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Abstract—Cache Pollution Attacks (CPA) are a growing con-
cern in Named Data Networking (NDN) due to their potential to
disrupt network services and compromise data integrity. While
several defence mechanisms have been developed, they often
struggle to keep up with the evolving nature of such attacks.
This paper introduces a cutting-edge approach for detecting
and mitigating CPA in NDN, utilizing Deep Reinforcement
Learning (DRL). By employing a DRL framework, we leverage
the power of deep neural networks to learn complex patterns
within network traffic. Our DRL algorithm is designed to analyze
the intricate dynamics of NDN environments and make informed
decisions about cache management to protect against CPA. The
agent’s learning process involves continuous interaction with the
network, allowing it to adapt to CPA attack vectors and evolving
NDN network conditions. The DRL-based mitigation mechanism
is evaluated using the official NDNSim simulation environment.
The results show that the DRL agent effectively identifies and
mitigates CPA with high accuracy, thereby improving the Cache
Hit Ratio, while incurring an acceptable increase in memory
usage.

Index Terms—Cache Pollution Attack, NDN, Deep Reinforce-
ment Learning, NDN security, IDS, Deep Q-Learning

I. INTRODUCTION

More recently, the uses of today’s Internet have evolved

considerably over the years. Every day, users generate and

consume massive amounts of data in an uncontrolled and

scattered manner. In fact, the huge content distribution which

mostly became based on the consumption of multimedia mate-

rial has transformed data communication. If the infrastructure

has improved with the deployment of optical fibres, Wi-Fi or

mobile internet networks, the architecture of the Internet has

not evolved and is still based on the TCP/IP protocol stack

[1]. This architecture allows hosts to access the service of

another host following the client-server model of the Internet

based on IP addresses. However, The TCP/IP architecture

was not built with the goal of providing wide-scale content

delivery to numerous consumers. As a result, academics are

reconsidering the design of the Internet infrastructure. Many

solutions have been proposed in this context to cope with the

massive volume of data flow. These architectures are called

Information-Centric Networks (ICN). They focus on the data

itself and not on the hosts in the network. Messages are thus

no longer routed based on the host address, as was the case

with the IP design, but rather on the name of the data. Several

ICN designs, mostly in the United States and Europe, have

been suggested in the literature [2]. The NDN architecture

appears to be the most promising of all of these projects

[3]. This new architecture is designed to enable large-scale

content delivery. In NDN, data is the basis of the exchange.

Each content is identified by a name or a prefix which has a

hierarchical structure, like URIs. This content can be cached in

intermediate NDN routers to deliver later requests for the same

piece of content. Furthermore, NDN verifies the content’s

legitimacy, and each content is self-signed by its supplier,

preserving by that the content’s integrity and validity [4]. With

these various new features, NDN is immune to the classical

attacks of TCP/IP. However, despite its ”secured-by-design”

architecture, NDN is susceptible to attacks that primarily

exploit the caching process, resulting in disruptions to data

availability and the intentional prolonging of data retrieval

such as the case of Cache Pollution Attack (CPA) [5]. There-

fore, the development of effective mitigation mechanisms is

crucial. This paper introduces a DRL-based approach to detect

and mitigate CPA in NDN. It is carefully designed to adapt to

the NDN environment dynamics and to update its decision in

real-time based on the latest observations.

The rest of the paper is organized as follows: In Section II,

we detail NDN security architecture design and its limits, in



which we introduce the in scope attack such as CPA attack.

We give, in Section III, an overview of the related works

in this field. We introduce our mitigation mechanism and its

system model in Section IV. Then, we elaborate our simulation

process and in depth analysis of our mitigation solution in

Section V. And we conclude the paper in Section VI.

II. NDN ARCHITECTURE AND SECURITY LIMITS

In NDN, when a user seeks to get content, he sends an

Interest packet to the network, which is responded by a Data

packet containing the requested data content [6]. The Interest

packet includes the name of the data, i.e. the data’s prefix, as

well as a nonce and other potential optional fields, such as the

request’s validity or the public key of the owner who signed the

message [7]. Data packets are composed of the data’s name

(the same prefix as the Interest packet), the data’s content,

and the content’s signature. Each node in NDN implements

three essential components such as the Content Store (CS), the

Pending Interest Table (PIT) and the Forwarding Information

Base (FIB). When the router receives an interest packet, it

first looks in the CS for the matching data. The data packet

is returned to the sender if it is found in the CS. If not, the

router will conduct a PIT search. If a matching PIT entry

is found, the incoming interface is added to the interface-

list of that entry and the interest packet will be discarded.

Otherwise, an entry is created in the PIT. Finally, the FIB

sends the interest packet to the following hop in accordance

with the longest matching prefix. After receiving the data

packet, the router determines whether there is a matching

entry in the PIT. If the entry is not found, the data packet

is considered then as an unsolicited one, and it’s going to be

dropped. If it exists, then the data packet is forwarded to every

interface present in the corresponding PIT entry. In the way to

the requesting consumer, the CS caches that data packet [8].

Security and privacy are incorporated into the design of NDN.

It includes new signature and cryptography technologies that

protect data from being intercepted by malicious users. To

ensure safe data transmission, its associated producer signs

each data packet. Consumers and neighbour nodes can use

this signature field to verify data integrity and provenance.

Data caching is another important characteristic of NDN.

The Content Store (CS), stores the data received for future

requests by the same consumer or even other neighbour nodes,

allowing the data to be retrieved more rapidly. Even with its

”secure-by-design” architecture, NDN is vulnerable to attacks

aiming primarily to abuse the caching process, disrupt data

availability and maximize data retrieval delay, such as the

case of the Cache Pollution Attack (CPA). According to [9],

the aim of a CPA is to store unpopular content in the NDN

router by requesting unpopular data packets, with the intention

of rendering the cache inaccessible to legitimate consumers.

Consequently, during the execution of the attack, there is a

degradation in the cache hit ratio of the NDN routers CS,

resulting in a decreased likelihood of a cache hit for requests

coming from legitimate consumers [10].
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III. RELATED WORK

Authors of [15] propose a secure framework called FuRL,

which is based on Fuzzy Restricted Boltzmann Machine, to

detect and mitigate network anomalies in NDN. The proposed

framework includes a reward-based cache replacement (Re-

Bac) algorithm to avoid CPAs. One of the metrics used in

the methodology is the count of interest packets, which can

be used to characterize the nature of the consumer (mali-

cious/legitimate). The proposed framework may require sig-

nificant computational resources, which may not be feasible in

resource-constrained environments as the NDN environment.

Yang Cao et al. [16], propose an attack detection and

defence schemes based on the consumers behaviour and

network parameters such as: the number of interest packets

in the network, the number of requesters, the distribution of

the requesters, the core network traffic and the Cache Hit

Ratio (CHR). The method uses SVM algorithm to distin-

guish between the legitimate and the malicious contents. The

suggested mechanism might encounter numerous challenges,

with the foremost concern being its potential to influence



the performance of the NDN network in relation to CPU

utilization, memory overburden, and space storage depletion.

Authors of [17] propose a scheme based on Gini Impurity

to detect network under cache pollution attack. they introduce

monitor metrics for quantitative anomaly detection of requests.

The paper also proposes an Interest throttling mechanism

based on trust to reinforce NDN network under CPA. More-

over, the paper proposes a mechanism that generates attack

tables that store malicious requests, contrary to the previous

approach that simply drops malicious interests. However, there

are some limitations to this paper, which are as follows: (1)

The proposed defence mechanism may require additional com-

putational resources, which may not be feasible in resource-

constrained NDN environments. (2) The paper assumes that

the attacker is not able to compromise the trust mechanism,

which may not be true in all scenarios. (3) The proposed

defence mechanism may not be effective against sophisticated

attackers such as in LDA, which can escape the defence

pattern.

Naveen Kumar et al. [18] introduce a new parameter for

detecting CPA which is based on the number of distinct users

requesting interest packets for a content over a period of

time. This parameter is used to measure the popularity of

contents and is not affected by the local popularity of the

attacker’s content. By analysing the number of distinct users

requesting a content, the proposed approach can be identified

if an attacker is repeatedly requesting unpopular contents to

pollute the cache. This new parameter is a key component

of the Interface-Based Popularity Caching (IBPC) approach,

which aims to mitigate CPA in NDN. The IBPC approach

caches content based on the number of interfaces that receive

the content, and the popularity of contents is proportional to

the ratio of the number of interfaces on which the content

is received to the total number of interfaces. The mechanism

doesn’t consider the potential of changes in the pattern of the

attack, such as the variation of the contents demanded by the

malicious users, which can impact the overall the cache of the

CS in NDN routers.

IV. DRL-BASED CPA DETECTION SOLUTION

The objective of our agent is to systematically examine all

feasible states in order to identify the correct decision and

decrease the frequency of CPA attack patterns. In this scenario,

our agent carries out two distinct phases: (1) the exploration

phase and (2) the exploitation phase. During the exploration

phase, our agent utilizes the state space set as an input for

our neural network to acquire knowledge about all potential

actions in accordance with the optimal q-values obtained. Con-

sequently, the agent strives to maximize the current reward and

optimize all feasible pairs of (state, q-value) to attain higher

future rewards. The subsequent step involves the exploitation

phase, where our agent employs the resulting optimal pair

of (state, q-value) to determine the associated action. In

this context, the agent achieves a balance between the two

aforementioned phases by employing the ϵ-greedy strategy,

wherein the agent explores with a probability of epsilon and

exploits with a probability of 1-ϵ. This approach enables the

agent to gradually transition from exploration to exploitation

as it gains more knowledge about the environment, ensuring

that it explores new actions while also leveraging its existing

knowledge to enhance performance.

In order to properly model our Deep Q-learning mechanism

[11], several essential elements need to be specified such as:

• Q-Value Prediction: The Deep Q-Learning is a neural

network that predicts the Q-values for given states and

actions. This prediction is denoted by Q(s, a; θ).
• Target Q-Values: The target Q-values are the expected

future rewards plus the discounted estimated Q-value of

the next state. These are denoted by Qtarget(s
′, a′; θ−).

• Experience Replay Buffer: The replay buffer R stores

past experiences, which consist of the current state, action

taken, received reward, and the next state [12]. From this

buffer, we sample a mini-batch of transitions as shown in

Figure 2.

• Loss Function: The loss function is the mean-squared

error between the predicted Q-values and the target Q-

values. It is denoted by L(θ).
• Parameter Update: The parameters of the Q-Learning, θ,

are updated to minimize the loss function using gradient

descent.

• Target Network Update: The target network, θ−, is pe-

riodically updated to match the parameters of the Deep

Q-Learning. This helps stabilize the learning process.

The full update equation of the Deep Q-Learning algorithm

can be written as follows:

L(θ) = E(s, a, r, s′) ∼ R[(r+γmax a′Qtarget(s
′, a′; θ−)−Q(s, a; θ))]2

Where:

• L(θ) is the mean-squared error loss function.

• θ are the parameters of the main network.

• θ− are the parameters of the target network.

• R denotes the replay buffer.

• Q(s, a; θ) is the Q-value predicted by the main network

for state s and action a.

• Qtarget(s
′, a′; θ−) is the Q-value estimated by the target

network for the next state s′ and the best action a′.

• γ is the discount factor.

• r is the immediate reward.

The goal is to minimize this loss function to improve the

network’s ability to predict the Q-values accurately. For ease

of description, as follows the steps that our mechanism is using

to achieve its goal:

1) The Q-learning predictions are computed using the for-

ward pass through the network with the current state and

action as inputs.

2) The target Q-values are computed using the maximum

Q-value over all possible actions for the next state,

according to the target network.

3) The loss function is the mean-squared error between the

predicted Q-values and the target Q-values.



Fig. 3. DFN Topology.

4) The gradients of the loss function with respect to the

network parameters are computed.

5) The network parameters are updated using stochastic

gradient descent (SGD) with a learning rate (α) and the

computed gradients.

6) Periodically, the target network parameters are copied

from the Q-learning parameters to stabilize learning.

This process is repeated for a number of episodes until

the Deep Q-Learning parameters converge, and the agent is

able to make near-optimal decisions based on the learned Q-

values. Furthermore, our agent is defined by three essential

components, namely the State space, the Action, and the

Reward function.

First, the state space of our agent presents the input of

the neural network architecture. Based on our assessments on

overall most impactful metrics that can be influenced by the

presence by the CPA attack in our previous works [9] [13]

[14], we defined the state space as combination of three major

metrics: (1) The Average Cache Hit Ratio (AVG-CHR), (2)

The Average Inter-Arrival Time (AVG-IAT) and (3) The Hop

Count variation (HC):

S =
[

AV G− CHR; AV G− IAT ; HC
]

Second, the Action is modelled as follows:

A =

{

Discard Interest i

Process Interest i

Finally, the reward scaling function is given by:

R = {AV G−CHRt+1 −AV G−CHRt}

V. PERFORMANCE EVALUATION

To assess the performance of our solution, we performed

several simulations using the official network simulator (NS3)

and the NDNSim2.8 module. We used the DFN topology as

shown in Figure 3, in which we included four attacker nodes

and eight legitimate consumers. The DRL hyper-parameters

and the miscellaneous parameters are listed in Table I as

well as the hardware and software configurations. Using these

settings, we evaluated our solution in terms of CPA detection

accuracy, AVG-CHR and memory usage.

TABLE I
SIMULATION PARAMETERS

Environment Settings Description

Operating System (OS) Ubuntu 18.04.5 amd64
Memory (RAM) 20 GB
Processor (CPU) Intel Core i3-1005G1

Graphic Card (GPU) Nvidia 920 2 GB

NDN network Parameter Value

Simulation time 106s
Number of Nodes 29

Number of Legitimate Consumers 8
Number of Attackers 4

Consumer type ConsumerZipfMandelbrot
Attacker’s Interest rate 120, 160, 200, 220, 260

Legitimate Consumers Interest rate 120
Time of Launching the Attack Attack = 8s and No Attack = 6s

Router CS size 150
Cache policy LRU

Our Agent Hyper-parameter Value

Policy Hidden Sizes [128,128,256,256]
Policy Hidden Activation ReLU

Discount Factor 0.8
Learning Rate 0.1

Epsilon (ϵ) 0.99
Optimizer ADAM

Miscellaneous parameters Value

Evaluation Interval 1222
Evaluation Episodes 10

A. Accuracy and AVG-CHR while varying the DRL hyper-

parameters

1) Variation of the epsilon (ϵ): The epsilon parameter in

the epsilon-greedy technique is a crucial factor that determines

the equilibrium point between exploration and exploitation in

reinforcement learning algorithms. The epsilon-greedy strat-

egy is a well-established approach utilized for determining

the course of action that an agent should undertake. This

particular strategy entails primarily selecting an action that

maximizes the expected reward, while occasionally opting for

a random action with a probability of epsilon. By embracing

this methodology, the agent is able to effectively investigate the

environment and potentially uncover superior actions, all while

capitalizing on its existing knowledge in order to optimize

the overall reward. To determine the optimal epsilon value,

Figures 4 and 5 illustrate how accuracy and the average

cache hit ratio (AVG-CHR) change with different epsilon

values. By simulating a range of epsilon values from 0.1 to

0.99, we identified that 0.99 yields the highest performance.

Specifically, it achieves 98.87% accuracy and an 80% AVG-

CHR, surpassing all lower tested values. The reason behind

this specific value, that in the case of detecting CPA attack in

NDN architecture, this value encourages the agent to explore

wider range of actions specially that attack pattern is too

dynamic and can be unpredictable. To summarize, it’s better

to deeply explore in dynamic environment than exploiting and

being more optimistic about the action taking [14].



2) Variation of the Learning Rate (α) and the Discount

Factor (γ): The learning rate (α) and the discount factor (γ)

are two important parameters in our DRL-based CPA detection

mechanism. The learning rate α determines how much the new

obtained information influences the update of the Q-Value for

a state-action pair, while the discount factor (γ) determines the

importance of future rewards in the Q-Value update. Figures

6 and 7 illustrate our exploration of various α and γ values,

ranging from 0.1 to 0.9. Among these, the most favourable

outcomes were observed when α = 0.1 and γ = 0.9, achieving

an accuracy of 98.87% and an AVG-CHR of 80%. These

values outperformed the other combinations tested. This value

of α is obtained because our agent takes longer time to update

the Q-Value as per definition, a high learning rate means that

the new information will significantly update the Q-value.

This can be considered as an advantage for our mechanism,

where a lower α value indicates a more cautious approach in

action selection. On the other hand, the selection of γ stems

from our agent’s consideration of both immediate rewards and

future rewards in the detection process of our DRL-based

mechanism. As defined, a smaller discount factor emphasizes

immediate rewards (near 0), while a larger discount factor

places more weight on future rewards (near 0.99). Balancing

between the Long-Term and short-term rewards, potentially

making the agent more cautious and strategic in its actions of

processing an interest or discarding it.

B. Memory usage evaluation

In this subsection, we assess the memory usage metric.

Figure 8 illustrates the memory consumption of our DRL-

based solution in comparison to our previous solutions, ICAN

[13] and Q-ICAN [14].

ICAN [13] offers a robust solution for detecting CPA

attacks, particularly in cases involving simple attack pat-

terns. Despite utilizing multiple parameters—including Aver-

age Cache Hit Ratio, Average Inter-Arrival Time (IAT), Hop

Count variation, and prefix variation—its memory consump-

tion remains relatively low. This is attributed to its reliance on

statistical measures for the detection process, resulting in an

approximate memory usage of 135.849 MiB.

On the other hand, the Q-ICAN solution [14] consumes

approximately 160.509 MiB which is low compared to other

state-of-the-art solutions. In fact, this mechanism is based

on the Q-Tables, where each cell corresponds to a state-

action pair, and the value in each cell represents the expected

return (or Q-value) for that pair. To properly calculate the

memory usage of this mechanism, we need to calculate the

memory consumption in each entry in the Q-Table. The

memory consumption of each entry in the Q-table depends

on the data type used to store the Q-values. Then the resulting

values are multiplied by the number of actions and states.

However, the DRL-based solution is proposed basically to

outperform Q-ICAN and that’s because Q-ICAN is limited

in terms of states number which is solved by applying DRL.

In Q-ICAN, increasing the number of entries in the Q-table

directly correlates with increased memory consumption. This
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differs from the DRL-based solution, where memory usage for

each neuron in a layer is primarily influenced by the weights

it maintains for neurons in the preceding layer, along with a

bias term. Therefore, to accurately gauge the memory usage

of our DRL approach, we must calculate the consumption of

each neuron’s weight in addition to the bias value. Moreover,

we need to consider the unpredictable limit of the pair state

action in the running process of the simulation, and add to

that the buffer replay and the action (interaction) between our

mechanism and the NDN router. Consequently, the average

memory usage is approximately 365,749 MiB. This level of

memory usage is relatively low when compared to state-of-

the-art solutions and is also not significantly higher than our

previous solution.
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VI. CONCLUSION

This paper introduces a novel mitigation mechanism based

on deep reinforcement learning (DRL).

The mechanism demonstrates a remarkable level of ac-

curacy in real-time monitoring, detection, and mitigation of

the cache of the Content Store (CS) in the presence of one

of the most influential attacks in NDN, namely the Cache

Pollution Attack (CPA). Additionally, our mechanism achieves

high values of Average Cache Hit Ratio (AVG-CHR), making

it a strong candidate for a new replacement policy that can

significantly enhance the performance of this crucial compo-

nent in the NDN architecture. Overall, this paper proposes a

scaling approach for the parameters of our novel mechanism to

effectively detect the CPA attack. As a perspective, we aim to

assess our DRL mitigation method using a carefully designed

testbed that replicates real-world conditions accurately.
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