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ABSTRACT
This paper proposes a statistical approach for real-time ambulance
relocation in an Emergency Medical Service (EMS) system. First,
based on the idea of measuring the probability that there is no
ambulance available for a life-threatening call at the closest am-
bulance station, the risk of the environment is introduced. Then,
a method for ambulance relocation to minimize this risk is devel-
oped. To assess the proposed approach, historical data spanning
six years provided by the Centre Hospitalier Universitaire Vaudois
(CHUV) are used. Data from 2015 to 2020 is utilized to build our
method and the data from 2021 is used for the evaluation. The use
of real-world data and an API to estimate travel times makes our
experiments representative of real-world situations. In all experi-
ments, our approach enables us to significantly decrease the risk of
the environment. Furthermore, the proposed method reduces the
mean response time by up to 30 seconds. Finally, the computation
time is negligible and through the adjustment of specific hyperpa-
rameters, it becomes feasible to control the frequency of resource
relocations throughout the day. This adjustment offers the flexibil-
ity to tailor the strategy according to the specific requirements of
each EMS system. Moreover, our method demonstrates particular
utility in situations with limited resources, which makes it espe-
cially valuable in crisis situations. These observations collectively
suggest that our method has the potential to enhance the quality
of EMS and, consequently, save lives.

CCS CONCEPTS
• Computing methodologies→Model development and anal-
ysis.
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1 INTRODUCTION
Emergency Medical Services (EMS) are essential medical services
that provide urgent pre-hospital treatment and transportation for
injured individuals to intensive care. EMS utilizes a finite number of
ambulances which are stationed at various locations across the re-
gion of interest when not in use. Ambulance deployment is carried
out at two different levels: at the strategic level, where the location
of ambulance stations is determined, and at the operational level,
where ambulances are dispatched and relocated. It is common to
classify emergency calls into three priority levels: Priority 1 for
the most urgent life-threatening calls, Priority 2 for urgent but not
life-threatening calls, and Priority 3 for non-urgent calls. Readers
interested in gaining a deeper understanding of how these priority
levels are established in practice are invited to consult Dami et al.
[6]. In this paper, emergency calls will refer to calls of Priority 1 and
2. Priority 1 emergencies will also be referred to as vital emergen-
cies. Relocating ambulances through the stations could be useful to
decrease the response time (i.e. the elapsed time from EMS dispatch
notification to the time of arrival on scene), which might have a
significant impact on the survival rate [9], [29].

This paper presents a statistical method for real-time ambulance
relocation. This approach is simple and based on statistical consider-
ations. As illustrated in Figure 1, 2, and 3, the number of emergency
calls varies significantly based on the time of the day and the loca-
tion but not so much based on other parameters, such as the day
of the week or the month. Based on these observations, we choose
to associate one stochastic process with each station to model the
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Figure 1: Number of emergency calls for a time interval of
ten minutes for the region covered by the CHUV dispatch
center for the year 2016-2021. The x-axis represents the time
and the y-axis the day of the week.

number of vital emergency calls. Specifically, and following com-
mon practice [31], [26], we use inhomogeneous Poisson processes.
By definition, inhomogeneous Poisson processes are stochastic pro-
cesses that satisfy two assumptions. Roughly speaking, the first
one supposes that the probability of receiving one call within a
time interval can be approximated using a time-dependent event
rate. The second one assumes that two calls can not occur at the
same time. These assumptions will be formally presented in Section
3.1. The inherent suitability of these assumptions for our problem
justifies the use of inhomogeneous Poisson processes.

Combining these processes and the idea of measuring the proba-
bility that there is no ambulance available for a life-threatening
call at the nearest ambulance station, we introduce the risk of the
environment and we develop a method that relocates resources to
minimize this risk. Our approach avoids the use of Mixed Inte-
ger Linear Programming (MILP) techniques, known for their high
computational demands, making the proposed method computa-
tionally efficient. We evaluate the performance of our approach

Figure 2: Number of emergency calls for a time interval of
ten minutes for the region covered by the CHUV dispatch
center for the year 2016-2021. The x-axis represents the time
and the y-axis the month.

using historical data provided by the Centre Hospitalier Universi-
taire Vaudois (CHUV), Switzerland. In our experiments, we chose
to use an API to estimate the travelling time. The time spent on the
site of each incident by the medical staff has been estimated using
the historical dataset. These choices have been made to ensure
that our experiments are representative of real-world situations.
The results suggest that the proposed method is able to reduce the
risk of the environment and the expected response time. Through
the adjustment of specific hyperparameters, it becomes feasible
to control the number of resource relocations throughout the day.
This adjustment offers the flexibility to tailor the strategy according
to the specific requirements of each EMS system. Moreover, our
method appears to be particularly useful in situations with limited
resources, which makes it especially valuable in crisis situations.
All these observations suggest that our method could increase the
quality of EMS and thus, potentially save lives.

This paper is organized as follows. In the next section, we provide
a literature review. Then, in Section 3, we define our problem and
present our method formally. In Section 4, we evaluate our approach
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Figure 3: Locations of emergency calls of for the years 2016
to 2021

using historical data. Finally, the conclusion of our research is given
in Section 5.

2 LITERATURE REVIEW
Given the critical role that EMS plays in the medical system, it is
not surprising that researchers have dedicated significant attention
to studying efficient resource [25], [11], [27], [3], [18], [2], [23]. In
particular, ambulance management has raised a lot of attention.

At the strategic level, it is common to use a Mixed Integer Linear
Program (MILP) to determine the optimal location of ambulance
stations. These methods can be separated into two different families:
the deterministic and the probabilistic methods. In the determin-
istic approach, authors do not take into account some stochastic
considerations and assume that ambulances are always available
for dispatch. For example, the Location Set Covering Problem [28]
minimizes the number of stations that are necessary to cover all
demand points within a certain response time. The Maximal Cov-
ering Locations Problem [5] maximizes the total demand covered
within a certain response time or travel distance given a fixed num-
ber of stations. The Backup Coverage Problem [16] maximizes the
demand that is covered twice within a certain response time or
travelling distance. In Gendreau et al. [12], a heuristic tabu search
is introduced to solve the Double Standard Model, which considers
two radii 𝑟1 < 𝑟2 and aims to maximize the demand covered by
at least two ambulances within 𝑟1 while ensuring that all demand
is covered within 𝑟2. This model is extended in Doerner et al. [8]
by introducing a limit on the number of inhabitants served per
ambulance and a heuristic is introduced to solve it.

With the probabilistic models, the possibility that an ambulance is
busy is taken into account. Some of these models aim to determine
the optimal ambulance location but also to compute the number of
ambulances assigned to each station. For example, the Maximum
Expected Covering Location Problem (MEXCLP) [7] attempts to

maximize an expected coverage that takes into account the aver-
age fraction of time that an ambulance is unavailable (i.e. the busy
fraction of the ambulances). The Maximum Availability Location
Problem [24] maximizes the demand covered by ambulances with a
given probability. The busy fraction is assumed to be the same for
all potential stations. In Erkut et al. [10], the probability of survival
is modeled, and then, the maximal survival location problem is in-
troduced. Finally, Chuang and Lin [4] introduces a model to solve a
double standard coverage ambulance location under a probabilistic
situation.

At the operational level, only ambulance dispatch and relocation
can be considered. As mentioned in the introduction, it is common
to classify emergency calls into three priority levels. Considering
these priority levels, several dispatch strategies have been devel-
oped. For instance, Bandara et al. [1] proposes a heuristic algorithm
to dispatch ambulances to increase the patient’s survival probabil-
ity. Nasrollahzadeh et al. [22] formulates the real-time ambulance
dispatching and relocation problem as a stochastic dynamic prob-
lem. An approximate dynamic programming problem is developed
to solve this problem. Another study [30] introduces the Testing
Interface For Ambulance Research (TIFAR) simulation tool that can
be used to evaluate the effectiveness of different dispatch strategies.

Relocating ambulances within a specific geographic region can
enhance the coverage and response time of EMS. However, in this
context, computation time has to be reasonably low, requiring the
adoption of distinct methods from those used at the strategic level.
To overcome this challenge, Gendreau et al. [13] uses a tabu search
algorithm for real-time ambulance relocation. In Gendreau et al.
[14], a MILP is introduced for locating and relocating physicians’
cars in the Montreal area. The small number of such vehicles (be-
tween three and six) makes this approach feasible. Another method
[20] employs a dynamic model for the ambulance relocation prob-
lem. To reduce the problem’s dimension and computation time,
approximations that depend on specific parameters calibrated us-
ing simulation, are used. Finally, Naoum-Sawaya and Elhedhli [21]
introduces a two-stage stochastic program for real-time ambulance
relocation.

Inhomogeneous Poisson processes are stochastic processes that
have been used to model various situations. For instance, they have
been applied for call center management [31], [26], for software
reliability [17], for automobile warranty claim [19] but also for
predicting the short-term public transport demand [15].

3 STATISTICAL APPROACH
This section primarily focuses on the formal definition of the risk.
Next, we present a method for minimizing this risk through ambu-
lance relocation. Finally, we provide details on the practical imple-
mentation of this approach.

3.1 Risk
As the response time has a bigger influence on the survival rate
for vital emergencies, we mainly focus on these kinds of incidents.
First, let 𝑆 denote the set of all stations. For a given station 𝑎 ∈ 𝑆 , the
region covered by 𝑎 corresponds to villages whose closest station,
in terms of travelling time, is 𝑎. 𝑁𝑡,𝑎 denotes the number of vital
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incidents in the time interval (0, 𝑡] in the region covered by the
station 𝑎. Furthermore, given 𝑎, 𝑏 ∈ 𝑆 , we use 𝑑 (𝑎, 𝑏) to represent
the travelling time between these two stations. Finally, we use𝑚𝑡,𝑎

to denote the number of available ambulances in station 𝑎 at time 𝑡 .

Using these notations, the following assumptions for all stations 𝑎
and all time 𝑡 are made

(1) P[𝑁𝑡+𝜖,𝑎 − 𝑁𝑡,𝑎 = 1] = 𝜆𝑎 (𝑡)𝜖 + 𝑜 (𝜖)
(2) P[𝑁𝑡+𝜖,𝑎 − 𝑁𝑡,𝑎 ≥ 2] = 𝑜 (𝜖)

These statements imply that vital emergencies form an inhomo-
geneous Poisson process with a density function 𝜆𝑎 (𝑡). In other
words, 𝑁𝑡𝑀 ,𝑎 − 𝑁𝑡0,𝑎 is a Poisson process of parameter Λ(𝑡0, 𝑡𝑀 , 𝑎)
where

Λ(𝑡0, 𝑡𝑀 , 𝑎) =
∫ 𝑡𝑀

𝑡0
𝜆𝑎 (𝑡)𝑑𝑡

Then, for a given time 𝑡 and station 𝑎, we introduce a decomposition
𝑡 = 𝑡0 < 𝑡1 < . . . < 𝑡 + 𝛾 (𝑎) = 𝑡𝑇𝑎 where 𝛾 (𝑎) = min𝑏∈𝑆\{𝑎}𝑑 (𝑎, 𝑏),
and each timestep 𝑡𝑖 corresponds to time where a previously en-
gaged ambulance becomes available again. After that, we introduce
a random variable R𝑡,𝑎 defined as

R𝑡,𝑎 =

𝑡𝑇𝑎 −1∑︁
𝑗=0

1{𝑁𝑡 𝑗 +1−𝑁𝑡 𝑗
>𝑚𝑡 𝑗 ,𝑎

}

In other words, if R𝑡,𝑎 ≥ 1, we are in a situation where there will
be more vital incidents than available ambulances in station 𝑎, and
we will not have enough time to relocate ambulance to this station.
Obviously, this is the kind of situation that needs to be avoided.
Finally, we define the risk of the environment at time 𝑡 as E[R𝑡 ],
where R𝑡 =

∑
𝑎∈𝑆 R𝑡,𝑎 .

3.2 Ambulances relocation
Now, we present a method for ambulance relocation. The main
idea of our approach is straightforward: we relocate resources if it
decreases the risk more than a given threshold.

Let us formalize this idea. First, we denote R𝑡𝑎𝑏 (𝑎, 𝑏) the risk in
time 𝑡𝑎𝑏 := 𝑡 + 𝑑 (𝑎, 𝑏) assuming we relocate an ambulance from
station 𝑏 to station 𝑎 in time 𝑡 . Then, observe that

E[R𝑡𝑎𝑏 ] − E[R𝑡𝑎𝑏 (𝑎, 𝑏)]

= E[
∑︁

𝑐∈𝑆 \{𝑎,𝑏}
R𝑡𝑎𝑏 ,𝑐 ] + E[R𝑡𝑎𝑏 ,𝑎] + E[R𝑡𝑎𝑏 ,𝑏 ]

− E[
∑︁

𝑐∈𝑆 \{𝑎,𝑏}
R𝑡𝑎𝑏 ,𝑐 ] − E[R𝑡𝑎𝑏 ,𝑎 (𝑎, 𝑏)] − E[R𝑡𝑎𝑏𝑏 (𝑎, 𝑏)]

= E[R𝑡𝑎𝑏 ,𝑎] − E[R𝑡𝑎𝑏 ,𝑎 (𝑎, 𝑏)] + E[R𝑡𝑎𝑏 ,𝑏 ] − E[R𝑡𝑎𝑏𝑏 (𝑎, 𝑏)]

=

𝑡𝑇𝑎 −1∑︁
𝑗=0
E[1{𝑁𝑡 𝑗 +1−𝑁𝑡 𝑗

>𝑚𝑡 𝑗 ,𝑎
} ] −

𝑡𝑇𝑎 −1∑︁
𝑗=0
E[1{𝑁𝑡 𝑗 +1−𝑁𝑡 𝑗

>𝑚𝑡 𝑗 ,𝑎
+1} ]

+
𝑡𝑇𝑏 −1∑︁
𝑖=0
E[1{𝑁𝑡𝑖+1−𝑁𝑡𝑖

>𝑚𝑡𝑖 ,𝑏
} ] −

𝑡𝑇𝑏 −1∑︁
𝑖=0
E[1{𝑁𝑡𝑖+1−𝑁𝑡𝑖

>𝑚𝑡𝑖 ,𝑏
−1} ]

=

𝑡𝑇𝑎 −1∑︁
𝑗=0
P[𝑁𝑡 𝑗+1,𝑎 − 𝑁𝑡 𝑗 > 𝑚𝑡 𝑗 ,𝑎]

−
𝑡𝑇𝑎 −1∑︁
𝑗=0
P[𝑁𝑡 𝑗+1,𝑎 − 𝑁𝑡 𝑗 > 𝑚𝑡 𝑗 ,𝑎 + 1]

+
𝑡𝑇𝑏 −1∑︁
𝑖=0
P[𝑁𝑡𝑖+1,𝑏 − 𝑁𝑡 𝑗 > 𝑚𝑡𝑖 ,𝑏 ]

−
𝑡𝑇𝑏 −1∑︁
𝑖=0
P[𝑁𝑡𝑖+1,𝑏 − 𝑁𝑡 𝑗 > 𝑚𝑡𝑖 ,𝑏 − 1]

=

𝑡𝑇𝑎 −1∑︁
𝑗=0
P[𝑁𝑡 𝑗+1,𝑎 − 𝑁𝑡 𝑗 =𝑚𝑡 𝑗 ,𝑎 + 1]

−
𝑡𝑇𝑏 −1∑︁
𝑖=0
P[𝑁𝑡𝑖+1,𝑏 − 𝑁𝑡𝑖 ,𝑏 =𝑚𝑡𝑖 ,𝑏 ]

Moreover, for numerical considerations, we use the log probability
instead of the probability. Therefore, we introduce a function ℎ

defined as

ℎ(𝑎, 𝑏, 𝑡) :=
𝑇𝑎−1∑︁
𝑗=0

log
(
P[𝑁𝑡 𝑗+1,𝑎 − 𝑁𝑡 𝑗 ,𝑎 =𝑚𝑡 𝑗 ,𝑎 + 1]

)
−
𝑇𝑏−1∑︁
𝑖=0

log
(
P[𝑁𝑡𝑖+1,𝑏 − 𝑁𝑡𝑖 ,𝑏 =𝑚𝑡𝑖 ,𝑏 ]

)
− 𝛽 (𝑎, 𝑏)

(1)

where 𝛽 (𝑎, 𝑏) is a hyperparameter that models the cost associated
with relocating an ambulance from station 𝑏 to station 𝑎. In other
words, 𝛽 (𝑎, 𝑏) is a value that determines how easily we allow am-
bulance relocation from 𝑏 to 𝑎. This parameter should be carefully
tuned according to the strategic choices of the EMS.

Finally, at each time 𝑡 we suggest relocating ambulances from sta-
tion 𝑏 to 𝑎 if ℎ(𝑎, 𝑏, 𝑡) > 0. If there exist multiple such pairs, we
propose considering only the one that maximizes ℎ.

3.3 Implementation details
Although the ambulance relocation method presented above is
quite simple, there are some implementation details that need to
be discussed.

First, to compute the region covered by each station, we estimate
the closest station of each village using the Openrouteservice API 1.
If this API is unable to estimate this travelling time (due to errors in
the GPS coordinates for example), we use the Euclidean distance.

Then, we need to be able to compute probabilities of the form
P[𝑁𝑡 𝑗+1,𝑎 − 𝑁𝑡 𝑗 ,𝑎 = 𝑚𝑡 𝑗 ,𝑎]. Recall that 𝑁𝑡 𝑗+1,𝑎 − 𝑁𝑡 𝑗 ,𝑎 is a Poisson
process with parameter Λ(𝑡 𝑗 , 𝑡 𝑗+1, 𝑎). Therefore, to compute these
probabilities, we need to estimate this parameter. With this aim,
we separate our time interval into subintervals 𝑡 𝑗 := 𝑡0 < . . . <

𝑡𝑘 < . . . < 𝑡𝑁 := 𝑡 𝑗+1 where 𝑡𝑘 = 𝑡0 + 𝑘𝜖 and 𝜖 is the smallest
considered timestep. For example, in our implementation, we set
𝜖 to one minute. Then, since Λ(𝑡 𝑗 , 𝑡 𝑗+1, 𝑎) =

∑𝑁−1
𝑘=0 Λ(𝑡𝑘 , 𝑡𝑘+1, 𝑎),

we only need to estimate the parameters of the random variable
1https://openrouteservice.org/

https://openrouteservice.org/
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𝑁𝑡𝑘+1,𝑎 − 𝑁𝑡𝑘 ,𝑎 . To achieve this objective, we use the maximum
likelihood estimator, which can be computed using the historical
dataset. Recall that the maximum likelihood estimator of a Pois-
son process is the empirical mean. However, to avoid taking the
logarithm of zeros values, an artificial incident for each time step
and each station is added. With these considerations, we are able
to estimate probabilities of the form P[𝑁𝑡 𝑗+1,𝑎 − 𝑁𝑡 𝑗 ,𝑎 =𝑚𝑡 𝑗 ,𝑎].
To compute the return time of an ambulance dispatched in time 𝑡 ,
we adopt the following idea. First, the travelling time between the
station 𝑎 and the emergency location 𝑠 , denoted 𝑑 (𝑎, 𝑠), is estimated
using the Openrouteservice API as above. If this API is not able
to estimate this travelling time, we consider a default value of 20
minutes. Finally, the estimated return time is 𝑡 + 𝑑 (𝑎, 𝑠) + 𝑡 where 𝑡
represents the mean of the time spent on the site of the incident.
Lastly, we need to choose the value of the hyperparameter 𝛽 . We
suggest considering 𝛽 (𝑎, 𝑏) = 𝛾𝑑 (𝑎, 𝑏), with 𝛾 ∈ R. A small 𝛾 re-
duces the risk but increases the number of ambulance relocations.
As we aim to minimize the risk of the environment while avoiding
making too many ambulance relocations, finding an appropriate 𝛾
may not be straightforward. Therefore in our experiments, we test
different values of 𝛾 .

4 EXPERIMENTS
In this section, wemeasure the performance of the proposedmethod
in different real-world scenarios. First, we present our evaluation
process. Then, our results are presented and discussed.

4.1 Experimental setup
To build and evaluate our models, historical data provided by the
CHUV dispatch center are used. This dispatch center is responsible
for managing ambulances in the canton of Vaud, in the canton of
Neuchâtel, as well as some small parts of the canton of Fribourg
and Genève. In total, about one million people are living in this

Figure 4: Region covered by the CHUV dispatch center. The
canton of Vaud is in red, the canton of Neuchâtel is in green
and the yellow portion represents the area of the canton of
Fribourg covered by this center.

area. There are 18 ambulance stations located throughout it. The
region covered by this dispatch center is shown in Figure 4 and the
station locations can be observed in Figure 5.
Different files regarding incidents and resources history from the
year 2014 to 2021 were provided. For each incident, some informa-
tion such as time and address is logged. Ambulances can take several

Figure 5: Ambulance locations of the CHUV dispatch center.

statuses, like for instance ’Commitment request’, ’Out’, ’On site’.
Whenever these statuses change, relevant information is saved. We
use historical data from the year 2015 to 2020 to build our method
and the data from the year 2021 for the evaluations. To estimate
the mean time spent on the site of the incident 𝑡 , data from the
year 2015 until the end of 2020 has been used. Specifically, for each
incident, we estimated the dispatched ambulance using the GPS
coordinate contained in the historical dataset. Then, the estimated
time spent on the incident site corresponds to the time interval
between the status ’End’ and ’On site’. We were able to estimate
this time interval for 101′060 incidents.

Using these files and estimation, we conduct several experiments,
denoted Historical and Distribution𝑛 .

Historical. For each day of the year 2021, we generated incidents
based on the historical dataset provided by the CHUV dispatch
center. Therefore, the time and incident locations used during our
evaluation process correspond to real incidents that occurred dur-
ing the year 2021. Ambulances are allocated to emergencies using
a greedy method, i.e. the closest available ambulance is dispatched.
The time spent on the site of the incident is estimated using the
historical dataset. If we are unable to estimate it, we consider the
mean value 𝑡 . Ambulances are relocated following the method in-
troduced in Section 3.2. At the beginning of each day, we assign to
each station the number of ambulances dispatched from the corre-
sponding station in our historical dataset and in the corresponding
day.

Distribution𝑛 . Note that the experiment presented above suffers
from some limitations regarding the number of ambulances. Indeed,
if an ambulance was available but never dispatched, we would not
take it into account. Additionally, it is possible that some ambu-
lances are only available at a certain time of the day. To address
these limitations and test our method in other settings, we intro-
duce an evaluation called Distribution𝑛 where𝑛 ∈ N. The difference
with the experiment presented above concerns the number and lo-
cations of ambulances available at the beginning of each day. More
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Table 1: Results of methods for managing strategic moves
for the Historical experiment. We bold the method with the
smallest mean response time and the smallest mean cumula-
tive risk.

𝛾 Risk Relocation Response time
+∞ 2.99 0.0 09:44.46
0 0.1335 113.386 09:19.86

0.002 0.1055 70.145 09:15.96
0.004 0.2840 37.381 09:16.19
0.006 0.5931 23.573 09:16.99
0.008 0.9215 17.381 09:17.66
0.010 1.1977 13.385 09:19.64
0.012 1.3546 10.523 09:21.19
0.014 1.5658 8.899 09:23.58
0.016 1.7402 7.474 09:25.39
0.018 1.9332 6.540 09:28.28
0.02 2.1481 5.616 09:31.01

precisely, we denoteM the set of all incident locations which are
contained in our dataset. Then, for each station 𝑎 , we introduce a
subset M𝑎 := {𝑚 ∈ M | ∥𝑚 − 𝑎∥2 < ∥𝑚 − 𝑣 ∥2 ∀𝑣 ∈ 𝑆 , 𝑣 ≠ 𝑎} and
we associate a distribution 𝑝𝑎 := |M𝑎 |

|M | . Finally, at the beginning of
each day, we assign ⌊𝑝𝑎𝑛⌋ ambulances to each station 𝑎.

Experiments were performed on a laptop computer (Intel Core i7-
10750H, 32GB RAM) using open-source software. We used Python
(version 3.8) with libraries such as NumPy and Pandas. Performing
one experiment takes about 4.5 hours and the computation of one
potential resource relocation (i.e. the computation of ℎ(𝑎, 𝑏, 𝑡) for
each 𝑎, 𝑏 ∈ 𝑆) takes about 0.03 seconds.

4.2 Results
As previously discussed, we consider 𝛽 of the form 𝛽 (𝑎, 𝑏) = 𝛾𝑑 (𝑎, 𝑏).
For each experiment, we test several 𝛾 values. Note that setting
𝛾 = +∞ implies that no ambulance relocation will be conducted
throughout the day. To measure the performance of our approach
we use the cumulative risk

∑
𝑡 E[R𝑡 ] where the sum is taken after

each dispatch, the number of ambulance relocation and the response
time. We compute these values for each day, and then, we take the
mean. Note that the cumulative risk computed here is not the same
as the risk estimation presented in Section 3.2. Indeed, previously,
the time spent on the site of an incident was approximated using
a constant, but in our evaluations, it is derived from the historical
dataset. Therefore, it should be more representative of a real-world
situation. Complete results for the Historical experiment can be
found in Table 1, while Tables 2, 3, 4, present results regarding
Distributional42, Distributional52, Distributional62 respectively.

4.3 Discussion
In this section, we discuss the results presented above.

Firstly, we would like to highlight that our method consistently
decreases the cumulative risk, regardless of the value of 𝛾 or the
experiment. Moreover, and this may be more surprising, it also

Table 2: Results of methods for managing strategic moves
on Distribution42 benchmark. We bold the method with the
smallest mean response time and the smallest mean cumula-
tive risk.

𝛾 Risk Relocation Response time
+∞ 3.4957 0.0 10:07.57
0 1.2020 113.386 10:05.64

0.002 0.8115 55.644 09:37.26
0.004 2.0647 30.039 09:42.65
0.006 2.5534 15.794 09:53.06
0.008 2.7021 10.488 09:56.03
0.010 2.7852 8.159 09:56.86
0.012 2.9301 6.074 09:57.92
0.014 2.9935 4.852 09:58.25
0.016 3.1002 4.140 10:00.25
0.018 3.1791 3.179 10:01.95
0.02 3.2408 3.287 10:03.56

Table 3: Results of methods for managing strategic moves
on Distribution52 benchmark. We bold the method with the
smallest mean response time and the smallest mean cumula-
tive risk.

𝛾 Risk Relocation Response time
+∞ 2.2832 0.0 09:38.58
0 0.2647 113.386 09:27.11

0.002 0.2101 64.841 09:18.50
0.004 1.1496 32.323 09:25.18
0.006 1.7413 20.186 09:30.21
0.008 1.9184 13.649 09:33.45
0.010 1.9954 10.115 09:35.19
0.012 2.0173 7.865 09:35.53
0.014 2.0566 6.479 09:36.04
0.016 2.1557 5.564 09:37.00
0.018 2.1965 4.824 09:37.27
0.02 2.2178 4.315 09:37.46

reduces the response time. For example, for Distribution42 and
𝛾 = 0.002, our method can decrease the mean response time by up
to 30 seconds. Moreover, there is an important correlation between
the cumulative risk and the response time. For instance, for the His-
torical experiment, we have a correlation of 0.91 between these two
variables. This observation suggests that reducing the cumulative
risk can effectively decrease the response time in practical scenarios.
Then, we notice that gaps between our method and the case where
no ambulance relocation occurs are more significant in situations
with limited resources. This finding suggests that our approach is
particularly useful in crisis situations where many ambulances are
required, such as a large traffic incident.

Secondly, it is worth noting that for all experiments the most ef-
fective ambulance relocation method in terms of response time
and cumulative risk is achieved with 𝛾 = 0.002. Interestingly, the
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Table 4: Results of methods for managing strategic moves
on Distribution62 benchmark. We bold the method with the
smallest mean response time and the smallest mean cumula-
tive risk.

𝛾 Risk Relocation Response time
+∞ 0.5885 0.0 09:22.10
0 0.0789 113.386 09:19.17

0.002 0.0373 67.761 09:15.61
0.004 0.1472 36.326 09:15.73
0.006 0.2112 23.063 09:16.81
0.008 0.3405 15.909 09:18.40
0.010 0.4386 12.931 09:19.37
0.012 0.4630 10.449 09:19.69
0.014 0.4763 9.495 09:19.82
0.016 0.4843 8.600 09:19.91
0.018 0.4928 7.816 09:19.94
0.020 0.5047 7.035 09:20.31

cumulative risk is smaller for 𝛾 = 0.002 than 𝛾 = 0.0. While this
observation may first seem surprising, it can be easily explained.
Indeed, with 𝛾 = 0, resources are relocated if it will reduce the esti-
mated risk, even if the gain is small. However, the estimated risk is
not an exact match for the risk calculated in our evaluations. Recall
that, in our estimations, the time spent at the scene of an incident
is approximated using a constant, whereas, in our evaluation, it is
based on historical data. Therefore, small estimated gains can not
be trusted, and thus, making resource relocation based on these
estimations could actually be counter-productive.

Finally, it is interesting to note that the observations discussed
above are consistent across all experiments, indicating that our
method is robust and, thus, could be successfully applied in various
EMS systems.

5 CONCLUSION
In this paper, we present a novel method for real-time ambulance re-
location. First, using an inhomogeneous Poisson process, we model
Priority 1 calls, and then, we introduce the notion of risk of the
environment. Based on this definition, we develop a method for
resource relocation that minimizes this risk. By adjusting the 𝛽 pa-
rameter, it is possible to manage the number of resource relocations
throughout the day and avoid certain specific resource relocations.

To evaluate our method, we use a historical dataset provided by the
CHUV dispatch center. Years from 2015 to 2020 are used to build
our method and the year 2021 is used for the evaluation. In our
experiment, generated incidents are based on historical emergen-
cies with corresponding time and location, and travelling time is
computed using the Openrouteservice API.

In all experiments, our method significantly reduces the expected
risk. Furthermore, our results suggest that minimizing the pro-
posed risk significantly decreases the response time. Moreover, our
method appears to be particularly useful in situations with limited
resources, which makes it especially valuable in crisis situations.

All these observations suggest that our method could increase the
quality of EMS and thus potentially save lives.
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