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THE VOLUME INTRINSIC TO A COMMUTATIVE GRADED ALGEBRA

KARIM ALEXANDER ADIPRASITO, STAVROS ARGYRIOS PAPADAKIS,
AND VASILIKI PETROTOU

Abstract. Recent works of the authors have demonstrated the usefulness of considering
moduli spaces of Artinian reductions of a given ring when studying standard graded rings
and their Lefschetz properties. This paper illuminates a key aspect of these works, the be-
haviour of the canonical module under deformations in this moduli space. We demonstrate
that even when there is no natural geometry around, we can give a viewpoint that behaves
like it, effectively constructing geometry out of nothing, giving interpretation to intersection
numbers without cycles. Moreover, we explore some properties of this normalization.

1. Introduction

The fundamental class of a variety or manifold is an important invariant, not least of
all because it allows us to formulate Poincaré Duality. And it has a natural geometric
interpretation as well: in a d-dimensional smooth manifold, de Rham cohomology associates
it with the integration of a d-form over the manifold. And at this point, we can study
what happens to the fundamental class under small deformations of the manifold. And if
it makes sense to fix a d-form ω under this deformation, how does the evaluation under the
fundamental class change?

We are in particular inspired by another case: That of toric varieties. If we consider a
complete, rationally smooth toric variety of dimension d, we can consider it as part of an
entire moduli space: we consider the family of all toric varieties with the same underlying
combinatorics, or in other words, the same equivariant cohomology, parametrized by the
torus action. Say it makes sense to consider an element ω of the top cohomology in such a
way that we can study it under a deformation of the torus action. How does the evaluation
change when we vary in the moduli space?

This question is invaluable, in particular in recent works of the authors, and studying
it led to advances in combinatorial Lefschetz theory. It is, moreover, a first step towards
understanding these new theories.

Let us once more examine the case of toric varieties, and explain what we mean.
Consider a unimodular complete fan Σ in Rd, and the toric variety X associated to it.

There are natural ways of thinking about the cohomology ring of XΣ.
Here are two:
First, we can consider the ring of conewise polynomial functions P(Σ); it is isomorphic

to the equivariant cohomology ring of XΣ.
The cohomology ring of XΣ is equally easy to compute:

A(Σ) := P(Σ)
/
⟨G⟩

where G is the ideal generated by global polynomials. It is naturally a Poincaré duality
algebra, so that

A(Σ)d ∼= R.
But what is the map? What is

vol : A(Σ)d ! R.
It is nothing more natural than to think about this map, also known as the volume map,
in terms of de Rham cohomology. We then obtain, assuming the fan Σ is unimodular, or
equivalently XΣ is smooth, a natural normalization. Consider for instance the natural basis
for A(Σ)1: the characteristic function of a ray χρ is conewise linear and vanishes on each
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ray of Σ but ρ, where it is positive. Let vρ denote the point on ρ where it attains the value
1.

Then, if (ρi)i∈[d] is a collection of d rays of Σ, then

vol

(∏
i∈d

χρi

)
=

∣∣∣∣ 1

∆vρi

∣∣∣∣ ,
where ∆vρi denotes the determinant of the d× d matrix with i-th row equal to vρi .

That is, in a circumvent way, what happens in toric varieties, where the above recovers
the natural degree map coming from algebraic geometry, computing intersection numbers
faithfully. As most of what we consider takes place in the realm of commutative algebra, and
degree has two possible meanings, we shall forgo calling it degree throughout, and instead
refer to this as the volume map throughout.

Second, to explain this another way, let us switch models, and discuss what happens in
Stanley-Reisner rings, or rather, face rings.

Consider Σ a triangulated sphere of dimension d−1, and k an infinite field. The face ring
of Σ is k[Σ], the quotient of the polynomial ring k[x] (with indeterminates indexed by the
vertices) by the ideal IΣ generated by nonfaces.

To obtain a Poincaré duality algebra, we consider the quotient of k[Σ] by Θk[Σ], where
Θ = (θi,j)x is a collection of d linear forms, encoded by a matrix (θi,j) of entries in k whose
columns are indexed by the vertices of Σ and the indeterminates of the face ring. If we think
of the fundamental class of the simplicial homology as a cycle µ = µΣ, then for F a facet of
Σ we have

vol

(∏
i∈F

xi

)
=

sgnµ F

∆((θi,j))|F

where sgnµ F is the oriented sign of F and ∆((θi,j))|F is the determinant of the minor of
(θi,j) cut out by F .

So, we have an, in several ways natural, normalization of the volume map. And we have
established several times now how powerful understanding this function can be. Let us recall
why, and then aim at understanding the volume map in general.

1.1. Motivation: Anisotropy and generic Artinian reductions. One of the most im-
portant motivations towards understanding the geometry of volume maps arises in Lefschetz
theory: In [1], it was observed that the hard Lefschetz property for a Gorenstein standard
graded ring R is true if for a sufficiently large set of ideals I in A(R), an Artinian reduction
of R, the Poincaré pairing is non-degenerate when restricted to I. In [48], and subsequently
[2, 3], one studies the most extreme form of this principle: non-degeneracy at principal
ideals.

In other words, we consider u in A(R) of degree at most k, k less or equal to d/2, d
being the socle degree, and investigate nonvanishing of u2. We may assume that k = d/2.
Now, there is an issue here: How do we choose the appropriate Artinian reduction, indexed
by the linear system of parameters Θ = (θi,j)x? The trick is to pass from R, which is a
quotient of a polynomial ring over a field k, to a quotient of a polynomial ring over the
purely transcendental field extension k(θi,j).

Now, the idea is simple: We want to understand vol(u2) as a rational function in the
variables (θi,j).

In [48] and [2], this is then understood by considering differential identities for vol(u2) to
understand the case of face rings.

In [3], we explore instead semigroup algebras associated to lattice polytopes, and under-
stand vol(u2) by exploring Parseval-Rayleigh identities for vol(·).

But that leaves out the main question: How does vol(·) behave at all, how does it depend
on θi,j? Our ultimate goal is to understand this problem towards the following conjecture:
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Conjecture 1.1. Consider R a reduced standard graded Gorenstein ring. Then a generic
Artinian reduction of R has the strong Lefschetz property.

This is motivated by a slightly less general conjecture of Stanley [20]: he asks whether
the same is true for integral domains R (which is obviously more restrictive than reduced).
Alas, to start with the methods of generic Lefschetz theory and attack either conjecture, the
first question one must ask, and which we tackle here, is the question: What is vol(·)? To
learn to speak of it concretely is a main goal of this paper.

1.2. Plan for the paper. Philosophically speaking, our normalization is the minimal poly-
nomial identity the volume map satisfies. We make this precise in the next section by intro-
ducing the notion of a generic polynomial reduction. We then introduce the Kustin-Miller,
or KM normalization, using this notion, and immediately note two alternative ways of doing
so. We then illustrate our theory on some important examples. To make the theory more
flexible, we finally introduce relative normalization, and show that it explains several phe-
nomena of the normalization more succinctly, and allows us to explain the normalization for
semigroup algebras of lattice polytopes introduced and studied in [3].

2. Generic polynomial reduction

We introduce and study the notion of generic polynomial reduction of a graded algebra,
which will play an essential role in the definition of volume normalization in Section 3.

Assume m ≥ 1 and k is a field. We consider the polynomial ring k[x1, . . . , xm], where
the degree of the variable xi is equal to 1, for all 1 ≤ i ≤ m. Assume I ⊂ k[x1, . . . , xm] is a
homogeneous ideal. We denote by d the Krull dimension of the quotient ring k[x1, . . . , xm]/I
and assume d ≥ 1.

We assume θi,j are new variables, and we set Rup to be the graded polynomial ring

Rup = k[x1, . . . , xm, θi,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m].

We equip Rup with a bidegree as follows: We say that an element u ∈ Rup is bihomogeneous
of degree (b, c) if when considered as a polynomial in xi is homogeneous of degree b and
when considered as a polynomial in θi,j is homogeneous of degree c. We set, for 1 ≤ i ≤ d,

fi =

m∑
j=1

θi,jxj .

We denote by Iup the ideal of Rup generated by the subset I ∪ {f1, . . . , fd}, and by Nup the
ideal

Nup = Iup : (x1, . . . , xm).

Definition 2.1. We define the generic polynomial reduction of k[x1, . . . , xm]/I to be the
Rup-algebra

Rup/Iup.

In Subsection 2.2 we will prove the following important proposition.

Proposition 2.2. We have

dim(Rup/Iup) = dm.

In other words, the Krull dimension of Rup/Iup is equal to dm.

It is clear that the ideals Iup and Nup are bihomogeneous, hence it follows that Nup/Iup
is a bihomogeneous ideal of the bigraded ring Rup/Iup. For b ≥ 0 we set

(Nup/Iup)(b,−) =
⊕
c≥0

(Nup/Iup)(b,c).

Since xi(Nup/Iup) = 0 for all 1 ≤ i ≤ m, it follows that (Nup/Iup)(b,−) is an Rup-submodule
of Nup/Iup.
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In the following, h1, . . . , hs denote s bihomogeneous elements of Rup with the property
that h1+Iup, . . . , hs+Iup is a minimal generating set for the Rup-module Nup/Iup. Moreover,
degxht denotes the degree of ht with respect to the variables xj .

We denote by k[θi,j ] the polynomial ring

k[θi,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m],

by E = k(θi,j) the field of fractions of k[θi,j ], and we set

Rdown = E[x1, . . . , xm],

with deg(xi) = 1 for all i.
We denote by Idown the ideal of Rdown generated by the subset I ∪ {f1, . . . , fd}, and by

Ndown the ideal

Ndown = Idown : (x1, . . . , xm).

Remember now that the generic Artinian reduction A of k[x1, . . . , xm]/I is the Artinian
E-algebra

A = Rdown/Idown.

We denote by e the top degree of A, this means that the e-th graded component Ae of A is
nonzero and As = 0 when s ≥ e+ 1. Obviously Ae ⊂ Socle(A), where

Socle(A) = {u ∈ A : uxi = 0 for all 1 ≤ i ≤ m}

denotes the socle of A . Moreover, from the definition of Ndown it follows that

Ndown/Idown = Socle(A).

We set

S = k[θi,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m] \ {0}.
Clearly S is a multiplicatively closed subset of Rup. Every element of Rdown can be written
in the form p/u with p ∈ Rup and u ∈ S. It follows that Rdown and S−1Rup are naturally
isomorphic. In particular, there exists a natural injective localization map Φ1 : Rup ! Rdown

that sends p to p for all p ∈ Rup.
It is clear that Φ1(Iup) ⊂ Idown and Φ1(Nup) ⊂ Ndown. Consequently, there is an induced

homomorphism

Φ : Nup/Iup ! Ndown/Idown = Socle(A)

such that Φ(u+ Iup) = u+ Idown for all u ∈ Nup. The map Φ respects degrees, in the sense
that

Φ((Nup/Iup)(b,−)) ⊂ (Ndown/Idown)b

for all b ≥ 0.

Proposition 2.3. We have

(Φ(Nup/Iup)) = Socle(A).

In other words, the ideal of A generated by the image of Φ is equal to Socle(A).

Proof. Since Idown = S−1Iup, the result follows from [6, p. 42, Remark 1]. □

Corollary 2.4. Assume i ≥ 0. Then

{ Φ(ht + Iup) : degxht = i }

is a generating set for the E-vector space (Socle(A))i.

Proof. Since for all 1 ≤ j ≤ m we have xj(ht + Iup) = 0 + Iup, we have that the result
follows from Proposition 2.3. □

Remark 2.5. An immediate consequence of Corollary 2.4 is that if i ≥ 0 has the property
that (Socle(A))i is nonzero, then there exists t such that degxht = i. In particular, since
(Socle(A))e = Ae ̸= 0, there exists ht with degxht = e.
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Remark 2.6. See Examples 2.14 and 2.15 for two examples where Φ is not injective and
(for suitable i) the set

{ Φ(ht + Iup) : degxht = i }

is not a basis of Ai as E-vector space.

Corollary 2.7. The ideal (x1, . . . , xm) of Rup is a minimal associated prime ideal of Rup/Iup.

Proof. We have Iup ⊂ (x1, . . . , xm). Since dimRup/(x1, . . . , xm) = dm and by, Proposi-
tion 2.2, dimRup/Iup = dm, we get that the ideal (x1, . . . , xm) is a minimal prime of Iup.
Hence, by [27, Theorem 3.1 a.] it is also an associated prime. □

Corollary 2.8. Assume k[x1, . . . , xm]/I is Cohen-Macaulay. Then Rup/Iup is Cohen-
Macaulay.

Proof. Using the assumption, we get by Proposition 2.2 that Rup/Iup is Cohen-Macaulay,
since it is the quotient of Rup/(I) by a homogeneous regular sequence. □

Proposition 2.9. Assume Rup/Iup has no embedded associated prime ideals. Then we have
that the map Φ : Nup/Iup ! Socle(A) is injective.

Proof. Suppose u ∈ Nup \ Iup has the property that Φ(u + Iup) = 0. Since, by [6, p. 39,
Corollary 3.4 iii)], Φ is a localization map there exists, by [6, p. 37], nonzero p ∈ k[θi,j ] such
that pu ∈ Iup. Hence

(x1, . . . , xm, p) ⊂ Iup : (u).

By [27, Proposition 3.4] there exists an associated prime q of Rup/Iup such that

(x1, . . . , xm, p) ⊂ q.

This is a contradiction, since by Corollary 2.7 (x1, . . . , xm) is an associated prime of Rup/Iup
and, by assumption, Rup/Iup has no embedded associated prime ideals. □

Remark 2.10. See Examples 2.14 and 2.15 for two examples where Φ is not injective.

Corollary 2.11. Assume k[x1, . . . , xm]/I is Cohen-Macaulay. Then we have that the map
Φ : Nup/Iup ! Socle(A) is injective.

Proof. By Corollary 2.8 Rup/Iup is Cohen-Macaulay, hence by [7, p. 58, Theorem 2.1.2] it
has no embedded associated prime ideals. The result follows from Proposition 2.9. □

Since k[θi,j ] is a subring of Rup, it is natural to consider, for b ≥ 0, (Nup/Iup)(b,−) also as
a k[θi,j ]-module.

Proposition 2.12. Assume that the Rup-module (Nup/Iup)(e,−) is cyclic and denote by u a
generator. Then the multiplication map

su : k[θi,j ]! (Nup/Iup)(e,−)

with

su(p(θi,j)) = p(θi,j)u

for all p(θi,j) ∈ k[θi,j ], is an isomorphism of k[θi,j ]-modules.

Proof. It is clear that su is a homomorphism of k[θi,j ]-modules. Since xj(Nup/Iup) = 0 for
all 1 ≤ j ≤ m, the map su is surjective by the assumption that u generates (Nup/Iup)(e,−)

as an Rup-module.
Assume p(θi,j) ∈ k[θi,j ] is an element in the kernel su. By Corollary 2.4, we have that Ae

is a 1-dimensional vector space over E and Φ(u) is an E-basis of Ae. Hence, su(p(θi,j)) = 0
implies p(θi,j)Φ(u) = 0 which imples p(θi,j) = 0. Therefore, su is also injective. □
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2.1. Examples and Questions. In this subsection we discuss a number of examples and
questions about the generic polynomial reduction. Related Macaulay2 [28] code is contained
in the file http://users.uoi.gr/spapadak/volumem2codev1.txt.

Example 2.13. Assume k is any field and k[x1, . . . , xn]/I is Gorenstein. Recall that e
denotes the top degree of the generic Artinian reduction A of k[x1, . . . , xn]/I. We will
prove in Section 5 that the Rup-module Nup/Iup is cyclic and generated by an element
u ∈ (Nup/Iup)(e,−). For an explicit computation of u in the case where k[x1, . . . , xn]/I is the
face ring of a simplicial sphere, see Section 6.

Example 2.14. Assume k is any field and I = (x51, x1x2) ⊂ k[x1, x2]. Then, Macaulay2
computations suggest the following: The generic Artinian reduction A of k[x1, x2]/I has
Hilbert function (1, 1, 0, 0, . . . ), hence the top degree of A is 1. The Rup-module Nup/Iup is
minimally generated by its subset

{ θ1,2x2 + Iup, x41 + Iup }.
This implies that (Nup/Iup)(1,−) is a cyclic Rup-module with generator θ1,2x2+ Iup and that

Φ is not injective, since x41 + Iup is a nonzero element in the kernel.

Example 2.15. Assume k is any field and I = (x51, x1x2, x1x3) ⊂ k[x1, x2, x3]. Macaulay2
computations suggest the following: The generic Artinian reduction A of k[x1, x2, x3]/I has
Hilbert function (1, 1, 0, 0, . . . ), hence the top degree of A is 1. The Rup-module Nup/Iup is
minimally generated by its subset {h1 + Iup, h2 + Iup, h3 + Iup}, where

h1 = θ1,2x2 + θ1,3x3, h2 = θ2,2x2 + θ2,3x3, h3 = x41.

It holds θ2,1(h1 + Iup) − θ1,1(h2 + Iup) = 0 and Φ restricted to (Nup/Iup)(1,−) is injective.
Therefore, (Nup/Iup)(1,−) is not a cyclic Rup-module and Φ is not injective, since h3 + Iup is
a nonzero element in the kernel.

Example 2.16. Assume k is any field andD is the simplicial complex triangulating the torus
S1 × S1 described in [53, p. 70, Exerc. 5.1.8]. We denote by I ⊂ k[x1, . . . , x10] the Stanley-
Reisner ideal of D. We remark that by Reisner’s criterion ([7, p. 235, Corollary 5.3.9])
k[x1, . . . , x10]/I is not Cohen-Macaulay. Macaulay2 computations suggest the following: The
generic Artinian reduction A of k[x1, . . . , x10]/I has Hilbert function (1, 7, 13, 1, 0, 0, . . . ),
while the socle of A has Hilbert function (0, 0, 6, 1, 0, 0, . . . ). The Rup-module Nup/Iup is
minimally generated by 7 homogeneous elements u1, . . . , u7 such that ui ∈ (Nup/Iup)(2,−)

for 1 ≤ i ≤ 6 and
u7 = [8, 9, 10]x8x9x10 + Iup ∈ (Nup/Iup)(3,−).

Here [8, 9, 10] denotes the determinant of the 3 × 3 submatrix of the 3 × 10 matrix [θi,j ]
obtained by keeping columns 8, 9 and 10. Moreover, we have that

Φ(u1), . . . ,Φ(u7)

is an E-basis of Socle(A). We remark that (up to sign) in the paper [2] the volume nor-
malization on A, which was denoted there by deg, was defined by the condition that Φ(u7)
maps to 1.

Example 2.17. Assume that k is any field, R = k[x1, x2, g1,1, g1,2, g2,2] and

I = (g) ⊂ R,

where
g = g1,1x

2
1 + g1,2x1x2 + g2,2x

2
2

is the generic degree 2 hypersurface in 2 variables xi. We write g = p1x1 + p2x2, for some
(non-unique) p1, p2 ∈ R and set

u = (−p1θ1,2 + p2θ1,1) ∈ Rup.

Then, by Subsection 5.1 below we have that (Iup : (x1, x2))/Iup is a cyclic Rup-module gen-
erated by u+ Iup. We denote by vol : A1 ! E the volume normalization linear isomorphism

http://users.uoi.gr/spapadak/volumem2codev1.txt
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uniquely specified by the condition that u+ Idown maps to 1. In the special case where the
field k has characteristic 2, one can show the Parseval Equations

(1) vol(x1) = g1,1θ1,2(vol(x1))
2 + g1,2θ1,1(vol(x1))

2 + g2,2θ1,2(vol(x2))
2

and

(2) vol(x2) = g1,1θ1,1(vol(x1))
2 + g1,2θ1,2(vol(x2))

2 + g2,2θ1,1(vol(x2))
2,

where, for 1 ≤ i ≤ 2, by abuse of notation we denote vol(xi + Idown) by vol(xi). It is
interesting to compare Equations (1) and (2) with the Parseval Equations obtained in the
reference [3, Section 5] and the Differential Identities conjectured in [48, Section 14] and
proven in [36, Section 4].

Question 2.18. The strongest one can hope is that

Φ(h1 + Iup), . . . ,Φ(hs + Iup)

is an E-basis of Socle(A). This happens, by the results in Section 5, if k[x1, . . . , xm]/I
is Gorenstein. It also happens in the torus triangulation Example 2.16. However, it fails
in Examples 2.14 and 2.15. We believe it will be interesting to investigate under which
conditions on I it holds.

Question 2.19. Another interesting question is under which conditions on I the map
Φ : Nup/Iup ! Socle(A) is injective. By Corollary 2.11 this is the case if k[x1, . . . , xm]/I
is Cohen-Macaulay. It also happens in the non-Cohen-Macaulay torus triangulation Exam-
ple 2.16, but it fails in Examples 2.14 and 2.15.

Question 2.20. Assume that the dimension of the top degree Ae as E-vector space is 1. We
believe it will be worth to investigate under which conditions the Rup-module (Nup/Iup)(e,−)

is cyclic. This is the case, by the results in Section 5, if k[x1, . . . , xm]/I is Gorenstein, in the
torus triangulation Example 2.16 and in Example 2.14. However, it fails in an interesting
way in Example 2.15.

2.2. Proof of Proposition 2.2.

Proposition 2.21. Assume R is a commutative ring of finite Krull dimension, I is a proper
ideal of R, s ≥ 1 and f(i,1), f(i,2) ∈ R, for 1 ≤ i ≤ s. We set, for 1 ≤ i ≤ s,

gi = f(i,1)f(i,2).

We asssume that for any sequence j1, . . . , js, with jt ∈ {1, 2} for all t, we have

dimR/(I, f(1,j1), f(2,j2), . . . , f(s,js)) = dimR/I − s.

Then,
dimR/(I, g1, . . . , gs) = dimR/I − s.

Proof. By the definition of Krull dimension

dimR/I = sup {dimR/p : p ∈ Spec(R), I ⊂ p}.
Assume p ∈ SpecR with (I, g1, . . . , gs) ⊂ p. Since p is prime and gi ∈ p for all i, there exists
a sequence j1, . . . , js with jt ∈ {1, 2} for all t, such that

(I, f(1,j1), f(2,j2), . . . , f(s,js)) ⊂ p.

By the assumptions

dimR/(I, f(1,j1), f(2,j2), . . . , f(s,js)) = dimR/I − s,

hence dimR/p ≤ dimR/I − s, which implies that

(3) dimR/(I, g1, . . . , gs) ≤ dimR/I − s.

Conversely, there exists p ∈ Spec(R) with

(I, f(1,1), f(2,1), . . . , f(s,1)) ⊂ p
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and dimR/p = dimR/I − s. Since

(I, g1, . . . , gs) ⊂ (I, f(1,1), f(2,1), . . . , f(s,1)) ⊂ p

we get

(4) dimR/(I, g1, . . . , gs) ≥ dimR/I − s

Combining Inequalities (3) and (4) the result follows. □

Remark 2.22. Assume k is a field, k ⊂ F is a field extension and A is a finitely generated
k-algebra. Then, by [41, Tag 00P3]

dim(A⊗k F ) = dimA.

We now give the proof of Proposition 2.2.

STEP 1. Using Remark 2.22, by passing to an infinite field extension of k (for example the
field k(t) of rational functions over k in one variable) it is enough to prove the proposition
assuming that k is infinite.

STEP 2. Since Rup/(I) is isomorphic to

(k[x1, . . . , xm]/I)[θi,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m]

we have that

dimRup/(I) = d+ dm.

Hence, by [7, p. 414, Proposition A.4] we have

(5) dimRup/Iup ≥ d+ dm− d = dm.

STEP 3. Assume ci,j ∈ k are Zariski general and consider the ideal Q of Rup, where

Q = Iup + (θi,j − ci,jθi,1 : 1 ≤ i ≤ d, 2 ≤ j ≤ m).

It is clear that Rup/Q is isomorphic to

k[x1, . . . , xm, θi,1 : 1 ≤ i ≤ d]/(I, θ1,1q1, . . . , θd,1qd),

where, for 1 ≤ i ≤ d, we have qi = x1+
∑

2≤j≤m ci,jxj . Using that the ci,j are Zariski general

and [7, p. 37, Theorem 1.5.17 (c)], we get from Proposition 2.21 that

dimRup/Q = d.

Hence, [7, p. 414, Proposition A.4] implies that

(6) dimRup/Iup ≤ d+ (m− 1)d = dm.

Proposition 2.2 follows by combining Inequalities (5) and (6).

3. KM normalization

We continue using the notations of Section 2. Motivated by Proposition 2.12, Exam-
ple 2.16, Example 2.17 and Remark 6.3, we give the following definition of volume normal-
ization.

Definition 3.1 (KM normalization). Assume that the Rup-module (Nup/Iup)(e,−) is cyclic,
and denote by u a generator. By Corollary 2.4, we have that Ae is a 1-dimensional vector
space over E and Φ(u) is an E-basis of Ae. We define the volume normalization linear
isomorphism vol = volu : Ae ! E to be the unique linear map with the property that Φ(u)
maps to 1.

Remark 3.2. Assume that the Rup-module (Nup/Iup)(e,−) is cyclic, and denote by u1, u2
two generators. Since Rup is bigraded with minimum bidegree (0, 0) and (Rup)(0,0) = k, it
follows that there exist c ∈ k \ {0} such that u2 = cu1. Hence, volu1 = cvolu2 .
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Remark 3.3. The assumption that the Rup-module (Nup/Iup)(e,−) is cyclic is satisfied in
the important special case that k[x1, . . . , xm]/I is Gorenstein. We study this case in more
detail in Section 5, where we relate it with the degenerate Kustin-Miller unprojection which is
introduced in Section 4. Moreover, in the even more special case of complete intersections, we
give explicit computations in Subsection 5.1 and relate it to the theory of multidimensional
residues.

Remark 3.4. Assume k[x1, . . . , xm]/I is the face ring of a simplicial sphere D. In Section 6
we give explicit computations of the volume normalization linear isomorphism and we prove
that it is exactly the isomorphism chosen usually in the case of toric varieties, and coincides
with the one arising from de Rham cohomology.

3.1. The viewpoint of Kustin-Miller unprojection. Kustin-Miller unprojection is a
technique originally invented to construct Gorenstein schemes from simpler ones, see [33]
and [49]. In our setting, it has a new use. We now relate the volume normalization to
Kustin-Miller unprojection, therefore justifying the name. We refer to p. 21 for a survey of
Kustin-Miller unprojection, and concern ourselves only briefly with providing two alternate
viewpoints.

We start with a Gorenstein ring S = k[x]
/
I, x = (x1, · · · , xm) over k of Krull dimension

d. As a next step, we introduce additional variables θi,j , where 1 ≤ j ≤ m and 1 ≤ i ≤ d. We
then create new rings, by considering the polynomial ring k[x, θi,j , z] and the polynomials

θi =
∑
j

θi,jxj .

We set

R = k[x, θi,j , z]
/
I + (θi)

and

J = (z, x1, · · · , xm)

The main observation is that we just constructed new Gorenstein rings.

Proposition 3.5. The rings R and R/J are Gorenstein, and J is of codimension one in R

Using the functor HomR(−, R) to the natural short exact sequence

0 −! J −! R −! R/J −! 0

we obtain

0 −! R −! HomR(J,R) −! R/J −! 0

with the last map corresponding to the Poincaré residue map of complex geometry.
In other words, there is a homomorphism φ : J −! R that together with the inclusion

ι : J ↪−! R generates the R-module HomR(J,R). Hence, we may find h in k[x, θi,j ] with
φ(z) = h.

Definition 3.6 (KM normalization, the second). We set vol′(h) = 1.

The following is immediate.

Proposition 3.7. This normalization is well-defined up to an element in k∗, and coincides
with the previous definition up to a factor in k

∗.

3.2. Once more. We give a useful alternative view towards this: Consider the polynomial
ring k[x, θi,j ] and the quotient

T = k[x, θi,j ]
/
I + (θi)

as well as the quotient

U = k[x, θi,j ]
/
(xi).
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We have a natural surjection

T −! U

and hence a map of minimal free resolutions

F•(T ) −! F•(U)

Consider the top nontrivial entry of the resolution; it is

Fd(T ) ∼= Fd(U) ∼= k[x, θi,j ]

but the map of free resolutions induced

ϱ : Fd(T ) −! Fd(U)

is nontrivial: We consider the image ϱ(1), a homogeneous polynomial in the latter, and set

vol′′(ϱ(1)) = 1

. From the general theory of Kustin-Miller unprojection (compare the appendix on p. 21)
we have:

Theorem 3.8. The maps vol, vol′ and vol′′ coincide (up to a factor in k
∗).

4. Degenerate Kustin-Miller unprojection

We refer the reader to the appendix on p. 21 for a survey of Kustin-Miller unprojection.
In the present section we introduce the notion of degenerate Kustin-Miller unprojection.
Our motivation is that in Section 5 this notion will play a key role in the study of the
volume normalization of commutative Gorenstein algebras. We remark that an example of
degenerate Kustin-Miller unprojection appeared in [13].

Assume Rsmall is a local Noetherian ring and Ismall ⊂ Jsmall are two ideals of Rsmall with
the property that both quotient Rsmall/Ismall and Rsmall/Jsmall are Gorenstein of the same
Krull dimension. We call the pair Ismall ⊂ Jsmall the predata for a degenerate Kustin-Miller
unprojection.

We assume z is a new variable and we set R = Rsmall[z]. We denote by I the ideal of R
generated by the set Ismall, and by J the ideal of R generated by the set Jsmall ∪ {z}. We
fix h1, . . . , hs ∈ Rsmall that generate the ideal Ismall of Rsmall, clearly they also generate the
ideal I of R.

Proposition 4.1. We have that the pair (J/I,R/I) satisfies the Kustin-Miller unprojection
assumptions defined in [49] (see also Subsection 8.4). In other words, R/I is Gorenstein
and J/I is a codimension 1 ideal of R/I with the quotient being Gorenstein.

Proof. We denote by d the common Krull dimension of Rsmall/Ismall and Rsmall/Jsmall.
Since I is generated as an ideal of R by the elements hi of Rsmall it follows that R/I is
isomorphic to the polynomial ring (Rsmall/Ismall)[z]. This implies that R/I is Gorenstein
(since Rsmall/Ismall is) of Krull dimension d + 1. The quotient (R/I)/(J/I) is isomorphic
to Rsmall/Jsmall which is Gorenstein of Krull dimension d. □

We call the pair (J/I,R/I) a degenerate Kustin-Miller unprojection pair. Combining
Proposition 4.1 with [49, p. 563] (compare also Subsection 8.4) there exists a short exact
sequence

(7) 0! R/I ! HomR/I(J/I,R/I)! R/J ! 0

where the first nonzero map sends u ∈ R/I to the map J/I ! R/I which is multiplication
by u and the second nonzero map corresponds to the Poincaré residue map.

Recall that if R is a commutative ring with unit, the subset SR of R consisting of all
a ∈ R such that the multiplication by a map R! R is injective, is a multiplicatively closed
subset of R and the natural map R to the localization (SR)

−1R, with a 7! a/1 is injective.
The ring (SR)

−1R is called the total ring of fractions of R.
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We denote by Q(R/I) the total ring of fractions of R/I. Since the variable z does not
appear in the generating set Ismall of I, we have that the multiplication by z map R/I ! R/I
is injective. Consequently, z is an invertible element of Q(R/I).

Proposition 4.2. Assume u ∈ (Ismall : Jsmall). Then, the mutliplication by u/z map
Q(R/I)! Q(R/I) sends the subset J/I inside R/I ⊂ Q(R/I). Moreover, (u/z)(w+ I) = 0
for all w ∈ Jsmall.

Proof. Clearly (u/z)(z+ I) = u+ I ∈ R/I. Assume w ∈ Jsmall, then since uw ∈ Ismall ⊂ I
we have (u/z)(w+ I) = (uw+ I)/(z + I) = 0 ∈ Q(R/I). Since J is generated as an ideal of
R by Jsmall ∪ {z} the proposition follows. □

As a consequence, given u ∈ (Ismall : Jsmall) there exists a well-defined element Tu ∈
HomR/I(J/I,R/I) such that Tu(z + I) = u and Tu(w) = 0 for all w ∈ (Jsmall + I)/I.

Proposition 4.3. We have
I ∩Rsmall = Ismall.

Proof. By the definition of I we have Ismall ⊂ I, hence Ismall ⊂ (I ∩Rsmall). For the other
inclusion, we assume w ∈ (I ∩Rsmall). Hence, there exist mi ∈ R such that

w =
∑

1≤i≤s

mihi,

with equality in R. Substituting 0 for the variable z, and using that w, hi ∈ Rsmall we get
that w ∈ Ismall. □

Proposition 4.4. Assume ϕ ∈ HomR/I(J/I,R/I) has the properties ϕ(w) = 0 for all
w ∈ (Jsmall + I)/I and that there exists u ∈ Rsmall such that ϕ(z + I) = u + I. Then
u ∈ (Ismall : Jsmall) and ϕ = Tu.

Proof. Assume w ∈ Jsmall. We have

0 = (z + I)ϕ(w + I) = ϕ((z + I)(w + I)) = (w + I)ϕ(z + I) = wu+ I.

Hence wu ∈ I. Since wu ∈ Rsmall, it follows that wu ∈ (I ∩ Rsmall). Using Proposition 4.3
wu ∈ Ismall, which implies that u ∈ (Ismall : Jsmall). Since J is generated as an ideal of R
by Jsmall ∪ {z} the equality ϕ = Tu follows. □

We will now prove that the second assumption in the previous proposition implies the
first.

Proposition 4.5. Assume ϕ ∈ HomR/I(J/I,R/I) has the property that there exists u ∈
Rsmall such that ϕ(z + I) = u + I. Then ϕ(w) = 0 for all w ∈ (Jsmall + I)/I. In addition,
u ∈ (Ismall : Jsmall) and ϕ = Tu.

Proof. Using Proposition 4.4 it is enough to prove that ϕ(w) = 0 for all w ∈ (Jsmall+ I)/I.
Assume w ∈ Jsmall. We fix r ∈ R with ϕ(w + I) = r + I. We have

zr + I = (z + I)ϕ(w + I) = ϕ((z + I)(w + I)) = (w + I)ϕ(z + I) = wu+ I.

Hence, wu− zr ∈ I, which implies that there exist mi ∈ R such that

wu− zr =
∑

1≤i≤s

mihi

with equality in R. We write, for 1 ≤ i ≤ s,

mi =
∑

1≤i≤s

m1,iz +m2,i,

with m1,i ∈ R and m2,i ∈ Rsmall. Hence,

wu− zr = z
∑

1≤i≤s

m1,ihi +
∑

1≤i≤s

m2,ihi.



12 KARIM ADIPRASITO, STAVROS PAPADAKIS, AND VASILIKI PETROTOU

Since w, u, hi,m2,i ∈ Rsmall, looking at the coefficients of z it follows that

r = −
∑

1≤i≤s

m1,ihi,

with equality in R. Hence r ∈ I, which implies that ϕ(w + I) = 0. □

Proposition 4.6. Assume ϕ ∈ HomR/I(J/I,R/I). Then there exist c ∈ R and an element
u ∈ (Ismall : Jsmall) such that

ϕ = Tu + ci,

where i : J/I ! R/I denotes the natural inclusion.

Proof. We fix r ∈ R such that ϕ(z + I) = r + I. We write

r = cz + u,

with c ∈ R and u ∈ Rsmall and set ϕ1 = ϕ− ci. We have that ϕ1 ∈ HomR/I(J/I,R/I) and

ϕ1(z + I) = ϕ(z + I)− c(z + I) = u+ I.

By Proposition 4.5, u ∈ (Ismall : Jsmall) and ϕ1 = Tu. □

Proposition 4.7. Assume u, v ∈ (Ismall : Jsmall). Then Tu = Tv if and only if u−v ∈ Ismall.

Proof. Assume first that u − v ∈ Ismall. Since Ismall ⊂ I we get u + I = v + I. Since
J is the ideal of R generated by the subset Jsmall ∪ {z} and both Tu and Tv are zero on
(Jsmall + I)/I, to prove Tu = Tv it is enough to prove that if Tu(z + I) = Tv(z + I). This
holds, since Tu(z + I) = u+ I and Tv(z + I) = v + I.

Conversely, we assume that Tu = Tv. Evaluating at z + I we get

u+ I = Tu(z + I) = Tv(z + I) = v + I,

which implies that u − v ∈ I. By assumption u − v ∈ Rsmall. Proposition 4.3 now implies
that u− v ∈ Ismall. □

We consider the Rsmall-module

L = (Ismall : Jsmall)/Ismall.

Theorem 4.8. The Rsmall-module L is cyclic. Assume u ∈ (Ismall : Jsmall) has the property
that u+ Ismall generate L. Then Tu together with inclusion map i : J/I ! R/I generate the
R/I-module HomR/I(J/I,R/I).

Proof. Using the short exact sequence (7), there exists ϕ ∈ HomR/I(J/I,R/I) that together
with the inclusion generate HomR/I(J/I,R/I) as R/I-module. Using Proposition 4.6, there
exist c ∈ R and v ∈ (Ismall : Jsmall) such that

ϕ = Tv + ci.

As a consequence, Tv together with the inclusion generate HomR/I(J/I,R/I) as R/I-module.
We claim that v + Ismall generate the Rsmall-module L. Indeed, assume w ∈ (Ismall :

Jsmall). Then Tw ∈ HomR/I(J/I,R/I), hence there exist c1, c2 ∈ R such that

Tw = c1Tv + c2i.

Consequently

w + I = Tw(z + I) = c1Tv(z + I) + c2i(z + I) = (c1v + c2z) + I.

Hence, there exist mi ∈ R such that

w − (c1v + c2z) =
∑

1≤i≤s

mihi,

with equality in R. Substituting 0 for the variable z, using that w, hi, u ∈ Rsmall we get
that w − c3v ∈ I, where c3 ∈ Rsmall is the result of the substitution of 0 for z in c1.
Since w, c3, v ∈ Rsmall, Proposition 4.3 implies that w − c3v ∈ Ismall. Hence, w + Ismall =
c3v + Ismall, therefore L is cyclic with generator v + Ismall.
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Conversely, assume that u ∈ (Ismall : Jsmall) has the property that u+ Ismall generate L.
This implies that there exists c4 ∈ Rsmall such that

v + Ismall = c4(u+ Ismall),

hence

Tv = c4Tu.

Since Tv together with the inclusion generate HomR/I(J/I,R/I) we get that also Tu together
with the inclusion generate HomR/I(J/I,R/I). □

Remark 4.9. Assume u ∈ (Ismall : Jsmall) has the property that Tu together with inclusion
map i : J/I ! R/I generate the R/I-module HomR/I(J/I,R/I). The arguments in the
proof of Theorem 4.8 show that u+ Ismall generates L as Rsmall-module.

Remark 4.10. Assume u ∈ (Ismall : Jsmall) has the property that u + Ismall generate L.
This implies that

(Ismall : Jsmall) = Ismall + (u),

where (u) denotes the ideal of Rsmall generated by u. Then

(Ismall : (u)) = (Ismall : (Ismall + (u))) = (Ismall : (Ismall : Jsmall)) = Jsmall,

where for the last equality we used [37, p. 115, Proposition 5.2.3 d)].

5. The Gorenstein case of volume normalization

In the present section we discuss the volume normalization theory of k[x1, . . . , xm]/I under
the additional assumption that the quotient ring is Gorenstein. We base our treatment on
the notion of degenerate Kustin-Miller unprojection introduced in Section 4.

Assume m ≥ 1 and k is a field. We consider the polynomial ring k[x1, . . . , xm], where
the degree of the variable xi is equal to 1, for all 1 ≤ i ≤ m. Assume I ⊂ k[x1, . . . , xm] is
a homogeneous ideal with k[x1, . . . , xm]/I Gorenstein. We denote by d the Krull dimension
of the quotient ring k[x1, . . . , xm]/I and assume d ≥ 1.

We will use the notations Rup, Iup, Rdown, Idown,A, e, S, E,Φ, defined in Section 2. Using
the assumption that the quotient ring k[x1, . . . , xm]/I is Gorenstein, we get by Proposi-
tion 2.2 that Rup/Iup is Gorenstein, since it is the quotient of Rup/(I) by a homogeneous
regular sequence. Consequently, the pair Iup ⊂ (x1, . . . , xm) of ideals of Rup is the predata
for a degenerate Kustin-Miller unprojection (see Section 4).

By Theorem 4.8, the Rup-module (Iup : (x1, . . . , xm))/Iup is cyclic, and we fix an element
h ∈ (Iup : (x1, . . . , xm)) such that h + Iup generates (Iup : (x1, . . . , xm))/Iup. We get the
following equality of ideals of Rup

(8) (Iup : (x1, . . . , xm)) = Iup + (h).

Theorem 5.1. The element Φ(h + Iup) is a nonzero element of Socle(A). Hence, it is a
basis of Socle(A) considered as E-vector space.

Proof. Since A is a graded Artinian Gorenstein E-algebra, Socle(A) is a 1-dimensional
E-vector space and Socle(A) = Ae. The result follows by Corollary 2.4. □

Using the theorem, there exists a unique volume normalization linear isomorphism Ae !
E such that it sends Φ(h+ Iup) to 1.
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5.1. The complete intersection case of volume normalization and relation with
residues. In this subsection we discuss the volume normalization theory of the algebra
k[x1, . . . , xm]/I under the additional assumption that I is a homogeneous complete inter-
section ideal. In addition, we relate it to the theory of multidimensional residues.

Assume m ≥ 1 and k is a field. We consider the polynomial ring k[x1, . . . , xm], where the
degree of the variable xi is equal to 1, for all 1 ≤ i ≤ m. Assume d ≥ 1 and

I = (H1, . . . ,Hm−d) ⊂ k[x1, . . . , xm]

is a homogeneous ideal with the property that H1, . . . ,Hm−d is a homogeneous regular
sequence of k[x1, . . . , xm]. As a consequence, the Krull dimension of the quotient ring
k[x1, . . . , xm]/I is d.

We will use the notations Rup, Iup,A, e, E,Φ, defined in Section 2.
Using the assumption that the H1, . . . ,Hm−d is a homogeneous regular sequence, we get

that

H1, . . . ,Hm−d, f1, . . . , fd

is a homogeneous regular sequence of Rup. In particular, Rup/Iup is Gorenstein.
We fix an m×m matrix M such that

(H1, . . . ,Hm−d, f1, . . . , fd)
t = M(x1, . . . , xm)t,

where N t denotes the transpose of the matrix N . We denote by ∆ the determinant of the
matrix M . Combining the computations in [43, Section 4] (see also Subsection 8.5) with the
discussion in Section 5 we get that

(Iup : (x1, . . . , xm)) = Iup + (∆).

As a consequence, we have the following proposition.

Proposition 5.2. There exists a volume normalization linear isomorphism Ae ! E uniquely
specified by the property that Φ(∆) maps to 1.

Comparing Proposition 5.2 with [21, p. 42, Equation (1.50)] we get a connection, in the
complete intersection setting, between the volume normalization theory and the theory of
multidimensional residues.

In particular, we can generalize the projective residue map resP
n

<F0,...,Fn>
defined in [21,

p. 40] as follows.
Assume m ≥ 0 and k is a field. We consider the polynomial ring R = k[x0, . . . , xm], where

the degree of the variable xi is equal to 1, for all 0 ≤ i ≤ m. Assume I ⊂ R is a homogeneous
ideal such that the quotient R/I is Artinian Gorenstein. We set J = (x0, . . . , xm). Then,
the pair I ⊂ J is a predata for a degenerate Kustin-Miller unprojection (see Section 4). By
Theorem 4.8, the R-module N = (I : J)/I is cyclic, and we fix an element h ∈ (I : J) such
that h+ I generates N as an R-module.

Definition 5.3. Assume Q ∈ R is a homogeneous element. If there exists λ ∈ k with
Q = λh (equality in R/I), we set resP

n

I,h(Q) = λ, otherwise we set resP
n

I,h(Q) = 0.

Remark 5.4. Using Remark 3.2 we have the following. Assume h1, h2 ∈ (I : J) have the
property that, for all 1 ≤ i ≤ 2, the element hi+ I generates N as an R-module. Then there
exists unique c ∈ k \ {0} such that

resP
n

I,h2
= c resP

n

I,h1

In particular, if the field k has two elements then Definition 5.3 does not depend on the
choice of h.
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6. Volume normalization in the case of simplicial spheres

In the present section we compute the volume normalization of the face ring of a simplicial
sphere.

Assume k is a field andD is a simplicial sphere with vertex set {1, 2, . . . ,m} and dimension
equal to d− 1 ≥ 1. We denote by ID ⊂ k[x1, . . . , xm] the Stanley-Reisner ideal of D and by
k[D] = k[x1, . . . , xm]/ID the face ring of D over k. We set

Rup = k[x1, . . . , xm, θi,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m],

and, for 1 ≤ i ≤ d, we set

fi =

m∑
j=1

θi,jxj ∈ Rup.

We denote by Iup the ideal of Rup generated by ID ∪ {f1, . . . , fd}, and we set

L = (Iup : (x1, . . . , xm))/Iup.

Since D is a simplicial sphere, by [7, Section 5] k[D] is Gorenstein of Krull dimension d.
As a consequence, the pair Iup ⊂ (x1, . . . , xm) is a predata for a degenerate Kustin-Miller
unprojection (see Section 4).

Proposition 6.1. The Rup-module L is cyclic.

Proof. It is an immediate application of Theorem 4.8. □

We will now describe a generator of the cyclic module L. We fix an ordered facet σ =
(b1, . . . , bd) of D. This just means that the set {b1, . . . , bd} is a facet of D. We set xσ =∏

1≤i≤d xbi ∈ Rup. Moreover, we denote by [σ] the determinant of the d × d matrix with

(i, j)-entry equal to θi,bj . Finally, we set

(9) h = [σ]xσ ∈ Rup.

The proof of the following theorem will be given in Subsection 6.1.

Theorem 6.2. The element h+ Iup is a generator of the cyclic Rup-module L.

Remark 6.3. We use the notations E = k(θi,j), Rdown = E[x1, . . . , xm], Idown = (ID) +
(f1, . . . , fd) ⊂ Rdown,A = Rdown/Idown defined in Section 2. We remark that (up to sign)
the volume normalization linear isomorphism Ad ! E defined in [48, p. 6, Equation (1)] (and
denoted there by the notation Ψe) is uniquely specified by the condition that the element
[σ]xσ + Idown maps to 1.

6.1. Proof of Theorem 6.2. We assume z is a new variable and we set R = Rup[z], hence

R = k[z, x1, . . . , xm, θi,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m].

We consider the ideals I = (ID) + (f1, . . . , fd), J = (x1, . . . , xm, z) and P = (ID) of R.
Recall, that for any w ∈ (Iup : (x1, . . . , xm)) we defined in Section 4 an element Tw ∈
HomR/I(J/I,R/I). We will prove in Proposition 6.12 that h ∈ (Iup : (x1, . . . , xm)). Using
that and Remark 4.9, to show Theorem 6.2 it is enough to prove Proposition 6.13 below,
which states that the map Th together with the inclusion i generate HomR/I(J/I,R/I) as
R/I-module.

We set

c = codim ID = dimk[x1, . . . , xm]− dim(k[x1, . . . , xm]/ID) = m− d.

We use the following bidegree for R. For a, b ∈ Z, we say that an element w ∈ R has
bidegree (a, b) if it is homogeneous of degree a with respect to the variables xi and z and
is homogeneous of degree b with respect to the variables θi,j . We denote by Ra,b the subset
of R consisting of bihomogeneous elements of bidegree (a, b), of course Ra,b = 0 if a < 0 or
b < 0. For a, b ∈ Z we denote by R(a, b) the bigraded R-module with R(a, b)k,l = Ra+k,b+l

for all k, l ∈ Z.
We denote by
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C1 : minimal graded free resolution of R/P as R-module.

C2 : minimal graded free resolution of R/(f1, . . . , fd) as R-module.

C3 : minimal graded free resolution of R/I as R-module.

C4 : minimal graded free resolution of R/J as R-module.

Proposition 6.4. C1 is of the form

0! Fc = R(−m, 0)! Fc−1 ! · · ·! F1 ! F0 = R

Proof. By [7, Lemma 5.6.4] we have that the socle degree of R/P is equal to d = dimD+1
and d = m− c. The result follows by the discussion in [37, p. 79]. □

Proposition 6.5. C2 is the Koszul complex on (f1, . . . , fd). Hence, C2 is

0! F̃d = R(−d,−d)! F̃d−1 ! · · ·! F̃1 ! F̃0 = R

Proposition 6.6. C3 is the tensor product of C1 and C2.

Proof. It follows by combining [26, p. 8] with [7, Exercise 1.1.12] and [7, Theorem 9.4.7]. □

Hence, by Proposition 6.6 it follows that

Proposition 6.7. C3 is

0! F̂m = R(−m− d,−d)! F̂m−1 ! · · ·! F̂1 ! F̂0 = R

Proposition 6.8. C4 is the Koszul complex on (x1, . . . , xm, z). Hence, C4 is

0! F̄m+1 = R(−m− 1, 0)! F̄m = (R(−m, 0))m+1 ! · · ·! F̄1 ! F̄0 = R

Proposition 6.9. Since

I ⊂ J ⊂ R

there is a natural projection map

R/I ! R/J.

It induces a chain map C3 ! C4. Looking at F̂m ≃ R F̄m ≃ Rm+1h each entry of

the matrix of h has bidegree (d, d).

Proposition 6.10. If τ is an ordered facet of D, then there exists ϵ ∈ {−1, 1} such that

h− ϵ[τ ]xτ

is an element of the ideal (f1, . . . , fd) of R.

Proof. See [48, Corollary 4.5]. □

Proposition 6.11. The element h+ I of R/I is nonzero.

Proof. We use the notations Rdown = k(θi,j)[x1, . . . , xm], Idown = (ID) + (f1, . . . , fd) ⊂
Rdown defined in Section 2. By [48, p. 6], h + Idown is a nonzero element of Rdown/Idown.
This implies that the element h+ I of R/I is nonzero. □

Proposition 6.12. We have h ∈ (Iup : (x1, . . . , xm)).
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Proof. Assume 1 ≤ j ≤ m. We choose a facet τ of D such that j is not an element of τ .
Using Proposition 6.10, there exists ϵ ∈ {−1, 1} such that

h− ϵ[τ ]xτ ∈ Iup.

Moreover, since j is not an element of the facet τ , we have that τ ∪ {j} is not a face of D,
hence

xτxj ∈ ID ⊂ Iup.

Hence, working on the quotient ring R/Iup we have

hxj + Iup = ϵ[τ ]xτxj + Iup = 0 + Iup.

This finishes the proof of the proposition. □

Proposition 6.13. The map Th together with the inclusion i generate the R/I-module
HomR/I(J/I,R/I).

Proof. We denote by < i > the R/I-submodule of HomR/I(J/I,R/I) generated by the
inclusion i. Proposition 6.9 together with the short exact sequence (7) and the general
theory of Kustin-Miller unprojection (see [43, 49] and Subsection 8.8) implies that

HomR/I(J/I,R/I)/ < i >

is a cyclic module generated by the class of an element ϕ such that ϕ(z) has bidegree
(d, d). By Proposition 6.12 h ∈ (Iup : (x1, . . . , xm)), h clearly has bidegree (d, d) and by
Proposition 6.11 h is nonzero in R/I. This finishes the proof of Proposition 6.13. □

7. The relative case and locality

The volume normalization theory we have developed so far can be used under the assump-
tion that we work with Gorenstein algebras. It applies, for example, for the class of face rings
of simplicial spheres. The relative volume normalization setting, which we will now discuss,
extends the theory. It is useful to handle situations where the socle is not one-dimensional
and one may want to normalize with respect to a specific choice of fundamental class (such
is the case when considering face rings of triangulated manifolds [1, 2]). Moreover, it allows
us to understand the normalization in cases where it otherwise becomes rather challenging
to access it directly, as in the case of lattice polytopes.

Let us try to establish that normalization is, in some way, local. We already saw a glimpse
of this: In the case of simplicial spheres D, the volume map evaluated at xF , where F is
a facet, only depended on the linear system of parameters at that facet; more precisely, on
the indeterminates corresponding to that facet. But the why of this is a bit unclear from
our calculation. We aim to explain that fact:

There are several ways to attempt to encode this: For instance, we could consider simpli-
cial homeomorphisms D′ ! D that leave F invariant, and study the resulting map of rings.
Alas, the class of objects we then understand is not of the desired generality. This section’s
main goal is to observe that sometimes, in order for practical calculations to succeed, it is
useful to consider relative settings.

So we adopt a different perspective: consider a standard graded Gorenstein ring T as a
module over a polynomial ring R = k[x]. We assume once more that T is of positive Krull
dimension, and that the fundamental class lives in degree d. We finally consider a squarefree
monomial xF of degree d in R, and set out to compute it’s volume map with respect to a
normalization.

We call xF isolated in T if the ideal IF generated by xF in T is isomorphic to k[xi,i∈F ].

Example 7.1. Consider a simplicial complex X, and let F denote a facet of X. Then xF

is isolated in the face ring of X.

Naturally, the Krull dimension of T is d.
Moreover, T/IF is Cohen-Macaulay, and IF is Gorenstein.
Hence, the question arises:
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What is the normalization, the value of the volume map, at xF ?
We can ask this question twice:
What is the value in IF (which, naturally, is Gorenstein itself)?
And what is the value in T?
Of course, we expect the answers to be the same. Let us do the math.

7.1. Relative KM Normalization in IF . We adopt the viewpoint of Section 3.2. Consider
IF = ⟨xF ⟩ in T .

Let Rup = R[θi,j ]. Consider the minimal free resolution F• of the module IF /ΘIF .

0 −! Fd −! Fd−1 −! · · · −! F0 −! IF
/
ΘIF −! 0

We also consider the minimal resolution G• of Rup/xRup. Since we have a natural map

IF = F0 −! Rup = G0

induced by the inclusion of IF into S′, and in particular a map of the one-dimensional
modules Φ : Fd ! Gd, both of which are isomorphic to Rup.

Definition 7.2. The relative KM normalization sets vol(Φ(1)) = 1.

We have that Φ(1) = ∆(θi,j)FxF , and hence immediately obtain the KM normalization

vol(∆(θi,j)FxF ) = 1.

7.2. Normalization in T . We want to consider now T as an Rup-module, and compute
the minimal free resolution H• of T/ΘT . Note: we have a commutative triangle

IF
/
ΘIF

T
/
ΘT

Rup

/
xRup

which of course induces a commutative triangle

Fd Hd

Gd

of one dimensional Rup-modules. The top map is an isomorphism, hence the normalization
coincides.

Example 7.3. If D is a simplicial sphere, and F is a facet, it follows that the KM normal-
ization satisfies

vol(∆(θi,j)FxF ) = 1.

7.3. Locality. Let us reexamine what happened in the last section, and for this purpose,
introduce the notion of a dualizable Cohen-Macaulay module: Such modules are characterized
by being Cohen-Macaulay, and the socle of their Artinian reduction is of dimension one.

One such example is considering a Gorenstein ring T as above, and considering an ideal K
in it such that T/K is Cohen-Macaulay. Such a module is dualizable Cohen-Macaulay, and,
by defining the relative normalization as in Section 7.1, with IF replacing K. Section 7.2
then shows that this normalization only depends on K, not on T . In particular, if two rings
contain isomorphic dualizable Cohen-Macaulay ideals, then the KM normalization in this
ideal only depends on K, and not on T or T ′. Another way of saying it: If m is an element
in the socle of K, the Artinian reduction of K, then vol(m) is independent of whether we
are considering T or T ′.
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8. Applications

Let us note the two main applications of this relative perspective.

8.1. Simplicial spheres to manifolds. One issue we had in the absolute perspective was
to explain the KM normalization in the case of objects more general than manifolds, see
2.16; the relative normalization helps here. We can use it to explain the normalization for
general (closed, compact orientable) manifolds, pseudomanifolds and more generally face
rings of cycles [2].

Recall: Given a triangulated (d− 1)-dimensional cycle µ over k, we can consider the face
ring T of its underlying simplicial complex. Consider any Artinian reduction A of T . Note
that µ defines a map

µ∗ : Ad −! k

and we can consider the quotient B of A under the annihilator of this map. B is Gorenstein
of Krull dimension zero. This quotient is of course independent of the precise choice of µ∗,
and the precise choice is nothing but the normalization of the volume map.

And we can consider any facet F of µ, and observe that if the coefficient of µ on F is µF ,
then this is reflected in the relative normalization with respect to IF . And while it is a bit
troublesome to explain the value of vol(xF ) in B, we have a direct explanation within IF , as
IF is simply isomorphic to the polynomial ring k[xi,i∈F ]. The value of vol(xF ) is therefore
naturally subject to

vol(∆(θi,j)FxF ) = µF .

In other words, relative KM normalization recovers the natural normalization for cycles.

8.2. Lattice polytopes. Consider next an IDP lattice polytope P of dimension d− 1, that
is, a lattice polytope such that the semigroup algebra k[KP ] is standard graded (another
word for generated in degree one). Here, KP is the cone over P × {1} in Λ× Z, where Λ is
the ambient lattice for P .

In [3], we studied the volume map of such semigroup algebras, and argued that a certain
natural choice can be made. We argue here that it agrees with KM normalization.

Specifically, we are interested in the module k[KP , ∂KP ] that is obtained as the kernel of
the map

k[KP ] −! k[∂KP ].

The socle of the Artinian reduction A of k[KP , ∂KP ] is concentrated in degree d, and it
is natural and imperative to understand the map

Ad −! k

And while the normalization we gave in [3] fell a bit out of thin air, we reconstruct it here.
The key observation, to start with, is that if P is a unimodular lattice (d− 1)-simplex,

that is, a lattice simplex such that the vertices of P×{1} generateKP∩(Λ×Z), the semigroup
algebra is but the face ring of a simplex, that is, it is the polynomial ring generated by d
generators. And k[KP , ∂KP ], in this case, is the ideal generated by xP , the product of these
generators. We fully understand the normalization thanks to relative KM normalization.

Simple case. If P has a unimodular boundary facet τ in ∂P , then we obtain the desired
normalization by matching the face ring picture and setting

(10) 1 =
∑

p∈(P\τ)∩Λ

vol(xpxτ )∆(Θ|τ,p)

where Θ = (θi,j) is the matrix of coefficients in the linear system of parameters.
General case. In general, consider a flag (τi) of faces of P such that τd = P and such

that τi is a facet of τi+1. We say a set σ = {σ0, . . . , σd} ⊂ (P ∩ Λ)d+1 without repetitions
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is coherent with (τi) if it intersects τi in a set of cardinality i + 1. We then normalize by
setting

(11) 1 =
∑

σ coherent with (τi)

vol(xσ)∆(Θ|σ)

We claim that this is consistent with KM normalization. Of course, at first, we do not have
a Gorenstein ring. But we can create one: If we consider the complex of lattice polytopes
P ∪ (v ∗ ∂P ), we have a lattice sphere Σ, and the resulting algebra is naturally Gorenstein,
obtained by gluing together the semigroup algebras of the individual lattice polytopes, is
Gorenstein [8].

If Σ has a unimodular facet, then we apply the relative normalization above to that facet.
More precisely:

If P has a boundary consisting of unimodular simplices, then we consider the cone over
P as a polytope; it follows that

(v ∗ ∂P ) ∪ P

is a lattice complex (again, in the sense of [8]), and that it defines a Gorenstein ring, meaning
that the volume on P extends uniquely to a volume on (v ∗ ∂P ) ∪ P . For the simplices F
of v ∗ ∂P the volume is uniquely determined and given by det−1(Θ|F ); the normalization
in the simple case, that is, Identity (10) then follows by the following identity, see [48,
Proposition 11.1].

Lemma 8.1. Consider any Gorenstein ring T of socle degree d and Krull dimension d.
Then in the generic Artinian reduction A of T , and any homogeneous polynomial m of
degree d− 1, we have ∑

xi,i∈I
∆(θ|J,i)vol(mxi) = 0

where I indexes the indeterminates of the polynomial ring and J is any subset of I of size
d− 1.

For an arbitrary IDP lattice polytope P , we argue in a similar fashion. Unfortunately,
unless P has a unimodular facet,

(v ∗ ∂P ) ∪ P

does not have a unimodular facet. However, we can use the fact that the faces of v ∗ ∂P are
decidedly more simplicial than P : they are cones over polytopes of codimension one.

Let us spin this idea further: P is a d-dimensional lattice polytope, and we consideran
additional set of vertices V = {v1, · · · , vd}.

Consider the polyhedral complex⋃
W⊂V

(
∨
v∈W

v) ∗ P (d−#W )

where
∨

v∈W v denotes the free join over the vertices in W and P (d−#W ) consists of the faces
of P of dimension (d−#W ) or less.

This complex is grouped into polytopes of different kinds, depending on the size of W .
For W = V , we obtain a unimodular simplex.

We observe that the algebra generated by this complex is Gorenstein, and that the KM
normalization of the simplex

∨
v∈V v is consistent with the observed rule, as it is just a

unimodular simplex.
Assuming then that we have the normalization formula for W of cardinality at least s,

Lemma 8.1 gives the normalization for cardinality s − 1. This recovers Identity (11), and
the consistency of the volume normalization. Hence, the relative formalism has allowed us
to recover the following

Corollary 8.2. Consider Σ a sphere built out of IDP lattice polytopes. Then the algebra it
generates is Gorenstein, and at any facet P of Σ satisfies Identity (11).
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Appendix: A brief survey of Kustin-Miller unprojection

The present appendix is a brief survey of Kustin-Miller unprojection.

8.3. Introduction. The structure of Gorenstein rings of codimension ≤ 3 is well under-
stood, (see e.g. [27, Corollary 21.20] and [7, Theorem 3.4.1]). More precisely, a codi-
mension 1 Gorenstein ring is a hypersurface, a codimension 2 Gorenstein ring is a complete
intersection and a codimension 3 Gorenstein ring is Pfaffian. In the 1980s, A. Kustin and
M. Miller [30, 31, 32, 33, 34, 35] during their investigation of the structure of Gorenstein
rings of codimension greater or equal than 4 introduced a method that constructs Goren-
stein rings of more complicated form starting from simpler ones. This method is known as
Kustin-Miller unprojection.

Some years later, M. Reid who was also interested to understand the structure of Goren-
stein rings in low codimension, motivated by some problems coming from algebraic geometry,
reinterpreted the theory of A. Kustin and M. Miller by giving his formulation. S. Papadakis
and M. Reid [43, 49] developed further the theory of unprojection. Besides of Kustin-Miller
unprojection, known also as type I unprojection, there are several other kinds of unprojec-
tion [44, 45, 46, 47, 52, 54]. However, in this survey we will only focus on the Kustin-Miller
unprojection.

The assumptions of Kustin-Miller unprojection are that I, J ⊂ R are two ideals of
a positively graded Gorenstein ring R such that R/I,R/J are Gorenstein, I ⊂ J and
dim R/I− dim R/J = 1. Then, there exists an R/I-module homomorphism ϕ : J ! R/I
such that the R/I-module HomR/I(J,R/I) is generated by ϕ and the inclusion i : J ! R/I.
According to M. Reid, HomR/I(J,R/I) contains all the important information for the con-
struction of unprojection ring. Under these assumptions, M. Reid and S. Papadakis ([49,
Theorem 1.5]), proved that the ring of unprojection is Gorenstein.

Kustin-Miller unprojection can be used several times, inductively, for the construction
of Gorenstein rings of higher codimension. This process is called parallel Kustin-Miller
unprojection, and was developed by J. Neves and S. Papadakis [39].

Unprojection theory can be considered as the algebraic language for the study of cer-
tain constructions in algebraic geometry. The range of its applications is wide. In explicit
algebraic geometry, it is used in the study and the construction of some interesting geo-
metric objects such as surfaces of general type, K3 surfaces, Fano 3-folds and Calabi-Yau
3-folds [4, 5, 18, 38, 39, 50, 51]. The graded ring database [16] contains lists of graded rings
of such objects whose existence is conjectured and may possibly be proved via unprojection.
Moreover, it is used in the further development of the Minimal Model Program by providing
an effective way to study explicitly varieties and morphisms between them [17, 19, 24, 25].
Also, it appears in algebraic combinatorics, in the study of Stanley-Reisner ideal of cyclic
polytopes and stellar subdivisions of Gorenstein complexes [11, 13, 14, 15].

Kustin-Miller unprojection is related to liaison theory (also known as linkage theory). For
more details we refer to [34] and [29, Section 2.6].

The further development of unprojection theory is an active area of research. There
are many recent contributions [22, 23, 50, 51, 54] on foundational questions, computational
questions and applications of unprojection theory. In the current research work, we use
unprojection theory and especially Kustin-Miller unprojection, to define the normalization
of the volume map.

The survey is organised as follows. In Subsection 8.4 we recall the main principles of un-
projection as formulated by M. Reid and S. Papadakis. In Subsections 8.5, 8.6, we focus on
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two kinds of Kustin-Miller unprojection which lead to the construction of Gorenstein rings of
codimension 3 and 4 respectively. In Subsection 8.7, we refer briefly to the parallel Kustin-
Miller unprojection of J. Neves and S. Papadakis and its applications. In Subsection 8.8,
we present the original construction of A. Kustin and M. Miller known as the Kustin-Miller
complex construction. In Subsection 8.9, we discuss the Macaulay2 package ”KustinMiller”,
developed by J. Böhm and S. Papadakis, which implements the Kustin-Miller complex con-
struction on the the computer algebra system Macaulay2 [28].

8.4. Kustin-Miller unprojection. In this subsection, we follow [49]. Assume R is a posi-
tively graded Gorenstein ring. Let I, J be homogeneous ideals of R such that R/I and R/J
are Gorenstein, I ⊂ J and dim R/I − dim R/J = 1. By duality theory, applying the
functor HomR/I(−, R/I) to the exact sequence

(12) 0! J ! R/I ! R/J ! 0

we get the following exact sequence

(13) 0! R/I ! HomR/I(J,R/I)! R/J ! 0

where the second nonzero map corresponds to the Poincaré residue map.
Using that R/I and R/J are cyclic, we conclude that the R/I-module HomR/I(J,R/I) is
generated by two elements. Hence, there exists an R/I-module homomorphism ϕ : J ! R/I
such that ϕ together with the inclusion map i : J ! R/I generate HomR/I(J,R/I) as R/I -
module.

Definition 8.3. (Reid) Assume T is a new variable. We define as Kustin-Miller unprojection
ring of the pair J ⊂ R/I the quotient

Unpr(J,R/I) =
R[T ]

I + (Tr − ϕ(r) : r ∈ J)

Theorem 8.4. (Papadakis-Reid) The ring Unpr(J,R/I) is Gorenstein.

Remark 8.5. The Kustin-Miller unprojection ring Unpr(J,R/I) does not depend (up to
isomorphism) on the choice of the map ϕ.

The following example is the simplest example of Kustin-Miller unprojection. Although
the algebra behind this example is quite simple, it has found many applications in birational
geometry ([49, Applications 2.3.]).

Example 8.6. (Reid’s Ax-By argument) Let A,B ∈ R = k[x, y, z, w]. Assume that

X = V (Ax− By) ⊂ P3

is an irreducible cubic surface and

D = V (x, y)

is a codimension 1 subscheme contained in X.
Denote by IX , ID the ideals correspond to X and D respectively. We can easily check

that the ideals IX and ID of R satisfy the conditions of Kustin-Miller unprojection.
Then, HomR/IX (ID, R/IX) is generated as R/IX -module by the inclusion map i and ϕ.

The R/IX -module homomorhism ϕ : ID ! R/IX is the unique R/IX -module homomorphism
such that ϕ(x) = B + IX and ϕ(y) = A+ IX .

The Kustin-Miller unprojection ring of the pair ID ⊂ R/IX is

Unpr(ID, R/IX) =
R[T ]

IX + (Tx−B, Ty −A)
.

Denote by Y = V (IX+(Tx−B, Ty−A)) ⊂ P4. We note that Y is a codimension 2 complete
intersection.

There is a natural projection

π : Y X with [x, y, z, w, T ] 7! [x, y, z, w]
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with birational inverse the rational map (induced by the module homomorphism ϕ)

π−1 : X Y with [x, y, z, w] 7! [x, y, z, w, T =
A

y
=

B

x
]

We have the following cases:

• (General Case) If X is smooth then π−1 is a regular map, the usual Castelnuovo
blow-down of the (−1)-line D.

• (Special Case) Assume that V (A,B) ∩ V (x, y) ̸= ∅. For an explicit example, taken
from [42, p. 21], assume X = V (xz(w + x)− y(z + y)w). Then V (A,B) ∩ V (x, y) =
{P1, P2}, where P1, P2 are A1 singularities of X. Denote by Z the graph of π. Then
π−1 factorizes as follows:

Z

X Yπ−1

The map Z ! X is the blowup of X at the points P1, P2 and the map Z ! Y is the
blowdown of the strict transform of D.

Remark 8.7. In the above example, π−1 is the inverse of a projection, which explains the
name unprojection.

8.5. Unprojection of a complete intersection inside a complete intersection. As-
sume R is a Gorenstein ring and I, J are complete intersection ideals of codimension r
and r + 1 respectively with the property I ⊂ J . Following [43, Section 4], we describe the
unprojection ring Unpr(J,R/I).

The ideals I, J are generated by the regular sequences {u1, . . . , ur} and {v1, . . . , vr+1}
respectively. That is,

I = (u1, . . . , ur), J = (v1, . . . , vr+1).

Since I ⊂ J , there exists an r × (r + 1) matrix A withu1
...
ur

 = A

 v1
...

vr+1

 .

Denote by Ai the r × r submatrix of A obtained by removing the i-th column of A. We set
for 1 ≤ i ≤ r + 1, hi to be the determinant of the matrix Ai.

Theorem 8.8. ([43, Theorem 4.3]) Denote by

ϕ : J ! R/I

the map such that
ϕ(vi) = (−1)i+1hi, for 1 ≤ i ≤ r + 1.

The R/I-module HomR/I(J,R/I) is generated by ϕ and the canonical inclusion i : J/I ! R/I.
Moreover the unprojection ring,

Unpr(J,R/I) =
R[T ]

I + (Tvi − (−1)i+1hi)

is Gorenstein.

We finish this subsection by describing the unprojection ring in a specific example of a
complete intersection inside a complete intersection.

Example 8.9. Let R = k[ci, di, xi], where 1 ≤ i ≤ 3, be the standard graded polynomial
ring in 9 variables over a field k. Consider the ideals

I = (c1x1 + c2x2 + c3x3, d1x1 + d2x2 + d3x3), J = (x1, x2, x3)

of R. The ideals I, J of R satisfy the assumptions of Kustin-Miller unprojection.
We consider the 2× 3 matrix
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A =

(
c1 c2 c3
d1 d2 d3

)
and, for 1 ≤ i ≤ 3, we denote by Ai the 2× 2 submatrix of A obtained by removing the i-th
column of A. For 1 ≤ i ≤ 3, denote by |Ai| the determinant of Ai. We set

h1 = |A1| = c2d3 − c3d2,

h2 = |A2| = c1d3 − c3d1,

h3 = |A3| = c1d2 − c2d1,

Then, by [43, Theorem 4.3], the unprojection ring of the pair J ⊂ R/I is

Unpr(J,R/I) =
k[c1, c2, c3, d1, d2, d3, x1, x2, x3, T ]

I + (Tx1 − h1, Tx2 − (−h2), Tx3 − h3)
.

We remark that Unpr(J,R/I) is not a complete intersection.

8.6. Tom and Jerry unprojections. Tom and Jerry families, defined and named by
M. Reid, are two different families of unprojection which are used for the construction
of a codimension 4 Gorenstein ideal with 9 equations and 16 first syzygies starting from
a codimension 3 Gorenstein ideal. S. Papadakis [43] gave an explicit presentation of the
unprojection ring of these families.

Before we introduce Tom and Jerry families of unprojection let us remind some preliminary
notions.

Definition 8.10. A skewsymmetric matrix M = [mij ], 1 ≤ i, j ≤ n with entries in a
commutative ring R is an n× n matrix such that mi,i = 0 and mij = −mji.

For example, a 5× 5 skewsymmetric matrix M is of the form
0 m12 m13 m14 m15

−m12 0 m23 m24 m25

−m13 −m23 0 m34 m35

−m14 −m24 −m34 0 m45

−m15 −m25 −m35 −m45 0


Definition 8.11. Let M = [mij ], 1 ≤ i, j ≤ n with entries in a commutative ring R be an
n × n skewsymmetric matrix. Denote by Mi the skewsymmetric submatrix of M obtained
by deleting the i-th row and i-th column of M and by In/2 the n/2× n/2 identity matrix.

(1) If n is even, we call Pfaffian of the matrix M and denote it by Pf(M), the unique
polynomial with the properties

(Pf(M))2 = detM

and

Pf(

(
0 In/2

−In/2 0

)
) = 1

(2) If n is odd, we call Pfaffians of the matrix M the set {Pf(M1),Pf(M2), . . . ,Pf(Mn)}.

Example 8.12. If n = 2,

Pf(M) = m12.

If n = 5,

Pf(M) = {Pf(M1),Pf(M2), . . . ,Pf(M5)}
where

Pf(M1) = m23m45 −m24m35 +m25m34,

Pf(M2) = m13m45 −m14m35 +m15m34,
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Pf(M3) = m12m45 −m14m25 +m15m24,

Pf(M4) = m12m35 −m13m25 +m15m23,

Pf(M5) = m12m34 −m13m24 +m14m23.

Let M be a 5× 5 skewsymmetric matrix. Fix a codimension 4 complete intersection ideal
J . We set the following question:

Question 8.13. What conditions should be satisfied by the entries of M such that the
codimension 3 ideal generated by the Pfaffians of M is contained in J?

Two different answers in this question are given by Tom and Jerry. According to our
knowledge it is still an open question if Tom and Jerry are the only answers to the Ques-
tion 8.13 ([52, Problem 8.2]).

Definition 8.14. (1) Assume 1 ≤ i ≤ 5. The matrix M is called Tomi in J if after we
delete the i-th row and i-th column of M the remaining entries are elements of the
codimension 4 ideal J .

(2) Assume 1 ≤ i < j ≤ 5. The matrix M is called Jerryij in J if all the entries of M
that belong to the i-th row or i-th column or j-th row or j-th column are elements of
J , while there is no restriction for the remaining entries of M .

Example 8.15. We work over the polynomial ring R = k[yk, zk,m
k
ij ] where 1 ≤ k ≤ 4,

2 ≤ i < j ≤ 5. Assume J = (z1, z2, z3, z4) is a codimension 4 complete intersection ideal of
R.

(1) The matrix

M =


0 y1 y2 y3 y4

−y1 0 m23 m24 m25

−y2 −m23 0 m34 m35

−y3 −m24 −m34 0 m45

−y4 −m25 −m35 −m45 0

 ,

where

mij =

4∑
k=1

mk
ijzk.

is an example of a Tom1 matrix in J .
(2) The matrix

M =


0 m12 m13 m14 m15

−m12 0 m23 m24 m25

−m13 −m23 0 y1 y2
−m14 −m24 −y1 0 y3
−m15 −m25 −y2 −y3 0

 ,

where

mij =
4∑

k=1

mk
ijzk.

is an example of a Jerry12 matrix in J .

We finish this subsection by recalling the main ideas of Papadakis’ calculation about Tom
([43, Section 3.3]).

Papadakis’ Calculation about TomWe work over the polynomial ringR = k[yk, zk,m
k
ij ]

where 1 ≤ k ≤ 4, 2 ≤ i < j ≤ 5. Consider the Tom1 matrix M in the ideal J = (z1, z2, z3, z4)
of the first part of Example 8.15. Denote by I be the ideal generated by the Pfaffians
Pf(M1),Pf(M2), . . . ,Pf(M5) of M . It is easy to see that I ⊂ J.
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Using that Pf(M2), . . . ,Pf(M5) are linear in z1, z2, z3, z4, there exists a unique 4×4 matrix
Q such that 

Pf(M2)
Pf(M3)
Pf(M4)
Pf(M5)

 = Q


z1
z2
z3
z4

 .

For i = 1, . . . , 4, let Hi be the 1 × 4 matrix whose i-th entry is equal to (−1)i+1 times
the determinant of the submatrix of Qi obtained by Q deleting the i-th column. We fix
1 ≤ j ≤ 4. Using that for all i, j,

yiHj = yjHi.

we can define four polynomials g1, g2, g3, g4 such that

(g1, g2, g3, g4) = Hj/yj .

We note that this definition does not depend on the choice of j.
Denote by ϕ the map which is defined by

ϕ : J ! R/I

zi 7! gi.

Then, HomR/I(J,R/I) is generated as R/I-module by the inclusion map i and ϕ. Denote
by

Iun = I + (Tz1 − g1, T z2 − g2, T z3 − g3, T z4 − g4).

The unprojection ring of the pair J/I ⊂ R/I

Unpr(J,R/I) =
k[yk, zk,m

k
ij , T ]

Iun
is Gorenstein and the codimension of the ideal Iun is equal to 4.

Remark 8.16. According to our knowledge it is still an open question if every codimension 4
Gorenstein ring with a 9 × 16 resolution comes from Tom and Jerry unprojections ([52,
Problem 8.3]).

8.7. Parallel Kustin-Miller unprojection. In Algebraic Geometry, especially for appli-
cations it is necessary to produce Gorenstein rings of higher codimension. For this aim,
Kustin-Miller unprojection can be used more than one time in order to produce Gorenstein
rings of arbitrary codimension whose properties are controlled by just a few equations as a
number of new unprojection variables are adjoined.

In this direction, J. Neves and S. Papadakis [39] developed a theory which is called
parallel Kustin-Miller unprojection. The initial data for parallel Kustin-Miller unprojection
is a Gorenstein graded ring R and a finite set of codimension 1 ideals {J1, . . . , Jn} such
that the quotients R/Ji are Gorenstein and satisfy some extra mild assumptions. The
unprojection ring that is obtained by this process is defined as the quotient of R[T1, . . . , Tn],
where T1, . . . Tn are new variables, by an ideal of simple form obtained from the initial data.
Moreover, the new ring is Gorenstein([39, Theorem 2.3]).

Parallel Kustin-Miller unprojection has found many applications in the construction of
new interesting algebraic varieties [38, 39, 40, 50, 51]. For more details related to parallel
Kustin-Miller unprojection we refer the reader to [39, 50].

8.8. Kustin-Miller complex construction. Kustin-Miller complex construction was in-
troduced by A. Kustin and M. Miller [33] during their efforts to find a structure theorem of
Gorenstein rings of codimension ≥ 4. Given a pair of projective resolutions of Gorenstein
rings that satisfy certain properties, this construction produces a new Gorenstein ring and
its resolution.

Kustin-Miller complex construction has found many applications in algebraic geometry,
for example in the construction of some interesting geometric objects such as Campedelli
surfaces of general type and Calabi-Yau 3-folds of high codimension [38, 39]. In these
cases, the numerical invariants of the varieties produced via Kustin-Miller unprojection
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are controlled by the Kustin-Miller complex construction. Moreover, it has found many
applications in algebraic combinatorics, for example in the study of face rings of cyclic
polytopes and stellar subdivisions of Gorenstein complexes [11, 13, 14, 15].

J. Böhm and S. Papadakis [9, 10] developed the Macaulay2 [28] package ”KustinMiller”
which implements the Kustin-Miller complex construction.

In this subsection, we describe the Kustin-Miller complex construction, following [11, 10,
33].

We begin by recalling the assumptions of Kustin-Miller unprojection of Subsection 8.4.
Assume R is a positively graded polynomial ring over a field. Let I, J be homogeneous

ideals of R such that R/I and R/J are Gorenstein, I ⊂ J and dim R/I − dim R/J = 1.
Kustin-Miller complex construction is the construction of the graded free resolution of the

Kustin-Miller unprojection ring Unpr(J,R/I) (Definition 8.3) from graded free resolutions
of R/I and R/J as R-modules.

Using that R/I, R/J are Gorenstein rings, by [7, Proposition 3.6.11] there are integers
k1, k2 such that ωR/I = R/I(k1) and ωR/J = R/J(k2). Assume that k1 > k2. The assump-
tions of Kustin-Miller unprojection are satisfied. Hence, we fix a graded homomorphism
ϕ : J ! R/I of degree k1 − k2 such that HomR/I(J,R/I) is generated as an R/I-module by
ϕ and the canonical inclusion i. The Kustin-Miller unprojection ring of the pair J ⊂ R/I,
Unpr(J,R/I) defined by the ϕ (Definition 8.3), where T is a new variable of degree k1 − k2,
is a positively graded algebra.

We now describe the construction given by A. Kustin and M. Miller [33] of the graded
free resolusion of the Kustin-Miller unprojection ring Unpr(J,R/I) (Definition 8.3) from the
graded free resolutions of R/I and R/J .

Denote by g the codimension of the ideal J of R. That is, g = dimR− dimR/J . Let

CJ : R/J  θ0 = R
θ1 θ1

θ2 . . .
θg−1
 θg−1

θg
 θg = R(−k1 − η) 0

CI : R/I  B0 = R
b1 B1

b2 . . .
bg−1
 Bg−1 = R(−k2 − η) 0

be minimal graded free resolutions of R/J and R/I respectiely as R-modules, where η is
the sum of the degrees of the variables of R. Due to Gorenstein property, CI and CJ are
self-dual ([27, Corollary 21.16]).

For an R-module M , we denote M ′ := M ⊗R R[T ] which is an R[T ]-module. Consider
the complex

C : Unpr(J,R/I) F0
f1 F1

f2 . . .
fg−1
 Fg−1

fg
 Fg  0

with the modules, when g ≥ 4,

F0 = B′
0, F1 = B′

1 ⊕ θ′1(k2 − k1)

Fi = B′
i ⊕ θ′i(k2 − k1)⊕B′

i−1(k2 − k1), for 2 ≤ i ≤ g − 2

Fg−1 = θ′g−1(k2 − k1)⊕B′
g−2(k2 − k1), Fg = B′

g−1(k2 − k1).

If g = 2, we have

F0 = B′
0, F1 = θ′1(k2 − k1)

F2 = B′
1(k2 − k1).

If g = 3, we have

F0 = B′
0, F1 = B′

1 ⊕ θ′1(k2 − k1)

F2 = θ′2(k2 − k1)⊕B′
1(k2 − k1), F3 = B′

2(k2 − k1).

We will define the differentials of the complex C by specifying chain maps α : CI ! CJ ,
β : CJ ! CI [−1] and a homotopy map h : CI ! CI which is not required to be a chain
map.
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Let t1 be the rank of the free R-module A1. The self-duality of CJ implies that t1 is also
the rank of the free R-module θg−1.

Fix R-module bases e1, . . . , et1 and ê1, . . . , êt1 of θ1 and θg−1 respectively. For 1 ≤ i ≤ t1,
we define ci, ĉi ∈ R such that

θ1(ei) = ci1R, θg(1R) =

t1∑
i=1

ĉiêi

where by Gorenstein property, ci, ĉi ∈ J .
For 1 ≤ i ≤ t1, denote by li, l̂i ∈ R lifts in R of ϕ(ci) and ϕ(ĉi) respectively. For an

R-module A, we set A∗ = HomR(A,R). For an R-basis f1, . . . , ft, denote by f∗
1 , . . . , f

∗
t the

dual basis of A∗.
Let ādg−1 : θ

∗
g−1 ! R = B∗

g−1 be the R-module homomorphism defined by ādg−1(êi
∗) = l̂i1R

for 1 ≤ i ≤ t1. Using that CI , CJ are self-dual we get that ādg−1 extends to ād : C∗
J ! C∗

I .
Denote by ā : CI ! CJ its dual.

By [43], the map ā0 : B0 = R ! R = θ0 is multiplication by an invertible element of R,
say u. We set a = ā/u.

Next step is to define a chain map β : CJ ! CI [−1] by extending β1 : θ1 ! R = B0

defined by β1(ei) = −li1R.
The map βg : θg = R! R = Bg−1 is multiplication by a nonzero constant. Then, by the

proof of ([33, Theorem 1.4.]) there is a homotopy map h : CI ! CI with h0 : B0 ! B0 and
hg−1 : Bg−1 ! Bg−1 being the zero maps and

βiαi = hi−1bi + bihi, for 1 ≤ i ≤ g.

Denote by r = rank Bt. Let It be the identity r × r matrix. The differential maps
fi : Fi ! Fi−1 of the complex C are defined as:

f1 =
(
b1 β1 + T · θ1

)
, f2 =

(
b2 β2 h1 + T · I1
0 −θ2 −α1

)

fi =

 bi βi hi−1 + (−1)iT · Ii−1

0 −θi −αi−1

0 0 bi−1

 for 3 ≤ i ≤ g − 2

fg−1 =

 βg−1 hg−2 + (−1)g−1T · Ig−2

−θg−1 −αg−2

0 bg−2

, fg =

(
−αg−1 + (−1)g 1

βg(1)
T · θg

bg−1

)
Theorem 8.17. [33] The chain complex C, known as the Kustin-Miller complex construc-
tion, is a graded free resolution of Unpr(J,R/I) as R[T ]-module.

Remark 8.18. In general, the resolution C is not minimal as indicated, for example, by [12,
Subsection 5.1, Example 3]. However, it is minimal in some examples coming from algebraic
geometry [38, 50, 51] and combinatorics [11, Theorem 6.1], [13]. For explicit examples of the
Kustin-Miller complex construction, we refer the reader to [11, Subsection 6.2].

8.9. The Macaulay2 package KustinMiller. The Macaulay2 package ”KustinMiller”,
developed by J. Böhm and S. Papadakis [10], is the implementation using Macaulay2 [28] of
the Kustin-Miller complex construction. More precisely, the authors present an algorithm
which has as input the resolutions CI and CJ of I and J respectively and produces as output
the Kustin-Miller complex C associated to I and J constructed in the previous paragraph.

To use the package, type in Macaulay2 the command line needsPackage”KustinMiller”.
The command kustinMillerComplex produces the Kustin-Miller complex C from the

resolutions CI , CJ . For an example, we refer to [10, Section 4]. Moreover, there are useful
Macaulay2 commands such as Hom(J,R^1/I), which determines the unprojection map ϕ
(Subsection 8.4) and extend which extends homomorphisms to chain maps. For more details
about the package we refer the reader to [9, 10].
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