before Resection During Resection After Resection

Patient ID SMT IdT ExT IdS IdR IdS IdR IdS

1 4 4 4 5 4 3 3 4 3 3 4 4 3 4 4 4
2 4 4 4 3 3 5 4 4 3 4 4 4 3 5 4 5
3 4 4 3 3 4 3 3 3 3 4 3 3 4 4 4 3
4 3 4 3 5 4 5 3 4 3 4 4 4 4 5 3 4
5 3 4 4 4 4 4 3 4 3 5 3 4 4 5 4 3
6 3 4 4 5 3 5 3 4 4 5 4 4 4 5 4 4
7 3 4 3 5 4 4 3 4 3 3 4 4 4 5 4 4
8 4 3 4 4 4 5 3 4 3 5 3 4 3 5 4 4
11 4 4 4 4 3 5 4 4 - - 4 3 - - 4 3
12 3 4 4 3 4 3 4 4 3 4 3 4 4 5 4 5
13 4 4 4 4 3 4 4 3 3 5 4 5 3 5 4 3
14 4 4 3 4 4 4 4 4 4 3 4 4 4 4 3 4
15 3 4 3 3 4 3 4 4 - - 4 4 4 4 4 4
16 4 4 4 4 4 4 4 4 3 4 4 4 3 4 3 4
17 3 4 4 5 4 5 4 4 4 5 4 4 3 4 4 4
18 4 4 3 4 3 4 4 4 3 4 3 4 3 5 3 5
19 3 4 3 5 3 5 4 3 3 5 3 5 3 5 4 4
21 3 4 3 4 4 4 3 4 4 5 4 4 4 5 4 4
23 3 4 3 5 3 5 3 4 3 3 4 4 3 5 4 4
24 4 4 4 4 3 5 3 5 3 4 4 4 3 4 4 4
25 4 4 3 4 3 4 3 4 4 3 3 4 3 4 3 3
26 4 5 4 5 3 5 3 5 3 5 3 5 3 5 3 3
27 4 5 3 3 3 5 4 4 3 3 3 4 3 5 3 4

SMT: smoothness of the boundaries, IdT: identification of tumoral tissues, ExT: exclusion of
non-cancerous tissues, IdS: identification of sulci and falx. IdR: identification of resection cavity

The proposed RESECT-SEG dataset offers substantial utility, focusing primarily on268

two pivotal applications that have the potential to revolutionize brain tumor diagnosis and269
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treatment. As the first application, it accelerates the development of advanced image analy-270

sis algorithms for brain tumor detection and segmentation, whether based on deep learning271

or energy minimization. With the growing number of segmentation algorithms, there is272

a need for comprehensive evaluation, and this dataset provides a standardized metric for273

rigorous testing, propelling advancements in brain cancer treatment. Therefore, the pro-274

posed dataset offers an opportunity for both technical and clinical communities to rigor-275

ously test their algorithms. Additionally, it offers a unique opportunity for algorithms to276

excel in multi-instance detection and segmentation, enhancing performance beyond binary277

segmentation tasks. Multiple methodologies are available for binary segmentation problems;278

however, recent studies suggest that integrating instances into deep learning algorithms not279

only enhances performance through parallel multi-instance segmentation but also achieves280

a comprehensive improvement overall32. Consequently, this dataset acts as a catalyst in281

refining computer-aided diagnosis (CAD) systems, enabling multi-instance and multi-organ282

analyses, thereby revolutionizing brain tumor diagnosis and treatment.283

The second application is transformative, focusing on developing and validating284

segmentation-based registration algorithms to address brain shift challenges during surgery.285

Brain shift, involving tissue deformation and displacement, poses precision hurdles in surgery.286

Integrating this dataset into registration algorithms provides them with expert-annotated287

tumor segmentations as a foundation. These resources empower algorithms to dynamically288

recalibrate pre-operative images in real-time, aligning them with evolving intraoperative con-289

ditions. The result is an advanced neuronavigation system, offering surgeons accurate, real-290

time patient anatomical visualization. This leads to enhanced resection control, minimizing291

structural damage risk and optimizing tumor removal. The synergy between segmentation292

and registration algorithms has the potential to redefine neurosurgery, equipping surgeons293

with a powerful tool to navigate brain shift complexities, ultimately ensuring safer surgeries,294

better patient outcomes, and improved resection control. This advancement holds promise295

for revolutionizing the field of neurosurgery.296

The proposed RESECT-SEG dataset stands as a pivotal resource for advancing image297

processing techniques in neurosurgery. While it offers valuable segmentations of cerebral298

structures, it’s essential to acknowledge its limitations. One such concern is the potential299

lack of representation of diverse clinical scenarios. Ensuring the dataset encapsulates a broad300

spectrum of anatomical variations, tumor types, and imaging modalities is crucial for its301

relevance and applicability in broader contexts. Evaluating the generalizability of proposed302

techniques beyond the confines of the RESECT-SEG dataset is imperative. Nevertheless,303

by adhering to rigorous evaluation protocols, conducting thorough validation processes, and304

maintaining transparent reporting standards, the RESECT-SEG dataset can significantly305

improve its credibility and impact in advancing neurosurgical image processing techniques.306

V. Conclusion307

In this study, the most comprehensive and validated expert delineations of cerebral structures308

within iUS images from the RESECT database were proposed. The primary focus lay in309
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outlining tumor boundaries within pre-resection iUS 3D volumes and tracking the resection310

cavity both during and post-surgery. Additionally, delineated sulci and the falx cerebri were311

further provided to enhance surgical precision. This dataset presents an invaluable resource312

for both the training and evaluation of DL-based segmentation algorithms and registration313

methodologies, thereby presenting a rigorous challenge to their capabilities. This collective314

effort is poised to catalyze advancements in brain tumor treatment and surgical interventions,315

ultimately benefiting patients and furthering the realm of medical science.316
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