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Abstract

Predicting socioeconomic indicators from satellite im-
agery with deep learning has become an increasingly pop-
ular research direction. Post-hoc concept-based explana-
tions can be an important step towards broader adoption of
these models in policy-making as they enable the interpre-
tation of socioeconomic outcomes based on visual concepts
that are intuitive to humans. In this paper, we study the in-
terplay between representation learning using an additional
task-specific contrastive loss and post-hoc concept explain-
ability for socioeconomic studies. Our results on two differ-
ent geographical locations and tasks indicate that the task-
specific pretraining imposes a continuous ordering of the la-
tent space embeddings according to the socioeconomic out-
comes. This improves the model’s interpretability as it en-
ables the latent space of the model to associate urban con-
cepts with continuous intervals of socioeconomic outcomes.
Further, we illustrate how analyzing the model’s conceptual
sensitivity for the intervals of socioeconomic outcomes can
shed light on new insights for urban studies.

1. Introduction

Monitoring socioeconomic outcomes is crucial for effective
policy-making and progress toward the Sustainable Devel-
opment Goals (SDGs). An emerging approach in recent
years is to predict these indicators by training deep learn-
ing models on satellite imagery [7]. For example, such
approaches are applied for estimating the economic well-
being in Africa [23, 31], the income in France [1], the ur-
ban vitality in Italy [25], the landscape scenicness in the
UK [20], or the livability of cities in the Netherlands [21].
However, these approaches are rarely used in practice by
decision-makers [7], with one of the main obstacles being
the opaque nature of the deep learning models, whose inner
workings and mechanisms lack human interpretability [14].

The interpretability challenges in the proposed deep
learning models for socioeconomic indicator estimation
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have usually been addressed with saliency map methods
like Grad-CAM [1] or concept bottleneck models [20, 21,
25]. While saliency maps identify relevant regions in the
image by highlighting raw pixels, they do not provide addi-
tional insights into the high-level semantics the model ex-
tracted for its inference [2]. Furthermore, they are of ques-
tionable reliability as they can be insensitive to the changes
in the model weights or data distribution [3]. A promising
alternative to the saliency maps methods are the concept-
based explanations that relate a target variable to a set of
explanatory concepts. Compared to the saliency maps, they
more closely resemble human reasoning and thus are more
intuitive [18]. Moreover, concept-based explanations are a
natural fit for socioeconomic studies, as concepts are com-
monly used as indicator variables [19]. These approaches
for remote sensing have only been attempted through bottle-
neck models, which relate intermediate concepts to an out-
put variable in an end-to-end trained manner [20, 21, 25].
However, such methods also have several downsides. They
require that a dataset of annotated concepts specific to the
study region is available during training to condition the
bottleneck and assume a strong relation between the con-
cepts and the target variables. The post-hoc concept-based
explanations can overcome these issues as they relate the
outcomes to a set of human interpretable concepts after the
model training phase [12, 17, 34]. These methods identify
the concepts by looking for a direction in the latent space of
the trained model towards which the concept examples are
found. The concepts are represented with coherent images
sharing similar visual characteristics; thus, the resulting ex-
planations are intuitively understandable [12, 17]. Post-
hoc concept explanation methods have already been suc-
cessfully applied in other sensitive domains like medicine
[13, 17]. These approaches can also be beneficial for re-
mote sensing studies, as, unlike concept bottleneck models,
they do not require an additional set of concept labels spe-
cific to the geographical area of the study region.

In this work, we introduce a new expandability pipeline

(visualized in Figure 1) that uses post-hoc concept explana-
tions to reveal how deep learning models predict socioeco-
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Figure 1. Flowchart of the pipeline presented in this research. For both tasks, we use Rank-n Contrast to pre-train the feature encoder
to produce embeddings that strongly relate to socioeconomic task scores. Secondly, we freeze the encoder weights and probe a linear layer
to regress the task-specific score. Lastly, we use TCAV to study the relation of various urban concepts to socioeconomic scores.

nomic outcomes in terms of easy-to-understand urban con-
cepts. It consists of three main steps: 1) a task-specific
contrastive pre-training of a deep learning encoder to con-
tinuously order the latent space embeddings based on their
socioeconomic outcome, 2) probing a linear layer on the
top of the encoder to predict socioeconomic outcome, and

3) concept testing with the Testing with Concept Activation

Vectors (TCAV) method [17]. We evaluate our pipeline on

two tasks for estimating socioeconomic indicators from re-

mote sensing imagery, namely income prediction in France

[1], and liveability estimation in the Netherlands [21]. In

summary, our work evaluates for the first time visual post-

hoc concept-based explanations in remote sensing socioe-
conomic studies with the following main contributions:

* Continuously ordering the latent space embeddings based
on their socioeconomic outcomes yields comparable or
improved prediction performance to a baseline supervised
learning.

 Such latent space improves the interpretability of the deep
learning model as the concepts cluster according to con-
tinuous intervals of socioeconomic outcomes.

« Finally, this enables studying the sensitivities of socioe-
conomic outcomes to different urban concepts.

2. Related Work

Although essential for their wider adoption in practice, the
interpretability of the deep learning models for socioeco-
nomic indicator estimation is rarely tackled [14]. The ap-
proaches in related studies mainly propose using saliency
maps [1] or concept bottleneck models [20, 21, 25]. Con-
cretely, Abitbol and Karsai trains an EfficientNet deep
learning model on aerial imagery to predict household in-

come in five French cities [1]. They used the Grad-CAM
saliency map method to infer the relevant regions for the
model predictions. The identified regions are matched with
the urban class polygons to reveal the relationship between
urban classes and the income prediction of the deep learn-
ing model. Their results show that residential areas can both
activate in case of high or low socioeconomic status depend-
ing on the city and area, whereas the presence of infrastruc-
ture such as motor- or railways is consistently related to a
lower household income. When it comes to concept bot-
tleneck models, they are used by Scepanovic et al. to pre-
dict the urban vitality in six Italian cities from Sentinel-2
imagery [25]. In the first step, the authors use a VGG-16
network and a convolutional autoencoder to predict six dif-
ferent land use and building block characteristics from im-
age patches. These features are then used as input to the
linear model that estimates urban vitality. The authors dis-
cover, that intersection density, small parks, anisotropicity,
and land use mix positively influence vitality, while the vari-
ables block size and building height negatively impact the
vitality. Further, Levering et al. train an end-to-end convo-
lutional neural network with a semantic bottleneck to pre-
dict the landscape scenicness in the UK based on Sentinel-
2 imagery [20]. The interpretable concepts in the semantic
bottleneck layer encode the region’s land cover distribution.
This architecture enables an explanation of the predicted
scenicness score in terms of the land cover characteristics
of the region. The authors find, that scenic areas are often
associated with mountainous, coastal regions, while urban
areas and the presence of human influence are negatively
related to the landscape scenicness. The semantic bottle-
neck models are also used in [21] to predict the livability in
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the Dutch cities using aerial imagery. Again, the authors in-
clude a semantic bottleneck layer, which predicts five differ-
ent intermediate domain scores. Their results indicate, that
some intermediate domains such as buildings or physical
environments are much better suited to be predicted from
aerial imagery than others like safety or amenities.

While the above-mentioned approaches shed light on
the relevant factors for socioeconomic indicator prediction,
they rely on the availability of labeled features specific to
the study region. Hence, the limited data availability in re-
mote sensing represents an obstacle to applying these ap-
proaches to different geographical areas. Further, saliency
maps are known to produce local, low-level feature explana-
tions with limited faithfulness [3]. In this work, we aim to
overcome these limitations by explaining the relevant fac-
tors for monitoring socioeconomic indicators through high-
level concepts using the TCAV method that can be applied
to various geographies without requiring concept labels spe-
cific to the study region.

3. Methods

In this section, we detail our explainability pipeline pre-
sented in Figure | for post-hoc concept-based explanations
of socioeconomic outcomes. These methods usually iden-
tify concepts as directions in the latent space of an already
trained model. This makes their interpretation challenging,
as the post-hoc analysis might yield redundant and ambigu-
ous concepts [8]. To overcome this, we rely on a contrastive
pretraining technique to enforce continuous ordering of
the latent space embeddings based on the target outcome.
Such a representation can improve the interpretability of the
tested concepts, as it forces them to align along intervals
of the target outcome, In summary, the presented approach
consists of three steps. Firstly, we train the feature en-
coder using Rank-N-Contrast (RNC) loss, which optimizes
the feature extractor to produce embeddings that are con-
tinuously ordered according to the target outcome. Next,
we probe a linear layer on the frozen embedding space to
regress an output score. Lastly, we analyze the learned em-
bedding through Testing using Concept Activation Vectors
(TCAV), a post-hoc concept-based interpretability method.

3.1. Rank-N-Contrast

Rank-N-Contrast (RNC) is a contrastive feature learning
method for regression that uses the proximity in label val-
ues to form positive and negative pairs within a given batch.
In this study we utilize it to pre-train the feature extractor to
provide feature embeddings that are aligned with the target
regression scores, thereby guiding the expressivity of fea-
tures in the latent space towards only being relevant for the
regression task. Specifically, RNC “ranks the samples ac-
cording to their target distances, and then contrasts them
against each other based on their relative rankings” [32].

Consider an anchor image v; within a batch of images. For
this anchor and a pairing candidate v;, it samples pairs
which satisfy the condition S, ; := {vy | k # @, d(Yi, Ux) >
d(gi, g;)}, where d(-, -) is a label distance metric, while g;,
95 and gy, are the labels of the ¢-th, j-th and k-th image in the
batch, respectively. Subsequently, the feature vectors of all
sample pairs are compared using the average negative log-
likelihood over all pairings in the batch. By iterating over
each sample as an anchor, we can calculate the following
loss for the entire batch:

2N 2N

1 1
Lrne = @Z N1 Z '—ZOQ(U(UuUjvSi,j)v
i=1 j=1,j#1
)]
where the Softmax function o is given as follows:
(05,03, S1.5) = — log exp(sim(vi, v;)/7) o)

>_kes; ; exp(sim(v;, vi) /7)

where 7 is a temperature parameter, and sim(-, -) measures
the similarity between the feature embeddings for a pair of
images in the batch. Minimizing this loss enforces the fea-
ture encoder to produce similar embeddings for images with
similar label values, thus ordering the image embeddings
in the latent space according to their labels. After this pre-
training step, a simple linear layer can be added to the model
and trained on the frozen feature embeddings to regress the
actual regression labels.

3.2. Testing with Concept Activation Vectors

We utilize Testing with Concept Activation Vectors (TCAV)
[17] as an approach for testing the relatedness of concepts to
socioeconomic outcomes. TCAV allows uncovering mean-
ingful directions in the latent space of a model based on
a previously defined concept dataset and can measure the
model’s sensitivity to these concepts. Each concept is rep-
resented by a set of images sharing similar visual character-
istics. These images are usually derived from external probe
dataset [24] or automatically learned from the dataset [12].
The workflow of TCAV can be divided into two main steps:
1) learning Concept Activation Vectors (CAVs) in the latent
space of the trained model, and 2) testing the sensitivity of
a concept to the model predictions.

3.2.1 Learning Concept Activation Vectors

A concept activation vector (CAV) represents a direction in
the latent space where the examples of a concept are lo-
cated. To learn a CAV in a hidden layer of the model, first,
the datasets of images for the target concept, and for a ran-
dom concept are fed into the trained deep learning model,
and their activations from the target hidden layer are stored.
These activations are used as input to a linear classifier that
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learns to discriminate the activations of images represent-
ing the concept against the activations of the images of the
random concept. The normal vector of the hyperplane is in-
terpreted as the CAV of the respective concept. CAVs can
be trained in hidden layers of various depths of the model.
This approach relies on the assumption of the linear separa-
bility of concepts in the latent space which is supported by
several works [4, 6] which have shown that linear feature
disentanglement can often be observed in the hidden layers.

3.2.2 Concept sensitivity testing

To evaluate the influence of a concept on the model out-
comes, the conceptual sensitivity Sy ; of a CAV v; in layer
[ to the model output k is determined. It is computed as the
directional derivative of the output logit h; j to v; with the
following equation:

hix(fi(z) + evr) — hy g (fi(z))

€

Sk, = lime—o = Vh i*v

3)
where f;(x) are the activations for the input x at the layer
l of the deep neural network. Thus, the sensitivity score
can be related to change in the model prediction when an
instance is perturbed in the direction of a concept. Next,
the individual sensitivities are then aggregated to form the
overall TCAV score. It is defined as the percentage of im-
ages that show a positive sensitivity to the CAV.

|x e Xy : Sk,l(it) > 0|
| Xkl

One caveat when computing the sensitivity scores is the
calculation of the gradients. They capture first-order deriva-
tives and thus may lead the attribution map to focus on ir-
relevant features [27]. To circumvent this issue, we used at-
tribution maps generated via Integrated Gradients (IG) that
can reduce the problematic locality of plain gradients. They
are computed by aggregating the gradients of the model pre-
dictions for instances that lie along a straight line on the
path from baseline image ' to the input image x with the
following equation:

TCAVy =

“)

IG(z) = (z — o) / O (il ;;(m —1')))

For images, the baseline is usually set to a black image,
which marks the absence of image features.

da (5)

4. Experimental Setup
4.1. Reference data

We conduct our experiments on two tasks posing the prob-
lem of estimating socioeconomic indicators from aerial im-
agery. Firstly, we use a dataset that consists of aerial im-
ages paired with a winsorized average household income

estimated from the tax return for 5 major cities in France
in 2015 [1]. The images have a resolution of 20 cm and
are of size 1000 x 1000. In line with the authors’ work-
flow of training individual models for cities, we trained one
model for Paris, which resulted in 18 446 pairs of aerial im-
agery and income labels. Similar to [1], we first partition
the instances according to the 5 quantiles of their income
distribution. Subsequently, we perform stratified random
sampling of 64 % of the data into training, and 16 % and
20% in validation and test sets, respectively. For our second
task, we use a dataset of liveability reference scores over
the Netherlands, which combines the livability values de-
rived from the Leefbaarometer project [19] with aerial im-
ages made publicly available by the Dutch government. The
resulting dataset covers 13 Dutch cities and includes 51.781
labeled image patches at a 1-meter resolution and a size of
500 x 500. We use the geographically stratified train/val/test
splits made available by the authors [21].

4.2. Concept data

We rely on land-cover classes to define visual concepts rep-
resenting natural and urban areas that can be used to explain
the model workings in socioeconomic studies. Concretely,
we subset land cover annotations from the FLAIR dataset
[11]. It contains aerial imagery covering France at a spatial
resolution of 20cm/pixel, as well as land cover class masks.
In total, the labels differentiate between 19 different land
cover classes, and in our experiments, we extract the follow-
ing 7 visual concepts: Water, Natural Vegetation, Agricul-
ture, Impervious Surface, Sparse Residential, Medium Res-
idential, and Dense Residential. The first four concepts are
simple visual primitives encoding mostly color and texture
features. They are extracted from patches having > 90%
coverage of the following four subsets of land cover classes:
Water, Natural Vegetation, Agriculture and Impervious Sur-
face, respectively. The other three concepts represent more
complex visual primitives that were extracted by aggregat-
ing land cover patches into three Local Climate Zone [26]
classes based on the amount of built-up land visible in each
image: Dense Residential (> 90% Buildings), Medium Res-
idential (40 to 60% Buildings, 40-60% Vegetation or Agri-
culture), and Sparse Residential (10-30% Buildings, 70-
90% Vegetation or Agriculture). Visual examples of our
classes can be found in the appendix, in section 8. While we
use a set of pre-defined concepts in this research, it should
be noted that concepts in remote sensing have stricter con-
ditions on when they may be used. We discuss these condi-
tions in more detail in section 5.3.

4.3. Inference and Model Training

We predict the socioeconomic outcomes using a Resnet-50
encoder [15] for feature extraction whose output is fed to
a linear layer that regresses the socioeconomic outcome.
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To train the model, we followed a similar training proce-
dure as in [32]: First, we optimize the encoder for 400 it-
erations to minimize the RNC loss (the hyperparameter de-
tails are provided in Section 7, Appendix). Next, we freeze
the weights of the feature encoder and train a single linear
layer that uses the encoder output to predict the socioeco-
nomic outcomes. The weights of the linear layer were opti-
mized for 100 epochs with the £, loss and we selected the
model yielding the best R? score on the validation set. Our
code is provided at github.com/IvicaObadic/rnc—4-
visual-concept—-explanations.

5. Results
5.1. Prediction of Socioeconomic Indicators

Table 1 shows the effect of Rank-N-Contrast pretraining on
the prediction results. It illustrates that the task-specific
pretraining leads to a better fit for the household income
dataset than the baseline model trained with an L loss.
Concretely, the R? improves for the contrastive pre-trained
encoder by around 0.1 for both evaluation sets, validation,
and test. Similarly, Kendall’s 7 correlation improves by
around 0.08 on both sets. Regarding the liveability dataset,
the contrastive pretraining procedure yields results compa-
rable results to the encoder directly trained for predicting
livability scores with the L; loss.

Table 1. Impact of pretraining with Rank-N-Contrast (RNC)
loss on prediction results. It results in a better prediction per-
formance for the income predictions and comparable results
for liveability.

val set test set

dataset objective R? T R? T
Income L1 loss 053 054 055 0.56
RNC(£y) 062 0.61 0.65 0.64
Liveability L1 loss 0.7 0.64 0.49 0.53

RNC (L) 0.68 066 049 053

To better understand the effect of task-specific pretrain-
ing on the latent space, in Figure 2 we use the t-distributed
Stochastic Neighbor Embedding (t-SNE) method [28] to vi-
sualize the instance activations after the average pooling
layer of the ResNet-50 encoder. The plots in the first col-
umn illustrate that the contrastive pre-trained encoder in-
creasingly orders the instances in the latent space in an ap-
proximately 1D manifold according to their target label for
both datasets. In contrast, the plots visualized in the sec-
ond column depict that the models optimized to directly
predict the regression score seem to result in a more scat-
tered embedding space that fails to capture the continuous
nature of the data, as there are multiple clusters of instances
sharing similar target values located in various subspaces of
the latent space. Finally, we note that for the task-specific
pre-trained encoder, the liveability values typically display

higher variance in their score compared to the income val-
ues for a local area in the embedding space. This can be
attributed to the difference in complexity between these two
tasks. The liveability reference data is based on 100 factors
spanning 5 domains, from which liveability scores are de-
rived [21]. As it is a composite score, the ranking difference
between pairs will depend on more complex patterns, which
might explain the comparable results of the contrastive pre-
training with the supervised trained encoder on the liveabil-
ity task.

5.2. Concept Explanations

Learning Concept Activation Vectors As described in
Section 3.2, an essential step in TCAV is learning a concept
activation vector (CAV) that encodes the direction in the la-
tent space where the examples of a concept are located. In
our study, we learn the CAVs per layer in the latent space of
the ResNet-50 encoder by training a one-vs-all linear SVM
classifier to discriminate the examples of the concept from
the examples of all other concepts based on their layer ac-
tivations. Figure 3 shows that while the concepts are al-
ready mostly linearly separable in the average pooling layer
of the baseline encoder trained with the L loss, enforc-
ing a continuously ordered latent space with the Rank-N-
Contrast pre-trained encoder enables close-to-perfect dis-
crimination, with substantial improvements in the medium
residential concept for the liveability dataset and impervi-
ous surfaces, vegetation, agriculture, and sparse residential
concepts in both datasets.

Alligning Concepts to Socioeconomic Outcomes Not
imposing any constraints on the latent space during model
training is challenging for post-hoc concept interpretability
as the resulting model might yield ambiguous CAVs that are
hard to interpret [8]. As shown in the previous section, the
Rank-N-Contrast pretraining procedure ensures that the em-
beddings lie on a manifold continuously ordered according
to the target value. This impacts the learned CAVs as the
concept examples are also projected along this manifold.
Further, the high linear separability of the concepts on this
manifold shown in Figure 3 suggests that the CAVs point to
distinctive ranges of socioeconomic outcomes. We verify
this by performing a similar analysis to [17] that identifies
the most similar concept to each instance in the socioeco-
nomic datasets based on the cosine similarity of the instance
embeddings and the CAVs. The graphs on the left-hand side
of Figure 4 reveal that in the contrastive pre-trained encoder,
the concepts are clustered on typically non-overlapping in-
tervals of the target values. In detail, for household in-
come, the lower income areas are associated with the nat-
ural concepts of vegetation and water. Next, middle and
high-income areas are aligned with sparse residential areas
and agriculture fields while those with the highest income
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Figure 2. Household income instance activations in the average pooling layer visualized with t-SNE. By pre-training with Rank-n
Contrast, the latent space can be ordered according to the task regression values, rather than the visual features of images. This results in
an embedding space that aligns with the socioeconomic outcomes, and therefore better suited for interpretability.
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Figure 3. Concept accuracy in the average pooling layer of the Resnet-50 encoder for the household income (left) and livability
(right) datasets. The contrastive pretraining improves the linear separability of the concepts in the latent space.

580



Rank-N-Contrast loss L, loss
Concept
I water
Q' .
GEJ ™ oof '&ﬂ l Il vegetation
(o] 3 S, @ » bty i
9 e b SRS ;‘& B agriculture
.« Panay i &N
< ~ e Rt oo $ Sia0 ’:'._:'1 " 2 Sparse res.
.'t)(‘ + Y "’o'..“at f‘-\ H
I VLIRS O Bl medium res.
“° dense res.
pe—— I impervious
i " -
o~ .3.%.>

2| #
=
©
(0]
2
- '~ “.

Figure 4. Instance to concept alignment as seen in the embeddings of each model. The instances are colored according to the concept
with the highest cosine similarity (after normalizing the similarities per concept with the L2 norm). The most similar concept to an instance
can be interpreted as the concept that is most closely aligned to the instance’s socioeconomic outcome.

resemble medium residential areas. Regarding liveability,
dense residential areas characterize the highest portion of
the liveability range, particularly for the low and medium-
liveable areas. Subsequently, the highest liveable areas are
closely aligned with the natural concepts of water and veg-
etation. In summary, these results show that the Rank-N-
contrast pretraining procedure improves the interpretability
of the concept explanations as it enables one to intuitively
associate the concepts to a continuous interval of values for
the socioeconomic indicators. Conversely, the plots on the
right-hand side of Figure 4 visualize that for both datasets,
the models trained with the L loss offer a limited under-
standing of how the concepts relate to the socioeconomic
indicators as they typically do not form clear clusters in the
latent space.

Insigths into Urban Planning with TCAV Measuring
the sensitivity of the concept to the model prediction with
Equation (3) of Section 3.2.2 enables us to understand
how the prediction changes when the visual patterns of
the instances are perturbed in the direction of the concept.
Furthermore, the concept clusters resulting from Rank-N-
Contrast pretraining can unveil the correlation for intervals
of socioeconomic indicators with the different urban and
natural concepts. To shed light on the potential of such anal-
ysis for urban studies, in Figure 5 we visualize the magni-
tude of the TCAV values for the concept of vegetation. The
left plot shows that perturbing the areas with low income
in the direction of vegetation increases the model predic-

tion for income. This positive effect decreases for areas
with higher income. In other words, low-income areas can
be seen rising in income as vegetation increases, with di-
minishing returns. The lowest-income areas in Paris can
be found in the north and the northeast of the city, which
is less green than most higher-income areas. For liveability,
the opposite pattern is observed, where adding natural vege-
tation and water is only beneficial to the most liveable areas.
While this may seem counterintuitive at first, it is important
to consider that the liveability score is a composite socioe-
conomic outcome, comprising multiple dimensions at once.
Neighborhoods in more densely populated areas often have
better amenities and higher income opportunities. However,
what is often lacking in these areas is access to nature. Con-
versely, while rural non-urban areas are abundant in natural
vegetation, they are known to have lower incomes and ac-
cess to amenities. The sensitivity plots of other scores can
be found in Appendix, Section 9.

5.3. Discussion - Defining Remote Sensing Concepts

The use of concepts as a means of interpretability in natural
images is well-studied, with many datasets available that
contain concept classes. However, given the more com-
plex and variable nature of remote sensing imagery, the
use of concepts and their comparison between studies will
strongly depend on definitions, datasets, and sensor resolu-
tion used. Firstly, as the resolution of an image decreases,
individual objects lose their shape, and only geographical
features, which are “an abstraction of a real-world phe-
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Figure 5. The TCAY sensitivity of the vegetation concept for the income (left) and liveability (right) datasets. The magnitude values
are normalized in the range [-1, 1] with min-max normalization. For income, the sensitivity to vegetation is highest among the lowest
income areas and it diminishes for the areas with higher income. In other words, adding vegetation to low-income areas increases the
perceived income of the neighborhood by the model. For liveability, we observe the opposite effect, as the strongest increase in perceived
liveability by the model in highly liveable areas can be achieved by increasing their amount of natural vegetation.

nomenon” [16], remain. As a result, the definition of a
geographical concept varies with the spatial scale that it
is observed on [30]. Concept-centric approaches for re-
mote sensing therefore need to contend with variable con-
cept definitions, making large-scale remote sensing con-
cept datasets harder to manage. Beyond concept definition
uncertainties, common geographical products such as land
cover maps may contain classes that are not visible with
optical sensors [9]. As Arvor et al [5] note, geographic
concepts suffer from vagueness in their definitions. Often,
concepts are defined using qualitative metrics. For instance,
“high NDVI” may define a forest. However, values ascribed
to qualitative descriptors such as ’high” may differ between
studies. A second-factor affecting uniform concept defini-
tions is determined by the ambiguity of a concept, where it
has “no crisp boundaries and may shift its meaning over
time as new technologies appear, as people develop new
habits, and in general, as the social and physical context
of the term evolves” [29]. Finally, the cultural context of
a term makes defining geographical concepts difficult, as
these concepts may readily vary between cultures [22]. As
concept-based explanations continue to mature, such con-
siderations must be taken into account.

6. Conclusion

In this paper, we presented a pipeline that enables intuitive
concept explanations of the deep learning models for so-
cioeconomic outcome prediction. It consists of task-specific
contrastive pretraining with the Rank-N-Contrast method
and the TCAV approach for post-hoc concept testing. Our
results show that the use of Rank-N-Contrast projects la-

tent space embeddings in a continuously ordered manifold
based on socioeconomic outcomes. This resulted in im-
proved model performance for income prediction in Paris
and yielded comparable results for liveability predictions
in the Netherlands. The learned representation also con-
tributed to intuitive concept explanations as we have shown
that the concept activation vectors form clusters along con-
tinuous intervals of socioeconomic outcomes. For exam-
ple, our analysis revealed that dense residential areas are
typically associated with low liveability while more live-
able areas are those that are close to the natural concepts of
water and vegetation. The ordering of the concepts in the
latent space is also beneficial for understanding their sensi-
tivity to the model predictions. We illustrated this in Fig-
ure 5 which indicates that perturbing the instances of low
income towards the vegetation concept improves their in-
come score whereas for liveability this effect was observed
for the highly liveable areas. Such insights open up the pos-
sibilities of our method for new insights into urban studies.
Finally, we showed that our approach can be applied in dif-
ferent geographical locations as unlike concept bottleneck
models, it does not require a set of concept labels specific
to the location of the target study available during training.
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