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We address the challenge of estimating the hyperuniformity exponent α
of a spatial point process, given only one realization of it. Assuming that the
structure factor S of the point process follows a vanishing power law at the
origin (the typical case of a hyperuniform point process), this exponent is
defined as the slope near the origin of logS. Our estimator is built upon the
(expanding window) asymptotic variance of some wavelet transforms of the
point process. By combining several scales and several wavelets, we develop
a multi-scale, multi-taper estimator α̂. We analyze its asymptotic behavior,
proving its consistency under various settings, and enabling the construction
of asymptotic confidence intervals for α when α < d and under Brillinger
mixing. This construction is derived from a multivariate central limit theorem
where the normalisations are non-standard and vary among the components.
We also present a non-asymptotic deviation inequality providing insights into
the influence of tapers on the bias-variance trade-off of α̂. Finally, we inves-
tigate the performance of α̂ through simulations, and we apply our method to
the analysis of hyperuniformity in a real dataset of marine algae.

1. Introduction. Hyperuniform point processes exhibit slower growth in the variance
of the number of points at large scales compared to Poisson point processes. Formally, a sta-
tionary point process in Euclidean space is hyperuniform if the variance of its cardinality in
a ball with radius R is negligible with respect to the volume of this ball, as R tends to in-
finity. This property distinguishes hyperuniform processes from homogeneous Poisson point
processes and popular models derived from them, delving into the rigid structures created
by long-range correlations. Hyperuniform point process models include some Gibbs models
with long-range interactions such as the sine-beta process [80, 19], Coulomb gases [47, 49]
and Riesz gas [8], some determinantal point processes such as the Jinc [73] and Ginibre [29]
models, and some cloaked and perturbed lattices [44, 45]. For further insights and exam-
ples in physical literature, refer to Torquato [77], in mathematical literature to Ghosh and
Lebowitz [28] and to the recent monograph by Coste [14].

Initially conceptualized in statistical physics by Torquato and Stillinger [78], hyperuni-
form systems have attracted significant interest due to their unique position between perfect
crystals, liquids, and glasses [76, 86, 62, 82, 39, 52]. These distinctive properties make them
valuable for designing innovative materials, as seen in works like [23, 60, 25, 51, 30, 85, 17].
Recently, hyperuniformity has gained attention in various applied contexts, offering insights
into phenomena ranging from DNA and the immune system to active matter theory, urban
systems, ices, rock dispersion on Mars, hydrodynamics, avian photoreceptors, and cosmol-
ogy [83, 56, 41, 20, 55, 87, 50, 42, 65]. Detecting and quantifying hyperuniformity is crucial
across these diverse domains. Despite this, statistical inference for hyperuniformity has only
recently gained attention by [33, 46]. Our work specifically addresses this important problem.
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It is widely understood that spectral representation is a valuable tool for analyzing the
variance of signals. Similarly, hyperuniformity in point processes can be redefined using
Bartlett’s spectral measure, whose density (if it exists) is known in physical terms as the
structure factor, denoted by S (see (3)). To be more precise, under certain conditions on the
process, hyperuniformity becomes equivalent to the structure factor S(k) vanishing at zero
frequency k = 0. This approach allows also for the classification of processes based on how
quickly their structure factor S diminishes at zero. A common assumption is that S follows
a power-law behavior near zero: S(k) ∼ t|k|α as |k| → 0, with t > 0 and α ≥ 0 (note that
α = 0 corresponds to the non hyperuniform case). Within this framework, estimating the
parameter α, called hyperuniformity exponent, not only helps in detecting hyperuniformity
but also provides valuable insights into correlations at large scale.

The main contribution of our paper is the introduction of a family of estimators for α that
can be computed using only one realization of the point process. We demonstrate their consis-
tency and establish asymptotic confidence intervals, in an expanding window regime, thereby
providing the first theoretically well-grounded estimators of the hyperuniformity exponent α.

Previous works in this area, starting with [77], involve: (i) estimating the structure factor
S(k) for small, but not zero, frequencies k; and then (ii), analyzing the behavior of this
estimator near zero. Recent advancements in estimating the structure factor, as demonstrated
by [33, 46, 66, 31, 84], allow for the estimation of α through this double-limit procedure,
though the theoretical guarantees and error control remain unclear. In contrast, our approach
stands out from these prior works by directly estimating the rate of the structure factor at zero
frequency, i.e., determining the value of α (which can be 0 or positive, thereby allowing for
both detecting hyperuniformity and quantifying it), without the need for an intermediate step
of estimating the structure factor for non-zero frequencies. In what follows, we present the
key observations in this regard.

Our construction of an estimator of α for a point process Φ on Rd involves considering the
variance of the linear statistic

∑
x∈Φ f(x/R), which scales like Rd−α as R goes to infinity,

for any suitable smooth function f . This key asymptotic result motivates the definition of a
simple estimator for α, which, while not yet refined, serves as a conceptual starting point:
For a smooth and rapidly decreasing function f with zero integral, Var

[∑
x∈Φ f(x/R)

]
can

be estimated by
(∑

x∈Φ f(x/R)
)2 and leads to the following simple estimator of α:

d−
log
(∑

x∈ΦR
f(x/R)

)2
log(R)

,

where ΦR := Φ ∩ [−R,R]d accounts for the fact that we observe the process within a finite
yet expanding window [−R,R]d. The consistency of this estimator, as R→∞, is formulated
in Theorem 3.8. However, due to its reliance on estimating variance from a single realization,
this estimator is inefficient in practice, converging at a rate of log(R). But it can be enhanced
by a more efficient exploitation of the available spectrum, and by employing several tapers.

Indeed, firstly, we examine the linear statistics
∑

x∈ΦR
f(x/Rj) for several scales j ∈

(0,1) in a discrete set J = {j1, . . . , j|J |}, whose variances scale now like R(d−α)j as R ap-
proaches infinity. Similar to the classical estimation of the long-range memory exponent of
times series [22], by combining the logarithms of squares of these statistics, we define the
following “multi-scale” estimator for α:

d−
∑
j∈J

wj

log(R)
log

(∑
x∈ΦR

f(x/Rj)

)2

,

where (wj)j∈J represents explicit weights derived from the least squares optimization; for
further context, in the field of time series analysis, refer to [64]. Still, the variance of this new
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estimator remains relatively high for practical applications due to potential strong correlations
among the different scales j for R<∞.

To address this limitation, we further leverage the concept of multi-taper [66, 33]: We
move away from relying solely on a single function f by averaging statistics derived from
several carefully selected smooth and rapidly decreasing, centered functions (fi)i∈I , called
tapers, where I is a finite subset of N. This approach leads us to the multi-scale, multi-tapered
estimator of α, which serves as a generalization of both previous estimators and is formally
defined as:

α̂= d−
∑
j∈J

wj

log(R)
log

∑
i∈I

(∑
x∈ΦR

fi(x/R
j)

)2
 .

It is worth noting that this estimator can be practically computed with only one realization
of the point process. Indeed, its variance is reduced by using several scales and tapers, which
contribute in a decorrelated way, making this estimator self-averaging. Furthermore, it will
be proven to be consistent under the same assumptions as the non-tapered estimator.

To provide a more precise result, we assume Brillinger-mixing for Φ and α< d, to derive a
multivariate central limit theorem (refer to Theorem 3.9). This theorem asserts that a vector of
individual estimators, each based on smooth and rapidly decreasing centered taper functions
(fi)i∈I at various scales j ∈ J , converges to a zero mean Gaussian vector (Ni,j)i∈I,j∈J as R
tends to infinity: (

R
α−d

2
j
∑
x∈ΦR

fi(x/R
j)

)
i∈I,j∈J

Law−−−−→
R→∞

√
t (Ni,j)i∈I,j∈J ,

with an explicit covariance matrix This central limit theorem is unusual in that the normal-
izations vary among the components and exceed the rate of R−dj/2 observed in the non-
hyperuniform scenario. Thanks to this result, we can establish an asymptotic confidence in-
terval for α (refer to Proposition 3.14).

Additionally, through a non-asymptotic deviation inequality stated in Proposition 3.17, we
examine the impact of the number of tapers |I|. In the non hyperuniform case of α = 0,
and with the functions (fi)i∈I being orthonormal in L2(Rd), it is quite straightforward to
prove that the asymptotic variance of log(R)(α̂− α) scales as |I|−1 (see Proposition 3.16).
To address the case of α > 0, Proposition 3.17 considers the set of taper functions (fi)i∈I
defined by the Hermite wavelets, and reveals that the variance still scales as |I|−1 in this
setting. On the other hand, as it is already well known with the multi-taper technique in the
context of univariate time series [69, 64], this result also states that not too many tapers should
be used in order to control a small bias.

As our theoretical results are asymptotic and our estimators (calculated in a finite window)
demand to set some parameters, like the scales J and the tapers fi, i ∈ I , we provide some
practical recommendations in Section 4.1. To verify the practical robustness of our approach,
numerical benchmarks on simulated point processes are conducted in Section 4.2. We then
apply our estimation method to address the conjecture that the hyperuniformity exponent
of matched point processes is α = 2 [2], which our numerical study confirms. Finally, in
Section 4.1, we analyse a real dataset of marine algae from [41], providing new insights on
the hyperuniformity phenomenon of this system.

The remaining part of the paper is organized as follows. Section 2 introduces some basics
about point processes and defines the concept of hyperuniformity, including the exponent
α. Some examples of hyperuniform and non-hyperuniform point process models are given.
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Section 3 presents our estimator α̂ and investigates its main properties: well-definiteness,
consistency, limiting distribution, asymptotic confidence intervals, choice of tapers based on
a bias-variance trade-off. In Section 4.1, we discuss practical recommendations for the im-
plementation of α̂ and we assess its performances by numerical simulations. We then apply
our method to various theoretical models of point processes and to some real dataset of ma-
rine algae. Finally, Section 5 gathers all technical proofs of the results presented in Section 3,
while Appendix provides a brief reminder of cumulant measures and Brillinger mixing for
point processes.

The Python code to implement our estimator and reproduce our experiments is available in
our online GitHub repository at https://github.com/gabrielmastrilli/Estim_Hyperuniformity.

2. Preliminaries. In this section, after establishing our notation and presenting some
basics related to simple stationary point processes, we define hyperuniformity in both Fourier
and spatial domains and introduce the hyperuniformity exponent α. We conclude by the
presentation of several examples of hyperuniform point processes.

2.1. General notations. We consider functions and point processes in Euclidean space
Rd of dimension d≥ 1. For a, b ∈Cd, a.b=

∑d
i=1 aibi denotes the Hermitian scalar product

between a and b, while the associated norm is denoted by |a|. We denote i =
√
−1 ∈ C.

The volume of a set A ⊂ Rd is also denoted |A|, while for a finite set I , the notation |I|
stands for its cardinality. The Euclidean ball of radius R is denoted by B(0,R). For x =

(x1, . . . , xd) ∈ Rd, |x|∞ := maxi=1,...,d |xi| and |x|1 =
∑d

i=1 |xi|. Finally, for (a, b) ∈ R, we
use the notations a∨ b := max(a, b) and a∧ b := min(a, b).

For 1≤ p <∞, we denote by Lp(Rd) the space of measurable functions f :Rd →R such
that ∥f∥pp :=

∫
Rd |f(x)|pdx <∞. We denote by L∞(Rd) the space of functions f : Rd → R

such that ∥f∥∞ := supx∈Rd |f(x)| <∞. For p = 2, the scalar product between the L2(Rd)
functions f1 and f2 is ⟨f1, f2⟩ =

∫
Rd f1(x)f2(x)dx. We adopt the following convention for

the Fourier transform of a function f ∈ L1(Rd):

∀k ∈Rd, F [f ](k) :=
1

(2π)d/2

∫
Rd

f(x)eik.xdx.

As usual, the Fourier transform is extended to L2(Rd) functions thanks to the Plancherel
Theorem [24]: ∀f1, f2 ∈ L2(Rd), ⟨f1, f2⟩= ⟨F [f1],F [f2]⟩. We say that a function f :Rd →
R is in the Schwartz space S(Rd) if f is infinitely differentiable and if for all multi-indexes
(β1, β2) ∈ (Nd)2, then supx∈Rd |xβ1∂β2

f(x)| <∞. Finally, a function f : Rd 7→ C is said
analytic if

∀x0 ∈Rd, ∃h ∈Rd \ {0}, ∀x ∈]x0 − h,x0 + h[d, f(x) =
∑
k∈Nd

ak(x0)x
k,

where (ak(x0))k∈Nd is a sequence of complex scalars and where the convergence of the series
is uniform.

2.2. Hyperuniform point processes. In this section, we briefly review necessary notions
and results related to hyperuniform point processes. For a comprehensive introduction to
point processes, we recommend consulting the standard two-volume textbook [15, 16] or the
more concise recent manuscript [3]. Additionally, for a presentation specifically related to
hyperuniformity, we suggest referring to the unpublished monograph [14]. For a foundational
understanding of power spectra of point processes, consult [9, Chapter 5].

The set of points configurations in Rd is defined as:

Conf(Rd) := {ϕ⊂Rd| For all K compact of Rd, then |ϕ∩K|<∞}.

https://github.com/gabrielmastrilli/Estim_Hyperuniformity
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This set is endowed with the σ-algebra generated by the mapping ϕ 7→ |ϕ∩K| for all compact
sets K . A point process Φ is a random element of Conf(Rd). A point process Φ is called
simple if it contains almost surely only distinct points, and it is called stationary if for all
x ∈Rd, Φ+x := {y+x| y ∈Φ} is equal in distribution to Φ. As a consequence, the intensity
measure ρ(1) of a stationary point process Φ (defined for any subset A of Rd by ρ(1)(A) =
E(|Φ∩A|)), is proportional to the Lebesgue measure on Rd: ρ(1) = λdx. The scalar λ≥ 0 is
called the intensity of the point process. The second order factorial moment measure ρ(2) of
a simple point process Φ is a measure on (Rd)2 defined by

(1) ρ(2)(A1 ×A2) = E
[ ̸=∑
x,y∈Φ

1x∈A1,y∈A2

]
,

for allA1,A2 subsets of Rd. The symbol ̸= over the sum means that we consider only distinct
points.

ASSUMPTION 2.1. Throughout the paper, we tacitly assume that the point process Φ is
simple, stationary, with an intensity λ > 0, and that its second-order intensity measure ρ(2) is
absolutely continuous with respect to the Lebesgue measure on Rd × Rd. This allows us to
represent it as follows:

ρ(2)(dx,dy) = λ2g(x− y)dxdy,(2)

where g(x) is a function on Rd. Additionally, we assume that g− 1 ∈ L1(Rd).

The function g : Rd → R is known as the pair-correlation function of Φ. With this estab-
lished, we can proceed to define the structure factor of Φ. This is a function S defined for
any k ∈Rd as

(3) S(k) := 1+ λ

∫
Rd

(g(x)− 1)e−ik.xdx.

This function represents the density of the Bartlett spectral measure of Φ, cf [16, Sec-
tion 8.2]. Under Assumption 2.1, S is a non-negative, bounded and continuous function.
Furthermore, by application of the Campbell formula [3] and the Plancherel Theorem [24],
we deduce the following useful property: For all f1, f2 ∈ L1(Rd)∩L2(Rd),

(4) Cov
[∑
x∈Φ

f1(x),
∑
x∈Φ

f2(x)
]
= λ

∫
Rd

F [f1](k)F [f2](k)S(k)dk.

We are now in position to define hyperuniformity in the Fourier domain.

DEFINITION 2.2. Under the conditions specified in Assumption 2.1, Φ is said to be hy-
peruniform in the Fourier domain if S(0) = 0.

As per Definition 2.2, hyperuniformity is connected to the behavior of the structure factor
at low frequencies. Thanks to formula (4), this definition aligns with the conventional under-
standing of hyperuniformity in the spatial domain, which focuses on the number variance’s
behavior at large scales.

DEFINITION 2.3. Φ is said to be hyperuniform in the spatial domain if for any compact
convex set W of Rd, then

Var[|Φ∩ rW |] =
r→∞

o(|rW |).
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The equivalence between these two notions is discussed in [14]. The “degree” of hyper-
uniformity is often quantified in the Fourier domain, based on the following assumption.

ASSUMPTION 2.4. Under the conditions outlined in Assumption 2.1, we additionally
assume that the structure factor S scales near the origin as

(5) S(k) ∼
|k|→0

t|k|α,

where t > 0 and α≥ 0.

The parameter α in Assumption 2.4 is the hyperuniformity exponent, which we aim to
estimate. Clearly, the point process is classified as hyperuniform (in the Fourier domain) if
and only if α> 0.

REMARK 2.5. When α > 0, Assumption 2.4 leads to three classes of hyperuniformity,
whether 0<α< 1, α= 1 or α > 1, see [77] and [14]. These classes are distinguished based
on the behavior of the number variance Var[|Φ∩B(0,R)|] as R→∞. Specifically:

(I) For 0<α< 1, we have Var[|Φ∩B(0,R)|] =O(Rd−α).
(II) For α= 1, the variance scales as Var[|Φ∩B(0,R)|] =O(Rd−1 log(R)).
(III) For α> 1, the variance behaves as Var[|Φ∩B(0,R)|] =O(Rd−1).

To wrap up this brief introduction to hyperuniformity in point processes, it’s important to
note that throughout the paper we assume that our point process Φ satisfies Assumptions 2.1
and 2.4. To simplify our analysis without compromising generality we also normalise the
intensity to assume λ = 1. We detail in Section 4 how to rescale in practice the observed
point patterns to match this theoretical normalisation.

2.3. Examples of hyperuniform and non-hyperuniform point processes. We review be-
low standard point process models, highlighting their hyperuniform or non-hyperuniform
property. We also show how we can construct hyperuniform processes with a prescribed ex-
ponent α.

As already pointed out, the homogeneous Poisson point process on Rd is clearly not
hyperuniform. Indeed, for a stationary Poisson point process Φ with intensity λ > 0,
Var[|Φ∩ rW |] = λ|rW | for any compact convex set W of Rd, so that the property in Defini-
tion 2.3 is not satisfied. More generally, point process models exhibiting weak dependencies
are not hyperuniform. For instance, Gibbs point processes with short-range interactions have
been proven to be non hyperuniform in [18]. Most Cox processes [12, 59] are not hyper-
uniform either, because for these models we typically have

∫
Rd(g(x) − 1)dx > 0, like for

the subclass of Newman-Scott processes, ruling out the hyperuniform property S(0) = 0,
see (3). On the other hand, consider a stationary determinantal point process [53, 72] with
correlation kernel K :Rd×Rd →C and denote K0(x−y) := |K(x, y)|. Then it is hyperuni-
form if and only if ∥K0∥22 =K0(0). This implies that Gaussian, Whittle-Matérn, and Cauchy
determinantal point process models [48] are not hyperuniform.

Determinantal point processes provide nonetheless a first simple class of hyperuniform
point processes, as long as their kernel satisfies ∥K0∥22 = K0(0). This corresponds to the
family of “most repulsive” determinantal point processes, as studied in [6] and [58]. In par-
ticular, Jinc [73] and Ginibre [29] point processes are hyperuniform, with exponent α = 1
and α= 2, respectively.

In the class of Gibbs point processes, important examples of long-range interactions mod-
els exhibit hyperuniformity. This is notably the case of the sine-beta process [80, 19], one-
dimensional and two-dimensional Coulomb gases [47, 49], and the one-dimensional Riesz
gas [8].
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A stationary lattice process is, in a way, an extreme example of a hyperuniform process in
the sense of Definition 2.3 [77, 28, 14]. It corresponds to the process Zd+U , where U follows
a uniform distribution on [−1/2,1/2]d. This process does not satisfy Assumption 2.1 but it
is possible to build upon it to provide a wide class of more regular hyperuniform models.
This idea is exploited in [2], where hyperuniform processes are obtained by the thinning of
a homogeneous Poisson point process so that the retained points match the stationary lattice.
Their hyperuniformity exponent, however, is unknown, even if it is thought to be α = 2. In
our simulation study in Section 4.2.2, we question this conjecture thanks to our estimator.

Another construction based on the stationary lattice leads to the model of cloaked
and perturbed lattices [26, 44, 45], that allows to construct hyperuniform processes with
a prescribed exponent α. This point process is {x + U + Ux + ξx| x ∈ Zd}, where
U, (Ux)x∈Zd , (ξx)x∈Zd are independent random variables, called perturbations. The random
variables U and (Ux)x∈Z2 , that are i.i.d. and uniform on [−1/2,1/2]d, ensure that the process
satisfies Assumption 2.1 [45]. The random variables (ξx)x∈Zd are in turn i.i.d. with charac-
teristic function φ satisfying 1− |φ(k)|2 ∼ c|k|α as |k| → 0, where c > 0 and α > 0. They
ensure that the process is hyperuniform with exponent α [44, 26]. These processes serve as a
benchmark in our simulation study of Section 4.2.1.

3. Estimating the hyperuniformity exponent α. We first introduce in Section 3.1 trun-
cated wavelet transforms of point processes, that constitute the basic statistic whose variance
scales as a function of α. Based upon these transforms, we then present in Section 3.2 our
multi-scale, multi-taper estimator of α, with some guarantees on its well-defined nature. Sec-
tion 3.3 investigates its asymptotic properties, including its limiting distribution. This allows
us to derive in Section 3.4 asymptotic confidence intervals for α. We finish in Section 3.5 by
inspecting the bias and variance trade-off in the choice of tapers involved in our estimator.

3.1. Truncated wavelet transforms of point processes. An effective estimator for the ex-
ponent α in the structure factor S(k) given by (5) should consider the relationship between
the frequency regime |k| → 0 and the size of the observation window [−R,R]d as R tends
to infinity, within which these frequencies can be observed. Our primary tools for addressing
this are the following general linear statistics:

DEFINITION 3.1. Let f ∈ S(Rd), R > 1 and j > 0. The R-truncated wavelet transform
of the point process Φ at scale j associated to f is defined by

(6) Tj(f,R) = Tj(f,R;Φ) :=
∑
x∈Φ

1[−R,R]d(x)f
( x
Rj

)
=
∑
x∈ΦR

f
( x
Rj

)
,

denoting ΦR := Φ∩ [−R,R]d.

The scaling factor Rj in (6) corresponds to the observation scale of the point process Φ in
the spatial domain, while R−j represents the observation frequency in the Fourier domain.
Given Definitions 2.2 and 2.3, it is logical to assess the hyperuniformity of Φ focusing on both
large scales and low frequencies by studying the behavior of the truncated wavelet transforms
Tj(f,R) as R approaches infinity.

Our first key result, stated in the following proposition, demonstrates this relevance by
showing that the scale of variance of these transforms is directly linked to the value of the
exponent α, particularly for all values α≥ 0. The proof is a direct corollary of Lemma 5.1,
which is postponed to Section 5.1
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PROPOSITION 3.2. Let Φ satisfy Assumptions 2.1 and 2.4, with intensity λ= 1. Let f ∈
S(Rd), R> 1 and 0< j < 1. Then:

Var
[
Tj(f,R)

]
∼

R→∞
R(d−α)j

∫
Rd

|F [f ](k)|2t|k|αdk.

The relation formulated above has already been observed and exploited in the literature
for some specific models of hyperuniform point processes; see, for example, [73, Theorem 3]
for hyperuniform determinantal point processes in dimension 1 and [61, Lemma 5.4] for the
point process of zeros of Gaussian Analytic Functions (GAF’s) for d = 2 and α = 4. It has
also been confirmed by numerical simulations for other models in the thesis [11]. Our result
in Proposition 3.2 provides an explicit asymptotic equivalent of the variance of Tj(f,R) in
the general setting of an isotropic power law scaling of the structure factor near the origin.

Before transforming the above result into an estimator of α, which we will present in the
next section, we would like to make three remarks: the significance of restricting scales j,
the connections to previous works on estimating the structure factor S, and finally the use of
wavelet terminology.

REMARK 3.3. The restriction of scales j to 0 < j < 1 in Proposition 3.2 holds signifi-
cance, for the purpose of estimating α. Beyond j > 1, border effects start to emerge. Specifi-
cally, when j > 1, the variance of Tj(f,R) converges asymptotically to the number variance
Var

[∑
x∈Φ 1[−R,R]d(x)f(0)

]
as R tends to infinity, which does not necessarily depend on

α, see Remark 2.5. In Section 5.2, we offer a brief proof of this phenomenon, replacing the
indicator function 1[−R,R]d with a smooth, compactly supported function.

REMARK 3.4. Several estimators for the structure function S have been developed, as
documented in [33, 46, 66, 31, 84]. One of the most well-known is the “scattering inten-
sity” [33, 46, 77], which is defined for all frequencies k ∈Rd \ {0} as

(7) ŜR
SI(k) :=

1

|[−R,R]d|2

∣∣∣∣∣ ∑
x∈ΦR

e−ik.x

∣∣∣∣∣
2

.

The estimation of α in previous studies typically involves a two-step asymptotic approach:
first, taking the limit as R → ∞ of ŜR

SI(k), and then as |k| → 0. One way to unify and
rigorously address this double asymptotic approach is to consider the limit, as R→∞, of
ŜR
SI(k0/R

j), where k0 ∈ Rd is a fixed direction and j > 0. The latter is nothing else that
|Tj(f,R)|2 in Definition 3.1 associated with the (non-Schwartz) function f(x) = e−ik0.x, up
to the normalization by |[−R,R]d|2. Proposition 3.2 supports this idea with the additional
advantage of substituting x 7→ e−ik0.x with a smooth and well-localized function f in (3.1),
both in the Fourier and spatial domains. The concept of using such functions f , as we will
discuss in the upcoming section, draws inspiration from the principles of tapers in spectral
analysis, as highlighted in works such as [64, 66, 33].

REMARK 3.5. The term “wavelet transform” for Tj(f,R) originates from the fact that
we can interpret

∑
x∈ΦR

f(x/Rj) =
∫
1[−R,R]d(x)f(R

−j(x− 0))Φ(dx) as an f -wavelet co-
efficient (with shift zero and scale Rj) of the point process Φ; cf. [11]. It can be seen as an
unbiased estimator of the wavelet coefficient dj,0(f) of the function (signal) x 7→ 1[−R,R]d(x)

in L2(Rd), where dj,l :=
∫
Rd f(R

−j(x + l))1[−R,R]d(x)dx, for all j ∈ R and all l ∈ Rd;
cf. [54, 75, 11]. Indeed, by stationarity of Φ, E[Tj(f,R)] = dj,0(f) for all j ∈ R. Addition-
ally, well-localized behavior of f in both spatial and Fourier domains are typical character-
istics of mother wavelets. For a more comprehensive understanding of wavelet analysis in
point processes, we recommend consulting seminal papers such as [10] as well as recent
works like [75, 13, 11].
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3.2. Multi-scale, multi-taper estimator. The concept behind constructing an estimator
for α, as outlined in our Introduction, involves a linear regression of the logarithm of the
square of the wavelet transforms (6), supported by the result in Proposition 3.2. This method
has been previously utilized in univariate time series to estimate the long-memory exponent,
which in our context is akin to the exponent α (refer to a survey on wavelet and spectral
methods for estimating the long-memory exponent in time series [22]). Additionally, see [64]
for a general overview of spectral density estimation in time series and [63] for wavelet
methods. The specifics are elaborated below.

According to Proposition 3.2, for a Schwartz function f with zero integral, we heuris-
tically have Tj(f,R)2 ∼ R(d−α)j as R→ ∞. Therefore, we expect that for all j ∈ (0,1),
the expression log(Tj(f,R)

2)/ log(R) behaves as (d− α)j. Considering the multi-taper ap-
proach [64, 66], we can extend our analysis to multiple wavelet transforms. Specifically, for
a finite discrete subset I and a finite family of Schwartz functions (fi)i∈I with zero integral,
we anticipate the following linear scaling law:

(8) ∀j ∈ (0,1),
log
(

1
|I|
∑

i∈I Tj(fi,R)
2
)

log(R)
∼ (d− α)j.

Subsequently, given a finite discrete subset J ⊂ (0,1) of scales, we define the estimator α̂ of
α as the slope obtained from the least squares procedure:

(α̂, b̂) = argmin
a,b∈Rd

∑
j∈J

 log
(

1
|I|
∑

i∈I Tj(fi,R)
2
)

log(R)
− (d− a)j − b

2

.

This leads to the explicit solution:

(9) α̂= d−
∑
j∈J

ŵj

log(R)
log

(
1

|I|
∑
i∈I

Tj(fi,R)
2

)
,

with the weights:

(10) ∀j ∈ J, ŵj =
|J |j −

∑
j′∈J j

′

|J |
(∑

j′∈J j
′2
)
−
(∑

j′∈J j
′
)2 .

These weights define a natural estimator suitable for our simulations. However, a more gen-
eral definition is presented below, with weights (wj)j∈J satisfying two minimal conditions,
as explained further. The first one is

∑
j∈J wj = 0, as verified by (10), and results in a slight

simplification of the expression in (9) with the elimination of the normalization by |I|. The
second one, also satisfied by (10), is

∑
j∈J jwj = 1. It plays a fundamental role in ensuring

the consistency of the estimator α̂, as detailed at the beginning of Section 3.3.

DEFINITION 3.6. Let R > 0, J ⊂ (0,1) be a finite subset (of scales), (fi)i∈I be a finite
family of Schwartz functions (tapers). We assume that at least one function of the family of
wavelets (fi)i∈I is analytic and takes at least one non zero value. We consider real scalar
weights (wj)j∈J satisfying conditions: ∑

j∈J
wj = 0,(11)

∑
j∈J

jwj = 1.(12)
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We define the (I, J)-estimator of α (which tacitly depends also on the weights (wj)j∈J ) by:

α̂(I, J,R) = α̂(I, J,R;Φ) :=

d−∑
j∈J

wj

log(R)
log

(∑
i∈I

Tj(fi,R)
2

)1|ΦR|≥1.

The indicator function 1|ΦR|≥1 and the assumption of analyticity of at least one function fi
guarantee that α̂(I, J,R) is well defined. Specifically, under this setting, Tj(fi,R;Φ) is non-
zero almost surely, for all j ∈ J , so that the logarithmic term is well defined. This is because,
on the one hand, the analytic function fi only has Lebesgue-null sets of zeros (as long as it
is not identically zero), and on the other hand, by stationarity, the point process Φ, almost
surely, has no points on any fixed Lebesgue-null set. This forms the core of the argument
supporting the following statement, the proof of which is deferred to Section 5.3.

PROPOSITION 3.7. Let Φ satisfy Assumptions 2.1 and 2.4. Let f ∈ S(Rd) be an analytic
function taking at least one non-zero value. Then,

P(Tj(f,R;Φ) = 0, |ΦR| ≥ 1) = 0.

Certainly, requiring analyticity of f is more than enough to ensure the above conclusion.
However, finding a less restrictive assumption that would rule out cases where Tj(f,R;Φ)
becomes zero for certain configurations of Φ with non-zero probability is not straightforward.

3.3. Asymptotic properties. In this section, we provide assumptions under which the es-
timator α̂(I, J,R) given in Definition 3.6 converges in probability to α as R→∞. An easy
yet key observation, relying on the normalization (12) of the weights wj , is that the estimator
can be decomposed as follows:

(13) α̂(I, J,R) = α+ ϵ(I, J,R),

where the remainder term ϵ(I, J,R) is given by

ϵ(I, J,R) =
∑
j∈J

wj

log(R)
log

(∑
i∈I

R(α−d)jTj(fi,R)
2

)
1|ΦR|≥1 − α1|ΦR|=0.(14)

To ensure consistency, it is now sufficient to assume that with probability 1:

log

(∑
i∈I

R(α−d)jTj(fi,R)
2

)
= o(log(R)),

which, notably, would result from the tightness of the random variables on the left-hand side
above, uniformly in R. The asymptotic variance of Tj(fi,R), as given in Proposition 3.2, re-
duces this issue to ensuring that the random variables R(α−d)jTj(fi,R)

2 do not concentrate
around 0 as R→∞. In this context, we propose two assumptions: (i) a less restrictive one,
albeit not too explicit, involves assuming that these variables converge in distribution to some
distribution without an atom at 0, as formulated in Theorem 3.8, or (ii) a mixing assumption
for Φ, specifically Brillinger mixing, that implies a joint central limit theorem for these ran-
dom variables, as formulated in Theorem 3.9, ensuring in particular the previous setting. The
former approach (i) has the advantage of being applicable in a larger setting when α≥ d and
the variance does not increase to infinity. As discussed further in Remark 3.12, this happens
for some specific examples excluded from the second approach (ii). On the other hand, the
multivariate central limit theorem in approach (ii) explicitly provides the asymptotic error law
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of log(R)(α̂(I, J,R)−α), see Corollary 3.10, and allows for the construction of confidence
intervals; see Section 3.4.

Our minimal assumptions for the consistency of α̂(I, J,R), akin to the first framework
described above, are formulated in the following result, whose proof is postponed to Sec-
tion 5.4.

THEOREM 3.8. Let Φ satisfy Assumptions 2.1 and 2.4, with intensity λ= 1. Suppose that
Φ(Rd) =∞ with probability 1. Let J ⊂ (0,1) be a finite subset and (fi)i∈I be a finite family
of Schwartz functions, i.e., fi ∈ S(Rd), such that

∫
Rd fi(x)dx= 0. We assume that for each

j ∈ J , there exists ij ∈ I such that R
α−d

2
jTj(fij ,R) converges in distribution to a random

variable Xj with no atom at 0, i.e., P[Xj = 0] = 0. Then α̂(I, J,R) converges in probability

to α as R tends to infinity; in symbols: α̂(I, J,R) P−−−−→
R→∞

α.

We now turn to the second framework and present the statement of the multivariate central
limit theorem based on the Brillinger mixing condition and assuming α < d. The Brillinger
assumption, recalled in Appendix, has been utilized in spatial statistics [38, 36, 34] and
proved to be satisfied for models such as α-determinantal point processes with L1(Rd) ker-
nel [35], determinantal point processes with L2(Rd) kernel [5], Thomas Cluster, and Matérn
hard-core point processes [37]. The proof of the following theorem is provided in Section 5.1.

THEOREM 3.9. Let Φ satisfy Assumptions 2.1 and 2.4, with intensity λ = 1. Suppose
that α < d in Assumption 2.4 and assume that Φ is Brillinger mixing. Let J ⊂ (0,1) be a
finite subset and (fi)i∈I be a finite family of Schwartz functions, i.e., fi ∈ S(Rd), such that∫
Rd fi(x)dx= 0. Then,

(R
α−d

2
jTj(fi,R))i∈I,j∈J

Law−−−−→
R→∞

(
√
tN(i, j,α))i∈I,j∈J ,

where (N(i, j,α))i∈I,j∈J is a Gaussian vector with zero mean and covariance matrix:

(15) Σ :=

(
1j1=j2

∫
Rd

F [fi1 ](k)F [fi2 ](k)|k|αdk
)

(j1,j2)∈J2,(i1,i2)∈I2

.

Note that when α > 0, the strong correlation among points results in a slower rate of
convergence compared to the typical Poisson-like rate of R− d

2
j . Furthermore, the wavelet

transforms associated with different scales j1 ̸= j2 are asymptotically uncorrelated, similar
to what is observed in spectral analysis of univariate time series [64]. However, in practice,
we will not solely rely on this theoretical asymptotic independence. Instead, we will provide
a correlated Gaussian representation, corresponding to the pre-limit value of α̂(I, J,R), as
presented in Section 3.4.

As a corollary of Theorem 3.9, we obtain the asymptotic error law of α̂(I, J,R). The proof
is postponed to Section 5.4.

COROLLARY 3.10. Under the same setting as in Theorem 3.9, the estimator α̂(I, J,R)
given in Definition 3.6 satisfies the following convergence in distribution:

(16) 1|ΦR|≥1 log(R) (α̂(I, J,R)− α)
Law−−−−→
R→∞

∑
j∈J

wj log

(∑
i∈I

N(i, j,α)2

)
,

where (N(i, j,α))i∈I,j∈J is Gaussian vector with zero mean and covariance matrix Σ, de-

fined in (15). Consequently, α̂(I, J,R) P−−−−→
R→∞

α.



12

Before delving into the construction of confidence intervals for α, we would like to make
three remarks.

REMARK 3.11. As seen in (16), the convergence rate of α̂(I, J,R) to α is logarithmic
in terms of R. While convergence is achieved even when |I| = 1, meaning that α̂(I, J,R)
is defined with the wavelet transforms (Tj(f,R))j∈J based on just one function f , this con-
vergence is notably slow. This is why we employ multi-taper techniques, averaging over
multiple wavelet transforms associated with various functions (fi)i∈I where |I| ≥ 2, to re-
duce the variance of α̂(I, J,R). In Section 3.5, we delve into the impact of |I| on both the
bias and variance of α̂(I, J,R).

REMARK 3.12. Corollary 3.10 yields the consistency of the estimator α̂(I, J,R) in the
setting of Theorem 3.9, which is proved with 0 ≤ α < d under the Brillinger mixing for
point processes. This should be compared to the consistency stated in Theorem 3.8, that
may apply even when α≥ d. As a matter of fact, the central limit theorem of Tj(f,R) may
still hold for certain point processes with α ≥ d, despite the variance of this statistic, of
order R(d−α)j by Proposition 3.2, does not increase. In such cases, the approach to prove the
central limit theorem is specific to each situation and cannot follow a general scheme as in
the proof of Theorem 3.9. Notably, it has been proven for the Ginibre point process on the
plane R2 (α= 2) [68], the sinc determinantal point process in dimension 1 (α= 1) [73, 27],
planar determinantal point processes with reproducing kernels (α = d = 2) [32], the zero
set of the GAF function (d = 2 and α = 4) [71, 61] and for some dependently perturbed
lattices [71] (d = 2 and α ∈ {2,4}). For these processes, Theorem 3.8 therefore guarantees
the consistency of our estimator of α.

REMARK 3.13. Though being the exception and not the rule, there exist point process
models that meet neither the conditions of Theorem 3.8, nor those of Theorem 3.9. For in-
stance, it may be proven that for a one-dimensional lattice perturbed by stable distributions
with parameter α ∈ (1,2), then for all j ∈ J and all f ∈ S(R), f ̸= 0, with zero integral,
R

α−1

2
jTj(f,R) converges to 0 in distribution, in contradiction with the assumptions of The-

orem 3.8 and with the non-degenerated limit of Theorem 3.9. In fact, for this peculiar exam-
ple, R

α−1

α
jTj(f,R) converges toward a α-stable distribution, so that our estimator α̂(I, J,R)

converges in probability not to α but to (3α− 2)/α ∈ (α,α+ 0.172).

3.4. Confidence intervals. In this section, we construct asymptotic confidence intervals
for our estimator α̂(I, J,R). Instead of relying on the asymptotic limit presented in Corol-
lary 3.10, which is based on the Gaussian representation with the covariance matrix Σ given
in (15), we opt for another Gaussian representation with covariance ΣR, which is transient
in the sense that it depends on R. This approach is motivated by the observation that in the
asymptotic regime R=∞ the wavelet transforms associated with different scales j1 ̸= j2 are
asymptotically uncorrelated. However, in a pre-limit regime, where R<∞, the random vec-
tors (Tj(fi,R))i∈I across j ∈ J are not yet independent, and their actual covariance might
deviate significantly from its limit Σ. This will be reflected by the transient covariance ma-
trix ΣR. Our numerical simulations in Section 4 confirm that this modification leads to a
satisfactory coverage of the confidence intervals, see Table 1, whereas confidence intervals
based on Σ (not reported) barely achieve a coverage of 50% for the same simulations, in-
stead of the nominal rate of 95%. The proof of the following proposition is postponed to
Section 5.5, where the keypoint is to theoretically justify plugging in α̂ instead of α in the
quantile function.
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PROPOSITION 3.14. Let the assumptions of Theorem 3.9 be satisfied. Let a ∈ (0,1/2).
For all β ≥ 0, denote by (N(i, j,R,β))i∈I,j∈J the Gaussian vector with zero mean and co-
variance matrix:

(17) ΣR :=

(
R

β+d

2
(j1+j2)

∫
Rd

F [fi1 ](R
j1k)F [fi2 ](R

j2k)|k|βdk

)
(j1,j2)∈J2,(i1,i2)∈I2

.

Moreover, for q ∈ (0,1), we denote by F−1
R (q;β) the quantiles of order q of ZR(β) where:

ZR(β) :=
∑
j∈J

wj log

(∑
i∈I

N(i, j,R,β)2

)
.

Then the probability that the hyperuniformity exponent α is covered by the interval

(18)

[
α̂−

F−1
R (1− a/2; α̂∨ 0)

log(R)
1|ΦR|≥1, α̂−

F−1
R (a/2; α̂∨ 0)

log(R)
1|ΦR|≥1

]
,

where α̂ := α̂(I, J,R), converges to 1− a when R→∞.

REMARK 3.15. In the case of d = 2 and for the Hermite wavelet functions (fi)i∈I (in-
troduced in the next section), the covariance matrix ΣR can be computed without numerical
integration. Detailed explanations are provided in Section 5.7.

3.5. Bias and variance trade-off in multi-tapering. In this section, our primary focus
is on studying the impact of tapers fi with indexes i in set I on the estimation error
α̂(I, J,R) − α. Additionally, we discuss the significance of the scales j in set J . We op-
erate within the asymptotic regime established by Corollary 3.10 and begin with the non-
hyperuniform scenario, where α = 0, serving as a benchmark for comparison. In Propo-
sition 3.16, we establish a bound of order |I|−1 for the variance of the limiting distribu-
tion when α = 0, provided the taper functions are orthogonal, that translates to the order
|I|−1 log−2(R) on the variance of the estimation error. Moving on to the hyperuniform case
α > 0, a more complex covariance structure arises due to the asymptotic dependence of
wavelets (Tj(fi,R))j∈J even when the tapers fi are orthogonal. This dependence potentially
amplifies the pre-limit bias of our estimator as |I| increases. To address this issue, we con-
sider specific tapers from the family of Hermite wavelets, and in Proposition 3.17 show a
balance to be found in terms of the number |I| of tapers while pursuing conflicting objec-
tives of minimizing the variance and bias in our estimator. This issue is well-known in signal
processing studies, as discussed in [64, 69], and we will also illustrate it in Figure 3.

Recall from Corollary 3.10 that the estimation error α̂(I, J,R)−α decreases as 1/ log(R)
to a limiting random variable given in the right-hande side of (16), where (N(i, j,α))i∈I,j∈J
is a Gaussian vector with covariance matrix Σ, as given in (15). Assuming α = 0, we can
establish a bound on the variance of this limiting random variable explicitly depending on
the number of scales and tapers, when these tapers are assumed to be orthonormal.

PROPOSITION 3.16. We assume that α = 0 and that (fi)i∈I is an orthonormal family
of L2(Rd): ∀(i1, i2) ∈ I2, ⟨fi1 , fi2⟩= 1i1=i2 . Let (N(i, j,α))i∈I,j∈J be a centered Gaussian
random vector with covariance matrix Σ defined in (15). Then,

(19) Var

∑
j∈J

wj log
(∑

i∈I
N(i, j,α)2

)≤

∑
j∈J

w2
j

 |I|+ 1

|I|2
.
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PROOF. When α= 0 and ⟨fi1 , fi2⟩= 1i1=i2 , the covariance matrix Σ becomes the identity
matrix. Therefore ∑

j∈J
wj log

(∑
i∈I

N(i, j,α)2
)
=
∑
j∈J

wj log
(
Uj

)
,

where (Uj)j∈J are independent χ2(|I|) random variables with |I| degrees of freedoms.
Hence, Var

[
log
(
Uj

)]
= ψ1(|I|) where ψ1 is the trigamma function, i.e. the second deriva-

tive of the logarithm of the gamma function, see [4]. We deduce that

Var

∑
j∈J

wj log
(
Uj

)=
∑
j∈J

w2
j Var

[
log
(
Uj

)]
=
∑
j∈J

w2
jψ

1(|I|),

and (19) follows from the standard upper bound [1], ∀x > 0,ψ1(x)≤ (x+ 1)/x2.

While Proposition 3.16 sheds light on the benefits of employing multiple tapers to reduce
the asymptotic variance of α̂, it does not explain how the tapers (fi)i∈I influence the bias of
α̂(I, J,R) for a finite size R of the observation window. Furthermore, the result in Propo-
sition 3.16 does not cover the hyperuniform case α > 0. To address both these questions
theoretically, we focus on the family of Hermite wavelets as defined below. These functions
will also be utilized in the numerical simulations outlined in Section 4.

Let i= (i1, . . . , id) ∈Nd. The Hermite wavelet ψi is defined for any x= (x1, . . . , xd) ∈Rd

by:

(20) ψi(x) = e−
1

2
|x|2

d∏
l=1

Hil(xl),

where for n ∈ N and y ∈ R, Hn(y) = (−1)n(2nn!
√
π)−1/2ey

2 dn

dyn
e−y2

are the Hermite

polynomials. It is well known that these functions are orthonormal: ⟨ψi1 ,ψi2⟩ = 1i1=i2 for
all (i1, i2) ∈ (Nd)2; cf e.g. [1], and that they are eigenvectors of the Fourier transform:
F [ψi] = (−i)i1+···+idψi. Moreover, since the Hermite wavelets are products of exponen-
tial functions and polynomials, they are analytic. Therefore, using them as tapers fi in our
estimator α̂(I, J,R) ensures that the conditions of Proposition 3.7 are met.

In this context, our next result focuses on the impact of the number of these Hermite
tapers in I on both the bias and variance of α̂(I, J,R), considering a large but finite window
size R <∞. The proof of this result, which is deferred to Section 5.6, relies on lower and
upper bounds on the fractional moments of the Hermite wavelets and their L2 tail (refer
to Lemmas 5.8-5.10). These bounds can be interpreted as a localization property of these
functions in both the spatial and Fourier domains. The next proposition also sheds light on
the possible occurence of border effects, as already noted in Remark 3.3. These arise when
the maximal support of the scaled wavelets approaches the size of the observation window,
which happens when the term d(R) below tends to 0.

PROPOSITION 3.17. We suppose that Φ satisfies Assumptions 2.1 and 2.4, and is
Brillinger mixing with intensity λ = 1. We moreover strengthen Assumption 2.4 by assum-
ing that α < d and that for all k ∈Rd, |S(k)− t|k|α| ≤CS |k|β with β > α and CS > 0. We
consider the family of Hermite wavelets as tapers, i.e. fi = ψi given by (20), for all i ∈ I ,
where I is of the form I = {i ∈Nd| |i|∞ < imax, and at least one component of i is odd} with
imax ≥ 1. Let J ⊂ (0,1) be a finite subset. Finally, we denote by jmax := max{j| j ∈ J}< 1
and jmin := min{j| j ∈ J}> 0 and assume that

d(R) :=R1−jmax −
√

2imax > 0.(21)
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Then, there exists R0 > 0 and 0<C =C(ϵ, |J |)<∞, such that for all R≥R0:

P
(
1|ΦR|≥1 log(R)|α̂(I, J,R)− α| ≥ ϵ

)
≤C

(
1

|I|
+

(
|I|1/d

R2jmin

)β−α

+
e−

d(R)2

4

d(R)

)
.(22)

The following remark concludes the main concern of this section, discussing the influence
of tapers on the estimator’s bias and variance.

REMARK 3.18. The term |I|−1 in the bound of (22) signifies the reduction in the asymp-
totic variance of our estimator when more tapers are used. This aligns with our earlier obser-
vation in Proposition 3.16 for α = 0, extending to the hyperuniform case of α > 0. On the
other hand, the term (|I|1/d/R2jmin)β−α accounts for the increasing estimation error (bias) as
the number |I| of tapers grows while R remains fixed at a finite value. This highlights the
risk of employing an excessive number of tapers for a fixed observation window size, as the
estimator becomes more sensitive to higher frequencies in the data, that are the higher-order
terms, represented by the term |k|β , with β > α, in the expansion of the structure factor S
near zero frequency. Similar observations have been made in the context of univariate time
series [64, 69]. Finally the term involving d(R) in (22) concerns border effects that also have
an impact on the bias. Indeed, Rjmax

√
2imax can be viewed as the largest range of the numer-

ical support
∏d

p=1[−Rjmax
√

2ip,R
jmax
√

2ip] of the scaled Hermite wavelets ψi(./R
j) for

i = (i1, . . . , id) ∈ I and j ∈ J . Border effects appear when this support approaches the size
R of the window, that is when d(R) tends to 0. We come back to the practical choice of jmax
that mitigate border effects in point 4 of Section 4.1.

We conclude this section by noting that further reduction in variance may be achieved by
utilizing several realizations of the point process.

REMARK 3.19. The proof strategy of Proposition 3.17 easily extends to scenar-
ios where multiple independent realizations of point patterns are observed. If we de-
note the estimators corresponding to M observed realizations Φm of a point process as
α̂(I, J,R;Φm) for m= 1, . . . ,M , then we can demonstrate that the average of these estima-
tors, M−1

∑M
m=1 α̂(I, J,R;Φm), still satisfies the bound established in Proposition 3.17. In

this case, the variance is further reduced by the factor M−1, i.e., the term |I|−1 in (22) is
replaced by |I|−1M−1.

4. Numerical study. In this section, we explore the numerical behavior of α̂(I, J,R).
We first explain in Section 4.1 our practical implementation of the estimator, whether it con-
cerns the choice of taper functions fi, their cardinality, or the choice of scales j. Second, in
Section 4.2, we apply our estimation method to simulated point processes. We start by as-
sessing the performances of our estimator to independently perturbed cloaked lattices [45],
that are benchmark models covered by our theoretical framework and with a tunable hyper-
uniformity exponent α. Next, we consider simulated matched point processes [2] to address
the conjecture that their hyperuniformity exponent is α= 2. Finally, Section 4.3 deals with a
real data-set of algae system, to investigate their hyperuniformity feature.

The codes and data concerning this section are available in our online GitHub repository
at https://github.com/gabrielmastrilli/Estim_Hyperuniformity.

4.1. Practical implementation. To illustrate how the theory developed in Section 3 can
be applied in practice for estimating α, we consider two point process models:

https://github.com/gabrielmastrilli/Estim_Hyperuniformity
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• The random sequential adsorption model (RSA), extensively discussed in physics and
chemistry; see [21]. In the stochastic geometry literature, it is known as the Matérn III
hard-core process; for more details, refer to [12, Section 6.5.3].

• The Ginibre process, introduced as a two-dimensional Coulomb gas in [29] and as a promi-
nent example of determinantal point processes in stochastic geometry by [53].

These two models showcase border behaviors within a spectrum of models that span the
hyperuniformity exponent α ranging from 0 to the dimension of the space. The RSA model
stands as a non-hyperuniform model with α = 0, whereas the Ginibre process represents
a hyperuniform model with α = d = 2. These models aid us in illustrating and discussing
implementation issues regarding our estimator, particularly in association with the Poisson
point process, which acts as a reference model. In the following illustration, the RSA process
has been simulated with an underlying Poisson intensity of 3 and an exclusion radius of r = 1
in the observation window of [−70,70]2, resulting in approximately 20 000 points. In turn
the Ginibre process has been simulated in the observation window of [−30,30]2, resulting in
about 3 500 points.

Figure 1 shows the two generated point patterns (zoomed in [−20,20]2) and illustrates
the estimation of α using the linear regression-based estimator α̂ (using equation (9) with
weights (10)). Specifically, the full lines in Figure 1 represent, respectively for RSA and
Ginibre model, the function

C : j ∈ J 7→ 1

log(R)
log

(∑
i∈I

Tj(ψi,R)
2

)
=

1

log(R)
log

∑
i∈I

(∑
x∈ΦR

ψi

( x
Rj

))2
(23)

for scales j ranging from 0.1 to 1.3, and utilizing |I| = 75 Hermite tapers (ψi)i∈I given
by (20). Recall from (9) (see also (8)) that the estimator α̂ for α is defined as the dimension
d= 2 minus the slope of the function j 7→ C(j). In principle all scales j within the range of
(0,1) can be included in the set J for the estimator α̂(I, J,R). However, it is essential to note
in Figure 1 that the slope of the function C varies (indicated by different colors), and obtaining
a precise estimation of α necessitates a careful choice of the scale range jmin ≤ j ≤ jmax

within the set J . The pertinent ranges for this purpose for the RSA and Ginibre models are
illustrated in Figure 1 by the red segments of the curves. For j < jmin, the asymptotic regime
defined in Proposition 3.2 is not met, and for j > jmax, border effects become apparent
(refer to Remark 3.3). In both illustrations of Figure 1, jmax happens to be close to the
theoretical value of 1, where, in principle, we can capture the smallest frequencies of S(k)
but also observe the onset of border effects. This is also where these effects for the auxiliary
estimation of α = 0 for the Poisson point process with the same intensity (shown in green
dotted style) begins to manifest. This alignment with the auxiliary Poisson point process
behavior for the choice of jmax always occurs. Further details regarding the choices of jmin

and jmax are outlined in points 4 and 5 below.
Once the ranges jmin and jmax are chosen, the estimator α̂ is deduced from the slope of the

least squares linear regression on a discrete set of |J |= 50 scales selected within [jmin, jmax]
(further details on the cardinality of J are provided in point 6). In the examples depicted in
Figure 1, this resulted in an estimation of α̂(I, J,R) = 0.0083 for the RSA points pattern and
α̂(I, J,R) = 2.0289 for the Ginibre points pattern.

In the following six points, we provide more detailed suggestions regarding the selection
of parameters to implement α̂(I, J,R).

1. Normalizing intensity. Remember that throughout the paper we assumed for simplic-
ity that the intensity of the point process Φ is equal to λ = 1. To align the scale of the
wavelet transform with the observed points pattern, we estimate the intensity and choose
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RSA Ginibre

Fig 1: Estimation of α using 75 Hermite tapers for one realization each of the RSA (left)
and the Ginibre (right) models, having approximately 20 000 and 3 500 points, respectively
(see the text for details). (Top) Example of point patterns inside [−20,20]2. (Bottom) The
horizontal axis represents scales j ∈ (0.1,1.3) and the solid lines represent the curve C as
defined in (23). The parts in blue, yellow, red, and cyan denote different slopes of C, depend-
ing on the scale. The estimator α̂ corresponds to 2 minus the estimated slope of the red part.
The green dotted line represents the curve C for the Poisson process with similar intensity,
allowing to identify the value of jmax beyond which border effects occur, as indicated by the
black vertical line.

a unit distance to obtain a realization of points of intensity close to 1. Specifically, if
Φ = {x1, . . . , xn} is observed in the region WR, which is [−R,R]d or B(0,R), the nu-
merical computations are performed with x1, . . . , xn observed in the region WR, where
xi = λ̂1/dxi, R= λ̂1/dR, and λ̂= n/|WR|.

2. Choice of taper functions. In all simulations, we choose as tapers the Hermite wavelets
(ψi)i∈Nd as described in (20) due to their well-localized behavior in both the spatial and
Fourier domains. Additionally, they are orthogonal for the L2(Rd) scalar product, making
them suitable candidates for multi-tapering. Specifically, we set fi = ψi(5× ·). While the
factor 5 is not crucial, it allows us to observe border size effects near j = 1, that is to
choose jmax ≈ 1, as per the explanations in point 4. This is due to the fact that with this
choice of factor 5, the maximal support of fi, for i ∈ I and I chosen as in point 3 below,
is maxi∈I σi ≈ 1, where σi is defined in (24) below, leading to jmax ≈ 1 in view of (25).

3. Number of tapers in I . As discussed in Section 3.5, the number of tapers plays a crucial
role in balancing variance and bias. Increasing the number of tapers generally decreases
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the variance but can introduce a significant bias. Determining the optimal number of tapers
depends on the unknown structure factor and requires practical adjustments. One approach
is to progressively increase the number of tapers |I|. For small |I|, the curve C defined
in (23) tends to be noisy, while for large |I|, the relevant scale range [jmin, jmax] (depicted
by the full red segments in Figure 1) becomes narrow, potentially leading to high bias. This
bias can be attributed to the wavelets ψi(5× ·) corresponding to d-dimensional indexes
i= (i1, . . . , id) ∈ Nd with large components, which are less localized in both spatial and
Fourier domains. Consequently, the lower bound jmin tends to increase. More detailed
information is provided in point 5. Furthermore, as border effects are influenced by the
localization of the wavelets ψi(5 × ·), the upper bound jmax decreases as |I| increases
(refer to point 4 below for more details). In our simulations, we use the set I = {i ∈
Nd | |i|∞ < imax, and at least one component of i is odd}, with imax = 10, which leads to
75 tapers in dimension d= 2.

4. Choice of the largest scale jmax in J . While theoretically all scales j of (0,1) can be
included in the set of scales J , in the non-asymptotic regime, the upper bound jmax has
to be chosen to avoid border effects (see Remark 3.3). Note that with our choice of tapers
as in point 2, there is no border effect as long as:

∀i ∈ I,
∑
x∈ΦR

ψi(5x/R
j) =

∑
x∈Φ

ψi(5x/R
j).

Denoting by σi the numerical support of ψi(5× ·), defined by

(24) σi = inf{σ > 0 | ∀x ∈Rd, (|x|∞ ≥ σ =⇒ |ψi(5x)| ≤ ϵ)}

where ϵ≪ 1 is the computer’s precision, the latter equality holds numerically true when-
everRjσi ≤R for all i ∈ I . The theoretical condition j < 1 from Proposition 3.2 therefore
translates in practice to

(25) j ≤ 1− log(R)−1max
i∈I

log(σi) = jmax.

Accordingly, as the system size R increases, higher values of j become available. The
upper bound jmax of J solely depends on the set of tapers function and can be tabulated.
Importantly, it does not depend on the underlying point process Φ but only on its intensity
(remember that the system has been rescaled so that λ = 1, cf point 1). One practical
method is to simulate several realizations of a Poisson point process with intensity 1 in
the same observation window, and calculate the function C for a given set of tapers, in
order to clearly observe the border effects to choose jmax (this method is illustrated by the
green dotted curves in Figures 1 and 4). Alternatively, one can visually inspect the largest
numerical support of the wavelets ψi(5 × ·/Rj) to confirm that it remains within the
observation window, as shown in the left-hand plot of Figure 4 for our real-data example.

5. Choice of the smaller scale jmin in J . The accuracy of the asymptotic properties de-
scribed in Proposition 3.2 relies on how large is Rj . Consequently, for smaller systems,
jmin needs to be relatively large. Unlike the upper bound jmax for the set of scales J , the
lower bound jmin depends on the specific point process under consideration and should
be adjusted in practice. To this regard, we visualize the curve C defined in (23) and select
the last single slope portion of the curve before jmax, as highlighted by the full red lines
of Figure 1.

6. Number of scales in J . The asymptotic independence of wavelet transforms associated
with two distinct scales j1 and j2, as expressed in the correlation matrix Σ in Theorem 3.9,
is not practically satisfied for a given R <∞ if j1 and j2 are too close to each other.
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(This is best understood through the bounds (30) for the pre-limit correlation matrix ΣR

developed in the proof of Theorem 3.9.) Consequently, considering a huge number of
scales does not reduce the variance. In our simulations, we considered |J | = 50 scales
uniformly subdividing the range [jmin, jmax].

4.2. Simulated point processes. In this section, we consider two families of distributions
in dimension d= 2: perturbations of cloaked lattices and matched point processes. For sev-
eral realisations of them, we compute the estimator α̂(I, J,R) and analyse its distribution.
The first model will help us to assess the performances of our method, since in this case the
hyperuniformity exponent α is known and can be tuned. For the second model of matched
point processes, the parameter α is conjectured to be 2, a value that we will confirm by sim-
ulations using our estimator. In a concern for consistency with applied literature, the results
of this section are stated in terms of the number of observed points n within the observation
window [−R,R]d. Consequently, to increase the number of observed points, we simulate
the point processes in larger windows, and the asymptotic R→ ∞ discussed in Section 3
corresponds to the asymptotic n→∞ of this section.

4.2.1. Perturbation of cloaked lattices. Cloaked-and-perturbed lattices, introduced in [45],
have already been mentioned in Section 2.3. Starting from a cloaked lattice Φ0 = {q + U +
Uq|q ∈ Z2}, where U and (Uq)q∈Z2 are i.i.d. and uniform on [−1/2,1/2]2, they consist on the
perturbed point process {x+ ξx|x ∈Φ0}, where the random variables (ξx)x∈Φ0

are i.i.d. with
a characteristic function φ satisfying 1− |φ(k)|2 ∼ c|k|α as |k| → 0, where c > 0 and α> 0.
These models achieve hyperuniformity with a targeted exponent α and satisfy the conditions
of Theorem 3.8. For simulation, we leveraged the representation ξx

Law
=
√
Y (α/2)Z2, where

Y (α/2) is a one-sided α/2-stable law [79, 43] and Z2 is a standard bivariate Gaussian vari-
able with variance σ2. It is known that the choice of σ is sensitive in these models, cf [44]
Section IV.B, in the sense that a bad choice may blur the hyperuniformity feature. We chose
σ = 0.15,0.25,0.35 for respectively α= 0.5,1,1.5. Finally, for each scenario, we varied the
average number of points observed in the window from 900 to 6 400.

To estimate α from the considered realizations, we utilize our estimator α̂(I, J,R) with
the choice of parameters discussed in Section 4.1. Figure 2 displays the results, based in each
case on 500 replications. For the smaller system size of n≈ 900, there is a bias present, that
is all the more important when α is large. However, as the number of points increases, the
bias almost disappears. Furthermore, the empirical standard deviation shown in Figure 2 is
small enough to distinguish between class I and class III hyperuniform point processes (refer
to Remark 2.5), even with a moderate number of observed points.

We next assess the quality of the asymptotic confidence intervals given by (18) and based
on the covariance matrix ΣR in (17). Table 1 shows the coverage rate of these intervals for
the same simulations as above. However, for computational ease, we used the quantiles of
ZR(α) instead of ZR(α̂) in (18). Indeed the former requires the computation of ΣR only
once for each situation, that is for a given α and R, and not 500 times as the use of ZR(α̂)
would demand. In fact, while the computation of each entry of ΣR is very fast thanks to
the expression of Proposition 5.11 and the related remarks, the whole matrix contains (|I| ×
|J |)2 terms and might be time consuming to get. This matrix is, however, sparse, and some
dedicated approaches could be suggested to speed up its computation, but we did not enter
into these refinements. Overall, the empirical results shown in Table 1 are in decent agreement
with the nominal rate of 95%, especially for large systems (n≈ 6400) and when α is small.
These are situations where α is also easier to estimate; see Figure 2. For comparison, the
same simulations (not reported) using the asymptotic matrix Σ in (15) instead of the pre-
limit matrix ΣR showed a coverage rate not greater than 50%.
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Fig 2: Empirical distribution of α̂ for perturbed cloaked lattices: blue, orange, and green rep-
resent the estimation for the theoretical values of α= 0.5, α= 1, and α= 1.5, respectively.
Each boxplot is based on 500 estimations, each using a single realization with an average
number of points of 900, 1600, 2500, 3600, 4900 and 6400, respectively (which corresponds
to observation windows [−R,R]2 with R ∈ {15,20,25,30,35,40}).

α Average number of points
900 1600 2500 3600 4900 6400

0.5 93.2% 93.4% 95.6% 89.9% 94.4% 95.2%
1 92% 93% 95.2% 88.6 % 90.6% 93.8%

1.5 84.2% 88% 91.2% 91.2% 95.2% 95.2%
TABLE 1

Coverage rate of the confidence intervals (18) for the same simulations as in Figure 2.

4.2.2. Matched point processes. In this section, we consider matched point processes
introduced in [2] for a general dimension d, focusing here on d= 2 for our estimation experi-
ences. These processes are essentially subsets of points of a Poisson point process of intensity
λp > 1, resulting from a sequential, mutual-nearest-neighbour matching of Poisson points to
those of a lattice with intensity 1. When λp is close to 1, the resulting process is challenging
to differentiate from a Poisson point process. Conversely, a large λp inherits spatial regu-
larity from the lattice, making the process more discernible. These matched point processes
are proven to be hyperuniform in [2], with the hyperuniformity exponent α conjectured to
be 2. While matched point processes do not necessarily meet Assumptions 2.1 and 2.4, Fig-
ure 3 demonstrates that our estimator yields values around 2. We conducted simulations using
the Python library structure-factor developed by [33], considering systems of 6400
points.

Specifically, for λp = 1.2 and 75 tapers (depicted by the red box), the estimation averages
below 2. This can be attributed to the challenge of observing hyperuniformity in this scenario
where the resulting process closely resembles a Poisson point process; larger system sizes
may be necessary to discern hyperuniformity more clearly. Besides, to highlight the impact
of the number of tapers on bias and variance (see Section 3.5), we considered the same setting
of λp = 1.2 but with fewer taper functions. The green box represents the estimation of α with
only 16 tapers instead of 75. With 16 tapers, the bias is reduced, but the standard deviation is
higher compared to the 75-taper case.
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Fig 3: Empirical distribution of α̂ for matched point processes of 6 400 points (which corre-
sponds to observation window [−40,40]2). Each boxplot is based on 500 estimations, each
using one realization of the point process. (Left) The Poisson intensity is λp = 1.2 for both
the green and red boxes, but the green box correspond to an estimation using |I|= 16 tapers,
while the red one to |I|= 75 tapers. Observe the bias-variance tradeoff in the choice of the
number of tapers: fewer tapers result in smaller bias, while more tapers reduce variance; see
the discussion in Remark 3.18. (Right) The number of tapers is |I|= 75 for both the blue and
orange boxes, but λp = 1.5 for the blue box and λp = 2 for the orange box.

4.3. Application to a real data set. In this section, we delve into real data concerning
marine algae known as Effrenium Voratum, as examined in [41]. This algae system has been
a subject of study in active matter theory, which deals with large numbers of interacting
agents such as schools of fish or flocks of birds [67]. According to [41], hyperuniformity is
observed in the Effrenium Voratum system. This is attributed to the swimming behavior of the
algae, which generates fluid flow and establishes long-range correlations. In their study, [41]
estimated α to be approximately 0.6 from a sequence of frames of the system, using a log-
linear regression near zero of the scattering intensity function (refer to Remark 3.4 and [33]
for more details).

We apply our estimator to estimate α with the implementation outlined in Section 4.1.
Figure 4 shows on the left-hand side the configuration of the system in one frame from the
video sequence. In order to illustrate the occurence of border effects, the curve of x1 ∈R 7→
e−x2

1/2H9(5x1/R
j) has been overlayed, for different scales j. This function constitutes the

x-axis part of the 2-dimensional tensorial Hermite wavelet ψ9,i2 , i2 ∈ N; see (20). Note that
for a given scale j, ψ9,i2 are the wavelets that exhibit the largest numerical support in the
x-direction amongst all wavelets ψi, i ∈ I , that we use, for our choice of I explained in
point 3 of Section 4.1. Accordingly, we deduce from the left-hand side plot of Figure 4 that
for all scales j < 0.95, the support of our wavelets are within the observation window, while
for j > 0.95 border effects may occur. In the right-hand side plot of Figure 4, each black
line represents the curve C from Equation (23), derived for each of the 100 frames of the
video in [41]. The red line depicts the mean of these black lines. Note that equations (9)
and (10) imply that estimating α with the red line is equivalent to averaging the estimated
values (α̂j)j=1,...,100 from each black line. The curve C for the Poisson point process with a
similar intensity is added in a green dotted line. It confirms that for j > jmax, with jmax =
0.95 shown by a vertical black line, border effects begin to appear, in agreement with the
observation made on the left-hand side plot of Figure 4.

Figure 4 demonstrates for small scales (j < 0.5) the value 0.6 reported in [41]. However,
as we observe larger scales (j > 0.7), it becomes apparent that the system exhibits a stronger
form of hyperuniformity than predicted by the classical approach via scattering intensity
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Fig 4: Estimation of α for an algae system (approximately 900 points) observed in a video se-
quence of 100 frames. (Left) One configuration of the system, corresponding to one frame ex-
tracted from the full video, and, overlayed, support of our largest wavelet (in the x-direction)
for different scales j. For j > 0.95, the support of the wavelet is largest than the observation
window and border effects may appear. (Right) Each thin black line corresponds to the curve
C (defined in (23)) for each frame. The red line corresponds to the average of the narrow black
lines. The green dotted line corresponds to the curve C for the Poisson process with the same
intensity. The full vertical black line indicates the scale jmax = 0.95 beyond which border
effects occur, in agreement with the maximal wavelet support displayed on the left-hand plot.
Yellow, pink and blue lines indicate local slopes depending on the scales, with what would
be the estimation of α based on these scales. The proper estimation of the hyperuniformity
exponent corresponds to the higher scale and leads to α̂= 1.

function. Indeed, conducting linear regression on the segment of the red curve bordered by
the blue dotted lines (0.7< j < 0.95) in Figure 4 leads to approximately α̂= 1.

5. Proofs of the results of Section 3. This section compiles the proofs of the theoretical
statements introduced in Section 3. These proofs pertain first in Section 5.1 to the variance
and the central limit theorem of the truncated wavelet transforms Tj(f,R) of point processes.
Furthermore, they address the properties of the multi-scale, multi-taper estimator α̂(I, J,R),
which is based on Tj(fi,R), with discrete scales j ∈ J and tapers fi, i ∈ I . Specifically, this
section covers the following aspects: an explanation why the scales used in α̂ must satisfy
j < 1 (Section 5.2), the well-defined nature of our estimator (Section 5.3), its asymptotic
properties (Section 5.4), confidence intervals (Section 5.5), as well as the bias/variance trade-
off related to the number |I| of tapers (Section 5.6). To quantify this trade-off, we employ
as tapers Hermite wavelets, i.e., fi = ψi is given by (20). For these tapers, we also develop
in the last Section 5.7 the asymptotic covariance matrix of the truncated wavelet transforms
Tj(ψi,R).

5.1. Multivariate central limit theorem for truncated wavelet transforms. In this sec-
tion, we employ the method of cumulants to prove Theorem 3.9. We begin by establishing a
crucial auxiliary result regarding the second-order moment, which also directly justifies the
statement made in Proposition 3.2.

LEMMA 5.1. Let Φ satisfy Assumptions 2.1 and 2.4 with intensity λ = 1. Let f1, f2 ∈
S(Rd) and j1, j2 ∈]0,1[. Then, as R→∞:

Cov[R
α−d

2
j1Tj1(f1,R),R

α−d

2
j2Tj2(f2,R)]
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=R
d+α

2
(j1+j2)

∫
Rd

F [f1](R
j1k)F [f2](R

j2k)t|k|αdk+ o(1).

PROOF. We define for r > 0, and i ∈ {i1, i2}, f ri (x) = fi(x)1[−r,r]d(x). Using (4) and the
change of variables k↔Rj1k:

Cov[R
α−d

2
j1Tj1(f,R),R

α−d

2
j2Tj2(f,R)]

=R
α−d

2
(j1+j2)

∫
Rd

Rdj1F [fR
1−j1

1 ](Rj1k)Rdj2F [fR
1−j2

2 ](Rj2k)S(k)dk

=R
d+α

2
(j2−j1)

∫
Rd

F [fR
1−j1

1 ](k)F [fR
1−j2

2 ](Rj2−j1k)Rαj1S

(
k

Rj1

)
dk.

In this expression, we would like to replace the truncated functions F [fR
1−ji

i ], i = 1,2, by
the non-truncated ones F [fi], respectively. To do so, we write

(26) Cov[R
α−d

2
j1Tj1(f1,R),R

α−d

2
j2Tj2(f2,R)]

=R
d+α

2
(j2−j1)

∫
Rd

F [f1](k)F [f2](R
j2−j1k)Rαj1S

(
k

Rj1

)
dk+ δ1R − δ2R,

where

δ1R =R
d+α

2
(j2−j1)

∫
Rd

{F [fR
1−j1

1 ](k)−F [f1](k)}F [fR
1−j2

2 ](Rj2−j1k)Rαj1S

(
k

Rj1

)
dk,

δ2R =R
d+α

2
(j2−j1)

∫
Rd

{F [fR
1−j2

2 ](Rj2−j1k)−F [f2](R
j2−j1k)}F [f1](k)R

αj1S

(
k

Rj1

)
dk.

We bound δ1R using Cauchy-Schwarz inequality and Plancherel Theorem:

|δ1R| ≤R
d+α

2
(j2−j1)∥S∥∞

(
∥F [f1]−F [fR

1−j1

1 ]∥2 ×Rαj1∥F [fR
1−j2

2 ]∥2
)

≤R
d+α

2
(j1+j2)∥S∥∞

(
∥f11Rd\[−R1−j1 ,R1−j1 ]d∥2∥f2∥2

)
≤Rd+α∥S∥∞∥f11Rd\[−R1−j1 ,R1−j1 ]d∥2∥f2∥2.(27)

This last term goes to 0 as R→∞ because f1 ∈ S(Rd) and j1 < 1, proving that δ1R → 0 as
R→∞. For the same reasons, and since j2 < 1, we also have δ2R → 0 as R→∞. Let us
now study the main term in (26). To exploit the behavior at k→ 0 of S, we decompose:

(28)
∫
Rd

F [f1](k)F [f2](R
j2−j1k)Rαj1S

(
k

Rj1

)
dk

=

∫
Rd

F [f1](k)F [f2](R
j2−j1k)t|k|αdk+ δ3R,

where

δ3R =

∫
Rd

F [f1](k)F [f2](R
j2−j1k)

(
Rαj1S

(
k

Rj1

)
− t|k|α

)
dk.

Let ϵ > 0. Assumption 2.4 implies that there exists µ > 0 such that ∀k′ ∈Rd, if |k′| ≤ µ then
|S(k′)− t|k′|α| ≤ ϵ|k′|α. It also applies, together with the fact that S is bounded, that there
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exists CS > 0 such that S(k)|k|−α <CS for all k ∈Rd. Consequently,

|δ3R| ≤
∫
B(0,µRj1 )

∣∣∣F [f1](k)F [f2](R
j2−j1k)

∣∣∣Rαj1

∣∣∣∣S( k

Rj1

)
− t

∣∣∣∣ kRj1

∣∣∣∣α∣∣∣∣dk
+

∫
Rd\B(0,µRj1 )

∣∣∣F [f1](k)F [f2](R
j2−j1k)

∣∣∣Rαj1

∣∣∣∣S( k

Rj1

)
− t

∣∣∣∣ kRj1

∣∣∣∣α∣∣∣∣dk
≤ϵ
∫
B(0,µRj1 )

|F [f1](k)|
1

(2π)d/2
∥f2∥1|k|αdk

+

∫
Rd\B(0,µRj1 )

|F [f1](k)|
1

(2π)d/2
∥f2∥1(CS + t)|k|αdk.

Since f1 ∈ S(Rd), we deduce that:

∀ϵ > 0, limsup
R→∞

|δ3R| ≤ ϵ∥F [f1](·)| · |α∥1 ∥f2∥1 + 0.

Hence, δ3R → 0 as R→∞. Combining (26) and (28) with the change of variable k↔R−j1k,
we have proved that:

Cov[R
α−d

2
j1Tj1(f1,R),R

α−d

2
j2Tj2(f2,R)]

=R
d+α

2
(j1+j2)

∫
Rd

F [f1](R
j1k)F [f2](R

j2k)t|k|αdk+ δ1R − δ2R + δ3R,

where δ1R − δ2R + δ3R = o(1) as R→∞, which concludes the proof.

We will now proceed with the proof of our main multivariate central limit theorem.

PROOF OF THEOREM 3.9. Let (N(i, j,α))i∈I,j∈J be a Gaussian vector with zero mean
and covariance matrix Σ defined in Equation (15). By the Cramér-Wold device, it suffices to
prove that

(29) AR :=
∑

i∈I,j∈J
ai,jR

α−d

2
jTj(fi,R)

Law−−−−→
R→∞

∑
i∈I,j∈J

ai,j
√
tN(i, j,α) =:A,

for any family (ai,j)i∈I,j∈J of scalars. We first establish that the first and second-order mo-
ments ofAR converge to those ofA. Second, we demonstrate that the cumulants ofA, of suf-
ficiently high order, tend to zero as R approaches infinity. This is enough to prove the central
limit theorem, as per a classical result attributed to Marcinkiewicz; see e.g. [73, Lemma 3].

In addressing the first-order moment we use the assumption that
∫
Rd fi(x)dx= 0. Indeed,

E [AR] =
∑

i∈I,j∈J
ai,jR

α−d

2
j

∫
[−R,R]d

fi

( x
Rj

)
dx=

∑
i∈I,j∈J

ai,jR
α+d

2
j

∫
[−R1−j ,R1−j ]d

fi(x)dx.

Since fi ∈ S(Rd) and j < 1, we obtain that E [AR]→ 0 = E[A] as R→∞.
To address the second order moment of AR, we use Lemma 5.1:

E
[
A2

R

]
=

∑
i1,i2∈I,j1,j2∈J

ai1,j1ai2,j2cR(j1, j2, i1, i2) + o(1),

where

cR(j1, j2, i1, i2) :=R
d+α

2
(j1+j2)

∫
Rd

F [fi1 ](R
j1k)F [fi2 ](R

j2k)t|k|αdk.
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Without lost of generality, we assume that j2 ≤ j1. With the change of variable k↔Rj1k:

cR(j1, j2, i1, i2) =R
d+α

2
(j2−j1)

∫
Rd

F [fi1 ](k)F [fi2 ](R
j2−j1k)t|k|αdk.

For j1 = j2, we get cR(j1, j2, i1, i2) =
∫
Rd F [fi1 ](k)F [fi2 ](k)t|k|αdk, and for j2 < j1:

(30) |cR(j1, j2, i1, i2)| ≤R
d+α

2
(j2−j1)t∥fi2∥1 ∥F [fi1 ](·)| · |α∥1 −−−−→

R→∞
0.

Accordingly, we have proved that the second order moment converges to the desired limit:

E
[
A2

R

]
−−−−→
R→∞

∑
i1,i2∈I,j∈J

ai1,jai2,j

∫
Rd

F [fi1 ](k)F [fi2 ](k)t|k|αdk = E
[
A2
]
.

To consider the higher-order cumulants Cm(AR) of AR where m> 2, we recall the gen-
eral representation of the cumulants of a random variable X :=

∫
Rd g(x)Φ(dx), where g is a

real-valued, measurable function:

(31) Cm(X) =
∑

σ∈Π[m]

∫
(Rd)|σ|

|σ|⊗
i=1

g|σ(i)| dγ(|σ|) ;

here, Π[m] is the set of all unordered partitions of the set {1, . . . ,m} (and, for a partition
σ ∈Π[m] with |σ| elements, we arbitrarily order them as σ = {σ(1), . . . , σ(|σ|)}),

⊗
denotes

the tensor product of functions, and γ(r), for r ≥ 1, denotes the r-th order factorial cumulant
moment measure of the point process Φ. We refer to Appendix for further details.

Note that the random variable AR in (29) corresponds to X with the function

g(x) = 1[−R,R]d(x)
∑

i∈I,j∈J
ai,jR

α−d

2
jfi

( x
Rj

)
.

Using the representation (31) we have

|Cm(AR)| ≤
∑

σ∈Π[m]

 ∑
i∈I,j∈J

|ai,j |R
α−d

2
j∥fi∥∞

m

× |γ(|σ|)|
(
([−R,R]d)|σ|

)
,

where for m′ ≥ 1, |γ(m′)| is the total variation of γ(m
′). Brillinger-mixing condition im-

plies |γ(m′)|
(
([−R,R]d)m′)

= O(Rd); see Appendix. Since α < d, we have, for R > 1,
R

α−d

2
j ≤R

α−d

2
j∗ , where j∗ =min{j| j ∈ J}> 0, thereby

|Cm(AR)| ≤O(R
j∗(α−d)m

2
))×O(Rd).

Consequently, for m> 2d/(j∗(d−α)) we have |Cm(AR)| → 0 as R→∞, which completes
the proof.

5.2. Scales limitations due to border effects. As mentioned in Remark 3.3, the limitation
of scales to j < 1 in assessing the variance rate of R-truncated wavelets Tj(f,R), as R→∞,
expressed in Proposition 3.2, is crucial. An intuitive explanation for this is that when j > 1,
the support of the function x 7→ f(x/Rj) eventually extends significantly beyond [−R,R]d,
and the truncation in Tj(f,R) =

∑
x∈Φ 1[−R,R]d(x)f(x/R

j) prevents us from “capturing”
the variability of the data across the entire support of f . Indeed, for j > 1, this truncation
reproduces the variance rate of Var

[∑
x∈Φ 1[−R,R]d(x)f(0)

]
as R tends to infinity. This

differs from the statement of Proposition 3.2 when considering data from hyperuniformity
classes II and III, as discussed in Remark 2.5.
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To present a brief proof regarding this effect, we introduce a smoothly truncated wavelet
transform as follows:

∀j > 0, Sj(R,f,χ) =
∑
x∈Φ

χ
( x
R

)
f
( x
Rj

)
,

where χ is infinitely differentiable with compact support in [−1,1]d. Here, the function
χ(x/R) replaces the indicator function 1[−R,R]d used in Definition 3.1. The following propo-
sition, especially (32), demonstrates the previous claim. Using a smooth function χ instead of
the indicator function has yet an impact on the rate of the variance in comparison with the re-
sults in Remark 2.5, as shown in (33). Nonetheless (32) remains true for χ(x) = 1[−R,R]d(x),
but it requires more technical details that we prefer to skip.

PROPOSITION 5.2. As in Proposition 3.2, let Φ satisfy Assumptions 2.1 and 2.4, with
intensity λ= 1. Let f ∈ S(Rd) with f(0) ̸= 0, and contrary to Proposition 3.2, assume that
the scale j > 1. Then, as R→∞,

(32) Var[Sj(R,f,χ)]∼Var

[∑
x∈Φ

χ
( x
R

)
f(0)

]
.

More specifically, we have in this setting

lim
R→∞

R(α−d)Var[Sj(R,f,χ)] = |f(0)|2
∫
Rd

|F [χ](k)|2t|k|αdk.(33)

PROOF. By inverting the role played by f and χ, we note that Sj(R,f,χ) = S1/j(R
j , χ, f).

We denote j′ = 1/j and R′ = Rj . The proof of Lemma 5.1 can be adapted with almost no
changes if x 7→ 1[−1,1]d(x/R

′) is replaced therein by x 7→ f(x/R′). Thus, as j′ < 1, we
obtain that

lim
R′→∞

(R′)(α−d)j′ Var[Sj′(R
′, χ, f)] = |f(0)|2

∫
Rd

|F [χ](k)|2t|k|αdk.

Using that (R′)(α−d)j′ = Rα−d, we get (33). We finally note from the proof of Lemma 5.1,
in particular the non-truncated case considered in (28) where f1 = f2 = χ and j1 = j2 = 1,
that the asymptotic behavior of Var

[∑
x∈Φχ (x/R)f(0)

]
is similar, proving (32).

5.3. Non-zero truncated wavelets and estimator well-definedness. In this section, we
prove Proposition 3.7, ensuring that R-truncated wavelets Tj(f,R;Φ) are almost surely non-
null on a non-null realization of the point process ΦR, provided f ∈ S(Rd) is analytic and
non-null. This justifies the construction of the estimator α̂(I, J,R) in Definition 3.6 using the
logarithmic function.

PROOF OF PROPOSITON 3.7. Our goal is to show that

δ := P

(∑
x∈ΦR

f(x/Rj) = 0, |ΦR| ≥ 1

)
= 0.

Without loss of generality, we can assume that Rj = 1 by considering f(·/Rj) instead of f .
Utilizing the fact that |ΦR| ≥ 1 and applying the union bound, we obtain:

δ ≤ P

∃x ∈ΦR, f(x) +
∑

y∈ΦR\{x}

f(y) = 0

≤ E

[∑
x∈ΦR

1{f(x)+∑
y∈ΦR\{x} f(y)=0}

]
.
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We now apply the Campbell-Little-Mecke-Matthes theorem (see for instance [3]) to the right
hand side to get

δ ≤ E!0

[∫
Rd

1[−R,R]d(x)1{f(x)+∑
y−x∈ΦR

f(y)=0}dx
]
,(34)

where E!0 denotes the expectation under the reduced Palm probability associated to Φ.
To complete the proof, it is enough to show that the set of x ∈Rd which satisfy the equation

(35) f(x) +
∑
y∈Φ

1[−R,R]d(y+ x)f(y+ x) = 0

has null Lebesgue measure, for any realisation of Φ. Note that this set is random, as it
depends on the realization of Φ on [−2R,2R]d. Given Φ ∩ [−2R,2R]d = {y1, . . . , yn}
with n ≥ 0 (n = 0 corresponding to the empty set), denote BΦ := {x ∈ [−R,R]d |f(x) +∑n

i=1 1[−R,R]d(yi + x)f(yi + x) = 0}. To demonstrate that BΦ has zero Lebesgue measure,
we leverage the analyticity of the function f and, by seeking a contradiction, assume that
BΦ has a positive Lebesgue measure. By the regularity of the Lebesgue measure [70], there
exists a point x0 ∈ Rd and a neighborhood of size h ∈ Rd \ {0} such that equation (35) is
satisfied for all x within it, that is

∀x ∈ [x0 − h,x0 + h]d, f(x) +

n∑
i=1

1[−R,R]d(yi + x)f(yi + x) = 0.

If necessary, we can reduce |h| to obtain:

∀x ∈ [x0 − h,x0 + h]d, f(x) +
∑
i∈Ln

f(yi + x) = 0,

where Ln is a subset of {1, . . . , n}, or Ln = ∅. As f is analytic, we apply Lemma 5.3 to
deduce that f ≡ 0, which contradicts the assumption that f has at least one non-zero value.
Consequently, BΦ has zero Lebesgue measure and δ = 0.

LEMMA 5.3. Let f ∈ S(Rd). We assume that f is analytic and that there exists n ≥ 0,
(y1, . . . , yn) ∈ (Rd)n, x0 ∈Rd and h ∈Rd \ {0} such that,

∀x ∈ [x0 − h,x0 + h]d, f(x) +

n∑
i=1

f(yi + x) = 0,

with the convention
∑0

i=1 f(yi + x) = 0. Then, f ≡ 0.

PROOF. Since f is analytic, x 7→ f(x) +
∑n

i=1 f(yi + x) is also analytic. Consequently,
by the Identity Theorem for analytic functions [57], we obtain :

∀x ∈Rd, f(x) +

n∑
i=1

f(yi + x) = 0.

Taking the Fourier transform of the previous equation, we get:

∀x ∈Rd, F [f ](x)

n∑
i=1

e−ix.yi = 0.

Thus, F [f ](x) = 0 for all x ∈ Rd \ Z where Z denotes the zero set of the function h(x) =∑n
i=1 e

−ix.yi . Because h is analytic, using again the Identity Theorem, we obtain that Z is
discrete. Thus, by continuity of F [f ], we deduce F [f ]≡ 0, and so f ≡ 0.
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5.4. Asymptotic results. In complement to the multivariate central limit theorem proved
in Section 5.1, namely Theorem 3.9, we address in this section the proof of Theorem 3.8 and
of Corollary 3.10. These results yield the consistency of our estimator α̂(I, J,R), and for the
latter its asymptotic distribution derived from Theorem 3.9.

PROOF OF THEOREM 3.8. We have to show that the random variables ϵ(I, J,R), defined
in (14), converge to 0 in probability as R→∞. Firstly, note that the indicator 1|ΦR|=0 con-
verges to 0 in probability. This can be observed through the continuity of probability:

lim
R→∞

P(|ΦR|= 0) = P(|Φ|= 0) = 0,

where the last equality is a consequence of the assumption that Φ is almost surely non-null
(which is equivalent to being almost surely infinite for a stationary point process). Now, let’s
shift our focus to the essential term in (14).

Let ϵ > 0. We now consider:

P

(∣∣∣∣∣ 1

log(R)
log

(∑
i∈I

R(α−d)jTj(fi,R)
2

)∣∣∣∣∣≥ ϵ

)
≤ p∞(R) + p0(R),

where

p∞(R) = P

(∑
i∈I

R(α−d)jTj(fi,R)
2 ≥Rϵ

)
,

p0(R) = P

(∑
i∈I

R(α−d)jTj(fi,R)
2 ≤R−ϵ

)
.

Markov inequality and Proposition 3.2 ensure that p∞(R) → 0 as R → ∞. Concerning
p0(R):

p0(R)≤ P
(
R(α−d)jTj(fij ,R)

2 ≤R−ϵ
)
.

Let δ > 0. By right-continuity of t 7→ P[X2
j ≤ t], there exists µ > 0, P[X2

j ≤ µ] ≤ δ.
Let R0 = µ−1/ϵ. Then, for all R ≥ R0, p0(R) ≤ P

(
R(α−d)jTj(fij ,R)

2 ≤ µ
)
. Finally, us-

ing the convergence in distribution of R(α−d)jTj(fij ,R)
2 toward X2

j , we obtain, for all
R≥R1 ≥ R0, then p0(R)≤ P[X2

j ≤ µ] + δ ≤ 2δ. Thus, p0(R)→ 0 as R→∞

REMARK 5.4. The proof of Theorem 3.8 highlights the fact that the assumption
concerning the convergence in distribution of one statistic R(α−d)jTj(fij ,R)

2 toward a
non atomic random variable allows one to control p0(R) (defined in the proof of The-
orem 3.8), and ensures that R(α−d)jTj(fij ,R)

2 does not concentrate at 0. Other as-
sumptions that prevent such a behavior might lead to the consistency of α̂(I, J,R). For
example, if there exists β > 0 such that for all j ∈ J there exists ij ∈ I , such that
limsup
R→∞

E[(R(α−d)jTj(fij ,R)
2)−β1R(α−d)jTj(fij ,R)2)≤1] < ∞, then one can prove that,

α̂(I, J,R) converges to α in L1(P).

PROOF OF COROLLARY 3.10. Using the decomposition (13) with (14) we have

1|ΦR|≥1 log(R){α̂(I, J,R)− α}= 1|ΦR|≥1

∑
j∈J

wj log

(∑
i∈I

R(α−d)jTj(fi,R)
2

)
.
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Note that by Definition 3.6, at least one function fi is not identically zero, so that the limiting
distribution in the multivariate convergence stated in Theorem 3.9 is not degenerated. This
convergence, combined with the observation that the indicator 1|ΦR|≥1 converges to 1 in
probability (see the proof of Theorem 3.8), yields by application of Slutsky’s lemma:

1|ΦR|≥1 log(R){α̂(I, J,R)− α} Law−−−−→
R→∞

1×
∑
j∈J

wj log

(∑
i∈I

tN(i, j,α)2

)

= log(t)
∑
j∈J

wj +
∑
j∈J

wj log

(∑
i∈I

N(i, j,α)2

)
,

= 0+
∑
j∈J

wj log

(∑
i∈I

N(i, j,α)2

)
,

where the last equality is a consequence of (11). This completes the proof.

5.5. Confidence intervals results. In this section, we prove Proposition 3.14. To do so,
we introduce some notations and rely on auxiliary results formulated in Lemmas 5.5, 5.6
and 5.7.

Denote by Z a random variable representing the asymptotic distribution of log(R)(α̂−α),
as given in Corollary 3.10. Specifically,

Z :=
∑
j∈J

wj log

(∑
i∈I

N(i, j,α)2

)
,

where (N(i, j,α))i∈I,j∈J is a Gaussian vector with zero mean and covariance matrix Σ de-
fined in (15). Let FZ(t) = P(Z ≤ t) represent the cumulative distribution function of Z , and
F−1
Z (q) = inf{t ∈R |FZ(t)> q} represent its quantile function. Similarly, let ZR(β) be the

random variable defined in Proposition 3.14, and FZR(β)(t) and F−1
R (q;β) be its cumulative

distribution and quantile function, respectively. We also denote ΣR(β) := ΣR given by (17).
The proof of Proposition 3.14 is divided into several steps as follows:

(i) Lemma 5.5, which is the main technical result, demonstrates that (β,R) 7→ |ΣR(β)−Σ|∞
is uniformly continuous for β ≥ 0 and R in a neighborhood of +∞.

(ii) Before extending this result to the difference of quantile functions, we first show in
Lemma 5.6 that both the cumulative distribution functions FZ and the quantile function
F−1
Z are continuous.

(iii) Then, in Lemma 5.7, we extend Lemma 5.5 by proving that (β,R) 7→ ∥FZR(β)−FZ∥∞
is uniformly continuous for β ≥ 0 and R in a neighborhood of +∞.

(iv) In the final step, within the proper proof of Proposition 3.14 and thanks to the previous
lemmas, we deduce the continuity of (β,R) 7→ |F−1

R (q,β)− F−1
Z (q)| for q ∈ (0,1).

LEMMA 5.5. We suppose the assumptions of Proposition 3.14. Let ϵ > 0. Then, there
exists δ > 0 such that for all β ≥ 0 and R > 0 such that |α − β| ≤ δ and R > δ−1, then
|ΣR(β)−Σ|∞ ≤ ϵ.

PROOF. Let 0< δ < 1/2, that will be possibly reduced at the end of the proof. Let β ≥ 0
such that |α− β| ≤ δ. We bound each coefficient of ΣR(β)−Σ. We first consider the coeffi-
cients with j1 = j2 = j. Let j ∈ J , i1, i2 ∈ I , and:

∆1 :=(ΣR(β))i1,i2,j,j − (Σ)i1,i2,j,j

=R(β+d)j

∫
Rd

F [fi1 ](R
jk)F [fi2 ](R

jk)|k|βdk−
∫
Rd

F [fi1 ](k)F [fi2 ](k)|k|αdk.
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With the change of variable k↔Rjk, we get:

|∆1| ≤
∫
Rd

∣∣∣F [fi1 ](k)F [fi2 ](k)
∣∣∣ ∣∣∣|k|β − |k|α

∣∣∣dk.
Splitting the domain of integration whether |k| ≤ 1 or |k| > 1, and using the mean value
inequality to a 7→ |k|a on [α,β] (or [β,α] depending on the ordering) we obtain:

|∆1| ≤ |β − α|

(∫
|k|≤1

∣∣∣F [fi1 ](k)F [fi2 ](k)
∣∣∣ | log(|k|)||k|α−δdk

+

∫
|k|>1

∣∣∣F [fi1 ](k)F [fi2 ](k)
∣∣∣ | log(|k|)||k|α+δdk

)
≤C1(i1, i2) δ,

with C1(i1, i2) =
∫
Rd |F [fi1 ](k)F [fi2 ](k)|| log(|k|)|(|k|α−1/2 + |k|α+1/2)dk. The fact that

fi1 and fi2 are Schwartz functions ensures that C1(i1, i2) <∞. We now consider the case
where j1 ̸= j2. Let i1, i2 ∈ I , j1, j2 ∈ J with j1 < j2, and

∆2 := (ΣR(β))i1,i2,j1,j2 − (Σ)i1,i2,j1,j2 =R
β+d

2
(j1+j2)

∫
Rd

F [fi1 ](R
j1k)F [fi2 ](R

j2k)|k|βdk.

With the change of variable k↔Rj2k, we obtain:

|∆2| ≤R
β+d

2
(j1−j2)

∫
Rd

∣∣∣F [fi1 ](R
j1−j2k)F [fi2 ](k)

∣∣∣ |k|βdk.
Consequently:

|∆2| ≤R
α−δ+d

2
(j1−j2)

(∫
|k|≤1

∥fi1∥1 |F [fi2 ](k)|dk+
∫
|k|≥1

∥fi1∥1 |F [fi2 ](k)| |k|α+δdk

)

≤R
α+d−1/2

2
(j1−j2)C2(i1, i2),

where C2(i1, i2) = ∥fi1∥1
(∫

|k|≤1 |F [fi2 ](k)|dk+
∫
|k|≥1 |F [fi2 ](k)||k|α+1/2dk

)
. As fi1 and

fi2 are Schwartz functions,C2(i1, i2)<∞. Finally, denoting byC =maxi1,i2∈I(C1(i1, i2)+
C2(i1, i2)), the bounds on ∆1 and ∆2 and the fact that R> 1/δ imply:

|ΣR(β)−Σ|∞ ≤C

(
δ+ max

j1,j2∈J, j1<j2
R

α+d−1/2

2
(j1−j2)

)
≤C

(
δ+ max

j1,j2∈J, j1<j2
δ

α+d−1/2

2
(j2−j1)

)
.

The proof is concluded by choosing 0< δ < 1/2 small enough so that the latter bound is less
than ϵ, which is possible since J is finite and α+ d− 1/2≥ α+ 1/2> 0.

LEMMA 5.6. Under the setting of Proposition 3.14, FZ and F−1
Z are continuous.

PROOF. Before proving both results, we introduce a useful representation of Z with inde-
pendent random variables. Let (λ(i, j))i∈I,j∈J be the non-negative eigenvalues of the covari-
ance matrix Σ defined in (15). Then:

(36) Z
Law
=
∑
j∈J

wj logVj ,



ESTIMATING THE HYPERUNIFORMITY EXPONENT OF POINT PROCESSES 31

where

Vj =
∑
i∈I

λ(i, j)U(i, j),

and (U(i, j))i∈I,j∈J are i.i.d. χ2(1) random variables. Note that for all j ∈ J :∑
i∈I

λ(i, j) =
∑
i∈I

∫
Rd

|F [fi](k)|2 |k|αdk > 0.

As a consequence, for any j ∈ J , there exists at least one index ij ∈ I such that λ(ij , j)> 0,
so that Vj is a non-degenerated continuous random variable. We deduce that the random
variables logVj , j ∈ J , are independent continuous random variables. Since there exists j0
such that wj0 ̸= 0, Z is also a continuous random variable and FZ is continuous.

We now prove that F−1
Z is continuous. According to the properties of the quantile

function, it suffices to prove that t 7→ FZ(t) is strictly increasing, i.e. for any t1 < t2,
FZ(t2)− FZ(t1) = P(t1 < Z ≤ t2) > 0. Let j0 such that wj0 ̸= 0, and let 0 < ϵ < 1/2 that
will be chosen small enough in the following.

P(t1 <Z ≤ t2) = P

t1 <∑
j∈J

wj logVj ≤ t2


≥ P

t1 <∑
j∈J

wj logVj ≤ t2, ∀j ̸= j0, |Vj − 1| ≤ ϵ

 .

According to the mean value inequality, for all y ∈ R such that |y − 1| ≤ ϵ < 1/2 then
| log(y)| ≤ 2ϵ. Therefore, if for all j ̸= j0, |Vj − 1| ≤ ϵ, then

∣∣∣∑j∈J,j ̸=j0
wj logVj

∣∣∣ ≤
2ϵ
∑

j∈J,j ̸=j0
|wj |, so that

P(t1 <Z ≤ t2)≥

P

t1 + 2ϵ
∑

j∈J,j ̸=j0

|wj |<wj0 logVj0 ≤ t2 − 2ϵ
∑

j∈J,j ̸=j0

|wj |, ∀j ̸= j0, |Vj − 1| ≤ ϵ

 .

Let ϵ be small enough such that 2ϵ
∑

j∈J,j ̸=j0
|wj | ≤ (t2 − t1)/4. Then, by independence,

P(t1 <Z ≤ t2)≥ P
(3t1 + t2

4
<wj0 logVj0 ≤

t1 + 3t2
4

)
×
∏
j ̸=j0

P (|Vj − 1| ≤ ϵ)

≥ P (t3 ≤ Vj0 ≤ t4)
∏
j ̸=j0

P (1− ϵ≤ Vj ≤ 1 + ϵ) ,

where t3 = u ∧ v and t4 = u ∨ v, with logu = (3t1 + t2)/(4wj0) and log v = (t1 +
3t2)/(4wj0). We use similar arguments to prove that each probability in the above lower-
bound is positive. Note that if for all i ̸= ij0 , U(i, j0) ≤ ϵ, then Vj0 ≤ ϵ

∑
i∈I,i ̸=ij0

λ(i, j0).
Therefore, as before, we may choose ϵ small enough to obtain

P (t3 ≤ Vj0 ≤ t4)≥ P
(

3t3 + t4
4λ(ij0 , j0)

≤ U(ij0 , j0)≤
t3 + 3t4
4λ(ij0 , j0)

)∏
i ̸=j0

P (U(i, j0)≤ ϵ) ,

which is a positive quantity since (U(i, j))i∈I,j∈J are i.i.d. χ2(1). We may prove similarly
that

∏
j ̸=j0

P (1− ϵ≤ Vj ≤ 1 + ϵ)> 0. We thus obtain that for all t1 < t2, FZ(t2)−F2(t1)>
0, concluding the proof.
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LEMMA 5.7. We suppose the assumptions of Proposition 3.14. Let ϵ > 0. There exists
δ > 0 such that for all β ≥ 0 and R> 0 such that |α− β| ≤ δ and R> δ−1, then:

∥FZR(β) − FZ∥∞ ≤ ϵ.

PROOF. We start with the same representation as in the beginning of the proof of
Lemma 5.6. Let (λ(i, j,R,β))i∈I,j∈J (resp. (λ(i, j))i∈I,j∈J ) be the non-negative eigenval-
ues of the covariance matrix ΣR (resp. Σ) defined in (17) (resp. (15)). We order them using
the lexicographic order over I × J , i.e., for instance:

λ(i1, j1)≤ · · · ≤ λ(i|I|, j1)≤ λ(i1, j2)≤ · · · ≤ λ(i|I|, j|J |).

Similar to the representation of Z in (36), we also have the following equality in distribution:

ZR(β)
Law
=
∑
j∈J

wj log

(∑
i∈I

λ(i, j,R,β)U(i, j)

)
,

where (U(i, j))i∈I,j∈J are i.i.d. χ2(1) random variables. Moreover, we proved in the begin-
ning of the proof of Lemma 5.6 that for all j ∈ J there exists at least one index ij ∈ I such
that λ(ij , j)> 0. Let t ∈R. Using the previous representations, we write FZR(β)(t) as:

FZR(β)(t) = P (Z ≤ t+∆(R,β)) ,(37)

where

∆(R,β) =
∑
j∈J

wj

(
log

(∑
i∈I

λ(i, j)U(i, j)

)
− log

(∑
i∈I

λ(i, j,R,β)U(i, j)

))

=−
∑
j∈J

wj log

(
1 +

∑
i∈I(λ(i, j,R,β)− λ(i, j))U(i, j)∑

i∈I λ(i, j)U(i, j)

)
.

Let ϵ1 > 0 that will be chosen at the end of the proof. According to Lemma 5.5, there ex-
ists δ such that for |α − β| ≤ δ and R > δ−1, then ∥ΣR(β) − Σ∥∞ ≤ ϵ1|I|−2|J |−2. Since
(λ(i, j))i∈I,j∈J and (λ(i, j,R,β))i∈I,j∈J are both ordered in the same way, we can apply
Corollary 6.3.8 of [40] to get∑

i∈I,j∈J
|λ(i, j,R,β)− λ(i, j)|2 ≤

∑
i1,i2∈I,j1,j2∈J

((ΣR(β)−Σ)i1,i2,j1,j2)
2 ≤ ϵ21.

We introduce I0(j) = {i ∈ I|λ(i, j)> 0}. Recall that I0(j) is non-empty. Consequently,

∣∣∣∣∑i∈I(λ(i, j,R,β)− λ(i, j))U(i, j)∑
i∈I λ(i, j)U(i, j)

∣∣∣∣≤
(∑

i∈I,j∈J |λ(i, j,R,β)− λ(i, j)|2
)1/2∑

i∈I U(i, j)∑
i∈I λ(i, j)U(i, j)

≤ ϵ1
mini∈I0(j) λ(i, j)

∑
i∈I U(i, j)∑

i∈I0(j)U(i, j)
= ϵ1 Yj ,

where

(38) Yj =
1

mini∈I0(j) λ(i, j)

(
1 +

∑
i/∈I0(j)U(i, j)∑
i∈I0(j)U(i, j)

)
.

If for all j ∈ J , |Yj | ≤ ϵ
−1/2
1 , then∣∣∣∣∑i∈I(λ(i, j,R,β)− λ(i, j))U(i, j)∑

i∈I λ(i, j)U(i, j)

∣∣∣∣≤ ϵ
1/2
1 .
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Let us choose ϵ1 so that ϵ1/21 < 1/2. Using the fact that for all y ∈ R such that |y − 1| ≤
ϵ
1/2
1 < 1/2 then | log(y)| ≤ 2ϵ

1/2
1 , we deduce:

(39) |∆(R,β)| ≤ 2ϵ
1/2
1

∑
j∈J

|wj |.

Note that for all j ∈ J , Yj follows (up to a constant) a Fisher-Snedecor distribution with (|I \
I0(j)|, |I0(j)|) degrees of freedom. Since |I0(j)| ≥ 1, E[Y 1/4

j ] <∞. From (37), using (39)
and the Markov inequality, we deduce

FZR(β)(t)≤ P
(
Z ≤ t+∆(R,β), ∀j ∈ J, |Yj | ≤ ϵ

−1/2
1

)
+
∑
j∈J

P
(
Yj ≥ ϵ

−1/2
1

)

≤ P

Z ≤ t+ 2ϵ
1/2
1

∑
j∈J

|wj |

+
∑
j∈J

E[Y 1/4
j ]ϵ

1/8
1 .(40)

Let ϵ > 0. Using the fact that FZ is continuous (see Lemma 5.6) with limits at −∞ and +∞,
one can prove that FZ is uniformly continuous. As a consequence, there exists δ2 > 0 such
that for all |t1 − t2| ≤ δ2 then:

|FZ(t1)− FZ(t2)| ≤ ϵ/2.

Take ϵ1 small enough such that 2ϵ1/21

∑
j∈J |wj | ≤ δ2, and

∑
j∈J E[Y

1/4
j ]ϵ

1/8
1 ≤ ϵ/2. We

obtain from (40), for all |β − α| ≤ δ = δ(ϵ1) and R> δ−1:

∀t ∈R, FZR(β)(t)≤ FZ

t+ 2ϵ
1/2
1

∑
j∈J

|wj |

+
∑
j∈J

E[Y 1/4
j ]ϵ

1/8
1 ≤ FZ(t) + ϵ.

We may prove similarly the reverse inequality. Indeed, for all |β − α| ≤ δ and R> δ−1:

FZR(β)(t)≥ P
(
Z ≤ t+∆(R,β), ∀j ∈ J, |Yj | ≤ ϵ

−1/2
1

)
≥ P

Z ≤ t− 2ϵ
1/2
1

∑
j∈J

|wj |, ∀j ∈ J, |Yj | ≤ ϵ
−1/2
1


= P

Z ≤ t− 2ϵ
1/2
1

∑
j∈J

|wj |

− P

Z ≤ t− 2ϵ
1/2
1

∑
j∈J

|wj |, ∃j ∈ J, |Yj |> ϵ
−1/2
1


≥ FZ

t− 2ϵ
1/2
1

∑
j∈J

|wj |

−
∑
j∈J

P
(
|Yj |> ϵ

−1/2
1

)
≥ FZ(t)− ϵ,

which concludes the proof.

We can now prove Proposition 3.14.

PROOF OF PROPOSITION 3.14. We denote for brevity α̂+ = α̂(I, J,R)∨ 0 and we let

pR := P[F−1
R (a/2; α̂+)1|ΦR|≥1 ≤ 1|ΦR|≥1 log(R)(α̂− α)≤ 1|ΦR|≥1F

−1
R (1− a/2; α̂+)].

We have to prove that pR → 1− a as R→∞. We can rewrite pR as:

pR = P(|ΦR|= 0) + P[F−1
R (a/2; α̂+)≤ log(R)(α̂− α)≤ F−1

R (1− a/2; α̂+), |ΦR| ≥ 1].
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Let q ∈ {a/2,1 − a/2}. We gather the previous lemmas to show that F−1
R (q; α̂+) con-

verges to F−1
Z (q;α) in probability. Let ϵ > 0. According to Lemma 5.6, F−1

Z is continuous,
so there exists ϵ2 > 0 such that:

(41) F−1
Z (q)− ϵ≤ F−1

Z (q− ϵ2)≤ F−1
Z (q+ ϵ2)≤ F−1

Z (q) + ϵ.

Consider the parameter δ > 0 given by Lemma 5.7 applied to ϵ2 and let β ≥ 0. Accordingly,
for all |β − α| ≤ δ and R> δ−1:

∀t ∈R, FZ(t)− ϵ2 ≤ FZR(β)(t)≤ FZ(t) + ϵ2,

that implies by definition of the quantile function:

F−1
Z (q− ϵ2)≤ F−1

R (q;β)≤ F−1
Z (q+ ϵ2).

Using (41), we deduce that for all |β − α| ≤ δ and R> δ−1:

F−1
Z (q)− ϵ≤ F−1

Z (q− ϵ2)≤ F−1
R (q;β)≤ F−1

Z (q+ ϵ2)≤ F−1
Z (q) + ϵ.

We have thus proved that for all ϵ > 0, there exists δ such that:

(|β − α| ≤ δ and R> δ−1) =⇒ |F−1
R (q;β)− F−1

Z (q)| ≤ ϵ.

The contraposition of the previous implication gives the convergence in probability of
F−1
R (q; α̂+) toward F−1

Z (q). Indeed, for all ϵ > 0, according to Corollary 3.10:

limsup
R→∞

P(|F−1
R (q; α̂+)− F−1

Z (q)|> ϵ)≤ limsup
R→∞

(P(|α̂− α|> δ) + 1{R< δ−1}) = 0.

Finally, we leverage again the fact that the probability P(|ΦR|= 0) converges to 0 (as shown
in the proof of Theorem 3.8), along with Corollary 3.10 and Slutsky’s lemma, to obtain:

lim
R→∞

pR = 0+ P(F−1
Z (a/2)≤ Z ≤ F−1

Z (1− a/2)) = 1− a.

5.6. Variance and bias with Hermite tapers. The main objective of this section is to
prove Proposition 3.17, wherein we utilize Hermite tapers (20) to establish non-asymptotic
bounds on both the bias and variance of the estimator α̂(I, J,R). The proof is based on
Lemma 5.8, that provides a control of the fractional moments of the Hermite wavelets, on
Lemma 5.9, that investigates the i-dependence of the asymptotic variance of Tj(ψi,R) (see
Proposition 3.2), and on Lemma 5.10, that quantifies the localization properties of the Her-
mite function by upper bounding their L2 tail.

LEMMA 5.8. For all ν ≥ 0, there exists 0< cν ≤Cν <∞ such that, for all |i| ̸= 0:

(42) cν |i|ν/2 ≤
∫
Rd

|ψi(k)|2|k|νdk ≤Cν |i|ν/2.

PROOF. We first focus on the upper bound. It suffices to prove it for ν = 2k where k ∈N.
Indeed, if ν is not an even integer we write ν = t× 2kν + (1− t)(2kν + 2) with kν ∈N and
t ∈ (0,1). Then, we deduce the general case from the case where ν is even, using Hölder
inequality:∫

Rd

|ψi(k)|2|k|νdk ≤
(∫

Rd

|ψi(k)|2|k|2kνdk

)t(∫
Rd

|ψi(k)|2|k|2kν+2dk

)1−t

≤Ct
2kν
C1−t
2kν+2|i|

t

2
×2kν+

(1−t)

2
(2kν+2) =Ct

2kν
C1−t
2kν+2|i|

ν/2.
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We also note that it suffices to prove the inequality when d = 1. Indeed, for x ∈ Rd and
i = (i1, . . . , id) ∈ Nd, ψi(x1, . . . , xd) =

∏d
l=1ψ

1
il
(xl) where ψ1

il
(xl) = e−x2

l /2Hil(xl). Ac-
cordingly, using the fact that ∥ψ1

il
∥2 = 1, we deduce the d≥ 2 case from the case d= 1:∫

Rd

|ψi(k)|2|k|νdk ≤ dν/2
∫
Rd

|ψi(k)|2(|k1|ν + · · ·+ |kd|ν)dk

≤ dν/2
d∑

l=1

∫
R
|ψ1

il(kl)|
2|kl|νdkl

l′ ̸=l∏
l′=1,...,d

∫
R
|ψ1

il′
(kl′)|2dkl′

≤ dν/2
d∑

l=1

Cν |il|ν/2 ≤ d
2ν+ν

4 Cν |i|ν/2.

Consequently, we suppose that d = 1 and ν = 2k. We want to prove that for all k ≥ 0 and
i ̸= 0, then

∫
R |ψi(x)|2|x|2kdx ≤ C2ki

k. Note that it is sufficient to prove it for i ≥ k, the
remaining cases being finite in number, so uniformly bounded. Assuming i≥ k, we use the
following inequality, that comes from a standard recursive relation for the Hermite polyno-
mials, see, e.g., [74],

|xψi(x)|2 =

∣∣∣∣∣
√
i

2
ψi−1(x) +

√
i+ 1

2
ψi+1(x)

∣∣∣∣∣
2

≤ 2
i

2
|ψi−1(x)|2 + 2

i+ 1

2
|ψi+1(x)|2.

Hence ∫
R
|ψi(x)|2|x|2kdx≤ i

∫
R
|ψi−1(x)x

k−1|2dx+ (i+ 1)

∫
R
|ψi+1(x)x

k−1|2dx.

Since i≥ k, we can iterate this inequality, using in the last step ∥ψi∥2 = 1, to obtain∫
R
|ψi(x)|2|x|2kdx≤ Pk(i),

where Pk is a polynomial of degree k. This yields the upper bound
∫
R |ψi(x)|2|x|2kdx ≤

C2ki
k, where C2k depends on both Pk and the uniform bound for the k− 1 terms associated

to 1≤ i≤ k− 1.
We now prove the lower bound. Arguing as for the upper bound, the general case is de-

duced from the d = 1 case. Consequently, we consider d = 1. With the change of variables
x=

√
2i+ 1cos(ϕ), we have:∫

R
|ψi(x)|2|x|νdx≥

∫ √
2

2

√
2i+1

−
√

2

2

√
2i+1

|ψi(x)|2|x|νdx

=

∫ 3π

4

π

4

|ψi(
√
2i+ 1cos(ϕ))|2| cos(ϕ)|ν(2i+ 1)ν/2 sin(ϕ)

√
2i+ 1dϕ.

Then, we use the following bound (Theorem 8.22.9 of [74]), valid for all ϕ ∈
[
π
4 ,

3π
4

]
:∣∣∣∣∣ψi(

√
2i+ 1cos(ϕ))− (−1)i21/4

π1/2i1/4
sin
(
3π
4 + ( i2 +

1
4)(sin(2ϕ)− 2ϕ)

)
sin(ϕ)1/2

∣∣∣∣∣≤ C

i+ 1
,

where C > 0 does not depend on i and ϕ, and may change in the following from line to line.
Using the reverse triangular inequality for the L2(π/4,3π/4) Lebesgue space with weight
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ϕ 7→ | cos(ϕ)|ν sin(ϕ), we get:(∫
R
|ψi(x)|2|x|νdx

)1/2

≥C ′
(
i−1/2(2i+ 1)

ν+1

2 J(i)
)1/2

−

(∫ 3π/4

π/4
C2 (2i+ 1)

ν+1

2

(i+ 1)2
| cos(ϕ)|ν sin(ϕ)dϕ

)1/2

≥Ciν/4
(
J(i)1/2 − i−3/4

)
,

where C ′ > 0 is another generic constant and

J(i) =

∫ 3π/4

π/4
sin2

(
3π

4
+ (

i

2
+

1

4
)(sin(2ϕ)− 2ϕ)

)
| cos(ϕ)|νdϕ.

We can write the latter integral as

J(i) =
1

2

∫ 3π/4

π/4
| cos(ϕ)|νdϕ− 1

2

∫ 3π/4

π/4
cos

(
3π+ 2(i+

1

2
)(sin(2ϕ)− 2ϕ)

)
| cos(ϕ)|νdϕ.

The change of variable θ = sin(2ϕ)− 2ϕ and an integration by part ensures that the second
term above goes to 0 as i→∞. Therefore, there exists i0 = i0(ν)≥ 1 such that for all i≥ i0:(∫

R
|ψi(x)|2|x|νdx

)1/2

≥Ciν/4

(1

4

∫ 3π/4

π/4
| cos(ϕ)|νdϕ

)1/2

− i−3/4

≥C ′iν/4.

Up to the modification of the constant, we may gather in the same inequality the remaining
terms associated to i < i0, to obtain for all i≥ 1 and for some cν > 0:∫

R
|ψi(x)|2|x|νdx≥ cνi

ν/2.

LEMMA 5.9. Let α≥ 0 and (ψi)i∈I be a family of Hermite wavelets given by (20). Then,
there exist two constants 0< c≤C <∞ such that:

(43) c
∑
i∈I

|i|α/2 ≤
∑
i∈I

∫
Rd

|F [ψi](k)|2|k|αdk ≤C
∑
i∈I

|i|α/2,

(44)
∑

i1,i2∈I

(∫
Rd

F [ψi1 ](k)F [ψi2 ](k)|k|αdk
)2

≤C
∑
i∈I

|i|α.

PROOF. If I does not contain 0, then the inequalities in (43) are obtained by summing
over i ∈ I \ {0} the inequalities (42) of Lemma 5.8, since for all k, |F [ψi](k)|= |ψi(k)|. If
I contains 0, we start from these inequalities and we simply add the term i= 0:

c0 + c
∑

i∈I\{0}

|i|α/2 ≤
∑
i∈I

∫
Rd

|F [ψi](k)|2|k|αdk ≤C
∑

i∈I\{0}

|i|α/2 + c0,

where c0 =
∫
Rd |F [ψ0](k)|2|k|αdk. The latter upper-bound is less than (C + c0)

∑
i∈I |i|α/2

since 1 ≤
∑

i∈I\{0} |i|α/2, yielding the upper-bound of (43). The lower-bound in (43) is in
turn obviously deduced.
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Concerning inequality (44), using the change of variable k↔−k, we note that∫
Rd

F [ψi1 ](k)F [ψi2 ](k)|k|αdk ∈R,

so the statement makes sense, and we have:∑
i1,i2∈I

(∫
Rd

F [ψi1 ](k)F [ψi2 ](k)|k|αdk
)2

≤
∑
i1∈I

∑
i2∈Nd

⟨F [ψi1 ](·)| · |α,F [ψi2 ](·)⟩
2 .

We view the latter angle brackets as the coefficients of the function F [ψi1 ](·)| · |α in
the orthonormal basis (F [ψi2 ])i2∈Nd , so that the sum over i2 above is nothing else than
∥F [ψi1 ](·)| · |α∥22. Thereby,∑

i1,i2∈I

(∫
Rd

F [ψi1 ](k)F [ψi2 ](k)|k|αdk
)2

≤
∑
i1∈I

∫
Rd

|F [ψi1 ](k)|2|k|2αdk.

The conclusion follows from the fact that for all k, |F [ψi1 ](k)| = |ψi1(k)| and Lemma 5.8.

LEMMA 5.10. Let r > 0 and i ∈Nd, then:∫
Rd\[−r,r]d

|ψi(x)|2dx≤
2d

π1/4
e|i|∞

∫
y≥r−

√
2|i|∞

e−y2/2dy.

PROOF. With Equation (1.2) of [81], ∀y ∈ N, |Hn(y)| ≤ π−1/4 exp(
√
2n|y|), we obtain

that for i= (i1, . . . , id) ∈Nd, x= (x1, . . . , xd) ∈Rd and 1≤ l0 ≤ d:

|ψi(x)|= e−
1

2
|x|2 |Hil0

(xl0)|
d∏

l=1,l ̸=l0

|Hil(xl)|

≤ e−
1

2
x2
l0π−1/4 exp(

√
2il0 |xl0 |)

d∏
l=1,l ̸=l0

|Hil(xl)|e−
1

2
x2
l .

Using the fact that Hil(xl)e
− 1

2
x2
l has a L2(R) norm equal to 1 and the inequality:

1−
d∏

i=1

1|xl|≤r ≤
d∑

l=1

1|xl|>r,

we get:∫
Rd\[−r,r]d

|ψi(x)|2dx≤
d∑

l0=1

∫
Rd

1|xl0
|≥r|ψi(x)|2dx≤

1

π1/4

d∑
l=1

∫
|y|≥r

e−
1

2
y2

e
√
2il|y|dy.

To conclude, we use the changes of variable y↔ y−
√
2il:∫

Rd\[−r,r]d
|ψi(x)|2dx≤ 2π−1/4

d∑
l=1

eil
∫
y≥r

exp

(
−1

2

(
y−

√
2il

)2)
dy

= 2π−1/4
d∑

l=1

eil
∫
y≥r−

√
2il

e−y2/2dy

≤ 2d

π1/4
e|i|∞

∫
y≥r−

√
2|i|∞

e−y2/2dy.
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We now turn to the proof of Proposition 3.17

PROOF OF PROPOSITON 3.17. Let ϵ > 0. We want to upper bound:

pR := P
(
1|ΦR|≥1 log(R) |α̂(I, J,R)− α| ≥ ϵ

)
.

According to Equations (11) and (12), we can normalize the sum inside the logarithm with a
quantity close to expectation of the numerator:

1|ΦR|≥1 log(R) (α̂(I, J,R)− α) = 1|ΦR|≥1

∑
j∈J

wj log

(∑
i∈I

R(α−d)jTj(ψi,R)
2

)

= 1|ΦR|≥1

∑
j∈J

wj log

( ∑
i∈I R

(α−d)jTj(ψi,R)
2∑

i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

)
.

We deduce:

pR ≤ P

1|ΦR|≥1

∑
j∈J

|wj |

∣∣∣∣∣log
( ∑

i∈I R
(α−d)jTj(ψi,R)

2∑
i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

)∣∣∣∣∣≥ ϵ


≤ P

1|ΦR|≥1|w|∞
∑
j∈J

∣∣∣∣∣log
( ∑

i∈I R
(α−d)jTj(ψi,R)

2∑
i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

)∣∣∣∣∣≥ ϵ


≤
∑
j∈J

P

(
1|ΦR|≥1

∣∣∣∣∣log
( ∑

i∈I R
(α−d)jTj(ψi,R)

2∑
i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

)∣∣∣∣∣≥ ϵ

|J ||w|∞

)
.

Denoting ϵ′ = (ϵ/(|J ||w|∞))∧ 1, we also have

pR ≤
∑
j∈J

P

(
1|ΦR|≥1

∣∣∣∣∣log
( ∑

i∈I R
(α−d)jTj(ψi,R)

2∑
i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

)∣∣∣∣∣≥ ϵ′

)
.

Since ϵ′ > 0, we can rewrite the previous bound as:

pR ≤
∑
j∈J

P

[∣∣∣∣∣log
( ∑

i∈I R
(α−d)jTj(ψ,R)

2∑
i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

)∣∣∣∣∣≥ ϵ′, |ΦR| ≥ 1

]
.

According to the mean value inequality, for all y ∈R such that |y−1| ≤ δ, for some δ ≤ 1/2,
then | log(y)| ≤ 2δ. The contraposition of this result for δ = ϵ′/2 implies:

pR ≤
∑
j∈J

P

[∣∣∣∣∣
∑

i∈I R
(α−d)jTj(ψ,R)

2∑
i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

− 1

∣∣∣∣∣≥ ϵ′

2
, |ΦR| ≥ 1

]

≤
∑
j∈J

P

[∣∣∣∣∣
∑

i∈I R
(α−d)jTj(ψ,R)

2∑
i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

− 1

∣∣∣∣∣≥ ϵ′

2

]
.

Using Markov inequality, we obtain:

(45) pR ≤ 4

ϵ′2

∑
j∈J

E

( ∑
i∈I R

(α−d)jTj(ψ,R)
2∑

i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

− 1

)2
=

4

ϵ′2

∑
j∈J

R(I,R),
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where:

R(I,R) := E

( ∑
i∈I R

(α−d)jTj(ψ,R)
2∑

i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

− 1

)2
 .

To bound R(I,R), we split it between a bias term and a variance term:

R(I,R) =
1(∑

i∈I
∫
Rd |F [ψi](k)|2t|k|αdk

)2 (B(I,R)2 + V (I,R)
)
,(46)

with

B(I,R) :=
∑
i∈I

E
[
R(α−d)jTj(ψi,R)

2 −
∫
Rd

|F [ψi](k)|2t|k|αdk
]
,

V (i,R) := Var

[
R(α−d)j

∑
i∈I

|Tj(ψi,R)|2
]
.

We first bound the bias term. We denote as in the proof of Lemma 5.1, ψR1−j

i :=
ψi1[−R1−j ,R1−j ]d . By (4), and using the computations leading to Equation (26), we have

E
(
R(α−d)jTj(ψi,R)

2
)
=Var

(
R

α−d

2
jTj(ψi,R)

2
)

=

∫
Rd

∣∣∣F [ψR1−j

i ](k)
∣∣∣2RαjS

(
k/Rj

)
dk

=

∫
Rd

|F [ψi](k)|2RαjS
(
k/Rj

)
dk+ δ1(i,R) + δ2(i,R),(47)

where

δ1(i,R) =

∫
Rd

(
F [ψR1−j

i ](k)−F [ψi](k)
)
F [ψR1−j

i ](k)RαjS
(
k/Rj

)
dk,

δ2(i,R) =

∫
Rd

(
F [ψR1−j

i ](k)−F [ψi](k)
)
F [ψi](k)R

αjS
(
k/Rj

)
dk.

Using, as in (27), the Cauchy-Schwarz inequality and Plancherel Theorem, we obtain:

|δ1(i,R)|+ |δ2(i,R)| ≤ 2∥S∥∞Rαj∥ψi1R\[−R1−j ,R1−j ]d∥2∥ψi∥2

= 2∥S∥∞Rαj∥ψi1R\[−R1−j ,R1−j ]d∥2.(48)

Accordingly, gathering (47) and (48), the bound on the bias term is decomposed as

B(I,R)≤B1(I,R) + 2∥S∥∞B2(I,R),

with

B1(I,R) :=
∑
i∈I

∫
Rd

|F [ψi](k)|2Rαj
∣∣S(k/Rj)− t|k/Rj |α

∣∣dk,
B2(I,R) :=

∑
i∈I

Rαj∥ψi1R\[−R1−j ,R1−j ]d∥2.

Concerning the first term, using the assumption that |S(k)− t|k|α| ≤CS |k|β with β > α and
CS > 0, and then Lemma 5.9, we get, for some C > 0,

B1(I,R)≤
∑
i∈I

∫
Rd

|F [ψi](k)|2R(α−β)jCS |k|βdk ≤CR(α−β)j
∑
i∈I

|i|β/2.
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Concerning the second term of the bias, according to Lemma 5.10 for r =R1−j :

B2(I,R)≤Rαj
∑
i∈I

(
2d

π1/4
e|i|∞

∫
y≥R1−j−

√
2|i|∞

e−y2/2dy

)1/2

.

Note that, for all (i, j) ∈ I×J ,R1−j−
√

2|i|∞ ≥R1−jmax −
√

2|i|∞ ≥R1−jmax −
√
2imax > 0

by assumption, so using standard bound on the complementary error function, see, e.g., [1],
we get:

B2(I,R)≤
√
2d

π1/8
Rαj

∑
i∈I

e|i|∞/2

exp
(
−(R1−j −

√
2|i|∞)2/2

)
R1−j −

√
2|i|∞

1/2

≤
√
2d

π1/8
Rαjmax |I|eimax/2

exp
(
−(R1−jmax −

√
2imax)

2/4
)

(R1−jmax −
√
2imax)1/2

.

Concerning the variance term in (46), we demonstrated in the proof of Theorem 3.9 (see
Section 5.1) that all moments of the statistics (R(α−d)j/2Tj(ψi,R))i∈I converge to the mo-
ments of (N(i))i∈I as R→∞ where (N(i))i∈I is a Gaussian vector with covariance matrix(∫

Rd F [ψi1 ](k)F [ψi2 ](k)t|k|αdk
)
i1∈I,i2∈I

. So there exists R0 > 1 such that for all R≥R0:

V (i,R)≤ 2Var

[∑
i∈I

N(i)2

]
= 2

∑
i1∈I,i2∈I

Cov[N(i1)
2,N(i2)

2].

Moreover, for Gaussian vectors Cov[N(i1)
2,N(i2)

2] = 2(Cov[N(i1),N(i2)])
2, so we can

apply Lemma 5.9 to get, for some C > 0,

V (i,R)≤ 4
∑

i1∈I,i2∈I

(∫
Rd

F [ψi1 ](k)F [ψi2 ](k)t|k|αdk
)2

≤C
∑
i∈I

|i|α.

Finally, using again Lemma 5.9 for the denominator of R(I,R) in (46), we obtain that there
exists C > 0 such that,

R(I,R)≤C
(
B1(I,R)

2 + V (I,R) +B2(I,R)
2
)

≤C
1(∑

i∈I |i|α/2
)2
(
R2(α−β)j

(∑
i∈I

|i|β/2
)2

+
∑
i∈I

|i|α

+R2αjmax |I|2eimax
exp

(
−(R1−jmax −

√
2imax)

2/2
)

R1−jmax −
√
2imax

)
.

Remember that by assumption, I is of the form I = {i ∈Nd| |i|∞ < imax} with imax ≥ 1. We
then use the facts that for ν ∈ {α/2, α,β},∑

i∈I
|i|ν ≤ dν/2

∑
0≤i1,...,id<imax

(iν1 + · · ·+ iνd)≤ dν/2idmaxi
ν
max = dν/2id+ν

max

and ∑
i∈I

|i|ν ≥
∑

0≤i1,...,id<imax

iν1 = id−1
max

∑
0≤i1<imax

iν1 ≥
id−1
max

ν + 1
iν+1
max =

1

ν + 1
id+ν
max ,
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to obtain for R≥R0, since |I|= idmax,

R(I,R)≤C

(
R2(α−β)jiβ−α

max + i−d
max +

R2αjmax |I|2

i2d+α
max

eimax
exp

(
−(R1−jmax −

√
2imax)

2/2
)

R1−jmax −
√
2imax

)

≤C

((
|I|1/d

R2jmin

)β−α

+
1

|I|
+R2αjmax

e|I|
1/d

|I|α/d
exp

(
−(R1−jmax −

√
2imax)

2/2
)

R1−jmax −
√
2imax

)
.

Because jmax < 1, we may choose R0 larger, if necessary, to ensure that for R≥R0:

R2αjmax
e|I|

1/d

|I|α/d
exp

(
−(R1−jmax −

√
2imax)

2/2
)
≤ exp

(
−(R1−jmax −

√
2imax)

2/4
)
,

and consequently:

R(I,R)≤C

((
|I|1/d

R2jmin

)β−α

+
1

|I|
+

exp
(
−(R1−jmax −

√
2imax)

2/4
)

R1−jmax −
√
2imax

)
.

Plugging in this inequality in (45) concludes the proof.

5.7. Asymptotic covariance matrix for Hermite wavelets. As announced in Remark 3.15,
ΣR, defined in equation (17), can be implemented numerically without costly numerical in-
tegrations. This section focuses on the dimension d = 2, but the method can be adapted in
dimension d= 1 and d≥ 3.

Beyond the explicit formula provided in the next proposition, one may also use proper-
ties of ΣR in order to avoid the computation of certain coefficients. Specifically, denoting
ΣR = (ΣR(i1, i2, j1, j2))(i1,i2)∈I2,(j1,j2)∈J2 , we have ΣR(i1, i2, j1, j2) = ΣR(i2, i1, j2, j1).
Moreover, denoting i= (i1, i2) for i ∈N2, we have by parity that ΣR(i1, i2, j1, j2) = 0 when-
ever (i11 − i12) or (i21 − i22) is odd.

In the next proposition, we denote

∀z > 0, Γ(z) =

∫ ∞

0
tz−1e−tdt, ∀p, q ≥ 0, B(p, q) =

∫ 2π

0
cos(θ)p sin(θ)qdθ.

Remark that B(p, q) can be easily computed, since on the one hand B(p, q) ̸= 0 if and only
if p and q are even, and on the other hand, for all p, q ≥ 2,

B(p, q) =
(p− 1)(q− 1)

(p+ q)(p+ q− 2)
B(p− 2, q− 2), B(0, p) =B(p,0) =

p/2∏
l=1

(
1− 1

2l

)
.

PROPOSITION 5.11. Assume d= 2 and denote (ΣR(i1, i2, j1, j2))(i1,i2)∈I2,(j1,j2)∈J2 the
covariance matrix defined in (17). Then ΣR(i1, i2, j1, j2) is given by

R
β+2

2
(j1+j2)

2

∑
l11,l

2
1,l

1
2,l

2
2≥0

cl11cl21cl12cl22(−i)|l1|1i|l2|1B(|l1|1, |l2|1)Γ
(
2 + β + |l1|1 + |l2|1

2

)

×Rj1|l1|1+j2|l2|1
(
R2j1 +R2j2

2

)−(2+β+|l1|1+|l2|1)/2
,

where (cp)p≥0 are the coefficients of the Hermite polynomial Hp.
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PROOF OF PROPOSITION 5.11. Using the fact that Hermite wavelets are eigenvectors of
the Fourier transform, i.e., for any i ∈N2, F [ψi] = (−i)i

1+i2ψi where i= (i1, i2), we get:

ΣR(i1, i2, j1, j2) = ii
1
2+i22(−i)i

1
1+i21R

β+d

2
(j1+j2)

∫
R2

ψi1(R
j1k)ψi2(R

j2k)|k|βdk︸ ︷︷ ︸
=:A

.

To compute the latter integral, we use polar coordinates:

A=

∫
R2

Hi11
(Rj1k1)Hi21

(Rj1k2)e
− 1

2
R2j1k2

1− 1

2
R2j2k2

2

×Hi12
(Rj2k1)Hi22

(Rj2k2)e
− 1

2
R2j2k2

2− 1

2
R2j2k2

1 |k|βdk

=

∫ ∞

0

∫ 2π

0
Hi11

(Rj1r cos(θ)) Hi21
(Rj1r sin(θ)) Hi12

(Rj2r cos(θ)) Hi22
(Rj2r sin(θ))

× exp

(
−1

2
(R2j1 +R2j2)r2

)
rβ+1dθdr.

To get the announced formula, we expand the product of the four polynomials, perform
the change of variable r ↔ r

√
(R2j1 +R2j2)/2 and finally use the fact that for ν > 0,∫∞

0 rνe−r2dr =Γ((ν + 1)/2)/2.

APPENDIX: CUMULANT AND BRILLINGER MIXING FOR POINT PROCESSES

We recall in this appendix the definition of factorial cumulant moment measures of a
simple point process and their reduced counterpart in case of stationarity; see also [15, 16].
We then present the property of Brillinger mixing of a simple stationary point process, as
assumed in our Theorem 3.9; see for instance [34, 5, 7].

As a generalisation of the second order factorial moment measure (1), the factorial moment
measures ρ(r), for r ≥ 1, of a simple point process Φ is defined for any bounded measurable
sets A1, . . . ,Ar in Rd by

ρ(r)(A1 × . . .×Ar) = E

 ̸=∑
x1,...,xr∈Φ

1{x1 ∈A1, . . . , xm ∈Ar}

 .

The m-th order factorial cumulant moment measure γ(m) are in turn defined by the fol-
lowing expression:

γ(m)(A1 × · · · ×Am) =
∑

σ∈Π[p]

(−1)|σ|−1(|σ| − 1)!

|σ|∏
i=1

ρ(|σi|)

 ∏
ki∈σ(i)

Aki

 ,

where, as in (31), Π[m] denotes the set of all unordered partitions of {1, . . . ,m}.
Furthermore, when the point process Φ is stationary, we may consider for any m≥ 2 the

reduced m-th order factorial cumulant moment measure γ(m)
red . This is a locally finite signed

measure on (Rd)(m−1) that satisfies

γ(m) (A1 × · · · ×Am) =

∫
Am

γ
(m)
red

(
m−1∏
i=1

(Ai − x)

)
dx,

where for i= 1, . . . ,m− 1, (Ai − x) is the translation of the set Ai by x.
Finally, a simple stationary point process Φ is said Brillinger-mixing if, form≥ 2, and any

bounded measurable set A of Rd, E [|Φ∩A|m]<+∞ and if |γ(m)
red |(Rd(m−1))<+∞, where
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the total variation of γ(m)
red is defined by |γ(m)

red | := γ
(m)
red

+
+ γ

(m)
red

−
where γ(m)

red = γ
(m)
red

+
−

γ
(m)
red

−
is the Jordan decomposition of the signed measure γ(m)

red .
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